Net wor k Wor ki ng Group J. Callas
Request for Comments: 4880 PGP Cor poration
(bsol etes: 1991, 2440 L. Donner hacke
Cat egory: Standards Track | KS GnbH
H. Fi nney

PGP Cor poration

D. Shaw

R Thayer

Novenber 2007

OpenPGP Message For mat
Status of This Meno

This docunent specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Abst r act

This docunent is maintained in order to publish all necessary

i nformati on needed to devel op interoperable applications based on the
QpenPGP format. It is not a step-by-step cookbook for witing an
application. It describes only the format and net hods needed to
read, check, generate, and wite conforning packets crossing any
network. It does not deal with storage and inpl enentati on questions.
It does, however, discuss inplenentation issues necessary to avoid
security flaws.

OpenPGP software uses a conbi nation of strong public-key and
synmmetric cryptography to provide security services for electronic
communi cati ons and data storage. These services include
confidentiality, key managenent, authentication, and digita
signatures. This docunent specifies the nessage formats used in
OpenPGP

Call as, et al St andards Track [Page 1]

RFC 4880 OpenPGP Message For mat Novenber 2007

Tabl e of Contents

1

2.

Introducti On 5
O 1= 0 5
General fUNCLIONS 6
2.1. Confidentiality via Encryption 6
2.2. Authentication via Digital Signature 7
2.3, CONMPr eSS ON .ttt 7
2.4. Conversion to Radi X-64 8
2.5. Signature-Only Applications 8
Data El ement Formats 8
3.1. Scalar Nunmbers 8
3.2. Multiprecision Integersy 9
3.3, Key DS . 9
B A, T eXt 9
3.5, Time Fields 10
3.6, KeYringS ..o 10
3.7. String-to-Key (S2K) Specifiers 10
3.7.1. String-to-Key (S2K) Specifier Types 10
3.7.1.1. Sinple S2K 10

3.7.1.2. Salted S2K 11

3.7.1.3. Iterated and Salted S2K 11

3.7.2. String-to-Key Usage 12
3.7.2.1. Secret-Key Encryption 12

3.7.2.2. Symmetric-Key Message Encryption 13

Packet Syntax 13
4.1, OVBIVI BW ot 13
4.2. Packet Headers 13
4.2.1. AOd Format Packet Lengths 14
4.2.2. New Format Packet Lengths 15
4.2.2.1. One-Cctet Lengths 15

4.2.2.2. Two-Cctet Lengths 15

4.2.2.3. Five-Cctet Lengths 15

4.2.2.4. Partial Body Lengths 16

4.2.3. Packet Length Exanples 16

4.3, Packet Tagsttt 17
Packet TypPeS ... e 17
5.1. Public-Key Encrypted Session Key Packets (Tag 1) 17
5.2. Signature Packet (Tag 2) i 19
5.2.1. Signature TYPeS ...ttt 19
5.2.2. Version 3 Signature Packet Format 21
5.2.3. Version 4 Signature Packet Format 24
5.2.3.1. Signature Subpacket Specification 25

5.2.3.2. Signature Subpacket Types 27

5.2.3.3. Notes on Self-Signatures 27

5.2.3.4. Signature Creation Tine 28

5. 2.3.5. ISSUBIr ... 28

5.2.3.6. Key Expiration Tinmecoo.... 28

Call as, et al St andards Track [Page 2]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.2.3.7. Preferred Symmetric Algorithms 28

5.2.3.8. Preferred Hash Algorithms 29

5.2.3.9. Preferred Conpression Algorithms 29

5.2.3.10. Signature Expiration Tine 29

5.2.3.11. Exportable Certification 29

5.2.3.12. Revocable 30

5.2.3.13. Trust Signature 30

5.2.3.14. Regular Expression 31

5.2.3.15. Revocation Key i, 31

5.2.3.16. Notation Data, 31

5.2.3.17. Key Server Preferences 32

5.2.3.18. Preferred Key Server 33

5.2.3.19. Primary User ID 33

5.2.3.20. Policy URI 33

5.2.3.21. Key Flags i, 33

5.2.3.22. Signer’s User ID.......... 34

5.2.3.23. Reason for Revocation 35

5.2.3.24. Features 36

5.2.3.25. Signature Target i, 36

5.2.3.26. Enbedded Signature 37

5.2.4. Conmputing Signatures 37
5.2.4.1. Subpacket Hints 38

5.3. Symmetric-Key Encrypted Session Key Packets (Tag 3) 38
5.4. One-Pass Signature Packets (Tag 4)cuiiiun... 39
5.5. Key Material Packet 40
5.5.1. Key Packet Variants i 40
5.5.1.1. Public-Key Packet (Tag 6) 40

5.5.1.2. Public-Subkey Packet (Tag 14) 40

5.5.1.3. Secret-Key Packet (Tag 5) 41

5.5.1.4. Secret-Subkey Packet (Tag 7) 41

5.5.2. Public-Key Packet Formats 41
5.5.3. Secret-Key Packet Formats 43

5.6. Conpressed Data Packet (Tag 8) 45
5.7. Symmetrically Encrypted Data Packet (Tag 9) 45
5.8. Marker Packet (Obsolete Literal Packet) (Tag 10) 46
5.9. Literal Data Packet (Tag 11) 46
5.10. Trust Packet (Tag 12), 47
5.11. User ID Packet (Tag 13)t 48
5.12. User Attribute Packet (Tag 17) 48
5.12.1. The Inmage Attribute Subpacket 48
5.13. Sym Encrypted Integrity Protected Data Packet (Tag 18) ..49
5.14. Modification Detection Code Packet (Tag 19) 52
6. Radi X-64 CONVErSi ONSt e e e 53
6.1. An Inplenmentation of the CRG-24 in "C' 54
6.2. Forming ASCIT ArmmDr 54
6.3. Encoding Binary in Radix-64 57
6.4. Decoding Radi X-64 58
6.5. Exanples of Radi X-64, 59

Call as, et al St andards Track [Page 3]

RFC 4880 OpenPGP Message For mat Novenber 2007

10.

11.

12.

13.

6.6. Exanple of an ASCII Arnored Messagecuu... 59
Cleartext Signature Framework 59
7.1. Dash-Escaped Text 60
Regul ar EXPressi ONS 61
CONSt ANt S .. o 61
9.1. Public-Key Algorithms 62
9.2. Symmetric-Key Algorithns 62
9.3. Conpression Algorithms i, 63
9.4. Hash Algorithns 63
I ANA Considerati ONS e 63
10.1. New String-to-Key Specifier Types 64
10.2. New PacKet s 64
10.2.1. User Attribute Types 64
10.2.1.1. Inmge Format Subpacket Types 64

10.2.2. New Signature Subpackets 64
10.2.2.1. Signature Notation Data Subpackets 65

10.2.2.2. Key Server Preference Extensions 65

10.2.2.3. Key Flags Extensions 65

10.2.2. 4. Reason For Revocation Extensions 65

10.2.2.5. Inplenentation Features 66

10. 2. 3. New Packet Versions 66
10.3. New Al gorithms e 66
10.3.1. Public-Key Algorithms 66
10.3.2. Symmetric-Key Algorithns 67
10.3.3. Hash Algorithms 67

10. 3. 4. Conpression Algorithms 67
Packet Conmposition 67
11.1. Transferable Public Keys 67
11.2. Transferable Secret Keys i, 69
11. 3. OpenPGP MBSSageS . .t vt 69
11. 4. Detached Signatures, 70
Enhanced Key FOrmats e 70
12. 1. Key StrUCLUIresS e e e 70
12.2. Key IDs and Fingerprints 71
Notes on Algorithms 72
13.1. PKCS#1 Encoding in OpenPGP 72
13.1.1. EME-PKCS1-V1_5-ENCODE 73
13.1.2. EME-PKCS1-v1 5-DECODE 73
13.1.3. EMBA-PKCS1-V1_ 5 ... 74
13.2. Symmetric AlgorithmPreferences 75
13.3. Oher AlgorithmPreferences 76
13.3.1. Conpression Preferences 76
13.3.2. Hash AlgorithmPreferences 76

13. 4. PlainteXt e 77
13. 5. RSA 77
13, 6. DSA o 77
13.7. Elgamal 78
13.8. Reserved AlgorithmNunbers 78

Call as, et al St andards Track [Page 4]

RFC 4880 OpenPGP Message For mat Novenber 2007

13.9. QpenPGP CFB Mode i e e e 78
13.10. Private or Experinmental Paranmeters 79
13.11. Extension of the MDC System, 80
13.12. Meta-Considerations for Expansion 80
14. Security Considerati oOns 81
15. Inplementation NitsS e e 84
16. Ref erenCes 86
16.1. Normative References 86
16.2. Informative References 88
1. Introduction

Thi s docunent provides information on the nessage-exchange packet
formats used by OpenPGP to provide encryption, decryption, signing,
and key managenent functions. It is a revision of RFC 2440, "QpenPGP
Message Format", which itself replaces RFC 1991, "PGP Message
Exchange Formats" [RFC1991] [RFC2440].

1.1. Terns

* penPGP - This is a termfor security software that uses PGP 5. X
as a basis, formalized in RFC 2440 and this docunent.

* PGP - Pretty Good Privacy. PGP is a fanmly of software systens
devel oped by Philip R Zi nmermann from whi ch OpenPGP i s based.

* PGP 2.6.x - This version of PGP has many variants, hence the term
PGP 2.6.x. It used only RSA, MD5, and IDEA for its cryptographic
transforns. An informational RFC, RFC 1991, was witten
describing this version of PGP

* PGP 5.x - This version of PG is fornerly known as "PGP 3" in the
community and also in the predecessor of this docunment, RFC 1991
It has new formats and corrects a nunmber of problens in the PGP
2.6.x design. It is referred to here as PGP 5.x because that
software was the first release of the "PG 3" code base.

* GuPG - G\U Privacy Guard, also called GPG GiwPG is an QpenPGP
i mpl erent ation that avoids all encunbered al gorithmns.
Consequently, early versions of GiuPG did not include RSA public
keys. GilwuPG may or may not have (dependi ng on version) support
for I DEA or other encunbered al gorithns.

"PGP", "Pretty Good", and "Pretty Good Privacy" are trademarks of PGP

Corporation and are used with pernission. The term"QpenPG" refers
to the protocol described in this and rel ated docunents.

Call as, et al St andards Track [Page 5]

RFC 4880 OpenPGP Message For mat Novenber 2007

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in [RFC2119].

The key words "PRIVATE USE", "H ERARCHI CAL ALLOCATI ON', "FI RST COVE
FI RST SERVED', "EXPERT REVI EW, "SPECI FI CATI ON REQUI RED', "I ESG
APPROVAL", "I ETF CONSENSUS", and "STANDARDS ACTI ON' that appear in
this docunent when used to describe namespace allocation are to be
interpreted as described in [RFC2434].

2. General functions

QpenPGP provides data integrity services for nessages and data files
by using these core technol ogi es:

- digital signatures
- encryption

- conpression

- Radi x- 64 conversion

In addition, OpenPGP provides key nanagenent and certificate
services, but many of these are beyond the scope of this docunent.

2.1. Confidentiality via Encryption

OpenPGP combi nes synmetric-key encryption and public-key encryption
to provide confidentiality. Wen made confidential, first the object
is encrypted using a synmetric encryption algorithm Each symetric
key is used only once, for a single object. A new "session key" is
generated as a random nunmber for each object (sonetimes referred to
as a session). Since it is used only once, the session key is bound
to the nmessage and transmtted with it. To protect the key, it is
encrypted with the receiver’s public key. The sequence is as
fol | ows:

1. The sender creates a nessage.

2. The sendi ng OpenPGP generates a random nunber to be used as a
session key for this nmessage only.

3. The session key is encrypted using each recipient’s public key.
These "encrypted session keys" start the nessage.

Call as, et al St andards Track [Page 6]

RFC 4880 OpenPGP Message For mat Novenber 2007

4. The sending OpenPGP encrypts the nessage using the session key,
which fornms the remai nder of the nessage. Note that the nessage
is also usually conpressed

5. The receiving OpenPGP decrypts the session key using the
recipient’s private key.

6. The receiving OpenPGP decrypts the nessage using the session key.
If the message was conpressed, it will be deconpressed.

Wth symmetric-key encryption, an object may be encrypted with a
symmetric key derived froma passphrase (or other shared secret), or
a two-stage nechanismsimlar to the public-key nethod described
above in which a session key is itself encrypted with a synmetric

al gorithm keyed from a shared secret.

Both digital signature and confidentiality services may be applied to
the sane nessage. First, a signature is generated for the nessage
and attached to the nessage. Then the nessage plus signature is
encrypted using a synmetric session key. Finally, the session key is
encrypted using public-key encryption and prefixed to the encrypted
bl ock.

2.2. Authentication via Digital Signature

The digital signature uses a hash code or nessage digest algorithm
and a public-key signature algorithm The sequence is as follows:

1. The sender creates a nessage.
2. The sending software generates a hash code of the nessage.

3. The sending software generates a signature fromthe hash code
using the sender’s private key.

4. The binary signature is attached to the nessage.

5. The receiving software keeps a copy of the nessage signature.

6. The receiving software generates a new hash code for the received
message and verifies it using the message’s signature. |If the
verification is successful, the nessage is accepted as authentic.

2.3. Conpression

QpenPGP i npl ement ati ons SHOULD conpress the nmessage after applying
the signature but before encryption

Call as, et al St andards Track [Page 7]

RFC 4880 OpenPGP Message For mat Novenber 2007

If an inplenmentation does not inplenent conpression, its authors
shoul d be aware that nost QpenPGP nessages in the world are
conmpressed. Thus, it nay even be wi se for a space-constrained

i npl ementation to inplenent deconpression, but not conpression

Furt hernore, conpression has the added side effect that sone types of
attacks can be thwarted by the fact that slightly altered, conpressed
data rarely unconpresses w thout severe errors. This is hardly
rigorous, but it is operationally useful. These attacks can be
rigorously prevented by inplenmenting and using Mdification Detection
Codes as described in sections follow ng.

2.4. Conversion to Radi x-64

2.

3.

3.

OpenPGP' s underlying native representation for encrypted nessages,
signature certificates, and keys is a streamof arbitrary octets
Some systenms only permit the use of blocks consisting of seven-bit,
printable text. For transporting QoenPG™ s native raw binary octets
t hrough channels that are not safe to raw binary data, a printable
encodi ng of these binary octets is needed. QpenPGP provides the
service of converting the raw 8-bit binary octet streamto a stream
of printable ASCII characters, called Radi x-64 encodi ng or ASCI

Ar nor .

| mpl enent ati ons SHOULD provi de Radi x-64 conver si ons.

5. Signature-Only Applications

OpenPGP is designed for applications that use both encryption and
signatures, but there are a nunber of problens that are solved by a
signature-only inplenentation. Although this specification requires
both encryption and signatures, it is reasonable for there to be
subset inplenmentations that are non-conformant only in that they onmit
encryption.

Dat a El enent Fornmats
This section describes the data el enents used by QpenPGP.
1. Scal ar Nunbers
Scal ar nunbers are unsigned and are always stored in big-endian
format. Using n[k] to refer to the kth octet being interpreted, the
value of a two-octet scalar is ((n[0] << 8) + n[1l]). The value of a

four-octet scalar is ((n[0] << 24) + (n[1] << 16) + (n[2] << 8) +
n[3]).

Call as, et al St andards Track [Page 8]

RFC 4880 OpenPGP Message For mat Novenber 2007

3.2. Miltiprecision Integers
Mul ti precision integers (also called MPIs) are unsigned integers used
to hold large integers such as the ones used in cryptographic
cal cul ations
An MPl consists of two pieces: a two-octet scalar that is the length
of the MPlI in bits followed by a string of octets that contain the
actual integer.

These octets form a bi g-endi an nunber; a bi g-endi an nunber can be
made into an MPI by prefixing it with the appropriate |ength.

Exanpl es:
(all nunbers are in hexadeci nal)

The string of octets [00 01 01] forns an MPI with the value 1. The
string [00 09 01 FF] forms an MPl with the value of 511

Addi tional rules:

The size of an MPI is ((MPI.length + 7) / 8) + 2 octets.

The length field of an MPI describes the length starting fromits
nost significant non-zero bit. Thus, the MPI [00 02 01] is not
formed correctly. It should be [00 01 01].

Unused bits of an MPI MJST be zero.

Al so note that when an MPlI is encrypted, the length refers to the
plaintext MPI. It may be ill-formed in its ciphertext.

3.3. Key IDs
A Key IDis an eight-octet scalar that identifies a key.
| mpl enent ati ons SHOULD NOT assune that Key |IDs are unique. The
section "Enhanced Key Formats" bel ow describes how Key IDs are
f or med.

3.4. Text

Unl ess ot herwi se specified, the character set for text is the UTF-8
[RFC3629] encoding of Unicode [|SOL0646].

Call as, et al St andards Track [Page 9]

RFC 4880 OpenPGP Message For mat Novenber 2007

3.5. Tine Fields

Atime field is an unsigned four-octet nunber containing the nunber
of seconds el apsed since nidnight, 1 January 1970 UTC.

3.6. Keyrings

A keyring is a collection of one or nore keys in a file or database.
Traditionally, a keyring is sinply a sequential list of keys, but may
be any suitable database. It is beyond the scope of this standard to
di scuss the details of keyrings or other databases.

3.7. String-to-Key (S2K) Specifiers

String-to-key (S2K) specifiers are used to convert passphrase strings
into symretric-key encryption/decryption keys. They are used in two
pl aces, currently: to encrypt the secret part of private keys in the
private keyring, and to convert passphrases to encryption keys for
symretrically encrypted nessages.

3.7.1. String-to-Key (S2K) Specifier Types

There are three types of S2K specifiers currently supported, and
sone reserved val ues

I D S2K Type

0 Si mpl e S2K

1 Sal ted S2K

2 Reserved val ue

3 Iterated and Salted S2K

100 to 110 Private/Experinmental S2K
These are described in Sections 3.7.1.1 - 3.7.1.3.
3.7.1.1. Sinple S2K

This directly hashes the string to produce the key data. See bel ow
for how this hashing is done.

Cctet O: 0x00
Cctet 1: hash al gorithm

Si mpl e S2K hashes the passphrase to produce the session key. The

manner in which this is done depends on the size of the session key
(which will depend on the cipher used) and the size of the hash

Call as, et al St andards Track [Page 10]

RFC 4880 OpenPGP Message For mat Novenber 2007

algorithms output. |f the hash size is greater than the session key
size, the high-order (leftnost) octets of the hash are used as the
key.

If the hash size is less than the key size, nultiple instances of the
hash context are created -- enough to produce the required key data.
These instances are preloaded with 0, 1, 2, ... octets of zeros (that
is to say, the first instance has no prel oadi ng, the second gets

prel oaded with 1 octet of zero, the third is preloaded with two
octets of zeros, and so forth).

As the data is hashed, it is given independently to each hash
context. Since the contexts have been initialized differently, they
will each produce different hash output. Once the passphrase is
hashed, the output data fromthe nultiple hashes is concatenated,
first hash leftnost, to produce the key data, with any excess octets
on the right discarded.

3.7.1.2. Salted S2K
This includes a "salt" value in the S2K specifier -- sonme arbitrary

data -- that gets hashed along with the passphrase string, to help
prevent dictionary attacks.

Cctet O: 0x01
Cctet 1: hash al gorithm
Cctets 2-9: 8-octet salt value

Salted S2K is exactly like Sinple S2K, except that the input to the
hash function(s) consists of the 8 octets of salt fromthe S2K
specifier, followed by the passphrase.

3.7.1.3. Ilterated and Salted S2K

This includes both a salt and an octet count. The salt is conbi ned
with the passphrase and the resulting value is hashed repeatedly.
This further increases the anount of work an attacker nust do to try
di ctionary attacks.

Cctet O: 0x03

Cctet 1: hash al gorithm

Cctets 2-9: 8-octet salt value

Cctet 10: count, a one-octet, coded val ue

Call as, et al St andards Track [Page 11]

RFC 4880 OpenPGP Message For mat Novenber 2007

The count is coded into a one-octet nunber using the foll ow ng
fornul a:

#defi ne EXPBI AS 6
count = ((Int32)16 + (c & 15)) << ((c >> 4) + EXPBI AS)

The above formula is in C, where "Int32" is a type for a 32-bit
integer, and the variable "c" is the coded count, Cctet 10.

Iterated-Salted S2K hashes the passphrase and salt data multiple
times. The total nunber of octets to be hashed is specified in the
encoded count in the S2K specifier. Note that the resulting count
value is an octet count of how many octets will be hashed, not an
iteration count.

Initially, one or nore hash contexts are set up as with the other S2K
al gorithnms, depending on how many octets of key data are needed.

Then the salt, followed by the passphrase data, is repeatedly hashed
until the nunber of octets specified by the octet count has been
hashed. The one exception is that if the octet count is less than
the size of the salt plus passphrase, the full salt plus passphrase
wi |l be hashed even though that is greater than the octet count.

After the hashing is done, the data is unloaded fromthe hash
context(s) as with the other S2K al gorithns.

3.7.2. String-to-Key Usage

| mpl enent ati ons SHOULD use salted or iterated-and-salted S2K
specifiers, as sinple S2K specifiers are nore vulnerable to
di ctionary attacks.

3.7.2.1. Secret-Key Encryption

An S2K specifier can be stored in the secret keyring to specify how
to convert the passphrase to a key that unlocks the secret data.

A der versions of PGP just stored a cipher algorithmoctet preceding
the secret data or a zero to indicate that the secret data was
unencrypted. The MD5 hash function was al ways used to convert the
passphrase to a key for the specified cipher algorithm

For compatibility, when an S2K specifier is used, the special value
254 or 255 is stored in the position where the hash al gorithm octet
woul d have been in the old data structure. This is then followed

i mediately by a one-octet algorithmidentifier, and then by the S2K
speci fier as encoded above.

Call as, et al St andards Track [Page 12]

RFC 4880 OpenPGP Message For mat Novenber 2007

Therefore, preceding the secret data there will be one of these
possibilities:

0: secret data is unencrypted (no passphrase)
255 or 254: followed by algorithmoctet and S2K specifier
Ci pher alg: use Sinple S2K al gorithm usi ng MD5 hash

This last possibility, the cipher algorithmnunber with an inplicit
use of MD5 and I DEA, is provided for backward compatibility; it MY
be understood, but SHOULD NOT be generated, and is deprecated.

These are followed by an Initial Vector of the sane length as the
bl ock size of the cipher for the decryption of the secret values, if
they are encrypted, and then the secret-key val ues thensel ves.

3.7.2.2. Symmetric-Key Message Encryption

QpenPGP can create a Synmmetric-key Encrypted Session Key (ESK) packet
at the front of a nessage. This is used to allow S2K specifiers to
be used for the passphrase conversion or to create nessages with a

m x of symmetric-key ESKs and public-key ESKs. This allows a nessage
to be decrypted either with a passphrase or a public-key pair.

PGP 2. X always used IDEA with Sinple string-to-key conversion when
encrypting a nessage with a synmetric algorithm This is deprecated,
but MAY be used for backward-conpatibility.

4. Packet Syntax

This section describes the packets used by OQpenPGP.

4.1. Overview

An OpenPGP nessage is constructed froma nunber of records that are
traditionally call ed packets. A packet is a chunk of data that has a
tag specifying its neaning. An OpenPGP nessage, keyring,

certificate, and so forth consists of a nunmber of packets. Sone of

t hose packets nmay contain other CpenPGP packets (for exanple, a
conpressed data packet, when unconpressed, contains QpenPGP packets).

Each packet consists of a packet header, followed by the packet body.
The packet header is of variable |ength.

4.2. Packet Headers
The first octet of the packet header is called the "Packet Tag". It

determ nes the format of the header and denotes the packet contents.
The renai nder of the packet header is the length of the packet.

Call as, et al St andards Track [Page 13]

RFC 4880 OpenPGP Message For mat Novenber 2007

Note that the nost significant bit is the leftnost bit, called bit 7.
A mask for this bit is 0x80 in hexadeci nal.

Bit 7 -- Al ways one
Bit 6 -- New packet format if set

PGP 2.6.x only uses old format packets. Thus, software that
interoperates with those versions of PGP nust only use old format
packets. If interoperability is not an issue, the new packet fornat
is RECOWENDED. Note that old format packets have four bits of
packet tags, and new fornmat packets have six; some features cannot be
used and still be backward-conpati bl e.

Al'so note that packets with a tag greater than or equal to 16 MJST
use new format packets. The old format packets can only express tags
| ess than or equal to 15.

ad format packets contain:

Bits 5-2 -- packet tag
Bits 1-0 -- length-type

New format packets contain:
Bits 5-0 -- packet tag
4.2.1. dd Format Packet Lengths

The meaning of the length-type in old format packets is:

0 - The packet has a one-octet length. The header is 2 octets |ong.

1 - The packet has a two-octet length. The header is 3 octets |ong.

2 - The packet has a four-octet length. The header is 5 octets |ong.

3 - The packet is of indeternminate |length. The header is 1 octet
I ong, and the inplenentation nmust detern ne how | ong the packet
is. |If the packet is in a file, this neans that the packet
extends until the end of the file. |In general, an inplenentation
SHOULD NOT use indeterm nate-1length packets except where the end
of the data will be clear fromthe context, and even then it is
better to use a definite length, or a new format header. The new

format headers descri bed bel ow have a nmechani sm for precisely
encodi ng data of indeterm nate | ength.

Call as, et al St andards Track [Page 14]

RFC 4880 OpenPGP Message For mat Novenber 2007

4.2.2. New Fornmat Packet Lengths
New format packets have four possible ways of encoding | ength:

1. A one-octet Body Length header encodes packet |engths of up to 191
octets.

2. A two-octet Body Length header encodes packet |engths of 192 to
8383 octets.

3. Afive-octet Body Length header encodes packet lengths of up to
4,294,967, 295 (OxXFFFFFFFF) octets in length. (This actually
encodes a four-octet scal ar nunber.)

4. When the length of the packet body is not known in advance by the
i ssuer, Partial Body Length headers encode a packet of
indetermnate length, effectively making it a stream

4.2.2.1. One-Cctet Lengths

A one-octet Body Length header encodes a length of 0 to 191 octets.

This type of length header is recogni zed because the one octet val ue

is less than 192. The body length is equal to:

bodyLen = 1st _octet;
4.2.2.2. Two-Cctet Lengths

A two-octet Body Length header encodes a |length of 192 to 8383

octets. It is recognized because its first octet is in the range 192

to 223. The body length is equal to:

bodyLen = ((1st_octet - 192) << 8) + (2nd_octet) + 192
4.2.2.3. Five-Cctet Lengths

A five-octet Body Length header consists of a single octet holding
the val ue 255, followed by a four-octet scalar. The body length is
equal to:

bodyLen = (2nd_octet << 24) | (3rd_octet << 16)
(4th_octet << 8) | 5th_octet

This basic set of one, two, and five-octet lengths is also used
internally to sone packets.

Call as, et al St andards Track [Page 15]

RFC 4880 OpenPGP Message For mat Novenber 2007

4.2.2.4. Partial Body Lengths

A Partial Body Length header is one octet |ong and encodes the |ength
of only part of the data packet. This length is a power of 2, from1l
to 1,073,741,824 (2 to the 30th power). It is recognized by its one
octet value that is greater than or equal to 224, and | ess than 255.
The Partial Body Length is equal to:

parti al BodyLen = 1 << (1st_octet & Ox1F);

Each Partial Body Length header is followed by a portion of the
packet body data. The Partial Body Length header specifies this
portion’s length. Another |ength header (one octet, two-octet,
five-octet, or partial) follows that portion. The last |ength header
in the packet MUST NOT be a Partial Body Length header. Partial Body
Length headers may only be used for the non-final parts of the
packet .

Note al so that the | ast Body Length header can be a zero-length
header .

An i npl enentation MAY use Partial Body Lengths for data packets, be
they literal, conpressed, or encrypted. The first partial length
MUST be at |east 512 octets long. Partial Body Lengths MJST NOT be
used for any ot her packet types.

4.2.3. Packet Length Exanples

These exanpl es show ways that new format packets mi ght encode the
packet | engths.

A packet with Iength 100 may have its length encoded in one octet:
0x64. This is followed by 100 octets of data.

A packet with Iength 1723 may have its length encoded in two octets:
0xC5, OxFB. This header is followed by the 1723 octets of data.

A packet with I ength 100000 nmay have its length encoded in five
octets: OxFF, 0x00, 0x01, 0x86, OxAO.

It might also be encoded in the follow ng octet stream OxEF, first
32768 octets of data; OxEl, next two octets of data; OxEO, next one
octet of data; OxFO, next 65536 octets of data; OxC5, OxDD, |ast 1693
octets of data. This is just one possible encoding, and many
variations are possible on the size of the Partial Body Length
headers, as long as a regul ar Body Length header encodes the | ast
portion of the data.

Call as, et al St andards Track [Page 16]

RFC 4880 OpenPGP Message For mat Novenber 2007

Pl ease note that in all of these explanations, the total |ength of
the packet is the Iength of the header(s) plus the length of the
body.

4.3. Packet Tags

The packet tag denotes what type of packet the body holds. Note that
old format headers can only have tags | ess than 16, whereas new
format headers can have tags as great as 63. The defined tags (in
decinmal) are as foll ows:

0 -- Reserved - a packet tag MJUST NOT have this val ue
1 -- Public-Key Encrypted Session Key Packet

2 -- Signature Packet

3 -- Symmetric-Key Encrypted Session Key Packet

4 -- One-Pass Signature Packet

5 -- Secret-Key Packet

6 -- Public-Key Packet

7 -- Secret-Subkey Packet

8 -- Conpressed Data Packet

9 -- Symmetrically Encrypted Data Packet

10 -- Marker Packet

11 -- Literal Data Packet

12 -- Trust Packet

13 -- User | D Packet

14 -- Public- Subkey Packet

17 -- User Attribute Packet

18 -- Sym Encrypted and Integrity Protected Data Packet
19 -- Modification Detection Code Packet

60 to 63 -- Private or Experinental Val ues

5. Packet Types
5.1. Public-Key Encrypted Session Key Packets (Tag 1)

A Public-Key Encrypted Session Key packet holds the session key used
to encrypt a nmessage. Zero or nore Public-Key Encrypted Session Key
packets and/ or Symetric-Key Encrypted Session Key packets nmay
precede a Symmetrically Encrypted Data Packet, which holds an
encrypted nmessage. The nmessage is encrypted with the session key,
and the session key is itself encrypted and stored in the Encrypted
Session Key packet(s). The Symmetrically Encrypted Data Packet is
preceded by one Public-Key Encrypted Session Key packet for each
QpenPGP key to which the nessage is encrypted. The recipient of the
nmessage finds a session key that is encrypted to their public key,
decrypts the session key, and then uses the session key to decrypt

t he message.

Call as, et al St andards Track [Page 17]

RFC 4880 OpenPGP Message For mat Novenber 2007

The body of this packet consists of:

- A one-octet nunber giving the version nunber of the packet type.
The currently defined value for packet version is 3.

- An eight-octet nunber that gives the Key ID of the public key to
whi ch the session key is encrypted. |If the session key is
encrypted to a subkey, then the Key ID of this subkey is used
here instead of the Key ID of the primary key.

- A one-octet nunber giving the public-key al gorithm used.

- Astring of octets that is the encrypted session key. This
string takes up the renminder of the packet, and its contents are
dependent on the public-key al gorithm used.

Al gorithm Specific Fields for RSA encryption

- multiprecision integer (MPl) of RSA encrypted value nt*e nod n.
Al gorithm Specific Fields for Elgamal encryption:

- MPI of Elganmal (Diffie-Hellnman) value g**k nod p.

- MPlI of Elganal (Diffie-Hellman) value m* y**k nod p.

The value "ni' in the above fornmulas is derived fromthe session key
as follows. First, the session key is prefixed with a one-octet
algorithmidentifier that specifies the symmetric encryption
algorithmused to encrypt the following Symmetrically Encrypted Data
Packet. Then a two-octet checksumis appended, which is equal to the
sum of the preceding session key octets, not including the algorithm
identifier, nodul o 65536. This value is then encoded as described in
PKCS#1 bl ock encodi ng EME- PKCS1-v1 5 in Section 7.2.1 of [RFC3447] to
formthe "m' value used in the formulas above. See Section 13.1 of
this docunent for notes on QpenPG”' s use of PKCS#1

Not e that when an inplenentation forns several PKESKs with one
session key, forming a nmessage that can be decrypted by several keys,
the inplenmentati on MUST nake a new PKCS#1 encodi ng for each key.

An i npl enentation MAY accept or use a Key ID of zero as a "wild card"
or "speculative" Key ID. In this case, the receiving inplenentation
would try all available private keys, checking for a valid decrypted
session key. This format hel ps reduce traffic analysis of messages.

Call as, et al St andards Track [Page 18]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.2. Signature Packet (Tag 2)

A Signature packet describes a binding between sone public key and
sonme data. The nobst common signatures are a signature of a file or a
bl ock of text, and a signature that is a certification of a User ID

Two versions of Signature packets are defined. Version 3 provides

basic signature information, while version 4 provides an expandabl e
format with subpackets that can specify nore infornmation about the

signature. PGP 2.6.x only accepts version 3 signatures.

| npl enent ati ons SHOULD accept V3 signatures. |nplenentations SHOULD
generate V4 signatures

Note that if an inplenmentation is creating an encrypted and si gned
message that is encrypted to a V3 key, it is reasonable to create a
V3 signature.

5.2.1. Signature Types

There are a nunber of possible meanings for a signature, which are
indicated in a signature type octet in any given signature. Please
note that the vagueness of these neanings is not a flaw, but a
feature of the system Because OpenPGP places final authority for
validity upon the receiver of a signature, it nmay be that one
signer’s casual act night be nore rigorous than sonme other
authority’'s positive act. See Section 5.2.4, "Conputing Signatures"”
for detailed information on how to conpute and verify signatures of
each type

These neanings are as foll ows:

0x00: Signature of a binary docunent.
This means the signer owns it, created it, or certifies that it
has not been nodifi ed.

0x01: Signature of a canonical text docunent.
This neans the signer owmns it, created it, or certifies that it
has not been nodified. The signature is calcul ated over the text
data with its line endings converted to <CR><LF>.

0x02: St andal one signature.
This signature is a signature of only its own subpacket contents.
It is calculated identically to a signature over a zero-length
bi nary docunent. Note that it doesn’t nmake sense to have a V3
st andal one si gnature.

Call as, et al St andards Track [Page 19]

RFC 4880 OpenPGP Message For mat Novenber 2007

0x10: Ceneric certification of a User ID and Public-Key packet.
The issuer of this certification does not nmake any particul ar
assertion as to how well the certifier has checked that the owner
of the key is in fact the person described by the User |D

0x11: Persona certification of a User ID and Public-Key packet.
The issuer of this certification has not done any verification of
the claimthat the owner of this key is the User ID specified.

0x12: Casual certification of a User ID and Public-Key packet.
The issuer of this certification has done sone casua
verification of the claimof identity.

0x13: Positive certification of a User I D and Public-Key packet.
The issuer of this certification has done substanti al
verification of the claimof identity.

Most OpenPGP i npl enent ati ons nake their "key signatures" as 0x10
certifications. Sone inplenentations can issue 0x11-0x13
certifications, but few differentiate between the types.

0x18: Subkey Bi ndi ng Signature
This signature is a statement by the top-1level signing key that
indicates that it owns the subkey. This signature is calcul ated
directly on the primary key and subkey, and not on any User |ID or
ot her packets. A signature that binds a signing subkey MJUST have
an Enbedded Signature subpacket in this binding signature that
contains a 0x19 signature nmade by the signing subkey on the
primary key and subkey.

0x19: Prinmary Key Binding Signature
This signature is a statement by a signing subkey, indicating
that it is owed by the prinmary key and subkey. This signature
is calculated the sane way as a 0x18 signature: directly on the
primary key and subkey, and not on any User ID or other packets.

Ox1F: Signature directly on a key
This signature is calculated directly on a key. It binds the
information in the Signature subpackets to the key, and is
appropriate to be used for subpackets that provide infornmation
about the key, such as the Revocation Key subpacket. It is also
appropriate for statenents that non-self certifiers want to nake
about the key itself, rather than the binding between a key and a
namne.

Call as, et al St andards Track [Page 20]

RFC 4880 OpenPGP Message For mat Novenber 2007

0x20: Key revocation signature

The signature is calculated directly on the key being revoked. A
revoked key is not to be used. Only revocation signatures by the
key being revoked, or by an authorized revocation key, should be
consi dered valid revocation signatures.

0x28: Subkey revocation signature

The signature is calculated directly on the subkey being revoked.
A revoked subkey is not to be used. Only revocation signatures
by the top-level signature key that is bound to this subkey, or
by an aut horized revocation key, should be considered valid
revocati on signatures

0x30: Certification revocation signature

This signature revokes an earlier User ID certification signature
(signature class 0x10 through 0x13) or direct-key signature
(Ox1F). It should be issued by the same key that issued the
revoked signature or an authorized revocation key. The signature
is conputed over the sane data as the certificate that it

revokes, and should have a |later creation date than that
certificate.

0x40: Ti mestanp signature.

This signature is only neaningful for the tinmestanp contained in
it.

0x50: Third-Party Confirmation signature.

5.2. 2.
The
Cal | as,

This signature is a signature over sone other QpenPGP Signature
packet(s). It is analogous to a notary seal on the signed data.
A third-party signature SHOULD i ncl ude Signature Target
subpacket(s) to give easy identification. Note that we really do
mean SHOULD. There are plausible uses for this (such as a blind
party that only sees the signature, not the key or source
docunent) that cannot include a target subpacket.

Version 3 Signature Packet Fornat
body of a version 3 Signature Packet contains:
One-octet version nunber (3).
One-octet length of foll owing hashed material. MJST be 5.

- One-octet signature type

- Four-octet creation tine.

Ei ght-octet Key I D of signer.

et al St andards Track [Page 21]

RFC 4880 OpenPGP Message For mat Novenber 2007

- One-octet public-key algorithm
- One-octet hash algorithm
- Two-octet field holding left 16 bits of signed hash val ue.

- One or nore nultiprecision integers conprising the signature.
This portion is algorithmspecific, as described bel ow

The concatenation of the data to be signed, the signature type, and
creation time fromthe Signature packet (5 additional octets) is
hashed. The resulting hash value is used in the signature al gorithm
The high 16 bits (first two octets) of the hash are included in the
Si gnature packet to provide a quick test to reject sone invalid

si gnat ures

Al gorithm Specific Fields for RSA signatures:

- multiprecision integer (MPl) of RSA signature value nt*d nod n.
Al gorithm Specific Fields for DSA signatures:

- MPI of DSA value r.

- MPI of DSA val ue s.
The signature calculation is based on a hash of the signed data, as
descri bed above. The details of the calculation are different for
DSA signatures than for RSA signatures
Wth RSA signatures, the hash value is encoded usi ng PKCS#1 encodi ng
type EMBA-PKCS1-v1 5 as described in Section 9.2 of RFC 3447. This
requires inserting the hash value as an octet string into an ASN. 1
structure. The object identifier for the type of hash being used is
included in the structure. The hexadeci mal representations for the
currently defined hash algorithns are as foll ows:

- MD5: 0x2A, 0x86, 0x48, 0x86, OxF7, 0x0D, 0x02, 0x05

- RI PEMD-160: 0x2B, 0x24, 0x03, 0x02, 0x01

- SHA-1: 0x2B, OxOE, 0x03, 0x02, Ox1A

- SHA224: 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04
- SHA256: 0x60, 0x86, 0x48, 0x01, O0x65, 0x03, 0x04, 0x02, 0x01
- SHA384: 0x60, 0x86, 0x48, 0x01, O0x65, 0x03, 0x04, 0x02, 0x02

Call as, et al St andards Track [Page 22]

RFC 4880 OpenPGP Message For mat Novenber 2007

- SHA512: 0x60, 0x86, 0x48, 0x01, O0x65, 0x03, 0x04, 0x02, 0x03
The ASN. 1 (bject ldentifiers (ODs) are as foll ows:
- MD5: 1.2.840.113549.2.5

- RIPEMD-160: 1.3.36.3.2.1

- SHA-1: 1.3.14.3.2.26

- SHA224: 2.16.840.1.101.3.4.2. 4
- SHA256: 2.16.840.1.101.3.4.2.1
- SHA384: 2.16.840.1.101.3.4.2.2
- SHA512: 2.16.840.1.101.3.4.2.3

The full hash prefixes for these are as foll ows:

MD5: 0x30, 0x20, 0x30, Ox0C, 0x06, 0x08, O0x2A, 0x86,
0x48, 0x86, OxF7, 0x0D, 0x02, 0x05, 0x05, 0x00,
0x04, 0x10

Rl PEMD- 160: 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x24,
0x03, 0x02, 0x01, 0Ox05, 0x00, 0x04, O0x14

SHA- 1: 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, OxOE
0x03, 0x02, Ox1A, 0x05, 0x00, 0x04, O0x14

SHA224: 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, Ox65, 0x03, 0x04, 0x02, 0x04, 0xO05,
0x00, 0x04, Oxi1C

SHA256: 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0xO05,
0x00, 0x04, 0x20

SHA384: 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, O0x65, 0x03, 0x04, 0x02, 0x02, 0xO05,
0x00, 0x04, 0x30

SHA512: 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0Ox65, 0x03, 0x04, 0x02, 0x03, 0xO05,
0x00, 0x04, 0x40

DSA si gnatures MJIST use hashes that are equal in size to the nunber
of bits of q, the group generated by the DSA key’'s generator val ue.

Call as, et al St andards Track [Page 23]

RFC 4880 OpenPGP Message For mat Novenber 2007

If the output size of the chosen hash is larger than the nunber of
bits of g, the hash result is truncated to fit by taking the nunber
of leftnost bits equal to the number of bits of q. This (possibly
truncat ed) hash function result is treated as a nunber and used
directly in the DSA signature al gorithm

5.2.3. Version 4 Signature Packet Fornat
The body of a version 4 Signature packet contains:

- One-octet version nunber (4).

- One-octet signature type

- One-octet public-key algorithm

- One-octet hash al gorithm

- Two-octet scalar octet count for followi ng hashed subpacket data.
Note that this is the length in octets of all of the hashed
subpackets; a pointer increnented by this nunber will skip over
t he hashed subpackets.

- Hashed subpacket data set (zero or nore subpackets).

- Two-octet scalar octet count for the foll ow ng unhashed subpacket
data. Note that this is the length in octets of all of the
unhashed subpackets; a pointer increnented by this nunber wll
ski p over the unhashed subpackets.

- Unhashed subpacket data set (zero or nore subpackets).

- Two-octet field holding the left 16 bits of the signed hash
val ue.

- One or nore nultiprecision integers conprising the signature.
This portion is algorithmspecific, as described above.

The concatenation of the data being signed and the signature data
fromthe version nunber through the hashed subpacket data (inclusive)
is hashed. The resulting hash value is what is signed. The left 16
bits of the hash are included in the Signature packet to provide a
qui ck test to reject sonme invalid signatures.

There are two fields consisting of Signature subpackets. The first

field is hashed with the rest of the signature data, while the second
i s unhashed. The second set of subpackets is not cryptographically

Call as, et al St andards Track [Page 24]

RFC 4880 OpenPGP Message For mat Novenber 2007

protected by the signature and should include only advisory
i nformation.

The algorithms for converting the hash function result to a signature
are described in a section bel ow

5.2.3.1. Signature Subpacket Specification

A subpacket data set consists of zero or nore Signature subpackets.
In Signature packets, the subpacket data set is preceded by a two-
octet scalar count of the length in octets of all the subpackets. A
poi nter incremented by this nunmber will skip over the subpacket data
set.

Each subpacket consists of a subpacket header and a body. The header
consi sts of:

- the subpacket length (1, 2, or 5 octets),
- the subpacket type (1 octet),
and is foll owed by the subpacket-specific data.

The I ength includes the type octet but not this length. Its fornmat
is simlar to the "new' format packet header |engths, but cannot have
Partial Body Lengths. That is:

if the 1st octet < 192, then
| engthOf Length = 1
subpacket Len = 1st_octet

if the 1st octet >= 192 and < 255, then
| engt hOf Length = 2
subpacketLen = ((1st_octet - 192) << 8) + (2nd_octet) + 192

if the 1st octet = 255, then
| engthOf Length = 5
subpacket length = [four-octet scalar starting at 2nd_octet]

The val ue of the subpacket type octet may be:

Reserved

Reserved

Signature Creation Tine
Si gnature Expiration Tine
Exportable Certification
Trust Signature

Regul ar Expr essi on

OB WNEO
L O T I O I A |

Call as, et al St andards Track [Page 25]

RFC 4880 OpenPGP Message For mat Novenber 2007

7 = Revocabl e
8 = Reserved
9 = Key Expiration Tine
10 = Pl acehol der for backward conpatibility
11 = Preferred Symmetric Al gorithns
12 = Revocation Key
13 = Reserved
14 = Reserved
15 = Reserved
16 = Issuer
17 = Reserved
18 = Reserved
19 = Reserved
20 = Notation Data
21 = Preferred Hash Al gorithns
22 = Preferred Conpression Al gorithns
23 = Key Server Preferences
24 = Preferred Key Server
25 = Primary User |ID
26 = Policy URI
27 = Key Fl ags
28 = Signer’s User ID
29 = Reason for Revocation
30 = Features
31 = Signature Target
32 = Enbedded Signature
100 To 110 = Private or experinmenta

An i nmpl enentati on SHOULD i gnore any subpacket of a type that it does
not recognize

Bit 7 of the subpacket type is the "critical" bit. |If set, it
denotes that the subpacket is one that is critical for the eval uator
of the signature to recognize. |If a subpacket is encountered that is

marked critical but is unknown to the evaluating software, the
eval uat or SHOULD consi der the signature to be in error

An eval uator may "recogni ze" a subpacket, but not inplenent it. The
purpose of the critical bit is to allowthe signer to tell an

eval uator that it would prefer a new, unknown feature to generate an
error than be ignored.

| mpl enent ati ons SHOULD i npl ement the three preferred al gorithm
subpackets (11, 21, and 22), as well as the "Reason for Revocation"
subpacket. Note, however, that if an inplenentation chooses not to
i npl ement sone of the preferences, it is required to behave in a
polite manner to respect the wi shes of those users who do inplenment
t hese preferences.

Call as, et al St andards Track [Page 26]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.2.3.2. Signature Subpacket Types

A nunber of subpackets are currently defined. Sone subpackets apply
to the signature itself and sonme are attributes of the key.
Subpackets that are found on a self-signature are placed on a
certification made by the key itself. Note that a key nay have nore
than one User ID, and thus nay have nore than one sel f-signature, and
di ffering subpackets.

A subpacket may be found either in the hashed or unhashed subpacket
sections of a signature. |If a subpacket is not hashed, then the
information in it cannot be considered definitive because it is not
part of the signature proper.

5.2.3.3. Notes on Self-Signatures

A self-signature is a binding signature nade by the key to which the
signature refers. There are three types of self-signatures, the
certification signatures (types 0x10-0x13), the direct-key signature
(type Ox1F), and the subkey binding signature (type 0x18). For
certification self-signatures, each User ID nmay have a self-
signature, and thus different subpackets in those self-signatures.
For subkey bindi ng signatures, each subkey in fact has a self-
signature. Subpackets that appear in a certification self-signature
apply to the user nane, and subpackets that appear in the subkey
self-signature apply to the subkey. Lastly, subpackets on the
direct-key signature apply to the entire key.

| mpl enenting software should interpret a self-signature’s preference
subpackets as narrowly as possible. For exanple, suppose a key has
two user nanes, Alice and Bob. Suppose that Alice prefers the
symmetric al gorithm CAST5, and Bob prefers IDEA or TripleDES. |If the
software |l ocates this key via Alice’s nanme, then the preferred
algorithmis CAST5; if software |ocates the key via Bob’s nane, then
the preferred algorithmis IDEA. If the key is located by Key ID
the algorithmof the primary User ID of the key provides the
preferred symetric al gorithm

Revoking a self-signature or allowing it to expire has a semantic
meani ng that varies with the signature type. Revoking the self-
signature on a User ID effectively retires that user name. The
self-signature is a statenent, "My nane X is tied to ny signing key
K' and is corroborated by other users’ certifications. |f another
user revokes their certification, they are effectively saying that
they no longer believe that nane and that key are tied together
Simlarly, if the users thenselves revoke their self-signature, then
the users no | onger go by that nanme, no | onger have that enai
address, etc. Revoking a binding signature effectively retires that

Call as, et al St andards Track [Page 27]

RFC 4880 OpenPGP Message For mat Novenber 2007

subkey. Revoking a direct-key signature cancels that signature.
Pl ease see the "Reason for Revocation" subpacket (Section 5.2.3.23)
for nore relevant detail.
Since a self-signature contains inportant information about the key's
use, an inplenmentation SHOULD allow the user to rewite the self-
signature, and inportant infornmation in it, such as preferences and
key expiration.
It is good practice to verify that a self-signature inported into an
i npl enment ati on doesn’t advertise features that the inplenentation
doesn’t support, rewiting the signature as appropriate.
An inplenentation that encounters nultiple self-signatures on the
sanme object may resolve the anmbiguity in any way it sees fit, but it
i's RECOWENDED that priority be given to the nost recent self-
si gnature.

5.2.3.4. Signature Creation Tine
(4-octet tinme field)
The tinme the signature was nmade
MUST be present in the hashed area.

5.2.3.5. Issuer
(8-octet Key I1D)
The QpenPGP Key I D of the key issuing the signature.

5.2.3.6. Key Expiration Tine
(4-octet time field)
The validity period of the key. This is the nunber of seconds after
the key creation tine that the key expires. |If this is not present
or has a value of zero, the key never expires. This is found only on
a self-signature

5.2.3.7. Preferred Symmetric Al gorithns
(array of one-octet val ues)
Symretric al gorithm nunbers that indicate which algorithns the key

hol der prefers to use. The subpacket body is an ordered |ist of
octets with the nost preferred listed first. It is assuned that only

Call as, et al St andards Track [Page 28]

RFC 4880 OpenPGP Message For mat Novenber 2007

algorithns listed are supported by the recipient’s software.
Al gorithm nunmbers are in Section 9. This is only found on a self-
si gnature.

5.2.3.8. Preferred Hash Al gorithns
(array of one-octet val ues)

Message di gest al gorithm nunbers that indicate which algorithnms the
key holder prefers to receive. Like the preferred symetric
algorithnms, the list is ordered. Al gorithmnunbers are in Section 9.
This is only found on a sel f-signature.

5.2.3.9. Preferred Conpression Al gorithns
(array of one-octet val ues)

Conpression al gorithm nunbers that indicate which algorithns the key
hol der prefers to use. Like the preferred symmetric algorithns, the
list is ordered. Algorithmnunbers are in Section 9. |If this
subpacket is not included, ZIP is preferred. A zero denotes that
unconpressed data is preferred; the key holder’s software m ght have
no conpression software in that inplenmentation. This is only found
on a self-signature.

5.2.3.10. Signature Expiration Tine
(4-octet time field)
The validity period of the signature. This is the nunber of seconds
after the signature creation tinme that the signature expires. |If
this is not present or has a value of zero, it never expires.
5.2.3.11. Exportable Certification
(1 octet of exportability, O for not, 1 for exportable)
Thi s subpacket denotes whether a certification signature is
"exportable", to be used by other users than the signature’ s issuer
The packet body contains a Boolean flag indicating whether the
signature is exportable. |If this packet is not present, the
certification is exportable; it is equivalent to a flag containing a
1

Non-exportable, or "local", certifications are signatures nade by a
user to mark a key as valid within that user’s inplenentation only.

Call as, et al St andards Track [Page 29]

RFC 4880 OpenPGP Message For mat Novenber 2007

Thus, when an inplenentation prepares a user’s copy of a key for
transport to another user (this is the process of "exporting" the
key), any local certification signatures are deleted fromthe key.

The receiver of a transported key "inports” it, and likewise trins
any local certifications. In nornmal operation, there won't be any,
assunming the inport is perfornmed on an exported key. However, there
are instances where this can reasonably happen. For exanple, if an
i mpl enentation allows keys to be inported froma key database in
addition to an exported key, then this situation can arise.

Sone i nplenmentations do not represent the interest of a single user
(for example, a key server). Such inplenentations always trim]l ocal
certifications fromany key they handl e.

5.2.3.12. Revocable
(1 octet of revocability, 0 for not, 1 for revocable)

Signature’s revocability status. The packet body contains a Bool ean
flag indicating whether the signature is revocable. Signatures that
are not revocabl e have any | ater revocation signatures ignored. They
represent a comm tnent by the signer that he cannot revoke his
signature for the life of his key. |If this packet is not present,
the signature is revocabl e.

5.2.3.13. Trust Signature
(1 octet "level" (depth), 1 octet of trust anount)

Si gner asserts that the key is not only valid but also trustworthy at
the specified level. Level 0 has the same nmeaning as an ordi nary
validity signature. Level 1 neans that the signed key is asserted to
be a valid trusted introducer, with the 2nd octet of the body
specifying the degree of trust. Level 2 nmeans that the signed key is
asserted to be trusted to issue level 1 trust signatures, i.e., that
it is a "meta introducer”. GCenerally, a level n trust signature
asserts that a key is trusted to issue level n-1 trust signatures.
The trust anpbunt is in a range from0-255, interpreted such that

val ues less than 120 indicate partial trust and val ues of 120 or
greater indicate conplete trust. Inplenentations SHOULD emt val ues
of 60 for partial trust and 120 for conplete trust.

Call as, et al St andards Track [Page 30]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.2.3.14. Regul ar Expression
(null-term nated regul ar expression)

Used in conjunction with trust Signature packets (of level > 0) to
limt the scope of trust that is extended. Only signatures by the
target key on User IDs that match the regul ar expression in the body
of this packet have trust extended by the trust Signature subpacket.
The regul ar expression uses the same syntax as the Henry Spencer’s
"al nost public domain" regul ar expression [REGEX] package. A
description of the syntax is found in Section 8 bel ow

5.2.3.15. Revocation Key

(1 octet of class, 1 octet of public-key algorithmID, 20 octets of
fingerprint)

Aut hori zes the specified key to issue revocation signatures for this
key. Cass octet nust have bit 0x80 set. |If the bit 0x40 is set,
then this nmeans that the revocation information is sensitive. O her
bits are for future expansion to other kinds of authorizations. This
is found on a self-signature.

If the "sensitive" flag is set, the keyholder feels this subpacket
contains private trust information that describes a real-world
sensitive relationship. |If this flag is set, inplenentations SHOULD
NOT export this signature to other users except in cases where the
data needs to be avail able: when the signature is being sent to the
designated revoker, or when it is acconpani ed by a revocation
signature fromthat revoker. Note that it nay be appropriate to

i solate this subpacket within a separate signature so that it is not
conbined with other subpackets that need to be exported.

5.2.3.16. Not ati on Dat a

(4 octets of flags, 2 octets of name length (M,
2 octets of value length (N)
M octets of nane data,
N octets of val ue data)

Thi s subpacket describes a "notation" on the signature that the

i ssuer wishes to nmake. The notation has a nanme and a val ue, each of
which are strings of octets. There nay be nore than one notation in
a signature. Notations can be used for any extension the issuer of
the signature cares to make. The "flags" field holds four octets of
fl ags.

Call as, et al St andards Track [Page 31]

RFC 4880 OpenPGP Message For mat Novenber 2007

Al'l undefined flags MJUST be zero. Defined flags are as foll ows:

First octet: 0x80 = human-readable. This note value is text.
O her octets: none.

Not ati on nanmes are arbitrary strings encoded in UTF-8. They reside
in two nanespaces: The | ETF nanespace and the user nanespace.

The | ETF nanmespace is registered with I ANA. These nanes MJST NOT
contain the "@ character (0x40). This is a tag for the user
namespace

Nanes in the user nanmespace consist of a UTF-8 string tag foll owed by
"@ followed by a DNS domain nane. Note that the tag MJST NOT
contain an "@ character. For exanple, the "sanple" tag used by
Exanpl e Corporation could be "sanpl e@xanpl e. cont.

Nanes in a user space are owned and controlled by the owners of that
domain. COCbviously, it's bad formto create a new nane in a DNS space
that you don't own.

Since the user nanespace is in the formof an email address,

i npl ementers MAY wish to arrange for that address to reach a person
who can be consulted about the use of the naned tag. Note that due
to UTF-8 encoding, not all valid user space nane tags are valid emil
addr esses.

If there is a critical notation, the criticality applies to that
specific notation and not to notations in general

5.2.3.17. Key Server Preferences
(N octets of flags)
This is a list of one-bit flags that indicate preferences that the
key hol der has about how the key is handl ed on a key server. Al
undefined flags MJST be zero.
First octet: 0x80 = No-nodify
the key hol der requests that this key only be nodified or updated
by the key holder or an adm nistrator of the key server

This is found only on a self-signature.

Call as, et al St andards Track [Page 32]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.2.3.18. Preferred Key Server
(String)

This is a URI of a key server that the key hol der prefers be used for
updates. Note that keys with nultiple User IDs can have a preferred
key server for each User ID. Note also that since this is a URI, the
key server can actually be a copy of the key retrieved by ftp, http,
finger, etc.

5.2.3.19. Primary User ID
(1 octet, Bool ean)

This is a flag in a User ID s self-signature that states whether this
User IDis the main User ID for this key. It is reasonable for an

i npl ementation to resolve anbiguities in preferences, etc. by
referring to the primary User ID. If this flag is absent, its val ue
is zero. |If nore than one User IDin a key is marked as primary, the
i mpl enentation nay resolve the anbiguity in any way it sees fit, but
it is RECOWENDED that priority be given to the User ID with the nost
recent self-signature

When appearing on a self-signature on a User |ID packet, this
subpacket applies only to User |ID packets. Wen appearing on a
self-signature on a User Attribute packet, this subpacket applies
only to User Attribute packets. That is to say, there are two

di fferent and i ndependent "prinmaries" -- one for User |IDs, and one
for User Attributes.

5.2.3.20. Policy UR
(String)

Thi s subpacket contains a URI of a docunent that describes the policy
under which the signature was issued.

5.2.3.21. Key Flags
(N octets of flags)
Thi s subpacket contains a list of binary flags that hold i nformation
about a key. It is a string of octets, and an inplenmentati on MJST
NOT assune a fixed size. This is so it can grow over tine. |If a

list is shorter than an inplenmentati on expects, the unstated fl ags
are considered to be zero. The defined flags are as foll ows:

Call as, et al St andards Track [Page 33]

RFC 4880 OpenPGP Message For mat Novenber 2007

First octet:

0x01 - This key may be used to certify other keys.
0x02 - This key may be used to sign data.

0x04 - This key may be used to encrypt communicati ons.
0x08 - This key may be used to encrypt storage.

0x10 - The private conponent of this key may have been split
by a secret-sharing nechani sm

0x20 - This key may be used for authentication

0x80 - The private conponent of this key may be in the
possession of nore than one person

Usage notes:

The flags in this packet may appear in self-signatures or in
certification signatures. They mean different things depending on
who is making the statenent -- for exanple, a certification signature
that has the "sign data" flag is stating that the certification is
for that use. On the other hand, the "comunications encryption”
flag in a self-signature is stating a preference that a given key be
used for comunications. Note however, that it is a thorny issue to
determ ne what is "comunications" and what is "storage". This
decision is left wholly up to the inplenmentation; the authors of this
docunent do not claimany special wi sdomon the issue and realize
that accepted opi nion nay change.

The "split key" (0x10) and "group key" (0x80) flags are placed on a
self-signature only; they are neaningless on a certification
signature. They SHOULD be placed only on a direct-key signature
(type Ox1F) or a subkey signature (type 0x18), one that refers to the
key the flag applies to.

5.2.3.22. Signer’'s User ID
(String)
Thi s subpacket allows a keyholder to state which User IDis
responsi ble for the signing. Mny keyhol ders use a single key for
di fferent purposes, such as business conmuni cations as well as

personal comunications. This subpacket allows such a keyhol der to
state which of their roles is naking a signature.

Call as, et al St andards Track [Page 34]

RFC 4880 OpenPGP Message For mat Novenber 2007
Thi s subpacket is not appropriate to use to refer to a User Attribute
packet .

5.2.3.23. Reason for Revocation
(1 octet of revocation code, N octets of reason string)

Thi s subpacket is used only in key revocation and certification
revocation signatures. It describes the reason why the key or

certificate was revoked

The first octet contains a nmachi ne-readabl e code that denotes the
reason for the revocation:

0 - No reason specified (key revocations or cert revocations)
1 - Key is superseded (key revocations)

2 - Key material has been conpron sed (key revocations)

3 - Key is retired and no | onger used (key revocations)

32 - User IDinformation is no longer valid (cert revocations)

100-110 - Private Use

Fol I owi ng the revocation code is a string of octets that gives

i nformation about the Reason for Revocation in human-readabl e form
(UTF-8). The string may be null, that is, of zero length. The

I ength of the subpacket is the Iength of the reason string plus one.
An i npl enentation SHOULD i npl ement this subpacket, include it in al
revocation signatures, and interpret revocations appropriately.
There are inportant semantic differences between the reasons, and
there are thus inportant reasons for revoking signatures.

If a key has been revoked because of a conprom se, all signatures
created by that key are suspect. However, if it was nerely
superseded or retired, old signatures are still valid. If the
revoked signature is the self-signature for certifying a User ID, a
revocati on denotes that that user nane is no longer in use. Such a
revocation SHOULD i nclude a 0x20 code

Note that any signature nay be revoked, including a certification on
sone other person’s key. There are many good reasons for revoking a
certification signature, such as the case where the keyhol der | eaves
the enploy of a business with an email address. A revoked
certification is no longer a part of validity calcul ations.

Call as, et al St andards Track [Page 35]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.2.3.24. Features
(N octets of flags)

The Feat ures subpacket denotes whi ch advanced QpenPGP features a
user’s inplenentation supports. This is so that as features are
added to OpenPGP that cannot be backwards-conpati ble, a user can
state that they can use that feature. The flags are single bits that
indicate that a given feature is supported.

Thi s subpacket is simlar to a preferences subpacket, and only
appears in a self-signature.

An inplementati on SHOULD NOT use a feature |listed when sending to a
user who does not state that they can use it.

Defined features are as foll ows:
First octet:
0x01 - Modification Detection (packets 18 and 19)

If an inplementation inplenents any of the defined features, it
SHOULD i npl enent the Features subpacket, too.

An inplementation may freely infer features fromother suitable
i mpl enent at i on- dependent nechani sns.

5.2.3.25. Signature Target
(1 octet public-key algorithm 1 octet hash algorithm N octets hash)

Thi s subpacket identifies a specific target signature to which a
signature refers. For revocation signatures, this subpacket

provi des explicit designation of which signature is being revoked.
For a third-party or tinestanp signature, this designates what
signature is signed. Al argunents are an identifier of that target
si gnature.

The N octets of hash data MUST be the size of the hash of the

signature. For exanple, a target signature with a SHA-1 hash MJST
have 20 octets of hash data.

Call as, et al St andards Track [Page 36]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.2.3.26. Enbedded Signature
(1 signature packet body)

Thi s subpacket contains a conplete Signature packet body as
specified in Section 5.2 above. It is useful when one signature
needs to refer to, or be incorporated in, another signature.

5.2.4. Conputing Signatures

Al'l signatures are formed by producing a hash over the signature
data, and then using the resulting hash in the signature algorithm

For binary docunent signatures (type 0x00), the docunent data is
hashed directly. For text docunent signatures (type 0x01l), the
docunent is canonicalized by converting line endings to <CR><LF>,
and the resulting data is hashed.

When a signature is nade over a key, the hash data starts with the
octet 0x99, followed by a two-octet |ength of the key, and then body
of the key packet. (Note that this is an old-style packet header for
a key packet with two-octet length.) A subkey binding signature
(type 0x18) or primary key binding signature (type 0x19) then hashes
t he subkey using the sane format as the main key (al so using 0x99 as
the first octet). Key revocation signatures (types 0x20 and 0x28)
hash only the key being revoked.

A certification signature (type 0x10 through 0x13) hashes the User

I D being bound to the key into the hash context after the above
data. A V3 certification hashes the contents of the User 1D or
attribute packet packet, w thout any header. A V4 certification
hashes the constant O0xB4 for User ID certifications or the constant
OxD1 for User Attribute certifications, followed by a four-octet
nunber giving the length of the User I D or User Attribute data, and
then the User ID or User Attribute data.

When a signature is nade over a Signature packet (type 0x50), the
hash data starts with the octet 0x88, followed by the four-octet

I ength of the signature, and then the body of the Signature packet.
(Note that this is an old-style packet header for a Signature packet
with the length-of-length set to zero.) The unhashed subpacket data
of the Signature packet being hashed is not included in the hash, and
t he unhashed subpacket data length value is set to zero.

Once the data body is hashed, then a trailer is hashed. A V3
signature hashes five octets of the packet body, starting fromthe
signature type field. This data is the signature type, followed by
the four-octet signature tinme. A V4 signature hashes the packet body

Call as, et al St andards Track [Page 37]

RFC 4880 OpenPGP Message For mat Novenber 2007

starting fromits first field, the version nunber, through the end
of the hashed subpacket data. Thus, the fields hashed are the
signature version, the signature type, the public-key algorithm the
hash al gorithm the hashed subpacket |ength, and the hashed
subpacket body.

V4 signatures also hash in a final trailer of six octets: the
version of the Signature packet, i.e., 0x04; OxFF; and a four-octet,
bi g- endi an nunber that is the length of the hashed data fromthe

Si gnature packet (note that this nunber does not include these fina
Si X octets).

After all this has been hashed in a single hash context, the
resulting hash field is used in the signature al gorithmand pl aced
at the end of the Signature packet.

5.2.4.1. Subpacket Hints

It is certainly possible for a signature to contain conflicting

i nformati on in subpackets. For exanple, a sighature nmay contain
multiple copies of a preference or multiple expiration tines. In
nost cases, an inplenentati on SHOULD use the | ast subpacket in the
signature, but MAY use any conflict resolution schene that nakes
nore sense. Please note that we are intentionally |eaving conflict
resolution to the inplenenter; nost conflicts are sinply syntax
errors, and the w shy-washy | anguage here allows a receiver to be
generous in what they accept, while putting pressure on a creator to
be stingy in what they generate.

Sonme apparent conflicts may actually make sense -- for exanple,
suppose a keyhol der has a V3 key and a V4 key that share the sane
RSA key naterial. Either of these keys can verify a signature

created by the other, and it may be reasonable for a signhature to
contain an issuer subpacket for each key, as a way of explicitly
tying those keys to the signature.

5.3. Symmetric-Key Encrypted Session Key Packets (Tag 3)

The Synmetric-Key Encrypted Session Key packet holds the
symretric-key encryption of a session key used to encrypt a nessage.
Zero or nore Public-Key Encrypted Session Key packets and/or
Synmmetri c- Key Encrypted Session Key packets may precede a
Symretrically Encrypted Data packet that holds an encrypted nessage.
The message is encrypted with a session key, and the session key is
itself encrypted and stored in the Encrypted Session Key packet or
the Synmetric-Key Encrypted Session Key packet.

Call as, et al St andards Track [Page 38]

RFC 4880 OpenPGP Message For mat Novenber 2007

If the Symmetrically Encrypted Data packet is preceded by one or
nmore Symmretric-Key Encrypted Session Key packets, each specifies a
passphrase that may be used to decrypt the nmessage. This allows a
nmessage to be encrypted to a nunber of public keys, and also to one
or nore passphrases. This packet type is new and is not generated
by PGP 2.x or PGP 5.0.

The body of this packet consists of:

- A one-octet version number. The only currently defined version
is 4.

- A one-octet nunmber describing the symmetric al gorithm used.
- A string-to-key (S2K) specifier, length as defined above.

- Optionally, the encrypted session key itself, which is decrypted
with the string-to-key object.

If the encrypted session key is not present (which can be detected
on the basis of packet length and S2K specifier size), then the S2K
al gorithm applied to the passphrase produces the session key for
decrypting the file, using the symetric cipher algorithmfromthe
Synmetri c- Key Encrypted Session Key packet.

If the encrypted session key is present, the result of applying the
S2K al gorithmto the passphrase is used to decrypt just that
encrypted session key field, using CFB node with an IV of all zeros.
The decryption result consists of a one-octet algorithmidentifier
that specifies the symetric-key encryption algorithmused to
encrypt the following Symmetrically Encrypted Data packet, followed
by the session key octets thensel ves.

Not e: because an all-zero IV is used for this decryption, the S2K
specifier MJST use a salt value, either a Salted S2K or an
Iterated-Salted S2K. The salt value will ensure that the decryption
key is not repeated even if the passphrase is reused.

5.4. One-Pass Signature Packets (Tag 4)

The One- Pass Signature packet precedes the signed data and contains
enough information to allow the receiver to begin cal culating any
hashes needed to verify the signature. |t allows the Signature
packet to be placed at the end of the nessage, so that the signer
can conpute the entire signed nessage i n one pass.

A One-Pass Signature does not interoperate with PGP 2.6.x or
earlier.

Call as, et al St andards Track [Page 39]

RFC 4880 OpenPGP Message For mat Novenber 2007

The body of this packet consists of:
- A one-octet version nunber. The current version is 3.

- A one-octet signature type. Signature types are described in
Section 5.2.1.

- A one-octet nunber describing the hash al gorithm used.

- A one-octet nunber describing the public-key algorithm used.

An ei ght-octet nunber holding the Key ID of the signing key.

- A one-octet nunmber holding a flag showi ng whether the signature
is nested. A zero value indicates that the next packet is
anot her One-Pass Signature packet that describes another
signature to be applied to the sanme nmessage dat a.

Note that if a nessage contains nore than one one-pass signature,
then the Signature packets bracket the nmessage; that is, the first
Si gnature packet after the nessage corresponds to the | ast one-pass
packet and the final Signature packet corresponds to the first

one- pass packet.

5.5. Key Material Packet
A key material packet contains all the information about a public or
private key. There are four variants of this packet type, and two
maj or versions. Consequently, this section is conplex.

5.5.1. Key Packet Variants

5.5.1.1. Public-Key Packet (Tag 6)

A Public-Key packet starts a series of packets that forms an CpenPGP
key (sonetines called an OpenPGP certificate).

5.5.1.2. Public-Subkey Packet (Tag 14)

A Publi c- Subkey packet (tag 14) has exactly the sane format as a
Publ i c- Key packet, but denotes a subkey. One or nore subkeys may be
associated with a top-level key. By convention, the top-Ilevel key
provi des signature services, and the subkeys provide encryption
servi ces

Note: in PGP 2.6.x, tag 14 was intended to indicate a coment

packet. This tag was selected for reuse because no previous version
of PGP ever enitted coment packets but they did properly ignore

Call as, et al St andards Track [Page 40]

RFC 4880 OpenPGP Message For mat Novenber 2007

them Public-Subkey packets are ignored by PGP 2.6.x and do not
cause it to fail, providing a limted degree of backward
conpatibility.
5.5.1.3. Secret-Key Packet (Tag 5)
A Secret-Key packet contains all the information that is found in a
Publ i c- Key packet, including the public-key material, but also
i ncludes the secret-key material after all the public-key fields.
5.5.1.4. Secret-Subkey Packet (Tag 7)

A Secret-Subkey packet (tag 7) is the subkey anal og of the Secret
Key packet and has exactly the sane format.

5.5.2. Public-Key Packet Formats
There are two versions of key-material packets. Version 3 packets
were first generated by PGP 2.6. Version 4 keys first appeared in
PGP 5.0 and are the preferred key version for QOpenPGP.
QpenPGP i npl ement ati ons MJUST create keys with version 4 format. V3
keys are deprecated; an inplementation MIJST NOT generate a V3 key,
but MAY accept it.
A version 3 public key or public-subkey packet contains:

- A one-octet version nunmber (3).

- A four-octet nunber denoting the tinme that the key was created.

- A two-octet nunmber denoting the time in days that this key is
valid. If this nunmber is zero, then it does not expire.

- A one-octet nunmber denoting the public-key algorithmof this key.
- A series of nultiprecision integers conprising the key nateri al
- anultiprecision integer (MPl) of RSA public nodulus n
- an MPI of RSA public encryption exponent e.
V3 keys are deprecated. They contain three weaknesses. First, it is
relatively easy to construct a V3 key that has the sane Key ID as any
ot her key because the Key IDis sinply the low 64 bits of the public
nmodul us. Secondly, because the fingerprint of a V3 key hashes the

key material, but not its length, there is an increased opportunity
for fingerprint collisions. Third, there are weaknesses in the M5

Call as, et al St andards Track [Page 41]

RFC 4880 OpenPGP Message For mat Novenber 2007
hash al gorithmthat nake devel opers prefer other algorithns. See
bel ow for a fuller discussion of Key |IDs and fingerprints.

V2 keys are identical to the deprecated V3 keys except for the
versi on nunber. An inplenmentation MIUST NOT generate them and NMAY
accept or reject themas it sees fit.
The version 4 format is simlar to the version 3 format except for
the absence of a validity period. This has been noved to the
Signature packet. In addition, fingerprints of version 4 keys are
calculated differently fromversion 3 keys, as described in the
section "Enhanced Key Fornats".
A version 4 packet contains:

- A one-octet version nunber (4).

- A four-octet nunber denoting the tinme that the key was created.

- A one-octet nunber denoting the public-key algorithmof this key.

- A series of nultiprecision integers conprising the key materi al
This algorithmspecific portion is:

Al gorithm Specific Fields for RSA public keys:
- multiprecision integer (MPI) of RSA public nodulus n;
- MPI of RSA public encryption exponent e.
Al gorithm Specific Fields for DSA public keys:
- MPI of DSA prinme p;
- MPI of DSA group order q (q is a prine divisor of p-1);
- MPI of DSA group generator g;

- MPI of DSA public-key value y (= g**x nod p where x
is secret).

Al gorithm Specific Fields for Elgamal public keys:
- MPI of Elgamal prinme p;

- MPI of Elganmal group generator g;

Call as, et al St andards Track [Page 42]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.5.3.

The
Publ

- MPI of Elganal public key value y (= g**x nod p where x
is secret).

Secret - Key Packet Formats

Secret-Key and Secr et - Subkey packets contain all the data of the
i c- Key and Public- Subkey packets, with additional algorithm

specific secret-key data appended, usually in encrypted form

The

Cal | as,

packet contains:
A Public-Key or Public-Subkey packet, as described above.

One octet indicating string-to-key usage conventions. Zero

i ndi cates that the secret-key data is not encrypted. 255 or 254
indicates that a string-to-key specifier is being given. Any
other value is a symetric-key encryption algorithmidentifier

[Optional] If string-to-key usage octet was 255 or 254, a one-
octet symretric encryption algorithm

[Optional] If string-to-key usage octet was 255 or 254, a
string-to-key specifier. The length of the string-to-key
specifier is inplied by its type, as described above.

[Optional] If secret data is encrypted (string-to-key usage octet
not zero), an Initial Vector (1V) of the same length as the
ci pher’s bl ock size.

Plain or encrypted nultiprecision integers conprising the secret
key data. These algorithmspecific fields are as described
bel ow.

If the string-to-key usage octet is zero or 255, then a two-octet
checksum of the plaintext of the algorithmspecific portion (sum
of all octets, nod 65536). |If the string-to-key usage octet was
254, then a 20-octet SHA-1 hash of the plaintext of the

al gorithmspecific portion. This checksumor hash is encrypted
together with the algorithmspecific fields (if string-to-key
usage octet is not zero). Note that for all other values, a

two- oct et checksumis required.

Al gorithm Specific Fields for RSA secret keys:
- nultiprecision integer (MPl) of RSA secret exponent d.

- MPI of RSA secret prime value p.

et al St andards Track [Page 43]

RFC 4880 OpenPGP Message For mat Novenber 2007

- MPlI of RSA secret prinme value q (p < q).

- MPI of u, the multiplicative inverse of p, nod q.
Al gorithm Specific Fields for DSA secret keys:

- MPI of DSA secret exponent X.

Al gorithm Specific Fields for Elgamal secret keys:
- MPI of Elganal secret exponent x.

Secret MPI val ues can be encrypted using a passphrase. |If a string-
to-key specifier is given, that describes the algorithmfor
converting the passphrase to a key, else a sinple MD5 hash of the
passphrase is used. |Inplenentations MJST use a string-to-key
specifier; the sinple hash is for backward conpatibility and is
deprecat ed, though inplenentations MAY continue to use existing
private keys in the old format. The cipher for encrypting the MPIs
is specified in the Secret-Key packet.

Encryption/decryption of the secret data is done in CFB node using
the key created fromthe passphrase and the Initial Vector fromthe
packet. A different node is used with V3 keys (which are only RSA)
than with other key formats. Wth V3 keys, the MPI bit count prefix
(i.e., the first two octets) is not encrypted. Only the MPI non-
prefix data is encrypted. Furthernore, the CFB state is
resynchroni zed at the begi nning of each new MPI val ue, so that the
CFB bl ock boundary is aligned with the start of the MPI data.

Wth V4 keys, a sinpler nethod is used. Al secret MPI values are
encrypted in CFB node, including the MPI bitcount prefix.

The two-octet checksumthat follows the algorithmspecific portion is
the al gebraic sum nod 65536, of the plaintext of all the algorithm
specific octets (including MPI prefix and data). Wth V3 keys, the
checksumis stored in the clear. Wth V4 keys, the checksumis
encrypted like the algorithmspecific data. This value is used to
check that the passphrase was correct. However, this checksumis
deprecated; an inplenentation SHOULD NOT use it, but should rather
use the SHA-1 hash denoted with a usage octet of 254. The reason for
this is that there are sonme attacks that involve undetectably

nmodi fyi ng the secret key.

Call as, et al St andards Track [Page 44]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.6. Conpressed Data Packet (Tag 8)

The Conpressed Data packet contains conpressed data. Typically, this
packet is found as the contents of an encrypted packet, or follow ng
a Signature or One-Pass Signature packet, and contains a literal data
packet .

The body of this packet consists of:
- One octet that gives the algorithmused to conpress the packet.
- Conpressed data, which nakes up the renmai nder of the packet.

A Conpressed Data Packet’s body contains an bl ock that conpresses
sonme set of packets. See section "Packet Conposition" for details on
how nmessages are forned

ZI P-conpressed packets are conpressed with raw RFC 1951 [RFC1951]
DEFLATE bl ocks. Note that PGP V2.6 uses 13 bits of conpression. |If
an inplenentation uses nore bits of conpression, PGP V2.6 cannot
deconpress it.

ZLI B-conpressed packets are conpressed with RFC 1950 [RFC1950] ZLI B-
styl e bl ocks.

BZi p2- conpressed packets are conpressed using the BZi p2 [BZ2]
al gorithm

5.7. Symetrically Encrypted Data Packet (Tag 9)

The Symmetrically Encrypted Data packet contains data encrypted with
a synmetric-key algorithm Wen it has been decrypted, it contains
other packets (usually a literal data packet or conpressed data
packet, but in theory other Symmetrically Encrypted Data packets or
sequences of packets that form whol e OpenPGP nessages).

The body of this packet consists of:

- Encrypted data, the output of the selected symetric-key cipher
operating in QpenPG” s variant of G pher Feedback (CFB) node.

The synmmetric ci pher used may be specified in a Public-Key or
Symretri c- Key Encrypted Session Key packet that precedes the

Symretrically Encrypted Data packet. In that case, the cipher
algorithmoctet is prefixed to the session key before it is
encrypted. |If no packets of these types precede the encrypted data,

the I1DEA algorithmis used with the session key cal cul ated as the M5
hash of the passphrase, though this use is deprecated.

Call as, et al St andards Track [Page 45]

RFC 4880 OpenPGP Message For mat Novenber 2007

The data is encrypted in CFB node, with a CFB shift size equal to the
cipher’s block size. The Initial Vector (IV) is specified as al
zeros. Instead of using an IV, OpenPGP prefixes a string of length
equal to the block size of the cipher plus two to the data before it
is encrypted. The first block-size octets (for exanple, 8 octets for
a 64-bit block Iength) are random and the following two octets are
copies of the last two octets of the IV. For exanple, in an 8-octet
bl ock, octet 9 is a repeat of octet 7, and octet 10 is a repeat of
octet 8. In a cipher of length 16, octet 17 is a repeat of octet 15
and octet 18 is a repeat of octet 16. As a pedantic clarification,
in both these exanples, we consider the first octet to be numbered 1

After encrypting the first block-size-plus-two octets, the CFB state
is resynchroni zed. The | ast bl ock-size octets of ciphertext are
passed through the ci pher and the bl ock boundary is reset.
The repetition of 16 bits in the random data prefixed to the nessage
all ows the receiver to i medi ately check whether the session key is
incorrect. See the "Security Considerations" section for hints on
the proper use of this "quick check".

5.8. Marker Packet ((Qbsolete Literal Packet) (Tag 10)

An experinmental version of PGP used this packet as the Litera

packet, but no rel eased version of PGP generated Literal packets with
this tag. Wth PGP 5.x, this packet has been reassigned and is
reserved for use as the Marker packet.

The body of this packet consists of:

- The three octets 0x50, 0x47, 0x50 (which spell "PG" in UTF-8).
Such a packet MJST be ignored when received. It may be placed at the
begi nning of a nessage that uses features not available in PGP 2.6.x
in order to cause that version to report that newer software is
necessary to process the nessage.

5.9. Literal Data Packet (Tag 11)

A Literal Data packet contains the body of a nessage; data that is
not to be further interpreted.

The body of this packet consists of:

- A one-octet field that describes how the data is formatted.

Call as, et al St andards Track [Page 46]

RFC 4880 OpenPGP Message For mat Novenber 2007

If it is a’'b (0x62), then the Literal packet contains binary data.
If it isa’'t’ (0x74), then it contains text data, and thus nmay need
line ends converted to local form or other text-node changes. The

tag 'u’ (0x75) nmeans the sane as 't’, but also indicates that

i npl ement ati on believes that the literal data contains UTF-8 text.

Early versions of PGP also defined a value of "I’ as a 'local’ nopde
for machi ne-1ocal conversions. RFC 1991 [RFC1991] incorrectly stated
this local node flag as '1' (ASCI| nuneral one). Both of these |oca
nodes are deprecated

- File nane as a string (one-octet length, followed by a file
nane). This nmay be a zero-length string. Commonly, if the
source of the encrypted data is a file, this will be the nane of
the encrypted file. An inplenentation MAY consider the file nane
in the Literal packet to be a nore authoritative nane than the
actual file nane.

If the special nane " _CONSOLE" is used, the nessage is considered to
be "for your eyes only". This advises that the nessage data is
unusual |y sensitive, and the receiving programshould process it nore
carefully, perhaps avoiding storing the received data to disk, for
exanpl e.

- A four-octet nunber that indicates a date associated with the
literal data. Comonly, the date might be the nodification date
of a file, or the time the packet was created, or a zero that
i ndi cates no specific tine.

- The renmi nder of the packet is literal data.

Text data is stored with <CR><LF> text endings (i.e., network-
normal |ine endings). These should be converted to native line
endi ngs by the receiving software.

5.10. Trust Packet (Tag 12)

The Trust packet is used only within keyrings and is not normally
exported. Trust packets contain data that record the user’s

speci fications of which key holders are trustworthy introducers,
along with other information that inplenenting software uses for
trust information. The format of Trust packets is defined by a given
i mpl enent ati on.

Trust packets SHOULD NOT be enmitted to output streans that are

transferred to other users, and they SHOULD be ignored on any i nput
other than local keyring files.

Call as, et al St andards Track [Page 47]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.11. User |ID Packet (Tag 13)

A User | D packet consists of UTF-8 text that is intended to represent
the nane and email address of the key holder. By convention, it

i ncl udes an RFC 2822 [RFC2822] mail nane-addr, but there are no
restrictions on its content. The packet length in the header
specifies the length of the User ID

5.12. User Attribute Packet (Tag 17)

The User Attribute packet is a variation of the User ID packet. It
is capabl e of storing nore types of data than the User |D packet,
which is Iimted to text. Like the User |ID packet, a User Attribute
packet may be certified by the key owner ("self-signed") or any other
key owner who cares to certify it. Except as noted, a User Attribute
packet may be used anywhere that a User |D packet may be used

While User Attribute packets are not a required part of the OpenPGP
standard, inplenmentations SHOULD provi de at |east enough
conmpatibility to properly handle a certification signature on the
User Attribute packet. A sinple way to do this is by treating the
User Attribute packet as a User |ID packet with opaque contents, but
an inplenmentati on may use any nethod desired.

The User Attribute packet is nade up of one or nore attribute
subpackets. Each subpacket consists of a subpacket header and a
body. The header consists of:

- the subpacket length (1, 2, or 5 octets)

- the subpacket type (1 octet)
and is foll owed by the subpacket specific data.
The only currently defined subpacket type is 1, signifying an image.
An i npl enentati on SHOULD i gnore any subpacket of a type that it does
not recogni ze. Subpacket types 100 t hrough 110 are reserved for
private or experimental use.

5.12.1. The Image Attribute Subpacket

The I mage Attribute subpacket is used to encode an inage, presunably
(but not required to be) that of the key owner

The I mage Attribute subpacket begins with an i mage header. The first
two octets of the inage header contain the Iength of the inmage
header. Note that unlike other nulti-octet nunerical values in this
docunent, due to a historical accident this value is encoded as a

Call as, et al St andards Track [Page 48]

RFC 4880 OpenPGP Message For mat Novenber 2007

little-endian nunber. The inage header length is followed by a
single octet for the inage header version. The only currently
defined version of the inmage header is 1, which is a 16-octet image
header. The first three octets of a version 1 inmage header are thus
0x10, 0x00, 0x01

The fourth octet of a version 1 inmage header designates the encoding
format of the image. The only currently defined encoding format is
the value 1 to indicate JPEG |mage format types 100 through 110 are
reserved for private or experinental use. The rest of the version 1
i mage header is made up of 12 reserved octets, all of which MIST be
set to O.

The rest of the image subpacket contains the inmage itself. As the
only currently defined image type is JPEG the image is encoded in
the JPEG File Interchange Format (JFIF), a standard file format for
JPEG i mages [JFI F].

An inplenentation MAY try to determine the type of an inage by

exanmi nation of the image data if it is unable to handle a particul ar
version of the inmage header or if a specified encoding format val ue
i s not recognized.

5.13. Sym Encrypted Integrity Protected Data Packet (Tag 18)

The Synmmetrically Encrypted Integrity Protected Data packet is a
variant of the Symmetrically Encrypted Data packet. It is a new
feature created for QpenPGP that addresses the problem of detecting a
nmodi fication to encrypted data. It is used in conbination with a
Modi fi cati on Detection Code packet.

There is a corresponding feature in the features Signature subpacket
that denotes that an inplenmentation can properly use this packet
type. An inplenentation MJST support decrypting these packets and
SHOULD prefer generating themto the older Symmetrically Encrypted
Dat a packet when possible. Since this data packet protects against
nodi fication attacks, this standard encourages its proliferation
Whi | e bl anket adoption of this data packet woul d create
interoperability problens, rapid adoption is neverthel ess inportant.
An i nmpl enentati on SHOULD specifically denote support for this packet,
but it MAY infer it from other nechanisns.

For exanple, an inplenentation mght infer fromthe use of a cipher
such as Advanced Encryption Standard (AES) or Twofish that a user
supports this feature. It might place in the unhashed portion of
anot her user’s key signature a Features subpacket. It might also
present a user with an opportunity to regenerate their own self-
signature with a Features subpacket.

Call as, et al St andards Track [Page 49]

RFC 4880 OpenPGP Message For mat Novenber 2007

Thi s packet contains data encrypted with a symretric-key al gorithm
and protected against nodification by the SHA-1 hash algorithm Wen
it has been decrypted, it will typically contain other packets (often
a Literal Data packet or Conpressed Data packet). The |last decrypted
packet in this packet’s payl oad MIST be a Modification Detection Code
packet .

The body of this packet consists of:

- A one-octet version nunmber. The only currently defined value is
1

- Encrypted data, the output of the selected symmetric-key cipher
operating in C pher Feedback node with shift anount equal to the
bl ock size of the cipher (CFB-n where n is the block size).

The synmetric ci pher used MIST be specified in a Public-Key or
Synmmetri c- Key Encrypted Session Key packet that precedes the
Symretrically Encrypted Data packet. 1In either case, the cipher
algorithmoctet is prefixed to the session key before it is
encrypt ed.

The data is encrypted in CFB node, with a CFB shift size equal to the
cipher’s block size. The Initial Vector (IV) is specified as al
zeros. |Instead of using an 1V, OpenPGP prefixes an octet string to
the data before it is encrypted. The length of the octet string
equal s the block size of the cipher in octets, plus two. The first
octets in the group, of length equal to the bl ock size of the cipher,
are random the last two octets are each copies of their 2nd
preceding octet. For exanple, with a cipher whose bl ock size is 128
bits or 16 octets, the prefix data will contain 16 random octets,
then two nore octets, which are copies of the 15th and 16th octets,
respectively. Unlike the Symmetrically Encrypted Data Packet, no
speci al CFB resynchroni zation is done after encrypting this prefix
data. See "OpenPGP CFB Mbde" bel ow for nore details.

The repetition of 16 bits in the random data prefixed to the nessage
allows the receiver to i medi ately check whether the session key is
i ncorrect.

The plaintext of the data to be encrypted is passed through the SHA-1
hash function, and the result of the hash is appended to the
plaintext in a Mdification Detection Code packet. The input to the
hash function includes the prefix data described above; it includes
all of the plaintext, and then also includes two octets of val ues
0xD3, 0x14. These represent the encoding of a Mdification Detection
Code packet tag and length field of 20 octets.

Call as, et al St andards Track [Page 50]

RFC 4880 OpenPGP Message For mat Novenber 2007

The resulting hash value is stored in a Mdification Detection Code
(MDC) packet, which MJST use the two octet encoding just given to
represent its tag and length field. The body of the MDC packet is
the 20-octet output of the SHA-1 hash

The Modification Detection Code packet is appended to the plaintext
and encrypted along with the plaintext using the sane CFB context.

During decryption, the plaintext data should be hashed with SHA-1
including the prefix data as well as the packet tag and length field
of the Modification Detection Code packet. The body of the MDC
packet, upon decryption, is conpared with the result of the SHA-1
hash.

Any failure of the MDC indicates that the nmessage has been nodified
and MUST be treated as a security problem Failures include a
difference in the hash values, but also the absence of an MDC packet,
or an MDC packet in any position other than the end of the plaintext.
Any failure SHOULD be reported to the user

Not e: future designs of new versions of this packet shoul d consider
rol |l back attacks since it will be possible for an attacker to change
the version back to 1

NON- NORVATI VE EXPLANATI ON

The MDC system as packets 18 and 19 are called, were created to
provide an integrity mechanismthat is | ess strong than a
signature, yet stronger than bare CFB encryption

It is alimtation of CFB encryption that danmage to the ciphertext
will corrupt the affected cipher blocks and the bl ock follow ng.
Additionally, if data is renoved fromthe end of a CFB-encrypted
bl ock, that renoval is undetectable. (Note also that CBC node has
a simlar limtation, but data renoved fromthe front of the block
i s undetectable.)

The obvi ous way to protect or authenticate an encrypted block is
to digitally signit. However, many people do not wi sh to
habitually sign data, for a | arge nunber of reasons beyond the
scope of this document. Suffice it to say that nmany people
consi der properties such as deniability to be as val uable as
integrity.

OpenPCP addresses this desire to have nore security than raw
encryption and yet preserve deniability with the MDC system An
MDC is intentionally not a MAC. Its nane was not sel ected by
accident. It is analogous to a checksum

Call as, et al St andards Track [Page 51]

RFC 4880 OpenPGP Message For mat Novenber 2007

5.

Despite the fact that it is a relatively nodest system it has
proved itself in the real world. It is an effective defense to
several attacks that have surfaced since it has been created. It
has net its nodest goals admirably.

Consequently, because it is a nbdest security system it has
nodest requirements on the hash function(s) it enploys. It does
not rely on a hash function being collision-free, it relies on a
hash function being one-way. |If a forger, Frank, wi shes to send
Alice a (digitally) unsigned nessage that says, "I’'ve always
secretly |l oved you, signed Bob", it is far easier for himto
construct a new nessage than it is to nodify anything intercepted
fromBob. (Note also that if Bob wi shes to communicate secretly
with Alice, but without authentication or identification and with
a threat nodel that includes forgers, he has a problemthat
transcends nere cryptography.)

Note al so that unlike nearly every other QpenPGP subsystem there
are no paraneters in the MDC system It hard-defines SHA-1 as its
hash function. This is not an accident. It is an intentiona

choi ce to avoid downgrade and cross-grade attacks while naking a
simple, fast system (A downgrade attack would be an attack that
repl aced SHA-256 with SHA-1, for exanple. A cross-grade attack
woul d replace SHA-1 with anot her 160-bit hash, such as Rl PE-

MDY/ 160, for exanple.)

However, given the present state of hash function cryptanal ysis
and cryptography, it may be desirable to upgrade the MDC systemto
a new hash function. See Section 13.11 in the "I ANA
Consi der ati ons" for guidance.

14. Modification Detection Code Packet (Tag 19)

The Modification Detection Code packet contains a SHA-1 hash of

pl ai ntext data, which is used to detect nessage nodification. It is
only used with a Symmetrically Encrypted Integrity Protected Data
packet. The Modification Detection Code packet MJST be the | ast
packet in the plaintext data that is encrypted in the Symmetrically
Encrypted Integrity Protected Data packet, and MJST appear in no

ot her pl ace.

A Modification Detection Code packet MUST have a length of 20 octets.

Call as, et al St andards Track [Page 52]

RFC 4880 OpenPGP Message For mat Novenber 2007

The body of this packet consists of:

- A 20-octet SHA-1 hash of the precedi ng plaintext data of the
Symretrically Encrypted Integrity Protected Data packet,
including prefix data, the tag octet, and length octet of the
Modi fi cati on Detection Code packet.

Note that the Modification Detection Code packet MJST al ways use a
new format encodi ng of the packet tag, and a one-octet encodi ng of

t he packet length. The reason for this is that the hashing rules for
nmodi fi cation detection include a one-octet tag and one-octet |ength
in the data hash. Wile this is a bit restrictive, it reduces

conpl exity.

6. Radi x-64 Conversi ons

As stated in the introduction, OpenPG s underlying native
representation for objects is a streamof arbitrary octets, and sone
systens desire these objects to be i mmune to damage caused by
character set translation, data conversions, etc.

In principle, any printable encoding schene that net the requirenments
of the unsafe channel would suffice, since it would not change the
underlying binary bit streans of the native OpenPGP data structures
The QpenPGP standard specifies one such printable encoding schene to
ensure interoperability.

OpenPGP’ s Radi x- 64 encoding i s conposed of two parts: a base64
encodi ng of the binary data and a checksum The base64 encoding is
identical to the M M base64 content-transfer-encodi ng [RFC2045].

The checksumis a 24-bit Cyclic Redundancy Check (CRC) converted to
four characters of radix-64 encoding by the same M ME base64
transformati on, preceded by an equal sign (=). The CRC is conputed
by using the generator 0x864CFB and an initialization of 0xB704CE
The accumul ation is done on the data before it is converted to
radi x- 64, rather than on the converted data. A sanple inplenentation
of this algorithmis in the next section

The checksumwith its | eading equal sign MAY appear on the first line
after the base64 encoded dat a.

Rationale for CRC-24: The size of 24 bits fits evenly into printable

base64. The nonzero initialization can detect nbre errors than a
zero initialization.

Call as, et al St andards Track [Page 53]

RFC 4880 OpenPGP Message For mat Novenber 2007

6.1. An Inplenentation of the CRC-24 in "C'

#define CRC24_I NI T 0xB704CEL
#define CRC24_PCOLY 0x1864CFBL

typedef |ong crc24;
crc24 crc_octets(unsigned char *octets, size_ t len)

{
crc24 crc = CRC24_INT;
int i;
while (len--) {
crc "= (*octets++) << 16;
for (i =0; i <8; i++) {
crc <<= 1;
if (crc & 0x1000000)
crc M= CRC24_PQLY;
}
}
return crc & OxXFFFFFFL;
}

6.2. Forming ASCI| Arnor

When OpenPGP encodes data into ASCII Arnor, it puts specific headers
around t he Radi x-64 encoded data, so OpenPGP can reconstruct the data
later. An OpenPGP inplenentati on MAY use ASCI| arnor to protect raw
bi nary data. OpenPGP inforns the user what kind of data is encoded
in the ASCI1 arnor through the use of the headers.
Concatenating the following data creates ASCI| Arnor:

- An Arnor Header Line, appropriate for the type of data

- Arnor Headers

- A blank (zero-length, or containing only whitespace) line

- The ASCII|-Arnored data

- An Arnor Checksum

- The Arnor Tail, which depends on the Arnor Header Line
An Arnmor Header Line consists of the appropriate header |ine text
surrounded by five (5) dashes ('-', 0x2D) on either side of the
header line text. The header line text is chosen based upon the type

of data that is being encoded in Arnor, and how it is being encoded.
Header line texts include the follow ng strings:

Call as, et al St andards Track [Page 54]

RFC 4880 OpenPGP Message For mat Novenber 2007

BEG N PGP MESSACE
Used for signed, encrypted, or conpressed files.

BEG N PGP PUBLI C KEY BLOCK
Used for arnoring public keys.

BEG N PGP PRI VATE KEY BLOCK
Used for arnmoring private keys.

BEGA N PGP MESSAGE, PART XY
Used for multi-part nmessages, where the arnor is split anmongst Y
parts, and this is the Xth part out of Y.

BEG N PGP MESSAGE, PART X
Used for multi-part nmessages, where this is the Xth part of an
unspeci fi ed nunmber of parts. Requires the MESSACGE-ID Arnor
Header to be used.

BEG N PGP S| GNATURE
Used for detached signatures, QpenPGP/ M ME signatures, and
cleartext signatures. Note that PGP 2.x uses BEG N PGP MESSAGE
for detached signatures.

Note that all these Arnor Header Lines are to consist of a conplete
line. That is to say, there is always a |line ending preceding the
starting five dashes, and follow ng the ending five dashes. The
header lines, therefore, MJST start at the beginning of a line, and
MUST NOT have text other than whitespace follow ng themon the sane
line. These line endings are considered a part of the Arnor Header
Line for the purposes of deternmning the content they delint. This
is particularly inportant when conputing a cleartext signature (see
bel ow) .

The Arnor Headers are pairs of strings that can give the user or the
recei ving OQpenPGP i npl enent ati on sonme i nformati on about how t o decode
or use the nessage. The Arnor Headers are a part of the arnor, not a
part of the nessage, and hence are not protected by any signatures
applied to the nessage.

The format of an Arnor Header is that of a key-value pair. A colon
(’:’ 0x38) and a single space (0x20) separate the key and val ue.
QpenPGP shoul d consider inproperly fornatted Arnor Headers to be
corruption of the ASCII Arnor. Unknown keys should be reported to
the user, but OpenPGP should continue to process the nessage.

Note that sonme transport nethods are sensitive to line length. Wile

there is alimt of 76 characters for the Radix-64 data (Section
6.3), thereis nolimt to the length of Arnor Headers. Care should

Call as, et al St andards Track [Page 55]

RFC 4880 OpenPGP Message For mat Novenber 2007

be taken that the Arnor Headers are short enough to survive
transport. One way to do this is to repeat an Arnor Header key
multiple times with different values for each so that no one line is
overly I ong.

Currently defined Arnor Header Keys are as foll ows:

Cal | as,

"Version", which states the QuenPGP i npl enmentati on and version
used to encode the nessage.

"Comment ", a user-defined comment. OpenPGP defines all text to
be in UTF-8. A comment nay be any UTF-8 string. However, the
whol e point of arnoring is to provide seven-bit-clean data.
Consequently, if a comment has characters that are outside the
US- ASCl | range of UTF, they may very well not survive transport.

"Messagel D', a 32-character string of printable characters. The
string nust be the sane for all parts of a nulti-part nessage
that uses the "PART X' Arnor Header. Messagel D strings should be
uni que enough that the recipient of the mail can associate all
the parts of a nessage with each other. A good checksum or
cryptographi ¢ hash function is sufficient.

The Messagel D SHOULD NOT appear unless it is in a nulti-part
message. |If it appears at all, it MJST be conputed fromthe
finished (encrypted, signed, etc.) message in a deterministic
fashi on, rather than contain a purely randomvalue. This is to
allow the legitimate recipient to determine that the Messagel D
cannot serve as a covert neans of |eaking cryptographic key

i nformation.

"Hash", a conme-separated list of hash algorithnms used in this
message. This is used only in cleartext signed nmessages.

"Charset"”, a description of the character set that the plaintext
is in. Please note that OpenPGP defines text to be in UTF-8. An
i mpl enentation will get best results by translating into and out
of UTF-8. However, there are nany instances where this is easier
said than done. Al so, there are conmunities of users who have no
need for UTF-8 because they are all happy with a character set
like 1SO Latin-5 or a Japanese character set. 1In such instances,
an inplenentation MAY override the UTF-8 default by using this
header key. An inplenmentation MAY inplenent this key and any
translations it cares to; an inplenentation MAY ignore it and
assume all text is UTF-8.

et al St andards Track [Page 56]

RFC 4880 OpenPGP Message For mat Novenber 2007

The Arnor Tail Line is conposed in the sane nmanner as the Arnor
Header Line, except the string "BEGN' is replaced by the string
"END".

6.3. Encoding Binary in Radix-64

The encodi ng process represents 24-bit groups of input bits as output
strings of 4 encoded characters. Proceeding fromleft to right, a
24-bit input group is formed by concatenating three 8-bit input
groups. These 24 bits are then treated as four concatenated 6-bit
groups, each of which is translated into a single digit in the
Radi x- 64 al phabet. When encoding a bit streamw th the Radi x-64
encodi ng, the bit stream nust be presuned to be ordered with the nost
significant bit first. That is, the first bit in the streamw Il be
the high-order bit in the first 8-bit octet, and the eighth bit wll
be the loworder bit in the first 8-bit octet, and so on

+--first octet--+-second octet--+--third octet--+
|76 5432107654321076543210

|543210543210/543210543210
+--1.1ndex--+--2.index--+--3.index--+--4.index--+

Each 6-bit group is used as an index into an array of 64 printable
characters fromthe table below. The character referenced by the
index is placed in the output string.

Val ue Encoding Val ue Encoding Value Encoding Value Encoding

0 A 17 R 34 i 51 z
1B 18 S 35 j 52 0
2C 19 T 36 k 53 1
3D 20 U 37 1 54 2
4 E 21V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 7 42 q 59 7
9 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 ¢ 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v

14 O 31 f 48 w (pad) =
15 P 32 ¢ 49 x

16 Q 33 h 50 y

The encoded out put stream nust be represented in lines of no nore
than 76 characters each

Call as, et al St andards Track [Page 57]

RFC 4880 OpenPGP Message For mat Novenber 2007

6. 4.

Cal

Special processing is perfornmed if fewer than 24 bits are available
at the end of the data being encoded. There are three possibilities:

1. The last data group has 24 bits (3 octets). No special processing
i s needed.

2. The last data group has 16 bits (2 octets). The first two 6-bit
groups are processed as above. The third (inconplete) data group
has two zero-value bits added to it, and is processed as above. A
pad character (=) is added to the output.

3. The last data group has 8 bits (1 octet). The first 6-bit group
is processed as above. The second (inconplete) data group has
four zero-value bits added to it, and is processed as above. Two
pad characters (=) are added to the output.

Decodi ng Radi x- 64

In Radi x-64 data, characters other than those in the table, line
breaks, and other white space probably indicate a transnission error
about which a warni ng nessage or even a nessage rejection mght be
appropriate under sone circunstances. Decoding software nust ignore
all white space.

Because it is used only for padding at the end of the data, the
occurrence of any "=" characters nay be taken as evidence that the
end of the data has been reached (without truncation in transit). No
such assurance i s possible, however, when the nunber of octets

transmitted was a nultiple of three and no "=" characters are
present.

| as, et al St andards Track [Page 58]

RFC 4880 OpenPGP Message For mat Novenber 2007

6. 5.

6. 6.

Cal

Exanpl es of Radi x- 64

| nput data: Ox14FB9CO3DO7E

Hex: 1 4 F B 9 C | 0 3 D 9 7 E
8-bit: 00010100 11111011 10011100 | 00000011 11011001 11111110
6-bit: 000101 001111 101110 011100 | 000000 111101 100111 111110

Decimal: 5 15 46 28 0 61 37 62
Qutput: F P u c A 9 I +
I nput data: Ox14FB9CO3D9
Hex: 1 4 F B 9 C | 0 3 D 9
8-bit: 00010100 11111011 10011100 | 00000011 11011001

pad with 00
6-bit: 000101 001111 101110 011100 | 000000 111101 100100
Decimal: 5 15 46 28 0 61 36

pad with =

Qutput: F P u c A 9 k =
I nput data: O0x14FB9C03
Hex: 1 4 F B 9 C | 0 3

8-bit: 00010100 11111011 10011100 | 00000011
pad with 0000
6-bit: 000101 001111 101110 011100 | 000000 110000

Decimal: 5 15 46 28 0 48
pad with = =
Qutput: F P u c A W = =

Exanpl e of an ASCI| Arnored Message

----- BEA N PGP MESSAGE- - - - -
Versi on: OpenPrivacy 0.99

yDgBQ22WkBHv 7B X70Q j ygAEzol 56i UKi XnmV+XnpCt npqQUKiI Qr Fqcl FqUDBovzS
vBSFj NSi VHsuAA==

=nj UN

----- END PGP MESSAGE- - - - -

Note that this exanple has extra indenting; an actual arnored nessage
woul d have no | eadi ng whitespace

Ol eartext Signature Framework

It is desirable to be able to sign a textual octet stream w thout
ASCI| arnoring the streamitself, so the signed text is stil

readabl e wi thout special software. 1In order to bind a signature to
such a cleartext, this franework is used. (Note that this franmework
is not intended to be reversible. RFC 3156 [RFC3156] defines anot her
way to sign cleartext nmessages for environnents that support M ME.)

| as, et al St andards Track [Page 59]

RFC 4880 OpenPGP Message For mat Novenber 2007

The cl eartext signed nessage consists of:

- The cleartext header '----- BEGA N PGP S| GNED MESSAGE- - - - - " on a
single |ine,

- One or nore "Hash" Arnor Headers,
- Exactly one enpty line not included into the nessage digest,

- The dash-escaped cleartext that is included into the message

di gest,
- The ASCI| arnored signature(s) including the "----- BEA N PGP
SI GNATURE- - - - - " Arnor Header and Arnor Tail Lines.

If the "Hash" Arnor Header is given, the specified nessage digest
algorithn(s) are used for the signature. |If there are no such
headers, MD5 is used. |If MD5 is the only hash used, then an

i mpl enentation MAY onmit this header for inproved V2.x conpatibility.
If nore than one nessage digest is used in the signature, the "Hash"
arnmor header contains a comma-delinmted list of used nessage digests.

Current nessage digest nanes are described below with the al gorithm
| Ds.

An inplenmentation SHOULD add a |line break after the cleartext, but
MAY onmit it if the cleartext ends with a line break. This is for
visual clarity.

7.1. Dash-Escaped Text
The cleartext content of the nessage nust al so be dash-escaped.

Dash- escaped cleartext is the ordinary cleartext where every line
starting with a dash '-’ (0x2D) is prefixed by the sequence dash '-’
(0x2D) and space ' ' (0x20). This prevents the parser from
recogni zi ng arnor headers of the cleartext itself. An inplenentation
MAY dash-escape any |ine, SHOULD dash-escape |ines comrenci ng "Front
foll owed by a space, and MJST dash-escape any line comencing in a
dash. The nmessage digest is conmputed using the cleartext itself, not
t he dash-escaped form

As with binary signatures on text docunments, a cleartext signature is
cal cul ated on the text using canonical <CR><LF> |ine endings. The
line ending (i.e., the <CR><LF>) before the "----- BEG N PGP

SI GNATURE- - - - - " line that termi nates the signed text is not

consi dered part of the signed text.

Call as, et al St andards Track [Page 60]

RFC 4880 OpenPGP Message For mat Novenber 2007

When reversing dash-escaping, an inplenentation MJST strip the string
"- " if it occurs at the beginning of a line, and SHOULD warn on "-"
and any character other than a space at the begi nning of a line.

Al so, any trailing whitespace -- spaces (0x20) and tabs (0x09) -- at
the end of any line is renoved when the cleartext signature is
gener at ed.

8. Regul ar Expressions

A regul ar expression is zero or nore branches, separated by ’|’. It
mat ches anyt hi ng that matches one of the branches.

A branch is zero or nore pieces, concatenated. It matches a natch
for the first, followed by a natch for the second, etc.

A piece is an atom possibly followed by "*’, "+, or "?°. An atom
followed by "*' matches a sequence of 0 or nore natches of the atom
An atomfollowed by '+ natches a sequence of 1 or nore natches of
the atom An atomfollowed by '?' matches a natch of the atom or
the null string.

An atomis a regul ar expression in parentheses (matching a match for
the regul ar expression), a range (see below), '.’ (matching any
single character), '~ (matching the null string at the begi nning of
the input string), '$ (matching the null string at the end of the

i nput string), a '\’ followed by a single character (matching that
character), or a single character with no other significance

(mat ching that character).

A range is a sequence of characters enclosed in '[]’. It nornally
mat ches any single character fromthe sequence. |If the sequence
begins with '~ it matches any single character not fromthe rest of
the sequence. |If two characters in the sequence are separated

by "-’, this is shorthand for the full list of ASCII characters
between them (e.g., '[0-9]' matches any decinal digit). To include a
literal ']" in the sequence, nmake it the first character (following a
possible "~"). To include a literal '-', nmake it the first or |ast
character.

9. Constants
This section describes the constants used in OCpenPGP.
Note that these tables are not exhaustive lists; an inplenmentation
MAY i npl ement an algorithmnot on these lists, so long as the

al gorithm nunbers are chosen fromthe private or experinental
al gorithm range

Call as, et al St andards Track [Page 61]

RFC 4880 OpenPGP Message For mat Novenber 2007

9.

9.

1.

2.

See the section "Notes on Al gorithns" bel ow for nore discussion of
the al gorithns.

Publ i c- Key Al gorithns

ID Al gorithm

1 - RSA (Encrypt or Sign) [HAC

2 - RSA Encrypt-Only [HAC

3 - RSA Sign-Only [HAC

16 - Elgamal (Encrypt-Only) [ELGAMAL] [HAC

17 - DSA (Digital Signature Algorithnm [FIPS186] [HAC
18 - Reserved for Elliptic Curve

19 - Reserved for ECDSA

20 - Reserved (formerly Elgamal Encrypt or Sign)

21 - Reserved for Diffie-Hellman (X9.42,

as defined for |IETF-S/ M ME)
100 to 110 - Private/ Experinmental algorithm

| mpl enent ati ons MJUST i npl ement DSA for signatures, and El gamal for
encryption. Inplenentations SHOULD i npl ement RSA keys (1). RSA
Encrypt-Only (2) and RSA Sign-Only are deprecated and SHOULD NOT be
generated, but may be interpreted. See Section 13.5. See Section
13.8 for notes on Elliptic Curve (18), ECDSA (19), El gamal Encrypt or
Sign (20), and X9.42 (21). Inplenentations MAY inplenent any other
al gorithm

Symretric-Key Al gorithns

ID Al gorithm

- Plaintext or unencrypted data

| DEA [| DEA]

- TripleDES (DES-EDE, [SCHNEIER] [HAC -
168 bit key derived from 192)

N~ O
1

- CAST5 (128 bit key, as per [RFC2144])
- Blowfish (128 bit key, 16 rounds) [BLOWI SH]
- Reserved

Reserved

- AES with 128-bit key [AES]

- AES with 192-bit key

- AES with 256-bit key

10 - Twofish with 256-bit key [TWOFI SH|
100 to 110 Privat e/ Experi mental al gorithm

©o~NOOTh~w
1

| mpl enent ati ons MUST i npl enent Tripl eDES. | nplenmentations SHOULD
i npl ement AES-128 and CAST5. Inplenentations that interoperate with

Call as, et al St andards Track [Page 62]

RFC 4880 OpenPGP Message For mat Novenber 2007

PGP 2.6 or earlier need to support IDEA, as that is the only
symmetric cipher those versions use. |Inplenentations MAY inpl enent
any other algorithm

9.3. Conpression Al gorithns

ID Al gorithm

0 - Unconpressed

1 - ZI P [RFC1951]

2 - ZLI B [RFC1950]

3 - Bzip2 [BZ2]

100 to 110 - Private/ Experinmental algorithm
| mpl enent ati ons MUST i npl enent unconpressed data. |nplenmentations
SHOULD i npl enent ZIP. | nplenentations MAY inpl enent any ot her
al gorithm

9.4. Hash Algorithns

ID Al gorithm Text Name
1 - MD5 [HAC| " MD5"

2 - SHA-1 [FI PS180] " SHA1"

3 - RI PE- MY 160 [HAC] "Rl PEMD160"
4 - Reserved

5 - Reserved

6 - Reserved

7 - Reserved

8 - SHA256 [FI PS180] " SHA256"
9 - SHA384 [FI PS180] " SHA384"
10 - SHA512 [FI PS180] " SHA512"
11 - SHA224 [FI PS180] " SHA224"

100 to 110 - Private/ Experinmental algorithm

| mpl enent ati ons MUST i npl enent SHA-1. |Inplenentations MAY inpl enent
other algorithns. MD5 is deprecated.

10. | ANA Consi derati ons
OpenPGP is highly paraneterized, and consequently there are a nunber
of considerations for allocating paraneters for extensions. This

section describes how | ANA shoul d | ook at extensions to the protocol
as described in this docunent.

Call as, et al St andards Track [Page 63]

RFC 4880 OpenPGP Message For mat Novenber 2007

10.

10.

10.

10.

10.

1. New String-to-Key Specifier Types

QpenPGP S2K specifiers contain a nmechanismfor new algorithnms to turn
a string into a key. This specification creates a registry of S2K
specifier types. The registry includes the S2K type, the nane of the
S2K, and a reference to the defining specification. The initia
values for this registry can be found in Section 3.7.1. Adding a new
S2K specifier MJST be done through the | ETF CONSENSUS net hod, as
described in [RFC2434].

2. New Packet s

Maj or new features of QpenPGP are defined through new packet types.
This specification creates a registry of packet types. The registry
i ncl udes the packet type, the nanme of the packet, and a reference to
the defining specification. The initial values for this registry can
be found in Section 4.3. Adding a new packet type MJST be done

t hrough the | ETF CONSENSUS net hod, as described in [RFC2434].

2.1. User Attribute Types

The User Attribute packet permts an extensible nmechani smfor other
types of certificate identification. This specification creates a
registry of User Attribute types. The registry includes the User
Attribute type, the nanme of the User Attribute, and a reference to
the defining specification. The initial values for this registry can
be found in Section 5.12. Adding a new User Attribute type MJST be
done through the | ETF CONSENSUS net hod, as described in [RFC2434].

2.1.1. Inmage Format Subpacket Types

Wthin User Attribute packets, there is an extensible nmechanismfor
other types of image-based user attributes. This specification
creates a registry of Image Attribute subpacket types. The registry
i ncludes the Inmage Attribute subpacket type, the name of the |Inmage
Attribute subpacket, and a reference to the defining specification.
The initial values for this registry can be found in Section 5.12.1.
Addi ng a new | nage Attribute subpacket type MJUST be done through the
| ETF CONSENSUS et hod, as described in [RFC2434].

2.2. New Signature Subpackets

QpenPGP signatures contain a nmechani smfor signed (or unsigned) data
to be added to themfor a variety of purposes in the Signature
subpackets as discussed in Section 5.2.3.1. This specification
creates a registry of Signature subpacket types. The registry

i ncl udes the Signature subpacket type, the nanme of the subpacket, and
a reference to the defining specification. The initial values for

Call as, et al St andards Track [Page 64]

RFC 4880 OpenPGP Message For mat Novenber 2007

10.

10.

10.

10.

this registry can be found in Section 5.2.3.1. Adding a new
Si gnat ure subpacket MJST be done through the | ETF CONSENSUS net hod,
as described in [RFC2434].

2.2.1. Signature Notation Data Subpackets

QpenPGP signatures further contain a mechani smfor extensions in
signatures. These are the Notation Data subpackets, which contain a
key/value pair. Notations contain a user space that is conpletely
unmanaged and an | ETF space

This specification creates a registry of Signature Notation Data
types. The registry includes the Signature Notation Data type, the
name of the Signature Notation Data, its allowed values, and a
reference to the defining specification. The initial values for this
registry can be found in Section 5.2.3.16. Adding a new Signature
Not ati on Data subpacket MJST be done through the EXPERT REVI EW

nmet hod, as described in [RFC2434].

2.2.2. Key Server Preference Extensions

OpenPGP signatures contain a mechani smfor preferences to be
speci fi ed about key servers. This specification creates a registry
of key server preferences. The registry includes the key server
preference, the nane of the preference, and a reference to the
defining specification. The initial values for this registry can be
found in Section 5.2.3.17. Adding a new key server preference MJST
be done through the | ETF CONSENSUS net hod, as described in [RFC2434].

2.2.3. Key Flags Extensions

OpenPCGP signatures contain a mechanismfor flags to be specified
about key usage. This specification creates a registry of key usage
flags. The registry includes the key flags value, the nanme of the
flag, and a reference to the defining specification. The initia
values for this registry can be found in Section 5.2.3.21. Adding a
new key usage flag MJUST be done through the | ETF CONSENSUS net hod, as
described in [RFC2434].

2.2.4. Reason for Revocati on Extensions

QpenPGP signatures contain a nechanismfor flags to be specified
about why a key was revoked. This specification creates a registry
of "Reason for Revocation" flags. The registry includes the "Reason
for Revocation" flags value, the name of the flag, and a reference to
the defining specification. The initial values for this registry can
be found in Section 5.2.3.23. Adding a new feature flag MJST be done
t hrough the | ETF CONSENSUS net hod, as described in [RFC2434].

Call as, et al St andards Track [Page 65]

RFC 4880 OpenPGP Message For mat Novenber 2007

10.2.2.5. Inplenentation Features

OpenPCGP signatures contain a mechanismfor flags to be specified
stating which optional features an inplenmentation supports. This
specification creates a registry of feature-inplenentation flags.

The registry includes the feature-inplenentation flags val ue, the
nane of the flag, and a reference to the defining specification. The
initial values for this registry can be found in Section 5.2.3.24.
Addi ng a new feature-inplenmentation flag MIST be done through the

| ETF CONSENSUS et hod, as described in [RFC2434].

Al so see Section 13.12 for nore information about when feature flags
are needed.

10.2.3. New Packet Versions

The core OpenPGP packets all have version nunbers, and can be revised
by introduci ng a new version of an existing packet. This
specification creates a registry of packet types. The registry

i ncl udes the packet type, the nunber of the version, and a reference
to the defining specification. The initial values for this registry
can be found in Section 5. Adding a new packet version MIST be done
t hrough the I ETF CONSENSUS net hod, as described in [RFC2434].

10.3. New Al gorithns

Section 9 lists the core algorithnms that QpenPGP uses. Adding in a
new algorithmis usually sinple. For exanple, adding in a new
symretric ci pher usually would not need anything nore than allocating
a constant for that cipher. |If that cipher had other than a 64-bit
or 128-bit block size, there might need to be additiona

docunent ati on descri bi ng how QpenPGP- CFB node woul d be adj ust ed.
Simlarly, when DSA was expanded from a maxi mum of 1024-bit public
keys to 3072-bit public keys, the revision of FIPS 186 contai ned
enough information itself to allow inplenentation. Changes to this
docunent were made mainly for enphasis.

10.3.1. Public-Key Al gorithns

OpenPGP specifies a nunber of public-key algorithnms. This
specification creates a registry of public-key algorithmidentifiers.
The registry includes the algorithmname, its key sizes and
paraneters, and a reference to the defining specification. The
initial values for this registry can be found in Section 9. Adding a
new public-key al gorithm MJST be done through the | ETF CONSENSUS

nmet hod, as described in [RFC2434].

Call as, et al St andards Track [Page 66]

RFC 4880 OpenPGP Message For mat Novenber 2007

10.

10.

10.

11.

11.

3.2. Symetric-Key Algorithns

QpenPGP specifies a nunber of symetric-key algorithnms. This
specification creates a registry of synmetric-key algorithm
identifiers. The registry includes the algorithmnane, its key sizes
and bl ock size, and a reference to the defining specification. The
initial values for this registry can be found in Section 9. Adding a
new symetric-key al gorithm MJUST be done through the | ETF CONSENSUS
nmet hod, as described in [RFC2434].

3.3. Hash Algorithns

QpenPGP specifies a nunber of hash algorithns. This specification
creates a registry of hash algorithmidentifiers. The registry

i ncludes the algorithmname, a text representation of that name, its
bl ock size, an O D hash prefix, and a reference to the defining
specification. The initial values for this registry can be found in
Section 9 for the algorithmidentifiers and text nanes, and Section
5.2.2 for the O Ds and expanded signature prefixes. Adding a new
hash al gorithm MJST be done through the | ETF CONSENSUS net hod, as
described in [RFC2434].

3.4. Conpression Al gorithns

QpenPGP specifies a nunber of conpression algorithns. This
specification creates a registry of conpression algorithm
identifiers. The registry includes the algorithmnanme and a
reference to the defining specification. The initial values for this
registry can be found in Section 9.3. Adding a new conpression key
al gorithm MJUST be done through the | ETF CONSENSUS net hod, as
described in [RFC2434].

Packet Conposition
OpenPGP packets are assenbled into sequences in order to create
messages and to transfer keys. Not all possible packet sequences are
meani ngful and correct. This section describes the rules for how
packets shoul d be placed into sequences.
1. Transferable Public Keys

QpenPGP users may transfer public keys. The essential elenents of a
transferable public key are as foll ows:

- One Public-Key packet

- Zero or nore revocation signatures

Call as, et al St andards Track [Page 67]

RFC 4880 OpenPGP Message For mat Novenber 2007

- One or nore User |D packets

- After each User | D packet, zero or nore Signature packets
(certifications)

- Zero or nore User Attribute packets

- After each User Attribute packet, zero or nore Signature packets
(certifications)

- Zero or nore Subkey packets

- After each Subkey packet, one Signature packet, plus optionally a
revocati on

The Public-Key packet occurs first. Each of the follow ng User
packets provides the identity of the owner of this public key.
there are multiple User ID packets, this corresponds to nultiple
means of identifying the sane uni que individual user; for exanple, a
user nmay have nore than one enmil address, and construct a User ID
for each one.

I D
| f

I medi ately follow ng each User |ID packet, there are zero or nore

Si gnature packets. Each Signature packet is calculated on the

i medi ately preceding User | D packet and the initial Public-Key
packet. The signature serves to certify the corresponding public key
and User ID. In effect, the signer is testifying to his or her
belief that this public key belongs to the user identified by this
User I D

Wthin the sane section as the User |D packets, there are zero or
nore User Attribute packets. Like the User |ID packets, a User
Attribute packet is followed by zero or nore Signature packets

calcul ated on the imedi ately preceding User Attribute packet and the
initial Public-Key packet.

User Attribute packets and User |ID packets nmay be freely interm xed
in this section, so long as the signatures that follow themare
mai nt ai ned on the proper User Attribute or User |D packet.

After the User |ID packet or Attribute packet, there may be zero or
nore Subkey packets. |In general, subkeys are provided in cases where
the top-level public key is a signature-only key. However, any V4
key may have subkeys, and the subkeys may be encryption-only keys,
signature-only keys, or general -purpose keys. V3 keys MJST NOT have
subkeys.

Call as, et al St andards Track [Page 68]

RFC 4880 OpenPGP Message For mat Novenber 2007

Each Subkey packet MJST be followed by one Signature packet, which
shoul d be a subkey binding signature issued by the top-Ievel key.
For subkeys that can issue signatures, the subkey binding signature
MUST contai n an Enbedded Si gnature subpacket with a prinmary key

bi ndi ng signature (0x19) issued by the subkey on the top-Ievel key.

Subkey and Key packets nmay each be followed by a revocation Signature
packet to indicate that the key is revoked. Revocation signatures
are only accepted if they are issued by the key itself, or by a key
that is authorized to issue revocations via a Revocation Key
subpacket in a self-signature by the top-Ilevel key.

Transferabl e public-key packet sequences nmay be concatenated to all ow
transferring multiple public keys in one operation

11.2. Transferabl e Secret Keys

QpenPGP users may transfer secret keys. The format of a transferable
secret key is the sane as a transferable public key except that
secret-key and secret-subkey packets are used instead of the public
key and public-subkey packets. |nplenmentations SHOULD i nclude self-
signatures on any user |Ds and subkeys, as this allows for a conplete
public key to be automatically extracted fromthe transferable secret
key. Inplenentations MAY choose to onit the self-signatures,
especially if a transferable public key acconpani es the transferable
secret key.

11. 3. OpenPCGP Messages
An OpenPGP nessage is a packet or sequence of packets that
corresponds to the following gramatical rules (comua represents
sequential conposition, and vertical bar separates alternatives):

OpenPGP Message :- Encrypted Message | Signed Message
Conmpressed Message | Literal Message.

Conpressed Message :- Conpressed Data Packet.
Literal Message :- Literal Data Packet.

ESK :- Public-Key Encrypted Session Key Packet
Synmmetri c- Key Encrypted Session Key Packet.

ESK Sequence :- ESK | ESK Sequence, ESK

Encrypted Data :- Symmetrically Encrypted Data Packet
Symmetrically Encrypted Integrity Protected Data Packet

Call as, et al St andards Track [Page 69]

RFC 4880 OpenPGP Message For mat Novenber 2007

11.

12.

12.

Encrypted Message :- Encrypted Data | ESK Sequence, Encrypted Data.

One- Pass Si gned Message :- One-Pass Signature Packet,
OpenPGP Message, Correspondi ng Signature Packet.

Si gned Message :- Signature Packet, QpenPGP Message
One- Pass Si gned Message.

In addition, decrypting a Sycimetrically Encrypted Data packet or a
Symretrically Encrypted Integrity Protected Data packet as well as
deconpressing a Conpressed Data packet nmust yield a valid OpenPGP
Message.

4. Detached Signatures

Some OpenPGP applications use so-called "detached signatures”. For
exanpl e, a program bundle may contain a file, and with it a second
file that is a detached signature of the first file. These detached
signatures are sinply a Sighature packet stored separately fromthe
data for which they are a signature.

Enhanced Key Fornmats
1. Key Structures

The format of an OpenPGP V3 key is as follows. Entries in square
brackets are optional and ellipses indicate repetition

RSA Public Key
[Revocation Sel f Signature]
User ID [Signature ...]
[User ID[Signature ...] ...]

Each signature certifies the RSA public key and the preceding User
ID. The RSA public key can have many User |Ds and each User |ID can
have nmany signatures. V3 keys are deprecated. |nplenentations MJST
NOT generate new V3 keys, but MAY continue to use existing ones

The format of an QpenPGP V4 key that uses nultiple public keys is
simlar except that the other keys are added to the end as "subkeys"
of the primary key.

Call as, et al St andards Track [Page 70]

RFC 4880 OpenPGP Message For mat Novenber 2007

Pri mary- Key

[Revocation Sel f Signature]
[Direct Key Signature...]

User ID [Signature ...]
[User ID[Signature ...] ...]
[User Attribute [Slgnature o]]
[[Subkey [Bi ndi ng- Si gnat ur e- Revocatlon]

Pri mary- Key- Bi ndi ng- Si gnature] ...]

A subkey always has a single signature after it that is issued using
the primary key to tie the two keys together. This binding signature
may be in either V3 or V4 format, but SHOULD be V4. Subkeys that can
i ssue signatures MJST have a V4 binding signature due to the REQU RED
enbedded prinary key binding signature.

In the above diagram if the binding signature of a subkey has been
revoked, the revoked key may be renpved, |eaving only one key.

In a V4 key, the primary key MJUST be a key capable of certification
The subkeys may be keys of any other type. There may be other
constructions of V4 keys, too. For exanple, there may be a single-
key RSA key in V4 format, a DSA primary key with an RSA encryption
key, or RSA primary key with an El gamal subkey, etc.

It is also possible to have a signature-only subkey. This pernmits a
primary key that collects certifications (key signatures), but is
used only for certifying subkeys that are used for encryption and

si gnat ur es.

12.2. Key IDs and Fingerprints

For a V3 key, the eight-octet Key ID consists of the | ow 64 bits of
the public nodulus of the RSA key.

The fingerprint of a V3 key is formed by hashing the body (but not
the two-octet length) of the MPls that formthe key material (public
nmodul us n, followed by exponent e) with MD5. Note that both V3 keys
and MD5 are deprecated.

A V4 fingerprint is the 160-bit SHA-1 hash of the octet 0x99,

foll owed by the two-octet packet |ength, followed by the entire
Publ i c- Key packet starting with the version field. The Key IDis the
| ow-order 64 bits of the fingerprint. Here are the fields of the
hash material, with the exanple of a DSA key:

a.1l) 0x99 (1 octet)

a.2) high-order length octet of (b)-(e) (1 octet)

Call as, et al St andards Track [Page 71]

RFC 4880 OpenPGP Message For mat Novenber 2007

13.

13.

a.3) loworder length octet of (b)-(e) (1 octet)
b) version nunmber = 4 (1 octet);
c) timestanp of key creation (4 octets);
d) algorithm (1 octet): 17 = DSA (exanple);
e) Algorithmspecific fields.
Al gorithm Specific Fields for DSA keys (exanple):
e.1l) MPlI of DSA prine p;
e.2) MPI of DSA group order g (g is a prime divisor of p-1);
e.3) MPI of DSA group generator g;

e.4) MPlI of DSA public-key value y (= g**x nod p where x is secret).

Note that it is possible for there to be collisions of Key IDs -- two
different keys with the sane Key ID. Note that there is a nuch
smal l er, but still non-zero, probability that two different keys have

the sane fingerprint.

Al'so note that if V3 and V4 format keys share the same RSA key
material, they will have different Key IDs as well as different
fingerprints.

Finally, the Key ID and fingerprint of a subkey are calculated in the
same way as for a primary key, including the 0x99 as the first octet
(even though this is not a valid packet ID for a public subkey).

Not es on Al gorithns
1. PKCS#1 Encoding in OpenPGP

This standard nakes use of the PKCS#1 functions EME-PKCS1-v1l 5 and
EMBA- PKCS1-v1_ 5. However, the calling conventions of these functions
has changed in the past. To avoid potential confusion and
interoperability problens, we are including |ocal copies in this
docunent, adapted fromthose in PKCS#1 v2.1 [RFC3447]. RFC 3447
should be treated as the ultinmate authority on PKCS#1 for QpenPGP.
Nonet hel ess, we believe that there is value in having a self-
cont ai ned docunent that avoids problenms in the future with needed
changes in the conventi ons.

Call as, et al St andards Track [Page 72]

RFC 4880 OpenPGP Message For mat Novenber 2007

13.1.1. EME-PKCS1-v1_5- ENCODE
I nput :

k

the Iength in octets of the key nodul us

M = nessage to be encoded, an octet string of length nLen, where
men <= k - 11
Cut put :

EM = encoded nessage, an octet string of length k
Error: "message too | ong"

1. Length checking: If nmen > k - 11, output "nessage too |long" and
st op.

2. Cenerate an octet string PS of length k - nLen - 3 consisting of
pseudo-random y generated nonzero octets. The length of PS wll
be at |east eight octets.

3. Concatenate PS, the message M and other padding to form an
encoded nessage EM of length k octets as

EM = 0x00 || Ox02 [| PS || Ox00 || M
4. Cutput EM
13.1.2. EME- PKCS1-v1_5- DECODE
| nput :

EM = encoded nessage, an octet string

Qut put :
M = nessage, an octet string
Error: "decryption error"

To decode an EME-PKCS1 vl 5 nessage, separate the encoded nessage EM
into an octet string PS consisting of nonzero octets and a nessage M
as foll ows

EM = 0x00 || 0x02 || PS || 0x00 || M

Call as, et al St andards Track [Page 73]

RFC 4880 OpenPGP Message For mat Novenber 2007

13.

If the first octet of EM does not have hexadeci mal val ue 0x00, if the
second octet of EM does not have hexadeci mal val ue 0x02, if there is
no octet with hexadeci mal value 0x00 to separate PS fromM or if the
length of PSis less than 8 octets, output "decryption error" and
stop. See also the security note in Section 14 regarding differences
in reporting between a decryption error and a paddi ng error

1.3. EMSA- PKCS1-v1 5

This encoding nethod is determ nistic and only has an encodi ng
operati on.

Option:

Hash - a hash function in which hLen denotes the length in octets of
the hash function out put

I nput :

M = nessage to be encoded

mL = intended length in octets of the encoded nessage, at |east tlLen
+ 11, where tLen is the octet length of the DER encoding T of a
certain value conputed during the encodi ng operation

Cut put :

EM = encoded nessage, an octet string of length enlLen

Errors: "nessage too long"; "intended encoded nessage |length too
short"

St eps:

1. Apply the hash function to the message Mto produce a hash val ue

H = Hash(M.

If the hash function outputs "nmessage too |ong," output "nmessage
too I ong" and stop.

2. Using the list in Section 5.2.2, produce an ASN. 1 DER val ue for
the hash function used. Let T be the full hash prefix from
Section 5.2.2, and let tLen be the length in octets of T.

3. If emen < tLen + 11, output "intended encoded nessage | ength
too short" and stop.

Call as, et al St andards Track [Page 74]

RFC 4880 OpenPGP Message For mat Novenber 2007

13.

4. Cenerate an octet string PS consisting of enLen - tLen - 3
octets with hexadeci nal value OxFF. The length of PS will be at
| east 8 octets.

5. Concatenate PS, the hash prefix T, and other padding to formthe
encoded nessage EM as

EM = 0x00 || Ox01 || PS || Ox00 || T.
6. Qutput EM
2. Symetric Al gorithm Preferences

The synmetric algorithm preference is an ordered list of algorithns
that the keyhol der accepts. Since it is found on a self-signature,
it is possible that a keyhol der may have nultiple, different
preferences. For exanple, Alice may have Tripl eDES only specified
for "alice@wrk.com' but CAST5, Blowfish, and Tri pl eDES specified for
"alice@one.org". Note that it is also possible for preferences to
be in a subkey’s binding signature.

Since TripleDES is the MJUST-inplenment algorithm if it is not
explicitly inthe list, it is tacitly at the end. However, it is
good formto place it there explicitly. Note also that if an

i mpl enent ati on does not inplenent the preference, then it is
inmplicitly a TripleDES-only inplenentation.

An i npl enentation MUST NOT use a symmetric algorithmthat is not in
the recipient’s preference list. Wen encrypting to nore than one
reci pient, the inplenentation finds a suitable algorithmby taking
the intersection of the preferences of the recipients. Note that the
MUST-i npl enent algorithm TripleDES, ensures that the intersection is
not null. The inplenentation may use any mechanismto pick an
algorithmin the intersection

If an inplenentation can decrypt a nessage that a keyhol der doesn’t
have in their preferences, the inplenentati on SHOULD decrypt the
nmessage anyway, but MJUST warn the keyhol der that the protocol has
been viol ated. For exanple, suppose that Alice, above, has software
that inplenments all algorithnms in this specification. Nonetheless,
she prefers subsets for work or hone. |If she is sent a nessage
encrypted with IDEA, which is not in her preferences, the software
warns her that sonmeone sent her an | DEA-encrypted nessage, but it
woul d ideally decrypt it anyway.

Call as, et al St andards Track [Page 75]

RFC 4880 OpenPGP Message For mat Novenber 2007

13.

13.

13.

3. Oher Algorithm Preferences

O her algorithmpreferences work sinmilarly to the symretric al gorithm
preference, in that they specify which algorithnms the keyhol der
accepts. There are two interesting cases that other coments need to
be nmade about, though, the conpression preferences and the hash

pr ef er ences.

3.1. Conpression Preferences

Conpression has been an integral part of PGP since its first days.
QpenPGP and all previous versions of PG have offered conpression

In this specification, the default is for nessages to be conpressed,
al t hough an inplenentation is not required to do so. Consequently,
the conpression preference gives a way for a keyhol der to request
that messages not be conpressed, presumably because they are using a
m ni mal i npl enmentation that does not include conpression.
Additionally, this gives a keyholder a way to state that it can
support alternate al gorithns.

Li ke the al gorithm preferences, an inplenentati on MUST NOT use an

algorithmthat is not in the preference vector. |If the preferences
are not present, then they are assuned to be [ZIP(1),
Unconpr essed(0)] .

Additionally, an inplenmentation MJST inplenment this preference to the
degree of recognizing when to send an unconpressed nessage. A robust
i npl ement ati on woul d satisfy this requirenent by |ooking at the

reci pient’s preference and acting accordingly. A mninal

i npl enentation can satisfy this requirenment by never generating a
conpressed nmessage, since all inplenentations can handl e nessages

t hat have not been conpressed.

3.2. Hash Al gorithm Preferences

Typically, the choice of a hash algorithmis sonething the signer
does, rather than the verifier, because a signer rarely knows who is
going to be verifying the signature. This preference, though, allows
a protocol based upon digital signatures ease in negotiation.

Thus, if Alice is authenticating herself to Bob with a signature, it
makes sense for her to use a hash algorithmthat Bob’'s software uses
This preference allows Bob to state in his key which algorithns Alice
may use

Since SHAl is the MJST-inpl ement hash algorithm if it is not
explicitly inthe list, it is tacitly at the end. However, it is
good formto place it there explicitly.

Call as, et al St andards Track [Page 76]

RFC 4880 OpenPGP Message For mat Novenber 2007

13. 4. Pl ai nt ext

AlgorithmO, "plaintext", may only be used to denote secret keys that
are stored in the clear. |Inplenmentations MJST NOT use plaintext in
Symmetrically Encrypted Data packets; they nust use Literal Data
packets to encode unencrypted or literal data.

13.5. RSA

There are algorithmtypes for RSA Sign-Only, and RSA Encrypt-Only
keys. These types are deprecated. The "key fl ags" subpacket in a
signature is a nuch better way to express the sane idea, and
generalizes it to all algorithns. An inplenentati on SHOULD NOT
create such a key, but MAY interpret it.

An i nmpl enentati on SHOULD NOT i npl enent RSA keys of size less than
1024 bits.

13.6. DSA

An i npl enentati on SHOULD NOT i npl enment DSA keys of size less than
1024 bits. It MJST NOT inplement a DSA key with a q size of |ess
than 160 bits. DSA keys MJST also be a nultiple of 64 bits, and the
g size MIST be a nultiple of 8 bits. The Digital Signature Standard
(DSS) [FIPS186] specifies that DSA be used in one of the foll ow ng
ways:

* 1024-bit key, 160-bit g, SHA-1, SHA-224, SHA-256, SHA-384, or
SHA- 512 hash

* 2048-bit key, 224-bit q, SHA-224, SHA-256, SHA-384, or SHA-512
hash

* 2048-bit key, 256-bit g, SHA-256, SHA-384, or SHA-512 hash
* 3072-bit key, 256-bit g, SHA-256, SHA-384, or SHA-512 hash

The above key and g size pairs were chosen to best bal ance the
strength of the key with the strength of the hash. |nplenmentations
SHOULD use one of the above key and q size pairs when generating DSA
keys. If DSS compliance is desired, one of the specified SHA hashes
nmust be used as well. [FIPS186] is the ultimte authority on DSS,
and should be consulted for all questions of DSS conpliance.

Note that earlier versions of this standard only allowed a 160-bit q
with no truncation allowed, so earlier inplenentations may not be
able to handle signatures with a different q size or a truncated
hash.

Call as, et al St andards Track [Page 77]

RFC 4880 OpenPGP Message For mat Novenber 2007

13.7. El ganal

An i nmpl enentati on SHOULD NOT i npl enent El gamal keys of size |ess than
1024 bits.

13.8. Reserved Al gorithm Nunbers

A nunmber of algorithmIDs have been reserved for algorithns that
woul d be useful to use in an QpenPGP i npl enentation, yet there are

i ssues that prevent an inplenenter fromactually inplenenting the
algorithm These are marked in Section 9.1, "Public-Key Al gorithnms",
as "reserved for".

The reserved public-key algorithns, Elliptic Curve (18), ECDSA (19),
and X9.42 (21), do not have the necessary paraneters, paraneter
order, or senmantics defined

Previ ous versions of OpenPGP pernmitted El ganmal [ELGAMAL] signatures
with a public-key identifier of 20. These are no |onger permtted.
An i npl enentati on MJUST NOT generate such keys. An inplenentation
MUST NOT generate El gamal signatures. See [BLEI CHENBACHER] .

13.9. OpenPGP CFB Mdde

QpenPGP does symmetric encryption using a variant of G pher Feedback
node (CFB node). This section describes the procedure it uses in
detail. This node is what is used for Symretrically Encrypted Data
Packets; the nechani smused for encrypting secret-key material is
simlar, and is described in the sections above.

In the description below, the value BS is the block size in octets of
the cipher. Mbst ciphers have a block size of 8 octets. The AES and
Twofish have a bl ock size of 16 octets. Also note that the
description bel ow assunes that the IV and CFB arrays start with an

i ndex of 1 (unlike the C |anguage, which assunmes arrays start with a
zero index).

OpenPGP CFB node uses an initialization vector (1V) of all zeros, and
prefixes the plaintext with BS+2 octets of random data, such that
octets BS+1l and BS+2 match octets BS-1 and BS. It does a CFB
resynchroni zation after encrypting those BS+2 octets.

Thus, for an algorithmthat has a block size of 8 octets (64 bits),
the I1Vis 10 octets long and octets 7 and 8 of the IV are the same as
octets 9 and 10. For an algorithmw th a block size of 16 octets
(128 bits), the IVis 18 octets long, and octets 17 and 18 replicate
octets 15 and 16. Those extra two octets are an easy check for a
correct key.

Call as, et al St andards Track [Page 78]

RFC 4880 OpenPGP Message For mat Novenber 2007

13.

Step by step, here is the procedure:
1. The feedback register (FR) is set to the IV, which is all zeros.

2. FRis encrypted to produce FRE (FR Encrypted). This is the
encryption of an all-zero val ue.

3. FRE is xored with the first BS octets of randomdata prefixed to
the plaintext to produce ([1] through C/BS], the first BS octets
of ci phertext.

4., FRis loaded with C[1] through CBS].

5. FRis encrypted to produce FRE, the encryption of the first BS
octets of ciphertext.

6. The left two octets of FRE get xored with the next two octets of
data that were prefixed to the plaintext. This produces (BS+1]
and C[BS+2], the next two octets of ciphertext.

7. (The resynchronization step) FRis loaded with ([3] through
d BS+2] .

8. FRis encrypted to produce FRE.

9. FRE is xored with the first BS octets of the given plaintext, now
that we have finished encrypting the BS+2 octets of prefixed
data. This produces (BS+3] through C[BS+(BS+2)], the next BS
octets of ciphertext.

10. FRis loaded with CJBS+3] to C[BS + (BS+2)] (which is Cl11-C18 for
an 8-octet bl ock).

11. FR is encrypted to produce FRE.

12. FRE is xored with the next BS octets of plaintext, to produce
the next BS octets of ciphertext. These are |oaded into FR, and
the process is repeated until the plaintext is used up

10. Pr

vate or Experinental Paranmeters

S2K specifiers, Signature subpacket types, user attribute types,

i mage format types, and algorithns described in Section 9 all reserve
the range 100 to 110 for private and experinmental use. Packet types
reserve the range 60 to 63 for private and experinental use. These
are intentionally managed with the PRI VATE USE net hod, as descri bed
in [RFC2434].

Call as, et al St andards Track [Page 79]

RFC 4880 OpenPGP Message For mat Novenber 2007

13.

13.

However, inplenentations need to be careful with these and pronote
themto full | ANA-managed paraneters when they grow beyond the
original, limted system

11. Extension of the MDC System

As described in the non-nornmative explanation in Section 5.13, the
MDC system i s uniquely unparaneterized in OCpenPGP. This was an

i ntentional decision to avoid cross-grade attacks. |If the MDC system
is extended to a stronger hash function, care nust be taken to avoid
downgrade and cross-grade attacks.

One sinple way to do this is to create new packets for a new MDC.

For exanple, instead of the MDC system using packets 18 and 19, a new
MDC coul d use 20 and 21. This has obvi ous drawbacks (it uses two
packet numbers for each new hash function in a space that is limted
to a maxi mum of 60).

Anot her sinple way to extend the MDC systemis to create new versions
of packet 18, and reflect this in packet 19. For exanple, suppose
that V2 of packet 18 inplicitly used SHA-256. This would require
packet 19 to have a length of 32 octets. The change in the version
in packet 18 and the size of packet 19 prevent a downgrade attack

There are two drawbacks to this latter approach. The first is that
usi ng the version nunber of a packet to carry algorithminformation
is not tidy froma protocol -design standpoint. It is possible that
there nmight be several versions of the MDC systemin conmon use, but
this untidiness would reflect untidiness in cryptographic consensus
about hash function security. The second is that different versions
of packet 19 would have to have uni que sizes. |f there were two
versi ons each with 256-bit hashes, they could not both have 32-octet
packet 19s without admitting the chance of a cross-grade attack

Yet anot her, conplex approach to extend the MDC system woul d be a
hybrid of the two above -- create a new pair of MDC packets that are
fully paraneterized, and yet protected from downgrade and cross-

gr ade.

Any change to the MDC system MJUST be done through the | ETF CONSENSUS
met hod, as described in [RFC2434].

12. Meta-Considerations for Expansion

If OpenPGP is extended in a way that is not backwards-conpati bl e,
meani ng that old inplementations will not gracefully handle their

Call as, et al St andards Track [Page 80]

RFC 4880 OpenPGP Message For mat Novenber 2007

14.

absence of a new feature, the extension proposal can be declared in
the key holder’'s self-signature as part of the Features signature
subpacket .

We cannot state definitively what extensions will not be upwards-
conpati ble, but typically new al gorithns are upwards-conpati bl e,
wher eas new packets are not.

I f an extension proposal does not update the Features system it
SHOULD i ncl ude an explanation of why this is unnecessary. |If the
proposal contains neither an extension to the Features system nor an
expl anation of why such an extension is unnecessary, the proposa
SHOULD be rej ect ed.

Security Considerations

* As with any technol ogy invol ving cryptography, you should check the
current literature to determine if any algorithns used here have
been found to be vulnerable to attack

* This specification uses Public-Key Cryptography technologies. It
is assuned that the private key portion of a public-private key
pair is controlled and secured by the proper party or parties.

* Certain operations in this specification involve the use of random
nunmbers. An appropriate entropy source should be used to generate
t hese nunbers (see [RFC4086]).

* The MD5 hash al gorithm has been found to have weaknesses, with
collisions found in a nunber of cases. M5 is deprecated for use
in QpenPGP. | nplenentations MJST NOT generate new signatures using
MD5 as a hash function. They MAY continue to consider old
signatures that used MD5 as valid.

* SHA-224 and SHA-384 require the sanme work as SHA-256 and SHA-512,
respectively. In general, there are few reasons to use them
outside of DSS conpatibility. You need a situation where one needs
nmore security than snaller hashes, but does not want to have the
full 256-bit or 512-bit data | ength.

* Many security protocol designers think that it is a bad idea to use
a single key for both privacy (encryption) and integrity
(signatures). In fact, this was one of the notivating forces
behind the V4 key format with separate signature and encryption
keys. If you as an inplenenter pronote dual -use keys, you should
at |l east be aware of this controversy.

Call as, et al St andards Track [Page 81]

RFC 4880 OpenPGP Message For mat Novenber 2007

* The DSA algorithmw Il work with any hash, but is sensitive to the
quality of the hash algorithm Verifiers should be aware that even
if the signer used a strong hash, an attacker could have nodified
the signature to use a weak one. Only signatures using acceptably
strong hash al gorithnms should be accepted as valid.

* As QpenPGP conbi nes nany different asymetric, symmetric, and hash
al gorithms, each with different nmeasures of strength, care should
be taken that the weakest elenent of an OpenPGP message is stil
sufficiently strong for the purpose at hand. Wile consensus about
the strength of a given algorithm may evol ve, N ST Specia
Publ i cati on 800-57 [SP800-57] recomends the following |ist of
equi val ent strengths:

Asymetric | Hash | Symetric

key size | size | key size

____________ e
1024 160 80
2048 224 112
3072 256 128
7680 384 192
15360 512 256

* There is a sonewhat-rel ated potential security problemin
signatures. |If an attacker can find a nessage that hashes to the
same hash with a different algorithm a bogus signature structure
can be constructed that eval uates correctly.

For exanpl e, suppose Alice DSA signs nessage M using hash al gorithm
H. Suppose that Mallet finds a nessage M that has the same hash
value as Mwith H. Mllet can then construct a signature bl ock
that verifies as Alice’'s signature of M with H. However, this
woul d al so constitute a weakness in either Hor H or both. Should
this ever occur, a revision will have to be nmade to this docunent
to revise the all owed hash al gorithns.

* | f you are building an authentication system the recipient may
specify a preferred signing algorithm However, the signer would
be foolish to use a weak algorithm sinply because the recipient
requests it.

* Some of the encryption algorithns nentioned in this docunent have
been anal yzed | ess than others. For exanple, although CASTS is
presently considered strong, it has been analyzed | ess than
TripleDES. Oher algorithnms may have other controversies
surroundi ng t hem

Call as, et al St andards Track [Page 82]

RFC 4880 OpenPGP Message For mat Novenber 2007

*

In late sumrer 2002, Jallad, Katz, and Schnei er published an
interesting attack on the QpenPGP protocol and sone of its

i mpl ementations [JKS02]. In this attack, the attacker nodifies a
nmessage and sends it to a user who then returns the erroneously
decrypted nmessage to the attacker. The attacker is thus using the
user as a randomoracle, and can often decrypt the nessage.

Conpressing data can aneliorate this attack. The incorrectly
decrypted data nearly al ways deconpresses in ways that defeat the
attack. However, this is not a rigorous fix, and | eaves open sone
smal |l vulnerabilities. For exanmple, if an inplenentation does not
conpress a nessage before encryption (perhaps because it knows it
was al ready conpressed), then that nessage is vul nerable. Because
of this happenstance -- that nodification attacks can be thwarted
by deconpression errors -- an inplenmentation SHOULD treat a
deconpression error as a security problem not nerely a data
probl em

This attack can be defeated by the use of Mdification Detection
provi ded that the inplenentati on does not |et the user naively
return the data to the attacker. An inplenentation MIST treat an
MDC failure as a security problem not nerely a data probl em

In either case, the inplenentation MAY allow the user access to the
erroneous data, but MJUST warn the user as to potential security
probl ens should that data be returned to the sender

While this attack is somewhat obscure, requiring a special set of
circunstances to create it, it is nonetheless quite serious as it
pernmits soneone to trick a user to decrypt a nessage
Consequently, it is inmportant that:

1. Inplenmenters treat MDC errors and deconpression failures as
security problens.

2. Inplenenters inplenent Modification Detection with all due
speed and encourage its spread.

3. Users migrate to inplenentations that support Modification
Detection with all due speed.

PKCS#1 has been found to be vulnerable to attacks in which a system
that reports errors in padding differently fromerrors in
decryption beconmes a randomoracle that can leak the private key in
mere mllions of queries. Inplenentations nust be aware of this
attack and prevent it from happening. The sinplest solutionis to
report a single error code for all variants of decryption errors so
as not to leak information to an attacker.

Call as, et al St andards Track [Page 83]

RFC 4880 OpenPGP Message For mat Novenber 2007

15.

* Some technol ogi es nentioned here may be subject to governnent
control in some countries

* I n winter 2005, Serge M ster and Robert Zuccherato from Entrust
rel eased a paper describing a way that the "quick check” in OpenPGP
CFB nbde can be used with a randomoracle to decrypt two octets of
every ci pher block [MZO5]. They recommend as prevention not using
t he quick check at all

Many i nmpl enenters have taken this advice to heart for any data that
is symmetrically encrypted and for which the session key is

public-key encrypted. 1In this case, the quick check is not needed
as the public-key encryption of the session key shoul d guarantee
that it is the right session key. |n other cases, the

i mpl enent ati on should use the quick check with care.

On the one hand, there is a danger to using it if there is a random
oracle that can leak information to an attacker. In plainer

| anguage, there is a danger to using the quick check if tinmng

i nformati on about the check can be exposed to an attacker
particularly via an autonmated service that allows rapidly repeated
queri es.

On the other hand, it is inconvenient to the user to be inforned
that they typed in the wong passphrase only after a petabyte of
data is decrypted. There are nany cases in cryptographic

engi neering where the inplenenter nust use care and wi sdom and
this is one.

| npl enentation Nits

This section is a collection of coments to help an inpl enmenter,
particularly with an eye to backward conpatibility. Previous

i mpl enent ati ons of PGP are not OpenPGP conpliant. Oten the
differences are small, but small differences are frequently nore
vexing than large differences. Thus, this is a non-conprehensive
list of potential problens and gotchas for a devel oper who is trying
to be backward-conpati bl e

* The I DEA algorithmis patented, and yet it is required for PGP

2.x interoperability. It is also the de-facto preferred
algorithmfor a V3 key with a V3 self-signature (or no self-
signature).

* When exporting a private key, PGP 2.x generates the header "BEG N
PGP SECRET KEY BLOCK" instead of "BEG N PGP PRI VATE KEY BLOCK".
Al'l previous versions ignore the inplied data type, and | ook
directly at the packet data type

Call as, et al St andards Track [Page 84]

RFC 4880 OpenPGP Message For mat Novenber 2007

Cal | as,

PGP 2.0 through 2.5 generated V2 Public-Key packets. These are
identical to the deprecated V3 keys except for the version
nunber. An inplenmentati on MUST NOT generate them and may accept
or reject themas it sees fit. Sonme ol der PGP versions generated
V2 PKESK packets (Tag 1) as well. An inplenmentation may accept
or reject V2 PKESK packets as it sees fit, and MJUST NOT generate
t hem

PGP 2.6.x will not accept key-material packets with versions
greater than 3.

There are many ways possible for two keys to have the sane key
material, but different fingerprints (and thus Key IDs). Perhaps
the nost interesting is an RSA key that has been "upgraded" to V4
format, but since a V4 fingerprint is constructed by hashing the
key creation tine along with other things, two V4 keys created at
different tinmes, yet with the sane key nmaterial will have
different fingerprints.

If an inplementation is using zlib to interoperate with PGP 2. x,
then the "w ndowBits" paraneter should be set to -13

The 0x19 back signatures were not required for signing subkeys
until relatively recently. Consequently, there may be keys in
the wild that do not have these back signatures. |nplenenting
software may handl e these keys as it sees fit.

OpenPGP does not put limts on the size of public keys. However,
| arger keys are not necessarily better keys. Larger keys take
nore conputation tine to use, and this can quickly becone
inmpractical. Different QpenPGP inplenmentations nmay al so use

di fferent upper bounds for public key sizes, and so care should
be taken when choosing sizes to maintain interoperability. As of
2007 nost i npl enentati ons have an upper bound of 4096 bits.

ASCI| arnor is an optional feature of QpenPGP. The OpenPGP
wor ki ng group strives for a nmininal set of nmandatory-to-inpl enent
features, and since there could be useful inplenentations that
only use binary object formats, this is not a "MJST" feature for
an inplenmentation. For exanple, an inplenentation that is using
OpenPGP as a nmechanismfor file signatures may find ASCI | arnor
unnecessary. QpenPGP pernits an inplenentation to declare what
features it does and does not support, but ASCI|I arnor is not one
of these. Since nost inplenentations allow binary and arnored
objects to be used indiscrimnately, an inplenmentation that does
not inplement ASCII armor may find itself with conpatibility

i ssues wi th general -purpose inplenentations. Mreover

i mpl enent ati ons of QpenPGP-M ME [RFC3156] al ready have a

et al St andards Track [Page 85]

RFC 4880

OpenPGP Message For mat Novenber 2007

requirenent for ASCII arnor so those inplenentations will
necessarily have support.

16. Ref er ences

16.1. Nornmmtive References

[AES]

[BLOWFI SH]

[BZ2]

[ELGAMAL]

[FI PS180]

[FI PS186]

[HAC]

[I DEA

Callas, et a

NI ST, FIPS PUB 197, "Advanced Encryption Standard
(AES), " Novenber 2001.
http://csrc.nist.gov/publications/fips/fipsl97/fips-
197. { ps, pdf }

Schnei er, B. "Description of a New Variabl e-Length
Key, 64-Bit Block C pher (Blowfish)" Fast Software
Encryption, Canbridge Security Wrkshop Proceedi ngs
(Decenber 1993), Springer-Verlag, 1994, ppl91l-204
<ht t p: / / ww\. count er pane. cont bf sverl ag. ht m >

J. Seward, jseward@cmorg, "The Bzip2 and |ibbzip2
home page" <http://ww. bzip.org/>

T. Elgamal, "A Public-Key Cryptosystem and a

Si gnature Schene Based on Discrete Logarithns," |EEE
Transactions on Information Theory, v. IT-31, n. 4,
1985, pp. 469-472.

Secure Hash Signature Standard (SHS) (FIPS PUB 180-
2).
<http://csrc.nist.gov/publications/fips/fipsl80-

2/ fips180-2wi t hchangenoti ce. pdf >

Digital Signature Standard (DSS) (FIPS PUB 186-2).
<http://csrc.nist.gov/publications/fips/fipsl86-2/
fi ps186-2-changel. pdf > FI PS 186-3 descri bes keys
greater than 1024 bits. The latest draft is at:
<http://csrc.nist.gov/publications/drafts/
fips_186-3/Draft-FlPS-186-3%20_ Mar ch2006. pdf >

Al fred Menezes, Paul van Qorschot, and Scott

Vanst one, "Handbook of Applied Cryptography," CRC
Press, 1996.

<ht t p: //ww. cacr. nat h. uwat erl oo. ca/ hac/ >

Lai, X, "On the design and security of block

ci phers", ETH Series in Information Processing, J.L
Massey (editor), Vol. 1, Hartung-Corre Verlag

Knost anz, Techni sche Hochschul e (Zurich), 1992

St andards Track [Page 86]

RFC 4880

[1 SOL0646]

[JFIF]

[RFC1950]

[RFC1951]

[RFC2045]

[RFC2119]

[RFC2144]

[RFC2434]

[RFC2822]

[RFC3156]

[RFC3447]

[RFC3629]

[RFC4086]

Call as, et al

OpenPGP Message For mat Novenber 2007

| SO | EC 10646-1: 1993. International Standard --

I nformation technol ogy -- Universal Miltiple-Cctet
Coded Character Set (UCS) -- Part 1: Architecture
and Basic Multilingual Plane.

JPEG File Interchange Format (Version 1.02). FEric
Ham | ton, C- Cube M crosystens, MIpitas, CA,
Sept enber 1, 1992.

Deutsch, P. and J-L. Gailly, "ZLIB Conpressed Data
For mat Specification version 3.3", RFC 1950, My
1996.

Deut sch, P., "DEFLATE Conpressed Data For nat
Specification version 1.3", RFC 1951, My 1996.

Freed, N. and N. Borenstein, "Miltipurpose |nternet
Mai | Extensions (M ME) Part One: Format of |nternet
Message Bodi es", RFC 2045, Novenber 1996

Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

Adans, C., "The CAST-128 Encryption Al gorithnm, RFC
2144, My 1997.

Narten, T. and H Al vestrand, "Cuidelines for
Witing an | ANA Considerations Section in RFCs", BCP
26, RFC 2434, Cctober 1998.

Resnick, P., "Internet Message Format", RFC 2822,
April 2001.

El kins, M, Del Torto, D., Levien, R, and T.
Roessler, "M ME Security with OQpenPGP", RFC 3156,
August 2001.

Jonsson, J. and B. Kaliski, "Public-Key Cryptography
St andards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, February 2003.

Yergeau, F., "UTF-8, a transformation format of |SO
10646", STD 63, RFC 3629, Novenber 2003.

Eastl ake, D., 3rd, Schiller, J., and S. Crocker,

"Randomess Requirenments for Security", BCP 106, RFC
4086, June 2005.

St andards Track [Page 87]

RFC 4880 OpenPGP Message For mat Novenber 2007
[SCHNEI ER] Schneier, B., "Applied Cryptography Second Edition
protocols, algorithnms, and source code in C', 1996.
[TWOFI SH| B. Schneier, J. Kelsey, D. Witing, D. \Wagner, C
Hal I, and N. Ferguson, "The Twofish Encryption
Al gorithnt, John Wley & Sons, 1999.
16.2. Informative References

[BLEI CHENBACHER

[JKS02]

[MAURER]

[MZO5]

[REGEX]

[RFC1423]

[RFC1991]

[REC2440]

Callas, et a

Bl ei chenbacher, Daniel, "CGenerating El gamal
signatures wi thout knowi ng the secret key,"
Eurocrypt 96. Note that the version in the
proceedi ngs has an error. A revised version is
available at the tinme of witing from
<ftp://ftp.inf.ethz.ch/pub/publications/papers/ti
/i sc/ El Gamal . ps>

Kahi| Jall ad, Jonathan Katz, Bruce Schneier

"I mpl enent ati on of Chosen-C phertext Attacks agai nst
PGP and GhuPG' http://ww. count er pane. coni pgp-
attack. ht n

Ueli Maurer, "Modelling a Public-Key
Infrastructure", Proc. 1996 European Synposi um on
Research in Conputer Security (ESORICS 96), Lecture
Notes in Conputer Science, Springer-Verlag, vol

1146, pp. 325-350, Sep 1996.

Serge M ster, Robert Zuccherato, "An Attack on CFB
Mode Encryption As Used By QpenPGP," | ACR ePrint
Archi ve: Report 2005/033, 8 Feb 2005
http://eprint.iacr.org/ 2005/ 033

Jeffrey Friedl, "Mastering Regul ar Expressions,"”
O Reilly, |SBN 0-596-00289-0.

Bal enson, D., "Privacy Enhancenent for Internet
El ectronic Mail: Part 1I11: Al gorithnms, Mdes, and
Identifiers", RFC 1423, February 1993.

Atkins, D., Stallings, W, and P. Z mermann, "PGP
Message Exchange Formats", RFC 1991, August 1996.

Callas, J., Donnerhacke, L., Finney, H, and R

Thayer, "QpenPGP Message Format", RFC 2440, Novenber
1998.

St andards Track [Page 88]

RFC 4880 OpenPGP Message For mat Novenber 2007

[SP800- 57] NI ST Speci al Publication 800-57, Reconmendation on
Key Managenent
<http://csrc.nist.gov/publications/nistpubs/ 800-
57/ SP800- 57- Part 1. pdf >
<http://csrc.nist.gov/publications/nistpubs/ 800-
57/ SP800- 57- Part 2. pdf >

Acknowl edgenent s

This meno al so draws on nuch previous work froma nunber of other

aut hors, including: Derek Atkins, Charles Breed, Dave Del Torto, Marc
Dykst er house, Gail Haspert, Gene Hof fnman, Paul Hof frman, Ben Lauri e,
Raph Levien, Colin Plunb, WII Price, David Shaw, WIlIliam Stallings,
Mark Weaver, and Philip R Zi nmer mann.

Aut hors’ Addresses
The wor ki ng group can be contacted via the current chair:

Der ek Atkins

| HTFP Consul ting, Inc.

4 Farragut Ave

Sonerville, MA 02144 USA

EMai | : derek@ htfp.com
Tel: +1 617 623 3745

The principal authors of this document are as follows:

Jon Call as
EMail: jon@all as.org

Lut z Donner hacke

| KS GrbH

W | denbruchstr. 15
07745 Jena, GCermany
EMail: lutz@Kks-jena. de

Hal Fi nney
EMai | : hal @i nney. org

Davi d Shaw
EMai | : dshaw@ abber wocky. com

Rodney Thayer
EMai | : rodney@anol a-j ones. com

Call as, et al St andards Track [Page 89]

RFC 4880 OpenPGP Message For mat Novenber 2007

Ful I Copyright Statenent
Copyright (C The | ETF Trust (2007).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCORED BY (I F ANY), THE | NTERNET SCCI ETY, THE | ETF TRUST AND
THE | NTERNET ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS
OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF
THE | NFORVATI ON HEREI'N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. [Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of I PR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the information to the |ETF at
ietf-ipr@etf.org.

Call as, et al St andards Track [Page 90]

