
Network Working Group W. Eddy
Request for Comments: 4987 Verizon
Category: Informational August 2007

 TCP SYN Flooding Attacks and Common Mitigations

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document describes TCP SYN flooding attacks, which have been
 well-known to the community for several years. Various
 countermeasures against these attacks, and the trade-offs of each,
 are described. This document archives explanations of the attack and
 common defense techniques for the benefit of TCP implementers and
 administrators of TCP servers or networks, but does not make any
 standards-level recommendations.

Table of Contents

 1. Introduction . 2
 2. Attack Description . 2
 2.1. History . 3
 2.2. Theory of Operation 3
 3. Common Defenses . 6
 3.1. Filtering . 6
 3.2. Increasing Backlog . 7
 3.3. Reducing SYN-RECEIVED Timer 7
 3.4. Recycling the Oldest Half-Open TCB 7
 3.5. SYN Cache . 8
 3.6. SYN Cookies . 8
 3.7. Hybrid Approaches . 10
 3.8. Firewalls and Proxies 10
 4. Analysis . 11
 5. Security Considerations 13
 6. Acknowledgements . 13
 7. Informative References . 13
 Appendix A. SYN Cookies Description 16

Eddy Informational [Page 1]

RFC 4987 TCP SYN Flooding August 2007

1. Introduction

 The SYN flooding attack is a denial-of-service method affecting hosts
 that run TCP server processes. The attack takes advantage of the
 state retention TCP performs for some time after receiving a SYN
 segment to a port that has been put into the LISTEN state. The basic
 idea is to exploit this behavior by causing a host to retain enough
 state for bogus half-connections that there are no resources left to
 establish new legitimate connections.

 This SYN flooding attack has been well-known to the community for
 many years, and has been observed in the wild by network operators
 and end hosts. A number of methods have been developed and deployed
 to make SYN flooding less effective. Despite the notoriety of the
 attack, and the widely available countermeasures, the RFC series only
 documented the vulnerability as an example motivation for ingress
 filtering [RFC2827], and has not suggested any mitigation techniques
 for TCP implementations. This document addresses both points, but
 does not define any standards. Formal specifications and
 requirements of defense mechanisms are outside the scope of this
 document. Many defenses only impact an end host’s implementation
 without changing interoperability. These may not require
 standardization, but their side-effects should at least be well
 understood.

 This document intentionally focuses on SYN flooding attacks from an
 individual end host or application’s perspective, as a means to deny
 service to that specific entity. High packet-rate attacks that
 target the network’s packet-processing capability and capacity have
 been observed operationally. Since such attacks target the network,
 and not a TCP implementation, they are out of scope for this
 document, whether or not they happen to use TCP SYN segments as part
 of the attack, as the nature of the packets used is irrelevant in
 comparison to the packet-rate in such attacks.

 The majority of this document consists of three sections. Section 2
 explains the SYN flooding attack in greater detail. Several common
 mitigation techniques are described in Section 3. An analysis and
 discussion of these techniques and their use is presented in
 Section 4. Further information on SYN cookies is contained in
 Appendix A.

2. Attack Description

 This section describes both the history and the technical basis of
 the SYN flooding attack.

Eddy Informational [Page 2]

RFC 4987 TCP SYN Flooding August 2007

2.1. History

 The TCP SYN flooding weakness was discovered as early as 1994 by Bill
 Cheswick and Steve Bellovin [B96]. They included, and then removed,
 a paragraph on the attack in their book "Firewalls and Internet
 Security: Repelling the Wily Hacker" [CB94]. Unfortunately, no
 countermeasures were developed within the next two years.

 The SYN flooding attack was first publicized in 1996, with the
 release of a description and exploit tool in Phrack Magazine
 [P48-13]. Aside from some minor inaccuracies, this article is of
 high enough quality to be useful, and code from the article was
 widely distributed and used.

 By September of 1996, SYN flooding attacks had been observed in the
 wild. Particularly, an attack against one ISP’s mail servers caused
 well-publicized outages. CERT quickly released an advisory on the
 attack [CA-96.21]. SYN flooding was particularly serious in
 comparison to other known denial-of-service attacks at the time.
 Rather than relying on the common brute-force tactic of simply
 exhausting the network’s resources, SYN flooding targets end-host
 resources, which require fewer packets to deplete.

 The community quickly developed many widely differing techniques for
 preventing or limiting the impact of SYN flooding attacks. Many of
 these have been deployed to varying degrees on the Internet, in both
 end hosts and intervening routers. Some of these techniques have
 become important pieces of the TCP implementations in certain
 operating systems, although some significantly diverge from the TCP
 specification and none of these techniques have yet been standardized
 or sanctioned by the IETF process.

2.2. Theory of Operation

 As described in RFC 793, a TCP implementation may allow the LISTEN
 state to be entered with either all, some, or none of the pair of IP
 addresses and port numbers specified by the application. In many
 common applications like web servers, none of the remote host’s
 information is pre-known or preconfigured, so that a connection can
 be established with any client whose details are unknown to the
 server ahead of time. This type of "unbound" LISTEN is the target of
 SYN flooding attacks due to the way it is typically implemented by
 operating systems.

 For success, the SYN flooding attack relies on the victim host TCP
 implementation’s behavior. In particular, it assumes that the victim
 allocates state for every TCP SYN segment when it is received, and
 that there is a limit on the amount of such state than can be kept at

Eddy Informational [Page 3]

RFC 4987 TCP SYN Flooding August 2007

 any time. The current base TCP specification, RFC 793 [RFC0793],
 describes the standard processing of incoming SYN segments. RFC 793
 describes the concept of a Transmission Control Block (TCB) data
 structure to store all the state information for an individual
 connection. In practice, operating systems may implement this
 concept rather differently, but the key is that each TCP connection
 requires some memory space.

 Per RFC 793, when a SYN is received for a local TCP port where a
 connection is in the LISTEN state, then the state transitions to SYN-
 RECEIVED, and some of the TCB is initialized with information from
 the header fields of the received SYN segment. In practice, many
 operating systems do not alter the TCB in LISTEN, but instead make a
 copy of the TCB and perform the state transition and update on the
 copy. This is done so that the local TCP port may be shared amongst
 several distinct connections. This TCB-copying behavior is not
 actually essential for this purpose, but influences the way in which
 applications that wish to handle multiple simultaneous connections
 through a single TCP port are written. The crucial result of this
 behavior is that, instead of updating already-allocated memory, new
 (or unused) memory must be devoted to the copied TCB.

 As an example, in the Linux 2.6.10 networking code, a "sock"
 structure is used to implement the TCB concept. By examination, this
 structure takes over 1300 bytes to store in memory. In other systems
 that implement less-complex TCP algorithms and options, the overhead
 may be less, although it typically exceeds 280 bytes [SKK+97].

 To protect host memory from being exhausted by connection requests,
 the number of TCB structures that can be resident at any time is
 usually limited by operating system kernels. Systems vary on whether
 limits are globally applied or local to a particular port number.
 There is also variation on whether the limits apply to fully
 established connections as well as those in SYN-RECEIVED. Commonly,
 systems implement a parameter to the typical listen() system call
 that allows the application to suggest a value for this limit, called
 the backlog. When the backlog limit is reached, then either incoming
 SYN segments are ignored, or uncompleted connections in the backlog
 are replaced. The concept of using a backlog is not described in the
 standards documents, so the failure behavior when the backlog is
 reached might differ between stacks (for instance, TCP RSTs might be
 generated). The exact failure behavior will determine whether
 initiating hosts continue to retransmit SYN segments over time, or
 quickly cease. These differences in implementation are acceptable
 since they only affect the behavior of the local stack when its
 resources are constrained, and do not cause interoperability
 problems.

Eddy Informational [Page 4]

RFC 4987 TCP SYN Flooding August 2007

 The SYN flooding attack does not attempt to overload the network’s
 resources or the end host’s memory, but merely attempts to exhaust
 the backlog of half-open connections associated with a port number.
 The goal is to send a quick barrage of SYN segments from IP addresses
 (often spoofed) that will not generate replies to the SYN-ACKs that
 are produced. By keeping the backlog full of bogus half-opened
 connections, legitimate requests will be rejected. Three important
 attack parameters for success are the size of the barrage, the
 frequency with which barrages are generated, and the means of
 selecting IP addresses to spoof.

 Barrage Size

 To be effective, the size of the barrage must be made large enough
 to reach the backlog. Ideally, the barrage size is no larger than
 the backlog, minimizing the volume of traffic the attacker must
 source. Typical default backlog values vary from a half-dozen to
 several dozen, so the attack might be tailored to the particular
 value determined by the victim host and application. On machines
 intended to be servers, especially for a high volume of traffic,
 the backlogs are often administratively configured to higher
 values.

 Barrage Frequency

 To limit the lifetime of half-opened connection state, TCP
 implementations commonly reclaim memory from half-opened
 connections if they do not become fully opened after some time
 period. For instance, a timer of 75 seconds [SKK+97] might be set
 when the first SYN-ACK is sent, and on expiration cause SYN-ACK
 retransmissions to cease and the TCB to be released. The TCP
 specifications do not include this behavior of giving up on
 connection establishment after an arbitrary time. Some purists
 have expressed that the TCP implementation should continue
 retransmitting SYN and SYN-ACK segments without artificial bounds
 (but with exponential backoff to some conservative rate) until the
 application gives up. Despite this, common operating systems
 today do implement some artificial limit on half-open TCB
 lifetime. For instance, backing off and stopping after a total of
 511 seconds can be observed in 4.4 BSD-Lite [Ste95], and is still
 practiced in some operating systems derived from this code.

 To remain effective, a SYN flooding attack needs to send new
 barrages of bogus connection requests as soon as the TCBs from the
 previous barrage begin to be reclaimed. The frequency of barrages
 are tailored to the victim TCP implementation’s TCB reclamation
 timer. Frequencies higher than needed source more packets,
 potentially drawing more attention, and frequencies that are too

Eddy Informational [Page 5]

RFC 4987 TCP SYN Flooding August 2007

 low will allow windows of time where legitimate connections can be
 established.

 IP Address Selection

 For an effective attack, it is important that the spoofed IP
 addresses be unresponsive to the SYN-ACK segments that the victim
 will generate. If addresses of normal connected hosts are used,
 then those hosts will send the victim a TCP reset segment that
 will immediately free the corresponding TCB and allow room in the
 backlog for legitimate connections to be made. The code
 distributed in the original Phrack article used a single source
 address for all spoofed SYN segments. This makes the attack
 segments somewhat easier to identify and filter. A strong
 attacker will have a list of unresponsive and unrelated addresses
 that it chooses spoofed source addresses from.

 It is important to note that this attack is directed at particular
 listening applications on a host, and not the host itself or the
 network. The attack also attempts to prevent only the establishment
 of new incoming connections to the victim port, and does not impact
 outgoing connection requests, nor previously established connections
 to the victim port.

 In practice, an attacker might choose not to use spoofed IP
 addresses, but instead to use a multitude of hosts to initiate a SYN
 flooding attack. For instance, a collection of compromised hosts
 under the attacker’s control (i.e., a "botnet") could be used. In
 this case, each host utilized in the attack would have to suppress
 its operating system’s native response to the SYN-ACKs coming from
 the target. It is also possible for the attack TCP segments to
 arrive in a more continuous fashion than the "barrage" terminology
 used here suggests; as long as the rate of new SYNs exceeds the rate
 at which TCBs are reaped, the attack will be successful.

3. Common Defenses

 This section discusses a number of defense techniques that are known
 to the community, many of which are available in off-the-shelf
 products.

3.1. Filtering

 Since in the absence of an army of controlled hosts, the ability to
 send packets with spoofed source IP addresses is required for this
 attack to work, removing an attacker’s ability to send spoofed IP
 packets is an effective solution that requires no modifications to
 TCP. The filtering techniques described in RFCs 2827, 3013, and 3704

Eddy Informational [Page 6]

RFC 4987 TCP SYN Flooding August 2007

 represent the best current practices for packet filtering based on IP
 addresses [RFC2827][RFC3013][RFC3704]. While perfectly effective,
 end hosts should not rely on filtering policies to prevent attacks
 from spoofed segments, as global deployment of filters is neither
 guaranteed nor likely. An attacker with the ability to use a group
 of compromised hosts or to rapidly change between different access
 providers will also make filtering an impotent solution.

3.2. Increasing Backlog

 An obvious attempt at a defense is for end hosts to use a larger
 backlog. Lemon has shown that in FreeBSD 4.4, this tactic has some
 serious negative aspects as the size of the backlog grows [Lem02].
 The implementation has not been designed to scale past backlogs of a
 few hundred, and the data structures and search algorithms that it
 uses are inefficient with larger backlogs. It is reasonable to
 assume that other TCP implementations have similar design factors
 that limit their performance with large backlogs, and there seems to
 be no compelling reason why stacks should be re-engineered to support
 extremely large backlogs, since other solutions are available.
 However, experiments with large backlogs using efficient data
 structures and search algorithms have not been conducted, to our
 knowledge.

3.3. Reducing SYN-RECEIVED Timer

 Another quickly implementable defense is shortening the timeout
 period between receiving a SYN and reaping the created TCB for lack
 of progress. Decreasing the timer that limits the lifetime of TCBs
 in SYN-RECEIVED is also flawed. While a shorter timer will keep
 bogus connection attempts from persisting for as long in the backlog,
 and thus free up space for legitimate connections sooner, it can
 prevent some fraction of legitimate connections from becoming fully
 established. This tactic is also ineffective because it only
 requires the attacker to increase the barrage frequency by a linearly
 proportional amount. This timer reduction is sometimes implemented
 as a response to crossing some threshold in the backlog occupancy, or
 some rate of SYN reception.

3.4. Recycling the Oldest Half-Open TCB

 Once the entire backlog is exhausted, some implementations allow
 incoming SYNs to overwrite the oldest half-open TCB entry. This
 works under the assumption that legitimate connections can be fully
 established in less time than the backlog can be filled by incoming
 attack SYNs. This can fail when the attacking packet rate is high
 and/or the backlog size is small, and is not a robust defense.

Eddy Informational [Page 7]

RFC 4987 TCP SYN Flooding August 2007

3.5. SYN Cache

 The SYN cache, best described by Lemon [Lem02], is based on
 minimizing the amount of state that a SYN allocates, i.e., not
 immediately allocating a full TCB. The full state allocation is
 delayed until the connection has been fully established. Hosts
 implementing a SYN cache have some secret bits that they select from
 the incoming SYN segments. The secret bits are hashed along with the
 IP addresses and TCP ports of a segment, and the hash value
 determines the location in a global hash table where the incomplete
 TCB is stored. There is a bucket limit for each hash value, and when
 this limit is reached, the oldest entry is dropped.

 The SYN cache technique is effective because the secret bits prevent
 an attacker from being able to target specific hash values for
 overflowing the bucket limit, and it bounds both the CPU time and
 memory requirements. Lemon’s evaluation of the SYN cache shows that
 even under conditions where a SYN flooding attack is not being
 performed, due to the modified processing path, connection
 establishment is slightly more expedient. Under active attack, SYN
 cache performance was observed to approximately linearly shift the
 distribution of times to establish legitimate connections to about
 15% longer than when not under attack [Lem02].

 If data accompanies the SYN segment, then this data is not
 acknowledged or stored by the receiver, and will require
 retransmission. This does not affect the reliability of TCP’s data
 transfer service, but it does affect its performance to some small
 extent. SYNs carrying data are used by the T/TCP extensions
 [RFC1644]. While T/TCP is implemented in a number of popular
 operating systems [GN00], it currently seems to be rarely used.
 Measurements at one site’s border router [All07] logged 2,545,785 SYN
 segments (not SYN-ACKs), of which 36 carried the T/TCP CCNEW option
 (or 0.001%). These came from 26 unique hosts, and no other T/TCP
 options were seen. 2,287 SYN segments with data were seen (or 0.09%
 of all SYN segments), all of which had exactly 24 bytes of data.
 These observations indicate that issues with SYN caches and data on
 SYN segments may not be significant in deployment.

3.6. SYN Cookies

 SYN cookies go a step further and allocate no state at all for
 connections in SYN-RECEIVED. Instead, they encode most of the state
 (and all of the strictly required) state that they would normally
 keep into the sequence number transmitted on the SYN-ACK. If the SYN
 was not spoofed, then the acknowledgement number (along with several
 other fields) in the ACK that completes the handshake can be used to
 reconstruct the state to be put into the TCB. To date, one of the

Eddy Informational [Page 8]

RFC 4987 TCP SYN Flooding August 2007

 best references on SYN cookies can be found on Dan Bernstein’s web
 site [cr.yp.to]. This technique exploits the long-understood low
 entropy in TCP header fields [RFC1144][RFC4413]. In Appendix A, we
 describe the SYN cookie technique, to avoid the possibility that the
 web page will become unavailable.

 The exact mechanism for encoding state into the SYN-ACK sequence
 number can be implementation dependent. A common consideration is
 that to prevent replay, some time-dependent random bits must be
 embedded in the sequence number. One technique used 7 bits for these
 bits and 25 bits for the other data [Lem02]. One way to encode these
 bits has been to XOR the initial sequence number received with a
 truncated cryptographic hash of the IP address and TCP port number
 pairs, and secret bits. In practice, this hash has been generated
 using MD5 [RFC1321]. Any similar one-way hash could be used instead
 without impacting interoperability since the hash value is checked by
 the same host who generates it.

 The problem with SYN cookies is that commonly implemented schemes are
 incompatible with some TCP options, if the cookie generation scheme
 does not consider them. For example, an encoding of the Maximum
 Segment Size (MSS) advertised on the SYN has been accommodated by
 using 2 sequence number bits to represent 4 predefined common MSS
 values. Similar techniques would be required for some other TCP
 options, while negotiated use of other TCP options can be detected
 implicitly. A timestamp on the ACK, as an example, indicates that
 Timestamp use was successfully negotiated on the SYN and SYN-ACK,
 while the reception of a Selective Acknowledgement (SACK) option at
 some point during the connection implies that SACK was negotiated.
 Note that SACK blocks should normally not be sent by a host using TCP
 cookies unless they are first received. For the common
 unidirectional data flow in many TCP connections, this can be a
 problem, as it limits SACK usage. For this reason, SYN cookies
 typically are not used by default on systems that implement them, and
 are only enabled either under high-stress conditions indicative of an
 attack, or via administrative action.

 Recently, a new SYN cookie technique developed for release in FreeBSD
 7.0 leverages the bits of the Timestamp option in addition to the
 sequence number bits for encoding state. Since the Timestamp value
 is echoed back in the Timestamp Echo field of the ACK packet, any
 state stored in the Timestamp option can be restored similarly to the
 way that it is from the sequence number / acknowledgement in a basic
 SYN cookie. Using the Timestamp bits, it is possible to explicitly
 store state bits for things like send and receive window scales,
 SACK-allowed, and TCP-MD5-enabled, for which there is no room in a
 typical SYN cookie. This use of Timestamps to improve the
 compromises inherent in SYN cookies is unique to the FreeBSD

Eddy Informational [Page 9]

RFC 4987 TCP SYN Flooding August 2007

 implementation, to our knowledge. A limitation is that the technique
 can only be used if the SYN itself contains a Timestamp option, but
 this option seems to be widely implemented today, and hosts that
 support window scaling and SACK typically support timestamps as well.

 Similarly to SYN caches, SYN cookies do not handle application data
 piggybacked on the SYN segment.

 Another problem with SYN cookies is for applications where the first
 application data is sent by the passive host. If this host is
 handling a large number of connections, then packet loss may be
 likely. When a handshake-completing ACK from the initiator is lost,
 the passive side’s application layer never is notified of the
 connection’s existence and never sends data, even though the
 initiator thinks that the connection has been successfully
 established. An example application where the first application-
 layer data is sent by the passive side is SMTP, if implemented
 according to RFC 2821, where a "service ready" message is sent by the
 passive side after the TCP handshake is completed.

 Although SYN cookie implementations exist and are deployed, the use
 of SYN cookies is often disabled in default configurations, so it is
 unclear how much operational experience actually exists with them or
 if using them opens up new vulnerabilities. Anecdotes of incidents
 where SYN cookies have been used on typical web servers seem to
 indicate that the added processing burden of computing MD5 sums for
 every SYN packet received is not significant in comparison to the
 loss of application availability when undefended. For some
 computationally constrained mobile or embedded devices, this
 situation might be different.

3.7. Hybrid Approaches

 The SYN cache and SYN cookie techniques can be combined. For
 example, in the event that the cache becomes full, then SYN cookies
 can be sent instead of purging cache entries upon the arrival of new
 SYNs. Such hybrid approaches may provide a strong combination of the
 positive aspects of each approach. Lemon has demonstrated the
 utility of this hybrid [Lem02].

3.8. Firewalls and Proxies

 Firewall-based tactics may also be used to defend end hosts from SYN
 flooding attacks. The basic concept is to offload the connection
 establishment procedures onto a firewall that screens connection
 attempts until they are completed and then proxies them back to
 protected end hosts. This moves the problem away from end hosts to
 become the firewall’s or proxy’s problem, and may introduce other

Eddy Informational [Page 10]

RFC 4987 TCP SYN Flooding August 2007

 problems related to altering TCP’s expected end-to-end semantics. A
 common tactic used in these firewall and proxy products is to
 implement one of the end host based techniques discussed above, and
 screen incoming SYNs from the protected network until the connection
 is fully established. This is accomplished by spoofing the source
 addresses of several packets to the initiator and listener at various
 stages of the handshake [Eddy06].

4. Analysis

 Several of the defenses discussed in the previous section rely on
 changes to behavior inside the network; via router filtering,
 firewalls, and proxies. These may be highly effective, and often
 require no modification or configuration of end-host software. Given
 the mobile nature and dynamic connectivity of many end hosts, it is
 optimistic for TCP implementers to assume the presence of such
 protective devices. TCP implementers should provide some means of
 defense to SYN flooding attacks in end-host implementations.

 Among end-host modifications, the SYN cache and SYN cookie approaches
 seem to be the only viable techniques discovered to date. Increasing
 the backlog and reducing the SYN-RECEIVED timer are measurably
 problematic. The SYN cache implies a higher memory footprint than
 SYN cookies; however, SYN cookies may not be fully compatible with
 some TCP options, and may hamper development of future TCP extensions
 that require state. For these reasons, SYN cookies should not be
 enabled by default on systems that provide them. SYN caches do not
 have the same negative implications and may be enabled as a default
 mode of processing.

 In October of 1996, Dave Borman implemented a SYN cache at BSDi for
 BSD/OS, which was given to the community with no restrictions. This
 code seems to be the basis for the SYN cache implementations adopted
 later in other BSD variants. The cache was used when the backlog
 became full, rather than by default, as we have described. A note to
 the tcp-impl mailing list explains that this code does not retransmit
 SYN-ACKs [B97]. More recent implementations have chosen to reverse
 this decision and retransmit SYN-ACKs. It is known that loss of SYN-
 ACK packets is not uncommon [SD01] and can severely slow the
 performance of connections when initial retransmission timers for
 SYNs are overly conservative (as in some operating systems) or
 retransmitted SYNs are lost. Furthermore, if a SYN flooding attacker
 has a high sending rate, loss of retransmitted SYNs is likely, so if
 SYN-ACKs are not retransmitted, the chance of efficiently
 establishing legitimate connections is reduced.

Eddy Informational [Page 11]

RFC 4987 TCP SYN Flooding August 2007

 In 1997, NetBSD incorporated a modified version of Borman’s code.
 Two notable differences from the original code stem from the decision
 to use the cache by default (for all connections). This implied the
 need to perform retransmissions for SYN-ACKs, and to use larger
 structures to keep more complete data. The original structure was 32
 bytes long for IPv4 connections and 56 bytes with IPv6 support, while
 the current FreeBSD structure is 196 bytes long. As previously
 cited, Lemon implemented the SYN cache and cookie techniques in
 FreeBSD 4.4 [Lem02]. Lemon notes that a SYN cache structure took up
 160 bytes compared to 736 for the full TCB (now 196 bytes for the
 cache structure). We have examined the OpenBSD 3.6 code and
 determined that it includes a similar SYN cache.

 Linux 2.6.5 code, also by examination, contains a SYN cookie
 implementation that encodes 8 MSS values, and does not use SYN
 cookies by default. This functionality has been present in the Linux
 kernel for several years previous to 2.6.5.

 When a SYN cache and/or SYN cookies are implemented with IPv6, the
 IPv6 flow label value used on the SYN-ACK should be consistent with
 the flow label used for the rest of the packets within that flow.
 There have been implementation bugs that caused random flow labels to
 be used in SYN-ACKs generated by SYN cache and SYN cookie code
 [MM05].

 Beginning with Windows 2000, Microsoft’s Windows operating systems
 have had a "TCP SYN attack protection" feature, which can be toggled
 on or off in the registry. This defaulted to off, until Windows 2003
 SP1, in which it is on by default. With this feature enabled, when
 the number of half-open connections and half-open connections with
 retransmitted SYN-ACKs exceeds configurable thresholds, then the
 number of times that SYN-ACKs are retransmitted before giving up is
 reduced, and the "Route Cache Entry" creation is delayed, which
 prevents some features (e.g., window scaling) from being used
 [win2k3-wp].

 Several vendors of commercial firewall products sell devices that can
 mitigate SYN flooding’s effects on end hosts by proxying connections.

 Discovery and exploitation of the SYN flooding vulnerability in TCP’s
 design provided a valuable lesson for protocol designers. The Stream
 Control Transmission Protocol [RFC2960], which was designed more
 recently, incorporated a 4-way handshake with a stateless cookie-
 based component for the listening end. In this way, the passive-
 opening side has better evidence that the initiator really exists at
 the given address before it allocates any state. The Host Identity
 Protocol base exchange [MNJH07] is similarly designed as a 4-way
 handshake, but also involves a puzzle sent to the initiator that must

Eddy Informational [Page 12]

RFC 4987 TCP SYN Flooding August 2007

 be solved before any state is reserved by the responder. The general
 concept of designing statelessness into protocol setup to avoid
 denial-of-service attacks has been discussed by Aura and Nikander
 [AN97].

5. Security Considerations

 The SYN flooding attack on TCP has been described in numerous other
 publications, and the details and code needed to perform the attack
 have been easily available for years. Describing the attack in this
 document does not pose any danger of further publicizing this
 weakness in unmodified TCP stacks. Several widely deployed operating
 systems implement the mitigation techniques that this document
 discusses for defeating SYN flooding attacks. In at least some
 cases, these operating systems do not enable these countermeasures by
 default; however, the mechanisms for defeating SYN flooding are well
 deployed, and easily enabled by end-users. The publication of this
 document should not influence the number of SYN flooding attacks
 observed, and might increase the robustness of the Internet to such
 attacks by encouraging use of the commonly available mitigations.

6. Acknowledgements

 A conversation with Ted Faber was the impetus for writing this
 document. Comments and suggestions from Joe Touch, Dave Borman,
 Fernando Gont, Jean-Baptiste Marchand, Christian Huitema, Caitlin
 Bestler, Pekka Savola, Andre Oppermann, Alfred Hoenes, Mark Allman,
 Lars Eggert, Pasi Eronen, Warren Kumari, David Malone, Ron Bonica,
 and Lisa Dusseault were useful in strengthening this document. The
 original work on TCP SYN cookies presented in Appendix A is due to
 D.J. Bernstein.

 Work on this document was performed at NASA’s Glenn Research Center.
 Funding was partially provided by a combination of NASA’s Advanced
 Communications, Navigation, and Surveillance Architectures and System
 Technologies (ACAST) project, the Sensis Corporation, NASA’s Space
 Communications Architecture Working Group, and NASA’s Earth Science
 Technology Office.

7. Informative References

 [AN97] Aura, T. and P. Nikander, "Stateless Connections",
 Proceedings of the First International Conference on
 Information and Communication Security, 1997.

 [All07] Allman, M., "personal communication", February 2007.

Eddy Informational [Page 13]

RFC 4987 TCP SYN Flooding August 2007

 [B96] Bennahum, D., "PANIX ATTACK", MEME 2.12, October 1996,
 <http://memex.org/meme2-12.html>.

 [B97] Borman, D., "Re: SYN/RST cookies (was Re: a quick
 clarification...)", IETF tcp-impl mailing list,
 June 1997.

 [CA-96.21] CERT, "CERT Advisory CA-1996-21 TCP SYN Flooding and IP
 Spoofing Attacks", September 1996.

 [CB94] Cheswick, W. and S. Bellovin, "Firewalls and Internet
 Security", ISBN: 0201633574, January 1994.

 [Eddy06] Eddy, W., "Defenses Against TCP SYN Flooding Attacks",
 Cisco Internet Protocol Journal Volume 8, Number 4,
 December 2006.

 [GN00] Griffin, M. and J. Nelson, "T/TCP: TCP for
 Transactions", Linux Journal, February 2000.

 [Lem02] Lemon, J., "Resisting SYN Flood DoS Attacks with a SYN
 Cache", BSDCON 2002, February 2002.

 [MM05] McGann, O. and D. Malone, "Flow Label Filtering
 Feasibility", European Conference on Computer Network
 Defense 2005, December 2005.

 [MNJH07] Moskowitz, R., Nikander, P., Jokela, P., and T.
 Henderson, "Host Identity Protocol", Work in Progress,
 June 2007.

 [P48-13] daemon9, route, and infinity, "Project Neptune", Phrack
 Magazine, Volume 7, Issue 48, File 13 of 18, July 1996.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC1144] Jacobson, V., "Compressing TCP/IP headers for low-speed
 serial links", RFC 1144, February 1990.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm",
 RFC 1321, April 1992.

 [RFC1644] Braden, B., "T/TCP -- TCP Extensions for Transactions
 Functional Specification", RFC 1644, July 1994.

Eddy Informational [Page 14]

RFC 4987 TCP SYN Flooding August 2007

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP
 Source Address Spoofing", BCP 38, RFC 2827, May 2000.

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L., and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960, October 2000.

 [RFC3013] Killalea, T., "Recommended Internet Service Provider
 Security Services and Procedures", BCP 46, RFC 3013,
 November 2000.

 [RFC3704] Baker, F. and P. Savola, "Ingress Filtering for
 Multihomed Networks", BCP 84, RFC 3704, March 2004.

 [RFC4413] West, M. and S. McCann, "TCP/IP Field Behavior",
 RFC 4413, March 2006.

 [SD01] Seddigh, N. and M. Devetsikiotis, "Studies of TCP’s
 Retransmission Timeout Mechanism", Proceedings of the
 2001 IEEE International Conference on Communications
 (ICC 2001), volume 6, pages 1834-1840, June 2001.

 [SKK+97] Schuba, C., Krsul, I., Kuhn, M., Spafford, E., Sundaram,
 A., and D. Zamboni, "Analysis of a Denial of Service
 Attack on TCP", Proceedings of the 1997 IEEE Symposium
 on Security and Privacy 1997.

 [Ste95] Stevens, W. and G. Wright, "TCP/IP Illustrated, Volume
 2: The Implementation", January 1995.

 [cr.yp.to] Bernstein, D., "SYN cookies", visited in December 2005,
 <http://cr.yp.to/syncookies.html>.

 [win2k3-wp] Microsoft Corporation, "Microsoft Windows Server 2003
 TCP/IP Implementation Details", White Paper, July 2005.

Eddy Informational [Page 15]

RFC 4987 TCP SYN Flooding August 2007

Appendix A. SYN Cookies Description

 This information is taken from Bernstein’s web page on SYN cookies
 [cr.yp.to]. This is a rewriting of the technical information on that
 web page and not a full replacement. There are other slightly
 different ways of implementing the SYN cookie concept than the exact
 means described here, although the basic idea of encoding data into
 the SYN-ACK sequence number is constant.

 A SYN cookie is an initial sequence number sent in the SYN-ACK, that
 is chosen based on the connection initiator’s initial sequence
 number, MSS, a time counter, and the relevant addresses and port
 numbers. The actual bits comprising the SYN cookie are chosen to be
 the bitwise difference (exclusive-or) between the SYN’s sequence
 number and a 32 bit quantity computed so that the top five bits come
 from a 32-bit counter value modulo 32, where the counter increases
 every 64 seconds, the next 3 bits encode a usable MSS near to the one
 in the SYN, and the bottom 24 bits are a server-selected secret
 function of pair of IP addresses, the pair of port numbers, and the
 32-bit counter used for the first 5 bits. This means of selecting an
 initial sequence number for use in the SYN-ACK complies with the rule
 that TCP sequence numbers increase slowly.

 When a connection in LISTEN receives a SYN segment, it can generate a
 SYN cookie and send it in the sequence number of a SYN-ACK, without
 allocating any other state. If an ACK comes back, the difference
 between the acknowledged sequence number and the sequence number of
 the ACK segment can be checked against recent values of the counter
 and the secret function’s output given those counter values and the
 IP addresses and port numbers in the ACK segment. If there is a
 match, the connection can be accepted, since it is statistically very
 likely that the other side received the SYN cookie and did not simply
 guess a valid cookie value. If there is not a match, the connection
 can be rejected under the heuristic that it is probably not in
 response to a recently sent SYN-ACK.

 With SYN cookies enabled, a host will be able to remain responsive
 even when under a SYN flooding attack. The largest price to be paid
 for using SYN cookies is in the disabling of the window scaling
 option, which disables high performance.

 Bernstein’s web page [cr.yp.to] contains more information about the
 initial conceptualization and implementation of SYN cookies, and
 archives of emails documenting this history. It also lists some
 false negative claims that have been made about SYN cookies, and
 discusses reducing the vulnerability of SYN cookie implementations to
 blind connection forgery by an attacker guessing valid cookies.

Eddy Informational [Page 16]

RFC 4987 TCP SYN Flooding August 2007

 The best description of the exact SYN cookie algorithms is in a part
 of an email from Bernstein, that is archived on the web site (notice
 it does not set the top five bits from the counter modulo 32, as the
 previous description did, but instead uses 29 bits from the second
 MD5 operation and 3 bits for the index into the MSS table;
 establishing the secret values is also not discussed). The remainder
 of this section is excerpted from Bernstein’s email [cr.yp.to]:

 Here’s what an implementation would involve:

 Maintain two (constant) secret keys, sec1 and sec2.

 Maintain a (constant) sorted table of 8 common MSS values,
 msstab[8].

 Keep track of a "last overflow time".

 Maintain a counter that increases slowly over time and never
 repeats, such as "number of seconds since 1970, shifted right 6
 bits".

 When a SYN comes in from (saddr,sport) to (daddr,dport) with
 ISN x, find the largest i for which msstab[i] <= the incoming
 MSS. Compute

 z = MD5(sec1,saddr,sport,daddr,dport,sec1)

 + x

 + (counter << 24)

 + (MD5(sec2,counter,saddr,sport,daddr,dport,sec2) % (1 <<
 24))

 and then

 y = (i << 29) + (z % (1 << 29))

 Create a TCB as usual, with y as our ISN. Send back a SYNACK.

 Exception: _If_ we’re out of memory for TCBs, set the "last
 overflow time" to the current time. Send the SYNACK anyway,
 with all fancy options turned off.

 When an ACK comes back, follow this procedure to find a TCB:

Eddy Informational [Page 17]

RFC 4987 TCP SYN Flooding August 2007

 (1) Look for a (saddr,sport,daddr,dport) TCB. If it’s there,
 done.

 (2) If the "last overflow time" is earlier than a few minutes
 ago, give up.

 (3) Figure out whether our alleged ISN makes sense. This
 means recomputing y as above, for each of the counters
 that could have been used in the last few minutes (say,
 the last four counters), and seeing whether any of the y’s
 match the ISN in the bottom 29 bits. If none of them do,
 give up.

 (4) Create a new TCB. The top three bits of our ISN give a
 usable MSS. Turn off all fancy options.

Author’s Address

 Wesley M. Eddy
 Verizon Federal Network Systems
 NASA Glenn Research Center
 21000 Brookpark Rd, MS 54-5
 Cleveland, OH 44135

 Phone: 216-433-6682
 EMail: weddy@grc.nasa.gov

Eddy Informational [Page 18]

RFC 4987 TCP SYN Flooding August 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Eddy Informational [Page 19]

