Net wor k Wor ki ng Group
Request for Comments: 4987
Cat egory: Informationa

TCP SYN Fl oodi ng Attacks and Conmmon Mtigations

Status of This Meno

This meno provides information for the Internet community.
not specify an Internet standard of any Kkind.

nmeno is unlimted.

Copyright Notice

Copyright (C The I ETF Trust (2007).

Abst ract

Thi s docunent describes TCP SYN fl oodi ng attacks,
wel | -known to the comunity for severa
count er neasures agai nst these attacks,
are descri bed.

years.
and the trade-offs of each,
Thi s docunent archives explanations of the attack and

W Eddy
Veri zon

August 2007

It does
Distribution of this

whi ch have been

common defense techni ques for the benefit of TCP inplenenters and
admi ni strators of TCP servers or networks
st andar ds-| evel recommendati ons.

Tabl e of Contents

1
2.

4
5
6.
7.
Ap

Eddy

NN

WWwWwwwwww

I ntroduction . .
Attack Description .

.1. History . .
.2. Theory of Cperatlon

Conmon Def enses

Hybri d Approaches
Firewal Il s and Proxies
Anal ysi s

Security Cbn5|derat|ons
Acknowl edgenents . .

I nformati ve References

pendi x A. SYN Cooki es Desc}lptlon

I nf or mat i onal

1. Filtering . .

2. Increasing Backlog S

3. Reduci ng SYN- RECEIl VED Tlner . .
4. Recycling the ddest Half- Cpen TCB.
5. SYN Cache .

6. SYN Cooki es

7.

8.

but does not make any

CCONNNOOOWWNN

[Page 1]

RFC 4987 TCP SYN Fl oodi ng August 2007

1

I ntroduction

The SYN flooding attack is a denial-of-service nmethod affecting hosts
that run TCP server processes. The attack takes advantage of the
state retention TCP perforns for sone tine after receiving a SYN
segment to a port that has been put into the LISTEN state. The basic
idea is to exploit this behavior by causing a host to retain enough
state for bogus hal f-connections that there are no resources left to
establish new | egiti mate connecti ons.

This SYN fl ooding attack has been well-known to the comunity for
many years, and has been observed in the wild by network operators
and end hosts. A nunber of nethods have been devel oped and depl oyed
to make SYN flooding | ess effective. Despite the notoriety of the
attack, and the w dely avail abl e counterneasures, the RFC series only
docunented the vulnerability as an exanple notivation for ingress
filtering [RFC2827], and has not suggested any mitigation techniques
for TCP i nplenentations. This docunent addresses both points, but
does not define any standards. Fornal specifications and

requi renents of defense nechani sns are outside the scope of this
docunent. Many defenses only inpact an end host’s inplenentation

wi t hout changing interoperability. These nay not require
standardi zati on, but their side-effects should at |east be well
under st ood.

This docunent intentionally focuses on SYN fl ooding attacks from an
i ndi vidual end host or application’s perspective, as a nmeans to deny
service to that specific entity. H gh packet-rate attacks that
target the network’ s packet-processing capability and capacity have
been observed operationally. Since such attacks target the network,
and not a TCP i npl enentation, they are out of scope for this
docunent, whether or not they happen to use TCP SYN segnments as part
of the attack, as the nature of the packets used is irrelevant in
conmparison to the packet-rate in such attacks.

The majority of this docunent consists of three sections. Section 2
expl ains the SYN flooding attack in greater detail. Several comon
mtigation techniques are described in Section 3. An analysis and
di scussion of these techniques and their use is presented in

Section 4. Further information on SYN cookies is contained in
Appendi x A

Attack Description

This section describes both the history and the technical basis of
the SYN fl oodi ng attack.

Eddy I nf or mat i onal [Page 2]

RFC 4987 TCP SYN Fl oodi ng August 2007

2.1. History

The TCP SYN fl oodi ng weakness was di scovered as early as 1994 by Bil
Cheswi ck and Steve Bellovin [B96]. They included, and then renpved,
a paragraph on the attack in their book "Firewalls and |nternet
Security: Repelling the WIly Hacker" [CB94]. Unfortunately, no
count er measures were devel oped within the next two years.

The SYN flooding attack was first publicized in 1996, with the
rel ease of a description and exploit tool in Phrack Magazi ne
[P48-13]. Aside fromsone minor inaccuracies, this article is of
hi gh enough quality to be useful, and code fromthe article was
wi dely distributed and used.

By Septenber of 1996, SYN flooding attacks had been observed in the
wild. Particularly, an attack against one ISP's mail servers caused
wel | - publicized outages. CERT quickly released an advisory on the
attack [CA-96.21]. SYN flooding was particularly serious in
conparison to other known denial -of-service attacks at the tine.

Rat her than relying on the common brute-force tactic of sinply
exhausting the network’s resources, SYN flooding targets end-host
resources, which require fewer packets to deplete

The conmunity qui ckly devel oped nany widely differing techniques for
preventing or linmting the inpact of SYN flooding attacks. Many of

t hese have been depl oyed to varying degrees on the Internet, in both
end hosts and intervening routers. Sone of these techniques have
becone i mportant pieces of the TCP inplenentations in certain
operating systenms, although sone significantly diverge fromthe TCP
specification and none of these techni ques have yet been standardi zed
or sanctioned by the | ETF process.

2.2. Theory of Operation

As described in RFC 793, a TCP inplenentation may allow the LI STEN
state to be entered with either all, sonme, or none of the pair of IP
addresses and port nunbers specified by the application. |n nmany
comon applications |ike web servers, none of the renpte host’s
information is pre-known or preconfigured, so that a connection can
be established with any client whose details are unknown to the
server ahead of time. This type of "unbound” LISTEN is the target of
SYN fl ooding attacks due to the way it is typically inplenented by
operating systens.

For success, the SYN flooding attack relies on the victimhost TCP
i npl ementation’s behavior. In particular, it assumes that the victim
al l ocates state for every TCP SYN segnent when it is received, and
that there is a limt on the anount of such state than can be kept at

Eddy I nf or mat i onal [Page 3]

RFC 4987 TCP SYN Fl oodi ng August 2007

any tine. The current base TCP specification, RFC 793 [RFC0793],
descri bes the standard processing of inconing SYN segnents. RFC 793
descri bes the concept of a Transm ssion Control Block (TCB) data
structure to store all the state information for an individua
connection. |In practice, operating systens may inplenent this
concept rather differently, but the key is that each TCP connection
requi res sone menory space.

Per RFC 793, when a SYN is received for a local TCP port where a
connection is in the LISTEN state, then the state transitions to SYN
RECEI VED, and sone of the TCB is initialized with information from
the header fields of the received SYN segnent. |In practice, nany
operating systens do not alter the TCB in LISTEN, but instead nake a
copy of the TCB and performthe state transition and update on the
copy. This is done so that the local TCP port may be shared anmpngst
several distinct connections. This TCB-copying behavior is not
actually essential for this purpose, but influences the way in which
applications that wish to handle nultiple sinultaneous connections
through a single TCP port are witten. The crucial result of this
behavior is that, instead of updating already-allocated nenory, new
(or unused) nenory nust be devoted to the copied TCB

As an exanple, in the Linux 2.6.10 networking code, a "sock"
structure is used to inplenent the TCB concept. By examination, this
structure takes over 1300 bytes to store in nmenory. |In other systens
that inplenent |ess-conplex TCP al gorithnms and options, the overhead
may be |l ess, although it typically exceeds 280 bytes [SKK+97].

To protect host nenory from bei ng exhausted by connecti on requests,
the nunber of TCB structures that can be resident at any tinme is
usually linted by operating systemkernels. Systens vary on whet her
limts are globally applied or local to a particular port nunber.
There is also variation on whether the linmts apply to fully

est abl i shed connections as well as those in SYN RECElI VED. Conmonly,
systenms inplenment a paraneter to the typical listen() system cal

that allows the application to suggest a value for this lint, called
t he backl og. Wen the backlog linit is reached, then either incom ng
SYN segnents are ignored, or unconpl eted connections in the backl og
are replaced. The concept of using a backlog is not described in the
standards docunents, so the failure behavior when the backlog is
reached m ght differ between stacks (for instance, TCP RSTs m ght be
generated). The exact failure behavior will detern ne whether
initiating hosts continue to retransnmit SYN segnents over tine, or

qui ckly cease. These differences in inplenentation are acceptable
since they only affect the behavior of the local stack when its
resources are constrained, and do not cause interoperability

pr obl ens.

Eddy I nf or mat i onal [Page 4]

RFC 4987 TCP SYN Fl oodi ng August 2007

The SYN floodi ng attack does not attenpt to overload the network’s
resources or the end host’s nenory, but nmerely attenpts to exhaust

t he backl og of hal f-open connections associated with a port nunber
The goal is to send a quick barrage of SYN segnments from | P addresses
(often spoofed) that will not generate replies to the SYN-ACKs t hat
are produced. By keeping the backlog full of bogus half-opened
connections, legitimte requests will be rejected. Three inportant
attack paraneters for success are the size of the barrage, the
frequency with which barrages are generated, and the neans of
selecting I P addresses to spoof.

Barrage Size

To be effective, the size of the barrage nust be nade | arge enough
to reach the backlog. Ildeally, the barrage size is no larger than
t he backl og, mnimzing the volune of traffic the attacker nust
source. Typical default backlog values vary froma half-dozen to
several dozen, so the attack might be tailored to the particul ar
val ue determ ned by the victimhost and application. On nachines
i ntended to be servers, especially for a high volume of traffic,

t he backl ogs are often administratively configured to higher

val ues.

Barrage Frequency

To limt the lifetine of half-opened connection state, TCP

i mpl erent ati ons comonly reclai mnmenory from hal f-opened
connections if they do not becone fully opened after some tinme
period. For instance, a tinmer of 75 seconds [SKK+97] m ght be set
when the first SYNNACK is sent, and on expiration cause SYN-ACK
retransm ssions to cease and the TCB to be rel eased. The TCP
specifications do not include this behavior of giving up on
connection establishnent after an arbitrary tine. Sonme purists
have expressed that the TCP inpl enentation should continue
retransmtting SYN and SYN-ACK segnments without artificial bounds
(but with exponential backoff to sone conservative rate) until the
application gives up. Despite this, commopn operating systens
today do inplenent sone artificial Iinmt on half-open TCB
lifetime. For instance, backing off and stopping after a total of
511 seconds can be observed in 4.4 BSD-Lite [Ste95], and is stil
practiced in sone operating systens derived fromthis code

To remain effective, a SYN fl ooding attack needs to send new
barrages of bogus connection requests as soon as the TCBs fromthe
previous barrage begin to be reclained. The frequency of barrages
are tailored to the victimTCP inplenmentation’s TCB recl amati on
timer. Frequencies higher than needed source nore packets,
potentially drawing nore attention, and frequencies that are too

Eddy I nf or mat i onal [Page 5]

RFC 4987 TCP SYN Fl oodi ng August 2007
lowwill allow wi ndows of tine where |legitimte connections can be
est abl i shed.

| P Address Sel ection

For an effective attack, it is inportant that the spoofed IP
addresses be unresponsive to the SYN-ACK segnments that the victim

will generate. |If addresses of normal connected hosts are used,
then those hosts will send the victima TCP reset segnent that
will imrediately free the corresponding TCB and all ow roomin the

backl og for legiti mte connections to be nade. The code
distributed in the original Phrack article used a single source
address for all spoofed SYN segnments. This nmakes the attack
segnents sonewhat easier to identify and filter. A strong
attacker will have a list of unresponsive and unrel ated addresses
that it chooses spoofed source addresses from

It is inmportant to note that this attack is directed at particul ar
listening applications on a host, and not the host itself or the
network. The attack also attenpts to prevent only the establishnent
of new i ncom ng connections to the victimport, and does not inpact
out goi ng connection requests, nor previously established connections
to the victimport.

In practice, an attacker m ght choose not to use spoofed IP
addresses, but instead to use a nmultitude of hosts to initiate a SYN
flooding attack. For instance, a collection of conpronised hosts
under the attacker’s control (i.e., a "botnet") could be used. In
this case, each host utilized in the attack would have to suppress
its operating systenis native response to the SYN-ACKs coning from
the target. It is also possible for the attack TCP segnents to
arrive in a nore continuous fashion than the "barrage" term nol ogy
used here suggests; as long as the rate of new SYNs exceeds the rate
at which TCBs are reaped, the attack will be successful.

3. Common Def enses

Thi s section discusses a nunber of defense techniques that are known
to the community, many of which are available in off-the-shelf
products.

3.1. Filtering

Since in the absence of an arny of controlled hosts, the ability to
send packets with spoofed source |IP addresses is required for this
attack to work, removing an attacker’s ability to send spoofed IP
packets is an effective solution that requires no nodifications to
TCP. The filtering techni ques described in RFCs 2827, 3013, and 3704

Eddy I nf or mat i onal [Page 6]

RFC 4987 TCP SYN Fl oodi ng August 2007

represent the best current practices for packet filtering based on IP
addresses [RFC2827] [RFC3013] [RFC3704]. While perfectly effective,
end hosts should not rely on filtering policies to prevent attacks
from spoofed segnents, as gl obal deploynent of filters is neither
guaranteed nor likely. An attacker with the ability to use a group
of conprom sed hosts or to rapidly change between different access
providers will also nake filtering an inpotent sol ution

3.2. Increasing Backl og

An obvious attenpt at a defense is for end hosts to use a | arger
backl og. Lenon has shown that in FreeBSD 4.4, this tactic has sone
serious negative aspects as the size of the backlog grows [LenD2].
The i npl enentati on has not been designed to scal e past backl ogs of a
few hundred, and the data structures and search algorithns that it
uses are inefficient with larger backlogs. It is reasonable to
assune that other TCP inplenentations have simlar design factors
that limt their performance with | arge backl ogs, and there seens to
be no conpelling reason why stacks should be re-engi neered to support
extrenely | arge backl ogs, since other solutions are avail abl e.
However, experiments with | arge backl ogs using efficient data
structures and search al gorithns have not been conducted, to our
know edge.

3.3. Reduci ng SYN RECEI VED Ti ner

Anot her qui ckly inplenentable defense is shortening the timeout
peri od between receiving a SYN and reaping the created TCB for |ack
of progress. Decreasing the timer that limts the l[ifetime of TCBs
in SYNNRECEIVED is also flawed. While a shorter tiner will keep
bogus connection attenpts from persisting for as long in the backl og,
and thus free up space for legitimate connections sooner, it can
prevent some fraction of legitinmate connections from beconming fully
established. This tactic is also ineffective because it only
requires the attacker to increase the barrage frequency by a linearly
proportional amount. This tinmer reduction is sonetines inplenented
as a response to crossing sone threshold in the backl og occupancy, or
sone rate of SYN reception.

3.4. Recycling the O dest Hal f-COpen TCB

Once the entire backlog is exhausted, sone inplenentations all ow
incomng SYNs to overwite the oldest hal f-open TCB entry. This
wor ks under the assunption that |egitimte connections can be fully
established in less tine than the backlog can be filled by inconing
attack SYNs. This can fail when the attacking packet rate is high
and/ or the backlog size is small, and is not a robust defense.

Eddy I nf or mat i onal [Page 7]

RFC 4987 TCP SYN Fl oodi ng August 2007

3.5. SYN Cache

The SYN cache, best described by Lenon [LenD2], is based on

m nim zing the amount of state that a SYN allocates, i.e., not

i medi ately allocating a full TCB. The full state allocation is

del ayed until the connection has been fully established. Hosts

i mpl enenting a SYN cache have sone secret bits that they select from
the incom ng SYN segnents. The secret bits are hashed along with the
| P addresses and TCP ports of a segnment, and the hash val ue

determ nes the location in a global hash table where the inconplete
TCB is stored. There is a bucket limt for each hash val ue, and when
this limt is reached, the oldest entry is dropped.

The SYN cache technique is effective because the secret bits prevent
an attacker frombeing able to target specific hash values for
overflowi ng the bucket linmt, and it bounds both the CPU tine and
menory requirenents. Lenon’s eval uation of the SYN cache shows that
even under conditions where a SYN flooding attack is not being
perforned, due to the nodified processing path, connection
establishnent is slightly nore expedient. Under active attack, SYN
cache perfornance was observed to approximately linearly shift the
distribution of times to establish legitimte connections to about
15% | onger than when not under attack [LenD2].

| f data acconpanies the SYN segnent, then this data is not

acknow edged or stored by the receiver, and will require

retransm ssion. This does not affect the reliability of TCP s data
transfer service, but it does affect its performance to sone small
extent. SYNs carrying data are used by the T/ TCP extensions

[RFC1644]. While T/TCP is inplenented in a nunber of popul ar
operating systens [GNOO], it currently seens to be rarely used.
Measurenments at one site’'s border router [Al107] |ogged 2,545,785 SYN
segrments (not SYN-ACKs), of which 36 carried the T/ TCP CCNEW opti on
(or 0.001%. These canme from 26 uni que hosts, and no other T/ TCP
options were seen. 2,287 SYN segnents with data were seen (or 0.09%
of all SYN segnents), all of which had exactly 24 bytes of data.
These observations indicate that issues with SYN caches and data on
SYN segnents nmay not be significant in deploynent.

3.6. SYN Cooki es

SYN cookies go a step further and allocate no state at all for
connections in SYN RECEI VED. Instead, they encode npbst of the state
(and all of the strictly required) state that they would nornally
keep into the sequence nunber transmitted on the SYNNACK. If the SYN
was not spoofed, then the acknow edgenent nunber (along with severa
other fields) in the ACK that conpletes the handshake can be used to
reconstruct the state to be put into the TCB. To date, one of the

Eddy I nf or mat i onal [Page 8]

RFC 4987 TCP SYN Fl oodi ng August 2007

best references on SYN cookies can be found on Dan Bernstein’ s web
site [cr.yp.to]. This technique exploits the |ong-understood | ow
entropy in TCP header fields [RFC1144][RFC4413]. In Appendix A we
descri be the SYN cookie technique, to avoid the possibility that the
web page will becone unavail abl e.

The exact mechani smfor encoding state into the SYN-ACK sequence
nunber can be inplenentation dependent. A comon consideration is
that to prevent replay, sonme tinme-dependent random bits nust be
enbedded in the sequence nunber. One technique used 7 bits for these
bits and 25 bits for the other data [LenD2]. One way to encode these
bits has been to XOR the initial sequence nunber received with a
truncat ed cryptographic hash of the | P address and TCP port nunber
pairs, and secret bits. In practice, this hash has been generated
using MD5 [RFC1321]. Any sinilar one-way hash could be used instead
wi t hout inpacting interoperability since the hash value is checked by
the sane host who generates it.

The problemwi th SYN cookies is that comonly inplenented schenes are
i nconpatible with sone TCP options, if the cookie generation scheme
does not consider them For exanple, an encoding of the Maxi num
Segment Size (MSS) advertised on the SYN has been acconmodat ed by
using 2 sequence nunber bits to represent 4 predefined conmon MSS
values. Simlar techniques would be required for sone other TCP
options, while negotiated use of other TCP options can be detected
implicitly. A timestanp on the ACK, as an exanple, indicates that

Ti mestanp use was successfully negotiated on the SYN and SYN- ACK
while the reception of a Selective Acknow edgenent (SACK) option at
some point during the connection inplies that SACK was negoti at ed.
Not e that SACK bl ocks should normally not be sent by a host using TCP
cookies unless they are first received. For the conmon
unidirectional data flow in many TCP connections, this can be a
problem as it limts SACK usage. For this reason, SYN cookies
typically are not used by default on systens that inplenent them and
are only enabl ed either under high-stress conditions indicative of an
attack, or via administrative action.

Recently, a new SYN cooki e techni que devel oped for rel ease in FreeBSD
7.0 leverages the bits of the Tinmestanp option in addition to the
sequence nunmber bits for encoding state. Since the Tinestanp val ue
is echoed back in the Timestanp Echo field of the ACK packet, any
state stored in the Tinestanp option can be restored simlarly to the
way that it is fromthe sequence nunber / acknow edgenent in a basic
SYN cookie. Using the Timestanp bits, it is possible to explicitly
store state bits for things Iike send and receive w ndow scal es,
SACK- al | owed, and TCP- MD5-enabl ed, for which there is no roomin a
typi cal SYN cookie. This use of Tinmestanps to inprove the

conpromi ses i nherent in SYN cookies is unique to the FreeBSD

Eddy I nf or mat i onal [Page 9]

RFC 4987 TCP SYN Fl oodi ng August 2007

i mpl ementation, to our knowedge. A linmtation is that the technique
can only be used if the SYNitself contains a Tinestanp option, but
this option seens to be widely inplenented today, and hosts that
support w ndow scaling and SACK typically support tinmestanps as well.

Simlarly to SYN caches, SYN cookies do not handl e application data
pi ggybacked on the SYN segnent.

Anot her problemwi th SYN cookies is for applications where the first
application data is sent by the passive host. |If this host is
handl i ng a | arge nunber of connections, then packet |oss may be
likely. When a handshake-conpleting ACK fromthe initiator is |ost,
the passive side’'s application layer never is notified of the
connection’s existence and never sends data, even though the
initiator thinks that the connection has been successfully
established. An exanple application where the first application-

| ayer data is sent by the passive side is SMIP, if inplenented
according to RFC 2821, where a "service ready" nessage is sent by the
passi ve side after the TCP handshake is conpl et ed.

Al t hough SYN cooki e inplenentations exist and are depl oyed, the use
of SYN cookies is often disabled in default configurations, so it is
uncl ear how nuch operational experience actually exists with them or
i f using them opens up new vul nerabilities. Anecdotes of incidents
wher e SYN cooki es have been used on typical web servers seemto

i ndi cate that the added processing burden of conputing MD5 suns for
every SYN packet received is not significant in conparison to the

| oss of application availability when undefended. For sone

conmput ationally constrai ned nobil e or enbedded devices, this
situation mght be different.

3.7. Hybrid Approaches

The SYN cache and SYN cooki e techni ques can be conbi ned. For

exanple, in the event that the cache becomes full, then SYN cookies
can be sent instead of purging cache entries upon the arrival of new
SYNs. Such hybrid approaches nay provide a strong conbi nati on of the
positive aspects of each approach. Lenon has denonstrated the
utility of this hybrid [LenD2].

3. 8. Firewal | s and Proxies

Firewal | -based tactics may al so be used to defend end hosts from SYN
flooding attacks. The basic concept is to offload the connection
est abl i shnent procedures onto a firewall that screens connection
attenpts until they are conpleted and then proxies them back to
protected end hosts. This noves the problemaway fromend hosts to
becone the firewall’s or proxy's problem and may introduce other

Eddy I nf or mat i onal [Page 10]

RFC 4987 TCP SYN Fl oodi ng August 2007

problens related to altering TCP's expected end-to-end senantics. A
common tactic used in these firewall and proxy products is to

i mpl emrent one of the end host based techni ques di scussed above, and
screen incomng SYNs fromthe protected network until the connection
is fully established. This is acconplished by spoofing the source
addresses of several packets to the initiator and listener at various
stages of the handshake [Eddy06].

4. Analysis

Several of the defenses discussed in the previous section rely on
changes to behavior inside the network; via router filtering,
firewalls, and proxies. These may be highly effective, and often
requi re no nodification or configuration of end-host software. G ven
the nmobil e nature and dynami ¢ connectivity of many end hosts, it is
optimstic for TCP inplenmenters to assune the presence of such
protective devices. TCP inplenenters should provide some neans of
defense to SYN fl ooding attacks in end-host inplenentations.

Anong end-host nodifications, the SYN cache and SYN cooki e approaches
seemto be the only viable techniques discovered to date. Increasing
t he backl og and reduci ng the SYN-RECEI VED timer are neasurably

probl ematic. The SYN cache inplies a higher nmenory footprint than
SYN cooki es; however, SYN cookies nmay not be fully conpatible with
some TCP options, and nmay hanper devel opnent of future TCP extensions
that require state. For these reasons, SYN cookies should not be
enabl ed by default on systens that provide them SYN caches do not
have the sanme negative inplications and may be enabl ed as a default
node of processing.

In Cctober of 1996, Dave Bornman inplenmented a SYN cache at BSDi for
BSD/ GS, which was given to the conmunity with no restrictions. This
code seens to be the basis for the SYN cache inpl enmentations adopted
later in other BSD variants. The cache was used when the backl og
becane full, rather than by default, as we have described. A note to
the tcp-inpl mailing list explains that this code does not retransnit
SYN-ACKs [B97]. More recent inplenentations have chosen to reverse
this decision and retransmt SYN-ACKs. It is known that |oss of SYN
ACK packets is not uncommon [SDO1] and can severely slow the
performance of connections when initial retransmssion tiners for
SYNs are overly conservative (as in sone operating systens) or
retransmtted SYNs are lost. Furthernore, if a SYN flooding attacker
has a high sending rate, loss of retransmitted SYNs is likely, so if
SYN-ACKs are not retransmtted, the chance of efficiently
establishing legitimte connections is reduced.

Eddy I nf or mat i onal [Page 11]

RFC 4987 TCP SYN Fl oodi ng August 2007

In 1997, NetBSD incorporated a nodified version of Borman’s code.

Two notable differences fromthe original code stemfromthe decision
to use the cache by default (for all connections). This inplied the
need to performretransnissions for SYN-ACKs, and to use |arger
structures to keep nore conplete data. The original structure was 32
bytes long for | Pv4 connections and 56 bytes with | Pv6 support, while
the current FreeBSD structure is 196 bytes long. As previously
cited, Lernon inplenented the SYN cache and cookie techniques in
FreeBSD 4.4 [LenD2]. Lenon notes that a SYN cache structure took up
160 bytes conpared to 736 for the full TCB (now 196 bytes for the
cache structure). W have exam ned the OpenBSD 3.6 code and
determined that it includes a sinilar SYN cache.

Li nux 2.6.5 code, also by exani nation, contains a SYN cookie

i mpl ement ati on that encodes 8 MSS val ues, and does not use SYN
cookies by default. This functionality has been present in the Linux
kernel for several years previous to 2.6.5.

When a SYN cache and/or SYN cookies are inplenented with | Pv6, the

| Pv6 flow | abel value used on the SYN-ACK shoul d be consistent with
the flow | abel used for the rest of the packets within that flow
There have been inplenentation bugs that caused random flow |l abels to
be used in SYN-ACKs generated by SYN cache and SYN cooki e code

[MVD5] .

Begi nning with Wndows 2000, M crosoft’s Wndows operating systens
have had a "TCP SYN attack protection" feature, which can be toggled
on or off in the registry. This defaulted to off, until Wndows 2003
SP1, in which it is on by default. Wth this feature enabl ed, when

t he nunber of hal f-open connections and hal f-open connections with
retransmtted SYN-ACKs exceeds configurable thresholds, then the
nurmber of times that SYN-ACKs are retransmtted before giving up is
reduced, and the "Route Cache Entry" creation is delayed, which
prevents sone features (e.g., w ndow scaling) from being used

[wi n2k3-wp] .

Several vendors of commercial firewall products sell devices that can
nmtigate SYN flooding s effects on end hosts by proxying connections.

Di scovery and exploitation of the SYN flooding vulnerability in TCP' s
design provided a valuable | esson for protocol designers. The Stream
Control Transm ssion Protocol [RFC2960], which was designed nore
recently, incorporated a 4-way handshake with a statel ess cooki e-
based conponent for the listening end. In this way, the passive-
openi ng side has better evidence that the initiator really exists at
the given address before it allocates any state. The Host ldentity
Prot ocol base exchange [MJHO7] is simlarly designed as a 4-way
handshake, but al so involves a puzzle sent to the initiator that nust

Eddy I nf or mat i onal [Page 12]

RFC 4987 TCP SYN Fl oodi ng August 2007

be solved before any state is reserved by the responder. The genera
concept of designing statel essness into protocol setup to avoid

deni al - of -servi ce attacks has been di scussed by Aura and N kander

[AN97] .

5. Security Considerations

The SYN fl ooding attack on TCP has been described in numerous other
publications, and the details and code needed to performthe attack
have been easily available for years. Describing the attack in this
docunent does not pose any danger of further publicizing this
weakness in unnodified TCP stacks. Several widely deployed operating
systens inplenent the nmitigation techniques that this docunent

di scusses for defeating SYN flooding attacks. |In at |east sone
cases, these operating systens do not enabl e these counterneasures by
defaul t; however, the nechanisns for defeating SYN flooding are wel
depl oyed, and easily enabled by end-users. The publication of this
docunent should not influence the nunber of SYN floodi ng attacks
observed, and m ght increase the robustness of the Internet to such
attacks by encouragi ng use of the comonly available mtigations.

6. Acknow edgenents

A conversation with Ted Faber was the inpetus for witing this
docunent. Comments and suggestions from Joe Touch, Dave Bor nan,
Fernando Gont, Jean-Baptiste Marchand, Christian Huitema, Caitlin
Bestl er, Pekka Savol a, Andre Oppernann, Alfred Hoenes, Mark All nan,
Lars Eggert, Pasi Eronen, Warren Kumari, David Ml one, Ron Bonica,
and Lisa Dusseault were useful in strengthening this docunent. The
original work on TCP SYN cookies presented in Appendix Ais due to
D.J. Bernstein.

Wirk on this docunment was perforned at NASA's @ enn Research Center
Fundi ng was partially provided by a conbinati on of NASA's Advanced
Commruni cati ons, Navi gation, and Surveillance Architectures and System
Technol ogi es (ACAST) project, the Sensis Corporation, NASA s Space
Communi cati ons Architecture Wrking Goup, and NASA's Earth Sci ence
Technol ogy O fice.

7. Informative References
[AN97] Aura, T. and P. N kander, "Statel ess Connections"
Proceedi ngs of the First International Conference on
I nformation and Communi cation Security, 1997.

[Al'l 07] Al'l man, M, "personal conmunication", February 2007.

Eddy I nf or mat i onal [Page 13]

RFC 4987

[BY6]

[B97]

[CA-96. 21]

[CB94]

[Eddy06]

[G\NOO]

[LenD2]

[MVDS5]

[MJHO7]

[P48- 13]

[RFC0793]

[REC1144]

[RFC1321]

[REC1644]

Eddy

TCP SYN Fl oodi ng August 2007

Bennahum D., "PAN X ATTACK"', MEME 2.12, Cctober 1996,
<http:// memex. org/ mene2-12. ht m >,

Borman, D., "Re: SYN RST cookies (was Re: a quick

clarification...)", IETF tcp-inpl mailing list,
June 1997.

CERT, "CERT Advisory CA-1996-21 TCP SYN Fl ooding and IP
Spoofing Attacks", Septenber 1996.

Cheswick, W and S. Bellovin, "Firewalls and | nternet
Security", ISBN. 0201633574, January 1994,

Eddy, W, "Defenses Against TCP SYN Fl oodi ng Attacks"
Cisco Internet Protocol Journal Volunme 8, Nunber 4,
Decenber 2006.

Giffin, M and J. Nelson, "T/TCP: TCP for
Transactions", Linux Journal, February 2000.

Lemon, J., "Resisting SYN Fl ood DoS Attacks with a SYN
Cache", BSDCON 2002, February 2002.

McGann, O and D. Malone, "Flow Label Filtering
Feasi bility", European Conference on Conputer Network
Def ense 2005, Decenber 2005.

Moskowi tz, R, Ni kander, P., Jokela, P., and T.
Hender son, "Host ldentity Protocol”, Wrk in Progress,
June 2007.

daermon9, route, and infinity, "Project Neptune", Phrack
Magazi ne, Volume 7, Issue 48, File 13 of 18, July 1996.

Postel, J., "Transm ssion Control Protocol", STD 7,
RFC 793, Septenber 1981

Jacobson, V., "Conpressing TCP/|P headers for | ow speed
serial links", RFC 1144, February 1990.

Rivest, R, "The MD5 Message-Di gest Al gorithnt,
RFC 1321, April 1992.

Braden, B., "T/TCP -- TCP Extensions for Transactions
Functional Specification", RFC 1644, July 1994.

I nf or mat i onal [Page 14]

RFC 4987

[RFC2827]

[RFC2960]

[RFC3013]

[REC3704]

[RFC4413]

[SDO1]

[SKK+97]

[St e95]

[cr.yp.to]

[wi n2k3-wp]

Eddy

TCP SYN Fl oodi ng August 2007

Ferguson, P. and D. Senie, "Network Ingress Filtering:
Def eating Denial of Service Attacks which enploy IP
Sour ce Address Spoofing", BCP 38, RFC 2827, May 2000.

Stewart, R, Xie, Q, Mrneault, K, Sharp, C,

Schwar zbauer, H., Taylor, T., Rytina, |I., Kalla, M,
Zhang, L., and V. Paxson, "Stream Control Transm ssion
Protocol ", RFC 2960, Cctober 2000.

Killalea, T., "Recommended |nternet Service Provider
Security Services and Procedures”, BCP 46, RFC 3013,
Novenmber 2000.

Baker, F. and P. Savola, "Ingress Filtering for
Mul ti homred Networks", BCP 84, RFC 3704, March 2004.

West, M and S. McCann, "TCP/IP Field Behavior"
RFC 4413, Narch 2006.

Seddigh, N. and M Devetsikiotis, "Studies of TCP' s
Ret ransm ssi on Ti meout Mechani sni', Proceedi ngs of the
2001 I EEE International Conference on Communi cations
(ICC 2001), volume 6, pages 1834-1840, June 2001.

Schuba, C., Krsul, I., Kuhn, M, Spafford, E., Sundaram
A., and D. Zanboni, "Analysis of a Denial of Service
Attack on TCP", Proceedings of the 1997 | EEE Synposi um
on Security and Privacy 1997.

Stevens, W and G Wight, "TCP/IP Illustrated, Vol une
2: The I npl enentation", January 1995.

Bernstein, D., "SYN cookies", visited in Decenber 2005,
<http://cr.yp.tol/ syncookies. htn >.

M crosoft Corporation, "Mcrosoft Wndows Server 2003
TCP/ 1P I nplenentation Details", Wite Paper, July 2005.

I nf or mat i onal [Page 15]

RFC 4987 TCP SYN Fl oodi ng August 2007

Appendi x A. SYN Cooki es Description

This information is taken fromBernstein's web page on SYN cooki es
[cr.yp.to]. This is arewiting of the technical information on that
web page and not a full replacenent. There are other slightly
different ways of inplenenting the SYN cookie concept than the exact
means descri bed here, although the basic idea of encoding data into

t he SYN-ACK sequence nunber is constant.

A SYN cookie is an initial sequence number sent in the SYN-ACK, that

i s chosen based on the connection initiator’s initial sequence
nunber, MSS, a tinme counter, and the relevant addresses and port
nunbers. The actual bits conprising the SYN cookie are chosen to be
the bitw se difference (exclusive-or) between the SYN s sequence
nunber and a 32 bit quantity conputed so that the top five bits cone
froma 32-bit counter value nodul o 32, where the counter increases
every 64 seconds, the next 3 bits encode a usable MSS near to the one
in the SYN, and the bottom 24 bits are a server-sel ected secret
function of pair of |IP addresses, the pair of port nunbers, and the
32-bit counter used for the first 5 bits. This nmeans of selecting an
initial sequence nunber for use in the SYNNACK conplies with the rule
that TCP sequence nunbers increase slowy.

When a connection in LISTEN receives a SYN segnent, it can generate a
SYN cookie and send it in the sequence nunber of a SYN ACK, wi thout
all ocating any other state. |f an ACK cones back, the difference

bet ween the acknow edged sequence nunber and the sequence nunber of
the ACK segnent can be checked agai nst recent val ues of the counter
and the secret function’s output given those counter values and the

| P addresses and port nunbers in the ACK segnent. |If there is a

mat ch, the connection can be accepted, since it is statistically very
likely that the other side received the SYN cookie and did not sinply
guess a valid cookie value. |If there is not a match, the connection
can be rejected under the heuristic that it is probably not in
response to a recently sent SYN ACK

Wth SYN cooki es enabled, a host will be able to remain responsive
even when under a SYN fl ooding attack. The largest price to be paid
for using SYN cookies is in the disabling of the wi ndow scaling
option, which disables high performance.

Bernstein's web page [cr.yp.to] contains nore information about the
initial conceptualization and inplenentation of SYN cookies, and
archives of enmils docunmenting this history. It also lists some

fal se negative clainms that have been nade about SYN cookies, and

di scusses reducing the vulnerability of SYN cookie inplenentations to
blind connection forgery by an attacker guessing valid cookies.

Eddy I nf or mat i onal [Page 16]

RFC 4987 TCP SYN Fl oodi ng August 2007

The best description of the exact SYN cookie algorithns is in a part
of an enmail fromBernstein, that is archived on the web site (notice
it does not set the top five bits fromthe counter nodul o 32, as the
previ ous description did, but instead uses 29 bits fromthe second
MD5 operation and 3 bits for the index into the MSS table;
establishing the secret values is also not discussed). The renainder
of this section is excerpted fromBernstein's enail [cr.yp.to]:
Here' s what an inplenmentation woul d invol ve:
Maintain two (constant) secret keys, secl and sec2.

Maintain a (constant) sorted table of 8 common MSS val ues,
nest ab[8] .

Keep track of a "last overflow tine".
Mai ntain a counter that increases slowy over tine and never
repeats, such as "nunber of seconds since 1970, shifted right 6
bits".
When a SYN cones in from (saddr, sport) to (daddr,dport) wth
ISN x, find the largest i for which nmsstab[i] <= the incom ng
M5S. Conpute

z = MD5(secl, saddr, sport, daddr, dport, secl)

+ X

+ (counter << 24)

+ (MD5(sec2, counter, saddr, sport, daddr, dport,sec2) % (1 <<
24))

and t hen

y = (i << 29) + (z % (1 << 29))
Create a TCB as usual, with y as our ISN. Send back a SYNACK
Exception: _If_ we’'re out of nenory for TCBs, set the "l ast
overflowtinme" to the current tine. Send the SYNACK anyway,

with all fancy options turned off.

When an ACK cones back, follow this procedure to find a TCB

Eddy I nf or mat i onal [Page 17]

RFC 4987

(1

(2)

(3)

(4)

TCP SYN Fl oodi ng August 2007

Look for a (saddr, sport,daddr,dport) TCB. |If it's there,
done.

If the "last overflowtine" is earlier than a few ni nutes
ago, give up.

Fi gure out whether our alleged | SN nakes sense. This
nmeans reconputing y as above, for each of the counters
that could have been used in the last few m nutes (say,
the I ast four counters), and seeing whether any of the y's
match the 1SN in the bottom?29 bits. [If none of them do
gi ve up.

Create a new TCB. The top three bits of our |ISN give a
usable MSS. Turn off all fancy options.

Aut hor’ s Address

Wesl ey M Eddy

Veri zon Federal Network Systens
NASA d enn Research Center
21000 Brookpark Rd, M5 54-5

Cl evel and,

OH 44135

Phone: 216-433-6682
EMai | : weddy@r c. nasa. gov

Eddy

I nf or mat i onal [Page 18]

RFC 4987 TCP SYN Fl oodi ng August 2007

Ful I Copyright Statenent
Copyright (C The | ETF Trust (2007).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCORED BY (I F ANY), THE | NTERNET SCCI ETY, THE | ETF TRUST AND
THE | NTERNET ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS
OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF
THE | NFORVATI ON HEREI'N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. [Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of I PR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the information to the |ETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Eddy I nf or mat i onal [Page 19]

