
Network Working Group A. Newton
Request for Comments: 4992 VeriSign, Inc.
Updates: 3981 August 2007
Category: Standards Track

 XML Pipelining with Chunks
 for the Internet Registry Information Service

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document describes a simple TCP transfer protocol for the
 Internet Registry Information Service (IRIS). Data is transferred
 between clients and servers using chunks to achieve pipelining.

Newton Standards Track [Page 1]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

Table of Contents

 1. Introduction ..3
 2. Document Terminology ..3
 3. Request Block (RQB) ...4
 4. Response Blocks ...4
 4.1. Response Block (RSB)5
 4.2. Connection Response Block (CRB)5
 5. Block Header ..6
 6. Chunks ..7
 6.1. No Data Types ..9
 6.2. Version Information Types9
 6.3. Size Information Types9
 6.4. Other Information Types10
 6.5. SASL Types ..11
 6.6. Authentication Success Information Types12
 6.7. Authentication Failure Information Types12
 6.8. Application Data Types12
 7. Idle Sessions ..13
 8. Closing Sessions Due to an Error13
 9. Use over TLS ...13
 10. Update to RFC 3981 ..13
 11. IRIS Transport Mapping Definitions14
 11.1. URI Scheme ...14
 11.2. Application Protocol Label14
 12. Internationalization Considerations14
 13. IANA Considerations ...14
 13.1. XPC URI Scheme Registration14
 13.2. XPCS URI Scheme Registration15
 13.3. S-NAPTR XPC Registration15
 13.4. S-NAPTR XPCS Registration15
 13.5. Well-Known TCP Port Registration for XPC16
 13.6. Well-Known TCP Port Registration for XPCS16
 14. Security Considerations17
 14.1. Security Mechanisms17
 14.2. SASL Compliance ..18
 15. References ..19
 15.1. Normative References19
 15.2. Informative References19
 Appendix A. Examples ..20
 Appendix B. Contributors ..28

Newton Standards Track [Page 2]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

1. Introduction

 Using S-NAPTR [5], IRIS has the ability to define the use of multiple
 application transports (or transfer protocols) for different types of
 registry services, all at the discretion of the server operator. The
 TCP transfer protocol defined in this document is completely modular
 and may be used by any registry types.

 This transfer protocol defines simple framing for sending XML in
 chunks so that XML fragments may be acted upon (or pipelined) before
 the reception of the entire XML instance. This document calls this
 XML pipelining with chunks (XPC) and its use with IRIS as IRIS-XPC.

 XPC is for use with simple request and response interactions between
 clients and servers. Clients send a series of requests to a server
 in data blocks. The server will respond to each data block
 individually with a corresponding data block, but through the same
 connection. Request and response data blocks are sent using the TCP
 SEND function and received using the TCP RECEIVE function.

 The lifecycle of an XPC session has the following phases:

 1. A client establishes a TCP connection with a server.

 2. The server sends a connection response block (CRB).

 3. The client sends a request block (RQB). In this request, the
 client can set a "keep open" flag requesting that the server keep
 the XPC session open following the response to this request.

 4. The server responds with a response block (RSB). In this
 response, the server can indicate to the client whether or not
 the XPC session will be closed.

 5. If the XPC session is not to be terminated, then the lifecycle
 repeats from step 3.

 6. The TCP connection is closed.

2. Document Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [8].

 Octet fields with numeric values are given according to the
 conventions in RFC 1166 [12]: the leftmost bit of the whole field is
 the most significant bit; when a multi-octet quantity is transmitted

Newton Standards Track [Page 3]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

 the most significant octet is transmitted first. Bits signifying
 flags in an octet are numbered according to the conventions of RFC
 1166 [12]: bit 0 is the most significant bit and bit 7 is the least
 significant bit. When a diagram describes a group of octets, the
 order of transmission for the octets starts from the left.

3. Request Block (RQB)

 The format for the request block (RQB) is as follows:

 +--------+-----------+-----------+-------------+
 field | header | authority | authority | chunks 1..n |
 | | length | | |
 +--------+-----------+-----------+-------------+
 octets 1 1 0..255 variable

 Request Block

 These fields have the following meanings:

 o header - as described in Section 5.

 o authority length - the length of the authority field in this
 request block.

 o authority - a string of octets describing the authority against
 which this request is to be executed. See [1] for the definition
 and description of an authority. The number of octets in this
 string MUST be no more and no less than the number specified by
 the authority length.

 o chunks 1..n - the request data broken into chunks (Section 6).

4. Response Blocks

 There are two types of blocks used by a server to respond to a
 client. The first type is a response block (RSB) defined in Section
 4.1. It is used by a server to respond to request blocks (RQBs).
 The second type is a specialized version of a response block called a
 connection response block (CRB) defined in Section 4.2. It is sent
 by a server to a client when a connection is established to initiate
 protocol negotiation. Conceptually, a CRB is a type of RQB; they
 share the same format, but a CRB is constrained in conveying only
 specific information and is only sent at the beginning of the session
 lifecycle.

Newton Standards Track [Page 4]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

4.1. Response Block (RSB)

 The format for the response block (RSB) is as follows:

 +--------+-------------+
 field | header | chunks 1..n |
 | | |
 +--------+-------------+
 octets 1 variable

 Response Block

 These fields have the following meanings:

 o header - as described in Section 5.

 o chunks 1..n - the response data broken into chunks (Section 6).

 Servers SHOULD NOT send an RSB to a client until they have received
 the entire RQB. Servers that do begin sending an RSB before the
 reception of the entire RQB must consider that clients will not be
 expected to start processing the RSB until they have fully sent the
 RQB, and that the RSB may fill the client’s TCP buffers.

4.2. Connection Response Block (CRB)

 A connection response block (CRB) is a response block sent by a
 server to a client in response to the client initiating a session. A
 connection response block has the same format as a response block
 (RSB) (Section 4.1). The only difference is that it is constrained
 in one of two ways:

 1. It contains only one chunk (see Section 6) containing version
 information (see Section 6.2) and the keep-open (KO) flag in the
 block header (see Section 5) has a value of 1 (meaning the
 connection is not closing). Servers MUST use this type of CRB to
 indicate service availability.

 2. It contains only one chunk (see Section 6) containing a system
 error (see ’system-error’ under Section 6.4) and the keep-open
 (KO) flag in the block header (see Section 5) has a value of 0
 (meaning the server will close the connection immediately after
 sending the CRB). Servers MUST use this type of CRB when they
 can accept connections but cannot process requests.

Newton Standards Track [Page 5]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

5. Block Header

 Each data block starts with a one-octet header called the block
 header. This header has the same format for both request and
 response data blocks, though some of the bits in the header only have
 meaning in one type of data block. The bits are ordered according to
 the convention given in RFC 1166 [12], where bit 0 is the most
 significant bit and bit 7 is the least significant bit. Each bit in
 the block header has the following meaning:

 o bits 0 and 1 - version (V field) - If 0 (both bits are zero), the
 protocol is the version defined in this document. Otherwise, the
 rest of the bits in the header and the block may be interpreted as
 another version. If a server receives a request for a version it
 does not support, it SHOULD follow the behavior described in
 Section 8.

 o bit 2 - keep open (KO flag) - This flag is used to request that a
 connection stay open by a client and to indicate that a connection
 will stay open by a server, depending on the type of block. In a
 request block (RQB): a value of 1 indicates that a client is
 requesting that the server not close the TCP session, and a value
 of 0 indicates the client will expect their server to close the
 TCP session immediately after sending the corresponding response.
 In a response block (RSB) or a connection response block (CRB): a
 value of 1 indicates that the server expects the client to keep
 the TCP session open for the server to receive another request,
 and a value of 0 indicates that the server expects the client to
 close the TCP session immediately following this block.

 o bits 3, 4, 5, 6, and 7 - reserved - These MUST be 0. If a server
 receives a request in which any of these bits is set to 1 and the
 server does not understand the purpose for the value, the server
 SHOULD follow the behavior described in Section 8.

 +---------+-----------+----------+
 field | Version | Keep Open | reserved |
 | (V) | (KO) | |
 +---------+-----------+----------+
 bits 0 and 1 2 3 - 7

 Block Header

Newton Standards Track [Page 6]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

6. Chunks

 Request and response blocks break down the request and response XML
 data into chunks. Request and response blocks MUST always have a
 minimum of 1 chunk. Each chunk has a one-octet descriptor. The
 first bit of the descriptor determines if the chunk is the last chunk
 in the block.

 The bits of the chunk descriptor octet are ordered according to the
 convention given in RFC 1166 [12], where bit 0 is the most
 significant bit and bit 7 is the least significant bit. The bits of
 the chunk descriptor octet have the following meaning:

 o bit 0 - last chunk (LC flag) - If 1, this chunk is the last chunk
 in the block.

 o bit 1 - data complete (DC flag) - If 1, the data in this chunk
 represents the end of the data for the chunk type given. If this
 bit is never set to 1 in any chunk descriptor for chunks of the
 same type in a block, clients and servers MUST NOT assume the data
 will continue in another block. If the block transitions from one
 type of chunk to another without signaling completion of the data,
 clients and servers MUST assume that the remaining data will not
 be sent in a remaining chunk.

 o bits 2, 3, and 4 - reserved - These MUST be 0.

 o bits 5, 6, and 7 - chunk type (CT field) - determines the type of
 data carried in the chunk. These are the binary values for the
 chunk types:

 * 000 - no data or ’nd’ type (see Section 6.1)

 * 001 - version information or ’vi’ type (see Section 6.2)

 * 010 - size information or ’si’ type (see Section 6.3)

 * 011 - other information or ’oi’ type (see Section 6.4)

 * 100 - SASL (Simple Authentication and Security Layer) data or
 ’sd’ type (see Section 6.5)

 * 101 - authentication success information or ’as’ type (see
 Section 6.6)

 * 110 - authentication failure information or ’af’ type (see
 Section 6.7)

Newton Standards Track [Page 7]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

 * 111 - application data or ’ad’ type (see Section 6.8)

 +------------+---------------+----------+------------+
 field | Last Chunk | Data Complete | reserved | Chunk Type |
 | (LC) | (DC) | | (CT) |
 +------------+---------------+----------+------------+
 bits 0 1 2 - 4 5 - 7

 Chunk Descriptor

 A block MAY have multiple types of chunks, but all chunks of the same
 type MUST be contiguous in a block and MUST be ordered in the block
 in the order in which their data is to be interpreted. Contiguous
 chunks must be ordered by type within a block in the following way:

 1. authentication-related chunks - either SASL data chunks (type
 100), authentication success information chunks (type 101), or
 authentication failure information chunks (type 110), but not
 more than one type. During the setup of security mechanisms
 using these chunks, clients MUST NOT send subsequent requests
 until they have received either an authentication success or
 failure chunk.

 2. data chunks - either no data chunks (type 000) or application
 data chunks (type 111), but not both.

 3. information chunks - either version information (type 001) or
 other information (type 011), but not both.

 A block MUST have at least one type of the above chunks.

 The format for a chunk is as follows:

 +-----------+------------+--------+
 field | chunk | chunk data | chunk |
 | descriptor| length | data |
 +-----------+------------+--------+
 octets 1 2 variable

 chunk

 These fields have the following meanings:

 o chunk descriptor - as described above.
 o chunk data length - the length of the data of the chunk.
 o chunk data - the data of the chunk.

Newton Standards Track [Page 8]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

6.1. No Data Types

 Servers and clients MUST ignore data in chunk types labeled no data.
 There is no requirement for these types of chunks to be zero length.
 A client MAY send "no data" to a server, and the server MUST respond
 with either a chunk of the same type or other information (Section
 6.4).

6.2. Version Information Types

 Chunks of this type contain XML conformant to the schema specified in
 [9] and MUST have the <versions> element as the root element.

 In the context of IRIS-XPC, the protocol identifiers for these
 elements are as follows:

 o <transferProtocol> - the value "iris.xpc1" to indicate the
 protocol specified in this document.

 o <application> - the XML namespace identifier for IRIS [1].

 o <dataModel> - the XML namespace identifier for IRIS registries.

 In the context of IRIS-XPC, the authentication mechanism identifiers
 are the SASL mechanism names found in the IANA SASL mechanism
 registry defined by RFC 4422 [10].

 This document defines no extension identifiers.

 Clients MAY send a block with this type of chunk to a server. These
 chunks SHOULD be zero length, and servers MUST ignore any data in
 them. When a server receives a chunk of this type, it MUST respond
 with a chunk of this type. This interchange allows a client to query
 the version information of a server.

 The octet sizes for the ’requestSizeOctets’ and ’responseSizeOctets’
 attributes of the <tranferProtocol> element are defined in Section
 6.3.

6.3. Size Information Types

 Chunks of this type contain XML conformant to the schema specified in
 RFC 4991 [9] and MUST have the <size> element as the root element.

 Octet counts provided by this information are defined as the sum of
 the count of all chunk data of a particular chunk type. For
 instance, if an XML instance is broken up into chunks of 20, 30, and
 40 octets, the octet count would be 90 (20 + 30 + 40).

Newton Standards Track [Page 9]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

 Clients MUST NOT send chunks of this type, and servers MAY close down
 a session using the procedure in Section 8 if a chunk of this type is
 received.

6.4. Other Information Types

 Chunks of this type contain XML conformant to the schema specified in
 RFC 4991 [9] and MUST have the <other> element as the root element.

 The values for the ’type’ attribute of <other> are as follows:

 ’block-error’ - indicates there was an error decoding a block.
 Servers SHOULD send a block error in the following cases:

 1. When a request block is received containing a chunk of this
 type.

 2. When a request block is received containing authentication
 success (see Section 6.6) or authentication failure (see
 Section 6.7) information.

 3. When a request block is received containing size information
 (see Section 6.3).

 4. When reserved bits in the request block are 1.

 5. When a block has not been received in its entirety and the TCP
 session has been idle for a specific period of time (i.e., a
 data block has been received but no terminating chunk for the
 data block has been received). Two minutes is RECOMMENDED for
 this timeout value. Note, there is a difference between an
 idle condition due to the incomplete reception of a data block
 and an idle condition between request/response transactions
 associated with keeping the session open. For the latter, see
 Section 7.

 ’data-error’ - indicates there was an error parsing data in chunks
 containing application or SASL data (e.g., XML is not valid in
 application data).

 ’system-error’ - indicates that the receiver cannot process the
 request due to a condition not related to this protocol. Servers
 SHOULD send a system-error when they are capable of responding to
 requests but not capable of processing requests.

Newton Standards Track [Page 10]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

 ’authority-error’ - indicates that the intended authority
 specified in the corresponding request is not served by the
 receiver. Servers SHOULD send an authority error when they
 receive a request directed to an authority other than those they
 serve.

 ’idle-timeout’ - indicates that an XPC session has been idle for
 too long. Usage of this value is defined in Section 7. Note,
 there is a difference between an idle condition due to the
 incomplete reception of a data block and an idle condition between
 request/response transactions associated with keeping the session
 open. For the former, see ’block-error’ above.

 Clients MUST NOT send chunks of this type, and servers MAY close down
 a session using the procedure in Section 8 if a chunk of this type is
 received.

6.5. SASL Types

 The SASL chunk type allows clients and servers to exchange SASL data.

 The format for the data of this type of chunk is as follows:

 +-----------+-----------+-----------+-----------+
 field | mechanism | mechanism | mechanism | mechanism |
 | name | name | data | data |
 | length | | length | |
 +-----------+-----------+-----------+-----------+
 octets 1 variable 2 variable

 SASL Authentication

 These fields have the following meaning:

 o mechanism name length - the length of the SASL mechanism name.

 o mechanism name - the name of the SASL mechanism as registered in
 the IANA SASL mechanism registry defined by [10].

 o mechanism data length - the length of the SASL data.

 o mechanism data - the data used for SASL.

 These fields MUST NOT span multiple chunks. Therefore, it should be
 noted that SASL data length exceeding the length of the chunk minus
 the length of SASL profile name minus one is an error.

Newton Standards Track [Page 11]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

 Depending on the nature of the SASL mechanism being used, SASL data
 is sent from clients to servers and from servers to clients and may
 require multiple request/response transactions to complete. However,
 once a SASL exchange is complete and a server can determine
 authentication status, the server MUST send either authentication
 success information (see Section 6.6) or authentication failure
 information (see Section 6.7).

 When used as an initial challenge response for SASL mechanisms that
 support such a feature, the mechanism data length may be set to a
 decimal value of 65,535 to indicate an absent initial response. A
 value of 0 indicates an empty initial response.

6.6. Authentication Success Information Types

 Chunks of this type contain XML conformant to the schema specified in
 RFC 4991 [9] and MUST have the <authenticationSuccess> element as the
 root element.

 This type of chunk is only sent from a server to a client. If a
 client sends it to a server, this will result in a block error (see
 ’block-error’ in Section 6.4). The usage of this chunk type is
 defined in Section 6.5. A server MAY close down a session due to
 reception of this type of chunk using the procedure in Section 8.

 SASL mechanisms may use the <data> child element to pass back
 arbitrary binary data as base 64 binary. The absence of this element
 indicates the absence of such data, where as the presence of the
 element with no content indicates an empty data set.

6.7. Authentication Failure Information Types

 Chunks of this type contain XML conformant to the schema specified in
 RFC 4991 [9] and MUST have the <authenticationFailure> element as the
 root element.

 This type of chunk is only sent from a server to a client. If a
 client sends it to a server, this will result in a block error (see
 ’block-error’ in Section 6.4). The usage of this chunk type is
 defined in Section 6.5. A server MAY close down a session due to
 reception of this type of chunk using the procedure in Section 8.

6.8. Application Data Types

 These chunks contain application data. For IRIS, these are IRIS [1]
 XML instances.

Newton Standards Track [Page 12]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

7. Idle Sessions

 If a server needs to close a connection due to it being idle, it
 SHOULD do the following:

 1. Send an unsolicited response block containing an idle timeout
 error (see ’idle-timeout’ in Section 6.4) with the keep-open (KO)
 flag in the block header (Section 5) set to a value of 0.

 2. Close the TCP connection.

8. Closing Sessions Due to an Error

 If a server is to close a session due to an error, it SHOULD do the
 following:

 1. Send a response block containing either a block-error or data-
 error (see Section 6.4) or version information (see Section 6.2)
 with the keep-open (KO) flag in the block header (Section 5) set
 to a value of 0.

 2. Close the TCP connection.

9. Use over TLS

 XPC may be tunneled over TLS [4] by establishing a TLS session
 immediately after a TCP session is opened and before any blocks are
 sent. This type of session is known as XPCS.

 When using TLS, a convention must be established to allow a client to
 authenticate the validity of a server. XPCS uses the same convention
 as described by IRIS-BEEP [2].

 TLS enables authentication and confidentiality.

 Implementers should note that while XPC and XPCS have separate URI
 scheme names and S-NAPTR application protocol labels, both are
 identified with the same <transferProtocol> value in version
 information chunks (see Section 6.2).

10. Update to RFC 3981

 Section 6.2 of RFC 3981 [1] (IRIS-CORE) states that IRIS-BEEP [2] is
 the default transport for IRIS. This document revises RFC 3981 and
 specifies IRIS-XPC as the default transport for IRIS. The TCP well-
 known port registration is specified in Section 13.5.

Newton Standards Track [Page 13]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

11. IRIS Transport Mapping Definitions

 This section lists the definitions required by IRIS [1] for transport
 mappings.

11.1. URI Scheme

 See Section 13.1 and Section 13.2.

11.2. Application Protocol Label

 See Section 13.3 and Section 13.4.

12. Internationalization Considerations

 XML processors are obliged to recognize both UTF-8 and UTF-16 [3]
 encodings. Use of the XML defined by [9] MUST NOT use any other
 character encodings other than UTF-8 or UTF-16.

13. IANA Considerations

13.1. XPC URI Scheme Registration

 URL scheme name: iris.xpc

 Status: permanent

 URL scheme syntax: defined in [1].

 Character encoding considerations: as defined in RFC 3986 [6].

 Intended usage: identifies IRIS XML using chunks over TCP

 Applications using this scheme: defined in IRIS [1].

 Interoperability considerations: n/a

 Security Considerations: defined in Section 14.

 Relevant Publications: IRIS [1].

 Contact Information: Andrew Newton <andy@hxr.us>

 Author/Change controller: the IESG

Newton Standards Track [Page 14]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

13.2. XPCS URI Scheme Registration

 URL scheme name: iris.xpcs

 Status: permanent

 URL scheme syntax: defined in [1].

 Character encoding considerations: as defined in RFC 3986 [6].

 Intended usage: identifies IRIS XML using chunks over TLS

 Applications using this scheme: defined in IRIS [1].

 Interoperability considerations: n/a

 Security Considerations: defined in Section 14.

 Relevant Publications: IRIS [1].

 Contact Information: Andrew Newton <andy@hxr.us>

 Author/Change controller: the IESG

13.3. S-NAPTR XPC Registration

 Application Protocol Label (see [5]): iris.xpc

 Intended usage: identifies an IRIS server using XPC

 Interoperability considerations: n/a

 Security Considerations: defined in Section 14.

 Relevant Publications: IRIS [1].

 Contact Information: Andrew Newton <andy@hxr.us>

 Author/Change controller: the IESG

13.4. S-NAPTR XPCS Registration

 Application Protocol Label (see [5]): iris.xpcs

 Intended usage: identifies an IRIS server using secure XPCS

 Interoperability considerations: n/a

Newton Standards Track [Page 15]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

 Security Considerations: defined in Section 14.

 Relevant Publications: IRIS [1].

 Contact Information: Andrew Newton <andy@hxr.us>

 Author/Change controller: the IESG

13.5. Well-Known TCP Port Registration for XPC

 Protocol Number: TCP

 TCP Port Number: 713

 Message Formats, Types, Opcodes, and Sequences: defined in Section
 4.2, Section 3, and Section 4.1.

 Functions: defined in IRIS [1].

 Use of Broadcast/Multicast: none

 Proposed Name: IRIS over XPC

 Short name: iris.xpc

 Contact Information: Andrew Newton <andy@hxr.us>

13.6. Well-Known TCP Port Registration for XPCS

 Protocol Number: TCP

 TCP Port Number: 714

 Message Formats, Types, Opcodes, and Sequences: defined in Sections
 9, 4.2, 3, and 4.1.

 Functions: defined in IRIS [1].

 Use of Broadcast/Multicast: none

 Proposed Name: IRIS over XPCS

 Short name: iris.xpcs

 Contact Information: Andrew Newton <andy@hxr.us>

Newton Standards Track [Page 16]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

14. Security Considerations

 Implementers should be fully aware of the security considerations
 given by IRIS [1] and TLS [4]. With respect to server authentication
 with the use of TLS, see Section 6 of IRIS-BEEP [2].

14.1. Security Mechanisms

 Clients SHOULD be prepared to use the following security mechanisms
 in the following manner:

 o SASL/DIGEST-MD5 - for user authentication without the need of
 session encryption.

 o SASL/OTP - for user authentication without the need of session
 encryption.

 o TLS using the TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher - for
 encryption.

 o TLS using the TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher with client-
 side certificates - for encryption and user authentication.

 o TLS using the TLS_RSA_WITH_AES_128_CBC_SHA cipher - for
 encryption. See [7].

 o TLS using the TLS_RSA_WITH_AES_128_CBC_SHA cipher with client-side
 certificates - for encryption and user authentication. See [7].

 o TLS using the TLS_RSA_WITH_AES_256_CBC_SHA cipher - for
 encryption. See [7].

 o TLS using the TLS_RSA_WITH_AES_256_CBC_SHA cipher with client-side
 certificates - for encryption and user authentication. See [7].

 Anonymous client access SHOULD be considered in one of two
 methods:

 1. When no authentication has been used.

 2. Using the SASL anonymous profile: SASL/ANONYMOUS

 As specified by SASL/PLAIN, clients MUST NOT use the SASL/PLAIN
 mechanism without first encrypting the TCP session (e.g., such as
 with TLS). Clients MUST implement SASL/PLAIN and TLS using the
 TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher.

Newton Standards Track [Page 17]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

14.2. SASL Compliance

 The following list details the compliance of IRIS-XPC for use with
 SASL, as specified by RFC 4422 [10], Section 4.

 1. The SASL service name to be used by IRIS-XPC is "iris-xpc".

 2. Section 6.2 describes the negotiation facility used to determine
 the available security mechanisms. This facility may be used
 both before the initiation of SASL exchanges and after the
 installation of security mechanisms.

 3.

 a) Section 6.5 describes the mechanism to initiate
 authentication exchanges.

 b) Section 6.5 describes the mechanism to transfer server
 challenges and client responses.

 c) Section 6.6 and Section 6.7 describe the mechanisms to
 indicate the outcome of an authentication exchange. Section
 6.6 describes how additional data may be carried with this
 message.

 4. Non-empty authorization identity strings used within IRIS-XPC
 MUST be normalized according to RFC 4013 [11]. The semantics of
 the non-empty authorization identity strings is server dependent,
 and clients MUST use the values for these strings as given by
 configuration or the user.

 5. Clients or servers wishing to abort an ongoing authentication
 exchange MUST close the connection.

 6. After new security layers are negotiated, they take effect on the
 first octet following the authentication success (as) (Section
 6.6) chunk sent by the server and on the first octet sent after
 receipt of the authentication success (as) chunk sent by the
 client.

 7. IRIS-XPC can be used with both TLS and SASL. When used in
 combination, TLS MUST always be applied before any SASL
 mechanism.

 8. IRIS-XPC does not support multiple SASL authentications.
 However, if TLS is being used in combination with SASL, TLS
 authentication MUST occur before any SASL authentication.

Newton Standards Track [Page 18]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

15. References

15.1. Normative References

 [1] Newton, A. and M. Sanz, "IRIS: The Internet Registry
 Information Service (IRIS) Core Protocol", RFC 3981, January
 2005.

 [2] Newton, A. and M. Sanz, "Using the Internet Registry
 Information Service over the Blocks Extensible Exchange
 Protocol", RFC 3983, January 2005.

 [3] The Unicode Consortium, "The Unicode Standard, Version 3",
 ISBN 0-201-61633-5, 2000, <The Unicode Standard, Version 3>.

 [4] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
 Protocol Version 1.1", RFC 4346, April 2006.

 [5] Daigle, L. and A. Newton, "Domain-Based Application Service
 Location Using SRV RRs and the Dynamic Delegation Discovery
 Service (DDDS)", RFC 3958, January 2005.

 [6] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
 January 2005.

 [7] Chown, P., "Advanced Encryption Standard (AES) Ciphersuites for
 Transport Layer Security (TLS)", RFC 3268, June 2002.

 [8] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, BCP 14, March 1997.

 [9] Newton, A., "A Common Schema for Internet Registry Information
 Service Transfer Protocols", RFC 4991, August 2007.

 [10] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [11] Zeilenga, K., "SASLprep: Stringprep Profile for User Names and
 Passwords", RFC 4013, February 2005.

15.2. Informative References

 [12] Kirkpatrick, S., Stahl, M., and M. Recker, "Internet numbers",
 RFC 1166, July 1990.

Newton Standards Track [Page 19]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

Appendix A. Examples

 This section gives examples of IRIS-XPC sessions. Lines beginning
 with "C:" denote data sent by the client to the server, and lines
 beginning with "S:" denote data sent by the server to the client.
 Following the "C:" or "S:", the line contains either octet values in
 hexadecimal notation with comments or XML fragments. No line
 contains both octet values with comments and XML fragments. Comments
 are contained within parentheses.

 It should also be noted that flag values of "yes" and "no" reflect
 binary values 1 and 0.

 The following example demonstrates an IRIS client issuing two
 requests in one XPC session. In the first request, the client is
 requesting status information for "example.com". This request and
 its response are transferred with one chunk. In the second request,
 the client is requesting status information for "milo.example.com",
 "felix.example.com", and "hobbes.example.com". This request and its
 response are transferred with three chunks.

 S: (connection response block)
 S: 0x20 (block header: V=0,KO=yes)
 S: (chunk 1)
 S: 0xC1 (LC=yes,DC=yes,CT=vi)
 S: 0x01 0xBF (chunk length=447)
 S: (Version Information)
 S: <?xml version="1.0"?>
 S: <versions xmlns="urn:ietf:params:xml:ns:iris-transport">
 S: <transferProtocol protocolId="iris.xpc1"
 S: authenticationIds="PLAIN EXTERNAL">
 S: <application protocolId="urn:ietf:params:xml:ns:iris1"
 S: extensionIds="http://example.com/SIMPLEBAG">
 S: <dataModel protocolId="urn:ietf:params:xml:ns:dchk1"/>
 S: <dataModel protocolId="urn:ietf:params:xml:ns:dreg1"/>
 S: </application>
 S: </transferProtocol>
 S: </versions>

 C: (request block)
 C: 0x20 (block header: V=0,KO=yes)
 C: 0x0B (authority length=11)
 C: (authority="example.com")
 C: 0x65 0x78 0x61 0x6D 0x70 0x6C 0x65 0x23 0x63 0x6F 0x6D
 C: (chunk 1)
 C: 0xC7 (LC=yes,DC=yes,CT=ad)
 C: 0x01 0x53 (chunk length=339)
 C: (IRIS XML request)

Newton Standards Track [Page 20]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

 C: <request xmlns="urn:ietf:params:xml:ns:iris1"
 C: xsi:schemaLocation="urn:ietf:params:xml:ns:iris1 iris.xsd" >
 C: <searchSet>
 C: <lookupEntity
 C: registryType="urn:ietf:params:xml:ns:dchk1"
 C: entityClass="domain-name"
 C: entityName="example.com" />
 C: </searchSet>
 C: </request>

 S: (response block)
 S: 0x20 (block header: V=0,KO=yes)
 S: (chunk 1)
 S: 0xC7 (LC=yes,DC=yes,CT=ad)
 S: 0x01 0xE0 (chunk length=480)
 S: (IRIS XML response)
 S: <iris:response xmlns:iris="urn:ietf:params:xml:ns:iris1">
 S: <iris:resultSet>
 S: <iris:answer>
 S: <domain authority="example.com" registryType="dchk1"
 S: entityClass="domain-name" entityName="example.com-1"
 S: temporaryReference="true"
 S: xmlns="urn:ietf:params:xml:ns:dchk1">
 S: <domainName>example.com</domainName>
 S: <status>
 S: <assignedAndActive/>
 S: </status>
 S: </domain>
 S: </iris:answer>
 S: </iris:resultSet>
 S: </iris:response>

 C: (request block)
 C: 0x00 (block header: V=0,KO=no)
 C: 0x0B (authority length=11)
 C: (authority="example.com")
 C: 0x65 0x78 0x61 0x6D 0x70 0x6C 0x65 0x23 0x63 0x6F 0x6D
 C: (chunk 1)
 C: 0x07 (LC=no,DC=no,CT=ad)
 C: 0x01 0x4E (chunk length=339)
 C: (IRIS XML request)
 C: <request xmlns="urn:ietf:params:xml:ns:iris1"
 C: xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 C: xsi:schemaLocation="urn:ietf:params:xml:ns:iris1 iris.xsd" >
 C: <searchSet>
 C: <lookupEntity
 C: registryType="urn:ietf:params:xml:ns:dchk1"
 C: entityClass="domain-name"

Newton Standards Track [Page 21]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

 C: entityName="milo.example.com" />
 C: </searchSet>
 C: (chunk 2)
 C: 0x07 (LC=no,DC=no,CT=ad)
 C: 0x00 0xA9 (chunk length=169)
 C: (IRIS XML request)
 C: <searchSet>
 C: <lookupEntity
 C: registryType="urn:ietf:params:xml:ns:dchk1"
 C: entityClass="domain-name"
 C: entityName="felix.example.com" />
 C: </searchSet>
 C: (chunk 3)
 C: 0xC7 (LC=yes,DC=yes,CT=ad)
 C: 0x00 0xB5 (chunk length=181)
 C: (IRIS XML request)
 C: <searchSet>
 C: <lookupEntity
 C: registryType="urn:ietf:params:xml:ns:dchk1"
 C: entityClass="domain-name"
 C: entityName="hobbes.example.com" />
 C: </searchSet>
 C:</request>

 S: (response block)
 S: 0x00 (block header: V=0,KO=no)
 S: (chunk 1)
 S: 0x07 (LC=no,DC=no,CT=ad)
 S: 0x01 0xDA (chunk length=474)
 S: (IRIS XML response)
 S: <iris:response xmlns:iris="urn:ietf:params:xml:ns:iris1">
 S: <iris:resultSet>
 S: <iris:answer>
 S: <domain authority="example.com" registryType="dchk1"
 S: entityClass="domain-name" entityName="milo.example.com-1"
 S: temporaryReference="true"
 S: xmlns="urn:ietf:params:xml:ns:dchk1">
 S: <domainName>milo.example.com</domainName>
 S: <status>
 S: <assignedAndActive/>
 S: </status>
 S: </domain>
 S: </iris:answer>
 S: </iris:resultSet>
 S: (chunk 2)
 S: 0x07 (LC=no,DC=no,CT=ad)
 S: 0x01 0xA2 (chunk length=418)
 S: (IRIS XML response)

Newton Standards Track [Page 22]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

 S: <iris:resultSet>
 S: <iris:answer>
 S: <domain authority="example.com" registryType="dchk1"
 S: entityClass="domain-name" entityName="felix.example.com-1"
 S: temporaryReference="true"
 S: xmlns="urn:ietf:params:xml:ns:dchk1">
 S: <domainName>felix.example.com</domainName>
 S: <status>
 S: <assignedAndActive/>
 S: </status>
 S: </domain>
 S: </iris:answer>
 S: </iris:resultSet>
 S: (chunk 3)
 S: 0xC7 (LC=yes,DC=yes,CT=ad)
 S: 0x01 0xB5 (chunk length=437)
 S: (IRIS XML response)
 S: <iris:resultSet>
 S: <iris:answer>
 S: <domain authority="example.com" registryType="dchk1"
 S: entityClass="domain-name"
 S: entityName="hobbes.example.com-1"
 S: temporaryReference="true"
 S: xmlns="urn:ietf:params:xml:ns:dchk1">
 S: <domainName>hobbes.example.com</domainName>
 S: <status>
 S: <assignedAndActive/>
 S: </status>
 S: </domain>
 S: </iris:answer>
 S: </iris:resultSet>
 S: </iris:response>

 Example 1

 In the following example, an IRIS client requests domain status
 information for "milo.example.com", "felix.example.com", and
 "hobbes.example.com" in one request. The request is sent with one
 chunk; however, the answer is returned in three chunks.

 S: (connection response block)
 S: 0x20 (block header: V=0,KO=yes)
 S: (chunk 1)
 S: 0xC1 (LC=yes,DC=yes,CT=vi)
 S: 0x01 0xBF (chunk length=447)
 S: (Version Information)
 S: <?xml version="1.0"?>
 S: <versions xmlns="urn:ietf:params:xml:ns:iris-transport">

Newton Standards Track [Page 23]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

 S: <transferProtocol protocolId="iris.xpc1"
 S: authenticationIds="PLAIN EXTERNAL">
 S: <application protocolId="urn:ietf:params:xml:ns:iris1"
 S: extensionIds="http://example.com/SIMPLEBAG">
 S: <dataModel protocolId="urn:ietf:params:xml:ns:dchk1"/>
 S: <dataModel protocolId="urn:ietf:params:xml:ns:dreg1"/>
 S: </application>
 S: </transferProtocol>
 S: </versions>

 C: (request block)
 C: 0x00 (block header: V=0,KO=no)
 C: 0x0B (authority length=11)
 C: (authority="example.com")
 C: 0x65 0x78 0x61 0x6D 0x70 0x6C 0x65 0x23 0x63 0x6F 0x6D
 C: (chunk 1)
 C: 0xC7 (LC=yes,DC=yes,CT=ad)
 C: 0x02 0xAB (chunk length=683)
 C: (IRIS XML request)
 C: <request xmlns="urn:ietf:params:xml:ns:iris1"
 C: xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 C: xsi:schemaLocation="urn:ietf:params:xml:ns:iris1 iris.xsd" >
 C: <searchSet>
 C: <lookupEntity
 C: registryType="urn:ietf:params:xml:ns:dchk1"
 C: entityClass="domain-name"
 C: entityName="milo.example.com" />
 C: </searchSet>
 C: <searchSet>
 C: <lookupEntity
 C: registryType="urn:ietf:params:xml:ns:dchk1"
 C: entityClass="domain-name"
 C: entityName="felix.example.com" />
 C: </searchSet>
 C: <searchSet>
 C: <lookupEntity
 C: registryType="urn:ietf:params:xml:ns:dchk1"
 C: entityClass="domain-name"
 C: entityName="hobbes.example.com" />
 C: </searchSet>
 C: </request>

 S: (response block)
 S: 0x00 (block header: V=0,KO=no)
 S: (chunk 1)
 S: 0x07 (LC=no,DC=no,CT=ad)
 S: 0x01 0xDA (chunk length=474)
 S: (IRIS XML response)

Newton Standards Track [Page 24]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

 S: <iris:response xmlns:iris="urn:ietf:params:xml:ns:iris1">
 S: <iris:resultSet>
 S: <iris:answer>
 S: <domain authority="example.com" registryType="dchk1"
 S: entityClass="domain-name" entityName="milo.example.com-1"
 S: temporaryReference="true"
 S: xmlns="urn:ietf:params:xml:ns:dchk1">
 S: <domainName>milo.example.com</domainName>
 S: <status>
 S: <assignedAndActive/>
 S: </status>
 S: </domain>
 S: </iris:answer>
 S: </iris:resultSet>
 S: (chunk 2)
 S: 0x07 (LC=no,DC=no,CT=ad)
 S: 0x01 0xA2 (chunk length=418)
 S: (IRIS XML response)
 S: <iris:resultSet>
 S: <iris:answer>
 S: <domain authority="example.com" registryType="dchk1"
 S: entityClass="domain-name" entityName="felix.example.com-1"
 S: temporaryReference="true"
 S: xmlns="urn:ietf:params:xml:ns:dchk1">
 S: <domainName>felix.example.com</domainName>
 S: <status>
 S: <assignedAndActive/>
 S: </status>
 S: </domain>
 S: </iris:answer>
 S: </iris:resultSet>
 S: (chunk 3)
 S: 0xC7 (LC=yes,DC=yes,CT=ad)
 S: 0x01 0xB5 (chunk length=437)
 S: (IRIS XML response)
 S: <iris:resultSet>
 S: <iris:answer>
 S: <domain authority="example.com" registryType="dchk1"
 S: entityClass="domain-name"
 S: entityName="hobbes.example.com-1"
 S: temporaryReference="true"
 S: xmlns="urn:ietf:params:xml:ns:dchk1">
 S: <domainName>hobbes.example.com</domainName>
 S: <status>
 S: <assignedAndActive/>
 S: </status>
 S: </domain>
 S: </iris:answer>

Newton Standards Track [Page 25]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

 S: </iris:resultSet>
 S: </iris:response>

 Example 2

 In the following example, an IRIS client sends a request containing
 SASL/PLAIN authentication data and a domain status check for
 "example.com". The server responds with authentication success
 information and the domain status of "example.com". Note that the
 client requests that the connection stay open for further requests,
 but the server does not honor this request.

 S: (connection response block)
 S: 0x20 (block header: V=0,KO=yes)
 S: (chunk 1)
 S: 0xC1 (LC=yes,DC=yes,CT=vi)
 S: 0x01 0xBF (chunk length=447)
 S: (Version Information)
 S: <?xml version="1.0"?>
 S: <versions xmlns="urn:ietf:params:xml:ns:iris-transport">
 S: <transferProtocol protocolId="iris.xpc1"
 S: authenticationIds="PLAIN EXTERNAL">
 S: <application protocolId="urn:ietf:params:xml:ns:iris1"
 S: extensionIds="http://example.com/SIMPLEBAG">
 S: <dataModel protocolId="urn:ietf:params:xml:ns:dchk1"/>
 S: <dataModel protocolId="urn:ietf:params:xml:ns:dreg1"/>
 S: </application>
 S: </transferProtocol>
 S: </versions>

 C: (request block)
 C: 0x00 (block header: V=0,KO=no)
 C: 0x0B (authority length=11)
 C: (authority="example.com")
 C: 0x65 0x78 0x61 0x6D 0x70 0x6C 0x65 0x23 0x63 0x6F 0x6D
 C: (chunk 1)
 C: 0x44 (LC=no,DC=yes,CT=sd)
 C: 0x00 0x11 (chunk length=11)
 C: (SASL data)
 C: 0x05 (mechanism length=5)
 C: (mechanism name="PLAIN")
 C: 0x50 0x4C 0x41 0x49 0x43
 C: 0x00 0x0A (sasl PLAIN data length=10)
 C: (sasl PLAIN data: authcid="bob")
 C: (sasl PLAIN data: authzid=NULL)
 C: (sasl PLAIN data: password="kEw1")
 C: 0x62 0x6F 0x62 0x20 0x00 0x20 0x6B 0x45 0x77 0x31
 C: (chunk 2)

Newton Standards Track [Page 26]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

 C: 0xC7 (LC=yes,DC=yes,CT=ad)
 C: 0x01 0x53 (chunk length=339)
 C: (IRIS XML request)
 C: <request xmlns="urn:ietf:params:xml:ns:iris1"
 C: xsi:schemaLocation="urn:ietf:params:xml:ns:iris1 iris.xsd" >
 C: <searchSet>
 C: <lookupEntity
 C: registryType="urn:ietf:params:xml:ns:dchk1"
 C: entityClass="domain-name"
 C: entityName="example.com" />
 C: </searchSet>
 C: </request>

 S: (response block)
 S: 0x00 (block header: V=0,KO=no)
 S: (chunk 1)
 S: 0x45 (LC=no,DC=yes,CT=as)
 S: 0x00 0xD0 (chunk length=208)
 S: (authentication success response)
 S: <?xml version="1.0"?>
 S: <authenticationSuccess
 S: xmlns="urn:ietf:params:xml:ns:iris-transport">
 S: <description language="en">
 S: user ’bob’ authenticates via password
 S: </description>
 S: </authenticationSuccess>
 S: (chunk 2)
 S: 0xC7 (LC=yes,DC=yes,CT=ad)
 S: 0x01 0xE0 (chunk length=480)
 S: (IRIS XML response)
 S: <iris:response xmlns:iris="urn:ietf:params:xml:ns:iris1">
 S: <iris:resultSet>
 S: <iris:answer>
 S: <domain authority="example.com" registryType="dchk1"
 S: entityClass="domain-name" entityName="example.com-1"
 S: temporaryReference="true"
 S: xmlns="urn:ietf:params:xml:ns:dchk1">
 S: <domainName>example.com</domainName>
 S: <status>
 S: <assignedAndActive/>
 S: </status>
 S: </domain>
 S: </iris:answer>
 S: </iris:resultSet>
 S: </iris:response>

 Example 3

Newton Standards Track [Page 27]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

Appendix B. Contributors

 Substantive contributions to this document have been provided by the
 members of the IETF’s CRISP Working Group, especially Robert Martin-
 Legene, Milena Caires, and David Blacka.

Author’s Address

 Andrew L. Newton
 VeriSign, Inc.
 21345 Ridgetop Circle
 Sterling, VA 20166
 USA

 Phone: +1 703 948 3382
 EMail: andy@hxr.us
 URI: http://www.verisignlabs.com/

Newton Standards Track [Page 28]

RFC 4992 IRIS XML Pipelining with Chunks August 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Newton Standards Track [Page 29]

