Net wor k Wor ki ng Group G Pelletier
Request for Comments: 4996 K. Sandl und
Cat egory: Standards Track Eri csson

L- E. Jonsson

M West
Si enmens/ Roke Manor
July 2007

RObust Header Conpression (ROHC): A Profile for TCP/I P (ROHC TCP)

Status of This Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice
Copyright (C The | ETF Trust (2007).

Abst ract

Thi s docunent specifies a ROHC (Robust Header Conpression) profile
for conpression of TCP/IP packets. The profile, called ROHC TCP,
provi des efficient and robust conpression of TCP headers, including

frequently used TCP options such as SACK (Sel ective Acknow edgments)
and Ti nest anps.

ROHC- TCP wor ks wel | when used over links with significant error rates

and long round-trip tines. For many bandwidth-limted |inks where
header conpression is essential, such characteristics are conmnon.

Pelletier, et al. St andards Track [Page 1]

RFC 4996 ROHC- TCP

Tabl e of Contents

1.
2.
3.

BApOREANE

OO0 ROOOOOOOWNOOORTIRNTNWATOIN

e il

I ntroduction .
Ter m nol ogy
Background .

.1. Existing :I'CP/I P Header CorrpreSS| on Schemes
.2. (Cassification of TCP/IP Header Fields .

Overview of the TCP/IP Profile (Inforrrative)
CGeneral Concepts . Coe e
Conpressor and Decorrpressor Interactions .

.2.1. Conpressor QOperation .

.2.2. Deconpressor Feedback
Packet Formats and Encodi ng Met hods

.3.1. Conpressing TCP Opt| ons . .

.3.2. Conpressing Extension Headers .
Expect ed Conpression Ratios with ROHC TCP

Conpr essor and Deconpressor Logic (Nornative)
Context Initialization . G

Conpressor Operation .

.1. Conpression Logic

2. Feedback Logic .

3. Context Replication

Deconpr essor Operation .

.1. Deconpressor States and Logl c

. 2. Feedback Logl c . .

.3. Context Replication . .

odi ngs in ROHC TCP (Norrratlve)

Control Fields in ROHCTCP . . .

.1. Master Sequence Nunber (NMSN)

.2. |P-ID Behavior . . .

.3. Explicit Congestion Notlflcatlon(ECN)

Oorrpressed Header Chains .

NINEN

O WwWww

n

I

Li st Conpression . . .

Tabl e- Based Item Con’presa on .

Encodi ng of Conpressed Lists .

Item Tabl e Mappi ngs .

Conpressed Lists in Dynam c Chal n
Irregular Chain Items for TCP Options
Replication of TCP Options . S
rof| | e- Speci fic Encodi ng Met hods
inferred_ i p_v4 header checksum .

i nferred_m ne_header _checksum
inferred_ip_v4_length
inferred_ip_v6_Ilength

inferred of fset .
baseheader _ext ensi on_ headers .
baseheader_out er_headers .

NOUPWNREPINOURARNE

Pelletier, et al. St andards Track

Oonpr essing TCP Qi)tl ons with i_l st Oonpr essi on.

July 2007

©OOWOWKWWWOoOUTUl W

WWWWWWNRNRNRNNNNNNNNNRRPRRRRRRRRRRRRRRRPR
NRPRPRPOOWOWOOONONURWWNROWOWOOW®OOOARNNWRRRPRRLOOO

[Page 2]

RFC 4996 ROHC- TCP July 2007

6.4.8. Scaled Encoding of Fields 32
6.5. Encoding Methods Wth External Paraneters 34
7. Packet Types (Normative) 36
7.1. Initialization and Refresh (IR) Packets 36
7.2. Context Replication (IR CR) Packets 38
7.3. Conpressed (CO Packets . . . e
8. Header Formats (Normative) . . e 24
8.1. Design Rationale for Cbnpressed Base Fbaders e 24
8.2. Fornmal Definition of Header Formats 45
8.3. Feedback Formats and Options 86
8.3.1. Feedback Formats 86
8.3.2. Feedback Options 87

9. Security Considerations 89
10. I ANA Considerations89
11. Acknow edgrments .. .9
12. References . . . [0
12.1. Normative References e ° [0
12.2. Informative References9

1. Introduction

There are several reasons to perform header conpression on | ow or
medi um speed links for TCP/IP traffic, and these have al ready been
di scussed in [RFC2507]. Additional considerations that nmake

robust ness an inportant objective for a TCP [RFC0O793] conpression
scheme are introduced in [RFC4163]. Finally, existing TCP/IP header
conpressi on schemes ([RFCL1144], [RFC2507]) are limited in their
handl i ng of the TCP options field and cannot conpress the headers of
handshaki ng packets (SYNs and FINs).

It is thus desirable for a header conpression schene to be able to
handl e | oss on the link between the conpression and deconpression
points as well as |oss before the conpression point. The header
conpressi on schene al so needs to consider how to efficiently conpress
short-lived TCP transfers and TCP options, such as SACK ([RFC2018],

[RFC2883]) and Ti nestanps ([RFC1323]).

The ROHC WG has devel oped a header conpression franmework on top of

whi ch various profiles can be defined for different protocol sets, or
for different conpression strategies. This docunent defines a TCP/IP
compression profile for the ROHC framework [RFC4995], conpliant with

the requirenents listed in [RFC4163].

Specifically, it describes a header conpression schene for TCP/IP
header conpression (ROHC-TCP) that is robust agai nst packet |oss and
that offers enhanced capabilities, in particular for the conpression
of header fields including TCP options. The profile identifier for
TCP/ I P conpression is 0x0006.

Pelletier, et al. St andards Track [Page 3]

RFC 4996 ROHC- TCP July 2007

2. Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

Thi s docunent reuses sone of the ternminology found in [RFC4995]. In
addition, this docunent uses or defines the follow ng termns:

Base cont ext

The base context is a context that has been validated by both the
conpressor and the deconpressor. A base context can be used as
the reference when buil ding a new context using replication

Base Context Identifier (Base ClD)

The Base CIDis the CID that identifies the base context, from
whi ch i nformation needed for context replication can be extracted.

Base header

A conpressed representation of the innernost |IP and TCP headers of
t he unconpressed packet.

Chai ning of itemns

A chain groups fields based on simlar characteristics. ROHC TCP
defines chain itens for static, dynamc, replicable, or irregular
fields. Chaining is done by appending an item for each header
e.g., to the chain in their order of appearance in the
unconpressed packet. Chaining is useful to construct conpressed
headers froman arbitrary nunber of any of the protocol headers
for which ROHC TCP defines a conpressed fornmat.

Context Replication (CR

Context replication is the nechani smthat establishes and
initializes a new context based on another existing valid context
(a base context). This mechanismis introduced to reduce the
overhead of the context establishnent procedure, and is especially
useful for conpression of nultiple short-lived TCP connecti ons
that may be occurring sinultaneously or near-sinmultaneously.

Pelletier, et al. St andards Track [Page 4]

RFC 4996 ROHC- TCP July 2007

ROHC- TCP packet types

ROHC- TCP uses three different packet types: the Initialization and
Refresh (I R) packet type, the Context Replication (IR CR) packet
type, and the Conpressed packet (CO type.

Short-lived TCP transfer

Short-lived TCP transfers refer to TCP connections transnmitting
only small anmpbunts of packets for each single connection

3. Background

Thi s section provides some background information on TCP/ | P header
conpression. The fundanmental s of general header conpression can be
found in [RFC4995]. In the follow ng subsections, two existing
TCP/ 1 P header conpression schenes are first described along with a
di scussion of their Iimtations, followed by the classification of
TCP/ I P header fields. Finally, sone of the characteristics of
short-lived TCP transfers are sumari zed

A behavi or analysis of TCP/IP header fields is found in [RFC4413].
3.1. Existing TCP/IP Header Conpression Schenes

Conmpressed TCP (CTCP) and | P Header Conpression (IPHC) are two

di fferent schenes that may be used to conpress TCP/IP headers. Both
schenes transnit only the differences fromthe previous header in
order to reduce the size of the TCP/IP header

The CTCP [RFC1144] conpressor detects transport-Ilevel retransni ssions
and sends a header that updates the context conpletely when they
occur. Wiile CTCP works well over reliable links, it is vulnerable
when used over less reliable Iinks as even a single packet |oss
results in loss of synchronization between the conpressor and the
deconpressor. This in turn leads to the TCP receiver discarding all
remai ni ng packets in the current wi ndow because of a checksum error
This effectively prevents the TCP fast retransmt al gorithm[RFC2581]
frombeing triggered. |In such a case, the conpressor nmust wait unti
TCP tines out and retransmits a packet to resynchronize.

To reduce the errors due to the inconsistent contexts between
conpressor and deconpressor when conpressing TCP, |PHC [RFC2507]

i mproves sonmewhat on CTCP by augnenting the repair nechani sm of CTCP
with a local repair nechanismcalled TWCE and with a |ink-Iayer
mechani sm based on negative acknow edgnents to request a header that
updat es the context.

Pelletier, et al. St andards Track [Page 5]

RFC 4996 ROHC- TCP July 2007

The TWCE al gorithm assunes that only the Sequence Nunber field of
TCP segnents is changing with the deltas between consecutive packets
bei ng constant in nost cases. This assunption is however not always
true, especially when TCP Tinmestanps and SACK options are used.

The full header request nechanismrequires a feedback channel that
may be unavailable in sonme circunstances. This channel is used to
explicitly request that the next packet be sent with an unconpressed
header to allow resynchronization without waiting for a TCP timeout.
In addition, this nechani sm does not performwell on Iinks with |ong
round-trip tines.

Both CTCP and IPHC are also linmited in their handling of the TCP
options field. For IPHC, any change in the options field (caused by
Ti mest anps or SACK, for exanple) renders the entire field
unconpressible, while for CTCP, such a change in the options field
effectively disables TCP/ I P header conpression altogether

Finally, existing TCP/IP conpression schemes do not conpress the
headers of handshaki ng packets (SYNs and FINs). Conpressing these
packets may greatly inprove the overall header conpression ratio for
the cases where many short-lived TCP connections share the sane
channel

3.2. dassification of TCP/|IP Header Fields

Header conpression is possible due to the fact that there is nuch
redundancy between header field values within packets, especially

bet ween consecutive packets. To utilize these properties for TCP/IP
header conpression, it is inportant to understand the change patterns
of the various header fields.

Al fields of the TCP/IP packet header have been classified in detai
in [RFC4413]. The main conclusion is that nost of the header fields
can easily be conpressed away since they sel domor never change. The
followi ng fields do however require nore sophisticated nechanisns:

- IPv4 ldentification (16 bits) - IP-ID
- TCP Sequence Nunber (32 bits) - SN

- TCP Acknow edgrment Number (32 bits)

- TCP Reserved (4 bits)

- TCP ECN fl ags (2 bits) - ECN

- TCP W ndow (16 bits)

Pelletier, et al. St andards Track [Page 6]

RFC 4996 ROHC- TCP July 2007

- TCP Options
o Maxi mum Segnent Size (32 bits) - MsS
o W ndow Scal e (24 bits) - WSCALE
0 SACK Permitted (16 bits)
0 TCP SACK (80, 144, 208, or 272 bits) - SACK
o TCP Tinestanp (80 bits) - TS

The assignnent of |IP-1D values can be done in various ways, usually
one of sequential, sequential junp, or random as described in
Section 4.1.3 of [RFC4413]. Some |Pv4 stacks do use a sequentia

assi gnnent when generating I P-1D values but do not transnmit the
contents of this field in network byte order; instead, it is sent
with the two octets reversed. |In this case, the conpressor can
conpress the IP-ID field after swapping the bytes. Consequently, the
deconpressor al so swaps the bytes of the IP-1D after deconpression to
regenerate the original IP-ID. Wth respect to TCP conpression, the
anal ysis in [RFC4413] reveals that there is no obvious candidate
anong the TCP fields suitable to infer the IP-1D

The change pattern of several TCP fields (Sequence Nunber,

Acknowl edgrment Nunber, Wndow, etc.) is very hard to predict. O
particul ar inportance to a TCP/I P header conpression schene is the
under st andi ng of the sequence and acknow edgnent nunbers [RFC4413].

Specifically, the TCP Sequence Nunber can be anywhere within a range
defined by the TCP Wndow at any point on the path (i.e., wherever a
conpressor m ght be deployed). M ssing packets or retransm ssions
can cause the TCP Sequence Number to fluctuate within the limts of
this window The TCP Wndow al so bounds the junps in acknow edgment
nunber .

Anot her inportant behavior of the TCP/IP header is the dependency
bet ween t he sequence nunber and the acknow edgment nunber. TCP
connections can be either near-synmmetrical or show a strong
asymmetrical bias with respect to the data traffic. In the latter
case, the TCP connections nainly have one-way traffic (Wb browsing
and file downl oading, for exanple). This nmeans that on the forward
path (fromserver to client), only the sequence nunber is changing
whil e the acknow edgnent nunmber remains constant for nost packets; on
t he backward path (fromclient to server), only the acknow edgnent
nunber is changing and the sequence nunber renains constant for nost
packets. A conpression schene for TCP should thus have packet
formats suitable for either cases, i.e., packet formats that can
carry either only sequence nunber bits, only acknow edgnent nunber
bits, or both.

In addition, TCP flows can be short-lived transfers. Short-lived TCP
transfers will degrade the perfornmance of header conpression schenes

Pelletier, et al. St andards Track [Page 7]

RFC 4996 ROHC- TCP July 2007

that establish a new context by initially sending full headers.

Mul tiple simultaneous or near sinultaneous TCP connections nay
exhibit nmuch sinmilarity in header field values and context val ues
anong each ot her, which would nake it possible to reuse infornmation
between flows when initializing a new context. A mechanismto this
end, context replication [RFC4164], nmkes the context establishnent
step faster and nore efficient, by replicating part of an existing
context to a new flow. The conclusion from[RFC4413] is that part of
the | P sub-context, sonme TCP fields, and some context values can be
replicated since they sel dom change or change with only a small junp.

ROHC- TCP al so conpresses the foll owi ng headers: |Pv6 Destination
Options header [RFC2460], |Pv6 Routing header [RFC2460], |Pv6 Hop-by-
Hop Options header [RFC2460], Authentication Header (AH) [RFC4302],
NULL- encrypt ed Encapsul ati ng Security Payl oad (ESP) header [RFC4303],
Ceneric Routing Encapsul ation (GRE) [RFC2784] [RFC2890] and the

M ni mal Encapsul ati on header (M NE) [RFC2004].

Headers specific to Mobile IP (for I Pv4 or | Pv6) do not receive any
special treatnment in this docunent, for reasons simlar to those
described in [RFC3095].

4. Overview of the TCP/IP Profile (Informative)
4.1. General Concepts

ROHC- TCP uses the ROHC protocol as described in [RFC4995]. ROHC TCP
supports context replication as defined in [RFC4164]. Context
replication can be particularly useful for short-lived TCP fl ows

[RFC4413] .

4.2. Conpressor and Deconpressor Interactions
4.2.1. Conpressor Operation

Header conpression with ROHC can be conceptually characterized as the
interaction of a conpressor with a deconpressor state nachine. The
conpressor’s task is to minimally send the infornmation needed to
successful ly deconpress a packet, based on a certain confidence
regarding the state of the deconpressor context.

For ROHC- TCP conpression, the conpressor nornmally starts conpression
with the initial assunption that the deconpressor has no useful
information to process the new flow, and sends Initialization and
Refresh (I R) packets. Alternatively, the conpressor may al so support
Context Replication (CR) and use IR CR packets [RFC4164], which
attenpts to reuse context information related to another flow.

Pelletier, et al. St andards Track [Page 8]

RFC 4996 ROHC- TCP July 2007

4. 2.

4. 3.

Pel

The conpressor can then adjust the conpression |evel based on its
confidence that the deconpressor has the necessary information to
successfully process the Conpressed (CO packets that it selects. In
other words, the task of the conpressor is to ensure that the
deconpressor operates in the state that allows deconpression of the
nost efficient CO packet(s), and to allow the deconpressor to nove to
that state as soon as possibl e otherw se.

2. Deconpressor Feedback

The ROHC-TCP profile can be used in environments with or wthout
feedback capabilities from deconpressor to conpressor. ROHC TCP
however assunes that if a ROHC feedback channel is available and if
this channel is used at |east once by the deconpressor for a specific
ROHC- TCP context, this channel will be used during the entire
conpression operation for that context. |If the feedback channe

di sappears, conpression should be restarted.

The reception of either positive acknow edgnent (ACKs) or negative
acknow edgnment (NACKs) establishes the feedback channel fromthe
deconpressor for the context for which the feedback was received
Once there is an established feedback channel for a specific context,
the conpressor should nmake use of this feedback to estimte the
current state of the deconpressor. This helps in increasing the
conpression efficiency by providing the informati on needed for the
conpressor to achi eve the necessary confidence |evel

The ROHC- TCP feedback nmechanismis Iimted in its applicability by
the nunber of (least significant bit (LSB) encoded) master sequence
nunber (MSN) (see Section 6.1.1) bits used in the FEEDBACK-2 for mat

(see Section 8.3). It is not suitable for a deconpressor to use
feedback altogether where the MSN bits in the feedback could wap
around within one round-trip tinme. Instead, unidirectional operation

-- where the conpressor periodically sends |arger context-updating
packets -- is nore appropriate.

Packet Formats and Encodi ng Met hods
The packet formats and encodi ng net hods used for ROHC TCP are defined
using the formal notation [RFC4997]. The formal notation is used to

provi de an unanbi guous representation of the packet formats and a
clear definition of the encodi ng nethods.

letier, et al. St andards Track [Page 9]

RFC 4996 ROHC- TCP July 2007

4.3.1. Conpressing TCP Options

The TCP options in ROHC-TCP are conpressed using a |ist conpression
encodi ng that allows option content to be established so that TCP
options can be added to the context wi thout having to send all TCP
options unconpressed.

4.3.2. Conpressing Extension Headers

ROHC- TCP conpresses the extension headers as listed in Section 3.2.
These headers are treated exactly as other headers and thus have a
static chain, a dynanmc chain, an irregular chain, and a chain for
context replication (Section 6.2).

Thi s neans that headers appearing in or disappearing fromthe fl ow
bei ng compressed will lead to changes to the static chain. However,
t he change pattern of extension headers is not deened to inpair
conpression efficiency with respect to this design strategy.

4.4. Expected Conpression Ratios with ROHC TCP

The following table illustrates typical conpression ratios that can
be expected when usi ng ROHC- TCP and | PHC [RFC2507] .

The figures in the table assune that the conpression context has

al ready been properly initialized. For the TS option, the Tinmestanp
is assuned to change with small values. Al TCP options include a
sui tabl e number of No Operation (NOP) options [RFCO793] for padding
and/or alignnment. Finally, in the exanples for |Pv4, a sequential

| P-1D behavior is assuned.

Total Header Size (octets)

ROHC- TCP | PHC
Unc. DATA ACK DATA ACK
| Pv4+TCP+TS 52 8 8 18 18
| Pv4+TCP+TS 52 7 6 16 16 (1)
| Pv6+TCP+TS 72 8 7 18 18
| Pv6+TCP+no opt 60 6 5 6 6
| Pv6+TCP+SACK 80 - 15 - 80 (2)
| Pv6+TCP+SACK 80 - 9 - 26 (3)

(1) The payl oad size of the data streamis constant.

(2) The SACK option appears in the header, but was not present
in the previous packet. Two SACK bl ocks are assuned.

(3) The SACK option appears in the header, and was al so present
in the previous packet (with different SACK bl ocks).
Two SACK bl ocks are assuned.

Pelletier, et al. St andards Track [Page 10]

RFC 4996 ROHC- TCP July 2007

5.

5.

5.

5.

The table belowillustrates the typical initial conpression ratios
for ROHC-TCP and I PHC. The data streamin the exanple is assuned to
be I Pv4+TCP, with a sequential behavior for the IP-1D. The follow ng
options are assunmed present in the SYN packet: TS, MsS, and WSCALE

wi th an appropriate nunber of NOP options.

Total Header Size (octets)
Unc. RCOHC- TCP | PHC
1st packet (SYN) 60 49 60
2nd packet 52 12 52

The figures in the table assune that the conpressor has received an
acknow edgment fromthe deconpressor before conpressing the second
packet, which can be expected when feedback is used in ROHC TCP

This is because in the nost conmon case, the TCP ACKs are expected to
take the sane return path, and because TCP does not send nore packets
until the TCP SYN packet has been acknow edged.

Conpressor and Deconpressor Logic (Nornative)
1. Context Initialization

The static context of ROHC-TCP flows can be initialized in either of
two ways:

1. By using an IR packet as in Section 7.1, where the profile nunber
is 0x06 and the static chain ends with the static part of a TCP
header .

2. By replicating an existing context using the mechani sm defined by
[RFC4164]. This is done with the I R-CR packet defined in
Section 7.2, where the profile nunber is 0x06.

2. Conpressor Qperation
2.1. Conpression Logic

The task of the conpressor is to determ ne what data nust be sent
when conpressing a TCP/ I P packet, so that the deconpressor can
successfully reconstruct the original packet based on its current
state. The selection of the type of conpressed header to send thus
depends on a nunber of factors, including:

0 The change behavi or of header fields in the flow, e.g., conveying
the necessary information within the restrictions of the set of
avai | abl e packet fornmats.

Pelletier, et al. St andards Track [Page 11]

RFC 4996 ROHC- TCP July 2007

0 The conpressor’s |level of confidence regardi ng deconpressor state,
e.g., by selecting header formats updating the sane type of
i nformati on for a nunber of consecutive packets or fromthe
reception of deconpressor feedback (ACKs and/or NACKS).

0 Additional robustness required for the flow, e.g., periodic
refreshes of static and dynanmic information using IR and | R-DYN
packets when deconpressor feedback is not expected.

The inpact of these factors on the conpressor’s packet type selection
is described in nore detail in the foll ow ng subsections.

In this section, a "higher conpression state" neans that |ess data
will be sent in conpressed packets, i.e., smaller conpressed headers
are used, while a | ower conpression state means that a | arger anmount
of data will be sent using |arger conpressed headers.

5.2.1.1. Optimstic Approach

The optim stic approach is the principle by which a conpressor sends
the same type of information for a nunber of packets (consecutively
or not) until it is fairly confident that the deconpressor has
received the information. The optimstic approach is useful to
ensure robust ness when ROHC-TCP is used to conpress packet over |ossy
I i nks.

Therefore, if field X in the unconpressed packet changes val ue, the
conpressor MJST use a packet type that contains an encoding for field
X until it has gained confidence that the deconpressor has received
at | east one packet containing the new value for X The conpressor
SHOULD choose a conpressed fornat with the snall est header that can
convey the changes needed to fulfill the optimstic approach

condi tion used.

5.2.1.2. Peri odi ¢ Cont ext Refreshes

When the optimstic approach is used, there will always be a
possibility of deconpression failures since the deconpressor may not
have received sufficient information for correct deconpression

Therefore, until the deconpressor has established a feedback channel
the conpressor SHOULD periodically nove to a | ower conpression state
and send IR and/or | R-DYN packets. These refreshes can be based on
ti meouts, on the nunber of conpressed packets sent for the flow, or
any other strategy specific to the inplenmentation. Once the feedback
channel is established, the deconpressor MAY stop perform ng periodic
refreshes

Pelletier, et al. St andards Track [Page 12]

RFC 4996 ROHC- TCP July 2007

5.2.2. Feedback Logic

The senmantics of feedback nessages, acknow edgnents (ACKs) and
negative acknow edgnments (NACKs or STATIC NACKs), are defined in
Section 5.2.4.1 of [RFC4995].

5.2.2.1. Optional Acknow edgments (ACKs)

The conpressor MAY use acknow edgnment feedback (ACKs) to nove to a
hi gher conpression state.

Upon reception of an ACK for a context-updating packet, the
conpressor obtains confidence that the deconpressor has received the
acknow edged packet and that it has observed changes in the packet
flow up to the acknow edged packet.

This functionality is optional, so a conpressor MJUST NOT expect to
get such ACKs, even if a feedback channel is avail able and has been
established for that flow

5.2.2.2. Negative Acknow edgrments (NACKs)

The conpressor uses feedback fromthe deconpressor to nove to a | ower
conpression state (NACKs).

On reception of a NACK feedback, the conpressor SHOULD
0 assune that only the static part of the deconpressor is valid, and

0 re-send all dynamic information (via an IR or | R-DYN packet) the
next tine it conpresses a packet for the indicated fl ow

unless it has confidence that information sent after the packet being
acknow edged al ready provides a suitable response to the NACK
feedback. In addition, the conpressor MAY use a CO packet carrying a
7-bit Cyclic Redundancy Check (CRC) if it can deternmne with enough
confidence what infornmation provides a suitable response to the NACK
f eedback.

On reception of a STATI C- NACK feedback, the conpressor SHOULD
0 assune that the deconpressor has no valid context, and

o re-send all static and all dynamic information (via an IR packet)
the next tine it conpresses a packet for the indicated flow

Pelletier, et al. St andards Track [Page 13]

RFC 4996 ROHC- TCP July 2007

unless it has confidence that information sent after the packet that
i s being acknow edged al ready provides a suitable response to the
STATI C- NACK f eedback.

5.2.3. Context Replication

A conpressor MAY support context replication by inplenenting the
addi ti onal conpression and feedback | ogic defined in [RFC4164].

5.3. Deconpressor Operation
5.3.1. Deconpressor States and Logic

The three states of the deconpressor are No Context (NC), Static
Context (SC), and Full Context (FC). The deconpressor starts inits
| owest conpression state, the NC state. Successful deconpression

wi |l always nove the deconpressor to the FC state. The deconpressor
state machine nornally never |eaves the FC state once it has entered
this state; only repeated deconpression failures will force the
deconpressor to transit downwards to a | ower state.

Below is the state machine for the deconpressor. Details of the
transitions between states and deconpression logic are given in the
subsections followi ng the figure.

Success
Foa > a oo So oo So oo So oo So oo >- -+
| |
No Static | No Dynami c Success | Success
+-->- -+ | +-->- -+ oo > oo - P — +-->- -+
| | | | | | | | |
| v | | v | v | v
o e e oo + Fmm e e e e + ook +
| No Context (NC) | | Static Context (SC) | | Full Context (FC) |
S + o + T +
n | n |
| Static Context | | Context Danage Assuned |
| Danage Assuned | | |
+-- - - - <----- - <----- - <----- + +-- - - - <----- - <----- - <----- +

5.3.1.1. Reconstruction and Verification

When deconpressing an IR or an | R-DYN packet, the deconpressor MJST
validate the integrity of the received header using CRC-8 validation
[RFC4995]. If validation fails, the packet MJUST NOT be delivered to
upper |ayers.

Pelletier, et al. St andards Track [Page 14]

RFC 4996 ROHC- TCP July 2007

Upon receiving an | R-CR packet, the deconpressor MJST performthe
actions as specified in [RFC4164].

When deconpressi ng ot her packet types (e.g., CO packets), the
deconpressor MJST validate the outcome of the deconpression attenpt
using CRC verification [RFC4995]. |If verification fails, a
deconpressor inplenentation MAY attenpt corrective or repair neasures
on the packet, and the result of any attenpt MJST be validated using
the CRC verification; otherwi se, the packet MJUST NOT be delivered to
upper |ayers.

Wien the CRC-8 validation or the CRC verification of the received
header is successful, the deconpressor SHOULD update its context wth
the information received in the current header; the deconpressor then
passes the reconstructed packet to the systenis network |ayer

O herwi se, the deconpressor context MJST NOT be updat ed.

If the received packet is older than the current reference packet,
e.g., based on the nmaster sequence nunmber (MSN) in the conpressed
packet, the deconpressor MAY refrain from updating the context using
the information received in the current packet, even if the
correctness of its header was successfully verified.

5.3.1.2. Detecting Context Damage

Al'l header formats carry a CRC and are context updating. A packet
for which the CRC succeeds updates the reference values of all header
fields, either explicitly (fromthe information about a field carried
wi thin the conpressed header) or inplicitly (fields that are inferred
fromother fields).

The deconpressor may assune that sonme or the entire context is
invalid, following one or nore failures to validate or verify a
header using the CRC. Because the deconpressor cannot know t he exact
reason(s) for a CRC failure or what field caused it, the validity of
the context hence does not refer to what exact context entry is
deened valid or not.

Validity of the context rather relates to the detection of a problem
with the context. The deconpressor first assumes that the type of
information that nost likely caused the failure(s) is the state that
normal |y changes for each packet, i.e., context damage of the dynanic
part of the context. Upon repeated failures and unsuccessfu

repairs, the deconpressor then assunes that the entire context,
including the static part, needs to be repaired, i.e., static context
damage.

Pelletier, et al. St andards Track [Page 15]

RFC 4996 ROHC- TCP July 2007

Cont ext Damage Detection

The assunption of context danmage neans that the deconpressor will
not attenpt deconpression of a CO header that carries a 3-bit CRC
and only attenpt deconpression of IR 1R DYN, or IR CR headers or
CO headers protected by a CRC 7.

Static Context Danage Detection

The assunption of static context danmage neans that the
deconpressor refrains fromattenpti ng deconpressi on of any type of
header other than the IR header.

How t hese assunptions are made, i.e., how context danage is detected
is open to inplementations. It can be based on the residual error
rate, where a low error rate makes the deconpressor assunme damage
nmore often than on a high-rate |ink

The deconpressor inplenents these assunptions by sel ecting the type
of conpressed header for which it nay attenpt deconpression. In
other words, validity of the context refers to the ability of a
deconpressor to attenpt or not attenpt deconpression of specific
packet types.

5.3.1.3. No Context (NC) State

Initially, while working in the No Context (NC) state, the
deconpressor has not yet successfully deconpressed a packet.

Al'l ow ng deconpression

In the NC state, only packets carrying sufficient information on
the static fields (IR and | R-CR packets) can be deconpressed;
otherw se, the packet MJUST NOT be deconpressed and MJUST NOT be
delivered to upper |ayers.

Feedback | ogi c:
In the NC state, the deconpressor should send a STATIC-NACK if a
packet of a type other than IR is received, or if deconpression of
an | R packet has failed, subject to the feedback rate Iimtation
as described in Section 5.3.2

Once a packet has been validated and deconpressed correctly, the
deconpressor MJST transit to the FC state.

Pelletier, et al. St andards Track [Page 16]

RFC 4996 ROHC- TCP July 2007

5.3.1.4. Static Context (SC) State

When the deconpressor is in the Static Context (SC) state, only the
static part of the deconpressor context is valid.

Fromthe SC state, the deconpressor noves back to the NC state if
static context danmge is detected

Al | owi ng deconpressi on

In the SC state, packets carrying sufficient information on the
dynanmic fields covered by an 8-bit CRC (e.g., IR and IR DYN) or CO
packets covered by a 7-bit CRC can be deconpressed; otherw se, the
packet MUST NOT be deconpressed and MUST NOT be delivered to upper
| ayers.

Feedback 1 ogi c:

In the SC state, the deconpressor should send a STATIC-NACK if CRC
validation of an IRIR-DYNIRCR fails and static context danage
is assuned. |f any other packet type is received, the
deconpressor should send a NACK. Both of the above cases are
subject to the feedback rate limtation as described in

Section 5.3.2.

Once a packet has been validated and deconpressed correctly, the
deconpressor MJST transit to the FC state.

5.3.1.5. Full Context (FC) State
In the Full Context (FC) state, both the static and the dynanic parts
of the deconpressor context are valid. Fromthe FC state, the
deconpressor noves back to the SC state if context danmage is
det ect ed.

Al'l ow ng deconpression

In the FC state, deconpression can be attenpted regardl ess of the
type of packet received

Feedback 1 ogi c:
In the FC state, the deconpressor should send a NACK i f the
deconpressi on of any packet type fails and context danage is

assuned, subject to the feedback rate limtation as described in
Section 5.3.2.

Pelletier, et al. St andards Track [Page 17]

RFC 4996 ROHC- TCP July 2007

5.3.2. Feedback Logic

The deconpressor MAY send positive feedback (ACKs) to initially
establish the feedback channel for a particular flow Either
positive feedback (ACKs) or negative feedback (NACKs) establishes
t hi s channel

Once the feedback channel is established, the deconpressor is

REQUI RED t o conti nue sendi ng NACKs or STATIC-NACKs for as long as the
context is associated with the sanme profile, in this case with
profil e 0x0006, as per the logic defined for each state in

Section 5.3.1.

The deconpressor MAY send ACKs upon successful deconpression of any
packet type. In particular, when a packet carrying a significant
context update is correctly deconpressed, the deconpressor MAY send
an ACK.

The deconpressor should limt the rate at which it sends feedback
for both ACKs and STATI C- NACK/ NACKs, and shoul d avoi d sendi ng
unnecessary duplicates of the sanme type of feedback nessage that may
be associated to the sane event.

5.3.3. Context Replication

ROHC- TCP supports context replication; therefore, the deconpressor
MUST i npl enent the additional deconpressor and feedback | ogic defined
in [RFC4164].

6. Encodings in ROHC- TCP (Nornmative)
6.1. Control Fields in ROHC TCP

In ROHC- TCP, a nunber of control fields are used by the deconpressor
inits interpretation of the format of the packets received fromthe
conpr essor.

A control fieldis a field that is transnitted fromthe conpressor to
t he deconpressor, but is not part of the unconpressed header. Val ues
for control fields can be set up in the context of both the
conpressor and the deconmpressor. Once established at the
deconpressor, the values of these fields should be kept until updated
by anot her packet.

Pelletier, et al. St andards Track [Page 18]

RFC 4996 ROHC- TCP July 2007

6.1.1. Master Sequence Nunber (NMBN)

There is no field in the TCP header that can act as the naster
sequence number for TCP conpression, as explained in [RFC4413],
Section 5. 6.

To overcone this problem ROHC TCP introduces a control field called
the Master Sequence Nunmber (MSN) field. The MSN field is created at
the conpressor, rather than using one of the fields already present
in the unconpressed header. The conpressor increnents the val ue of
the MSN by one for each packet that it sends.

The MSN field has the following two functions:
1. Differentiating between packets when sendi ng feedback data.
2. Inferring the value of increnmenting fields such as the IP-1D

The MSN field is present in every packet sent by the conpressor. The
MBN is LSB encoded within the CO packets, and the 16-bit MSN is sent
in full in IR IR DYN packets. The deconpressor always sends the MSN
as part of the feedback information. The conpressor can | ater use
the MSN to infer which packet the deconpressor is acknow edgi ng.

When the MSN is initialized, it SHOULD be initialized to a random
val ue. The conpressor should only initialize a new MSN for the
initial IR or IR CR packet sent for a CID that corresponds to a
context that is not already associated with this profile. In other
words, if the conpressor reuses the same CID to conpress nany TCP
flows one after the other, the MSNis not reinitialized but rather
continues to increnent nonotonically.

For context replication, the conpressor does not use the MSN of the
base context when sending the | R CR packet, unless the replication
process overwites the base context (i.e., Base CID == CID)

I nstead, the conpressor uses the value of the MSN if it already
exists in the ROHC- TCP context being associated with the new fl ow
(CID); otherwise, the MSNis initialized to a new val ue

6.1.2. | P-1D Behavior
The IP-1D field of the | Pv4 header can have different change
patterns. Conceptually, a conpressor nonitors changes in the val ue
of the IP-1D field and sel ects encodi ng net hods and packet formats
that are the closest match to the observed change pattern

ROHC- TCP defines different types of conpression techniques for the
IP-1D, to provide the flexibility to conpress any of the behaviors it

Pelletier, et al. St andards Track [Page 19]

RFC 4996 ROHC- TCP July 2007

may observe for this field: sequential in network byte order (NBO),
sequenti al byte-swapped, random (RND), or constant to a val ue of
zero.

The conpressor nonitors changes in the value of the IP-IDfield for a
nunber of packets, to identify which one of the above |isted
conpression alternatives is the closest match to the observed change
pattern. The conpressor can then select packet formats and encodi ng
nmet hods based on the identified field behavior

If nore than one |level of IP headers is present, ROHC TCP can assign
a sequential behavior (NBO or byte-swapped) only to the IP-I1D of the
i nnernost | P header. This is because only this IP-1D can possibly
have a sufficiently close correlation with the MSN (see al so

Section 6.1.1) to conpress it as a sequentially changing field.
Therefore, a conpressor MJST NOT assign either the sequential (NBO
or the sequential byte-swapped behavior to tunneling headers.

The control field for the I P-1D behavior determ nes which set of
packet fornmats will be used. These control fields are also used to
determine the contents of the irregular chain item (see Section 6.2)
for each | P header.

6.1.3. Explicit Congestion Notification (ECN)

Wien ECN [RFC3168] is used once on a flow, the ECN bits coul d change
quite often. ROHC-TCP maintains a control field in the context to

i ndi cate whether or not ECN is used. This control field is
transmitted in the dynam c chain of the TCP header, and its val ue can
be updat ed using specific conpressed headers carrying a 7-bit CRC

When this control field indicates that ECN is being used, itens of
all IP and TCP headers in the irregular chain include bits used for
ECN. To preserve octet-alignnent, all of the TCP reserved bits are
transmtted and, for outer |IP headers, the entire Type of Service/
Traffic dass (TOS/TC) field is included in the irregular chain.
When there is only one | P header present in the packet (i.e., no IP
tunneling is used), this conpression behavior allows the conmpressor
to handl e changes in the ECN bits by adding a single octet to the
conpressed header.

The reason for including the ECN bits of all IP headers in the
conpressed packet when the control field is set is that the profile
needs to efficiently conpress flows containing I P tunnels using the
"full-functionality option" of Section 9.1 of [RFC3168]. For these
flows, a change in the ECN bits of an inner |P header is propagated
to the outer IP headers. When the "limted-functionality" option is
used, the conpressor will therefore sonetimes send one octet nore

Pelletier, et al. St andards Track [Page 20]

RFC 4996 ROHC- TCP July 2007
than necessary per tunnel header, but this has been considered a
reasonabl e tradeoff when designing this profile.

6.2. Conpressed Header Chains
Sone packet types use one or nore chains containing sub-header
information. The function of a chainis to group fields based on
simlar characteristics, such as static, dynamic, or irregular
fields. Chaining is done by appending an itemfor each header to the
chain in their order of appearance in the unconpressed packet,
starting fromthe fields in the outernost header
Chains are defined for all headers conpressed by ROHC-TCP, as listed
below. Also listed are the nanmes of the encodi ng net hods used to
encode each of these protocol headers.

o TCP [RFCO793], encoding nethod: "tcp"

o |Pv4 [RFCO791], encodi ng nmet hod: "ipv4"

o |Pve [RFC2460], encodi ng net hod: "ipv6e"

0 AH [RFC4302], encoding nethod: "ah"

0 GCRE [RFC2784][RFC2890], encodi ng net hod: "gre"

0 M NE [RFC2004], encodi ng net hod: "m ne"

0 NULL-encrypted ESP [RFC4303], encoding nethod: "esp_null"

0 |Pve Destination Options header [RFC2460], encodi ng mnet hod:
"ip_dest _opt"

0 | Pv6 Hop-by-Hop Options header [RFC2460], encodi ng net hod:
"i p_hop_opt"

0 |Pv6 Routing header [RFC2460], encoding nethod: "ip_rout_opt"
Static chain:

The static chain consists of one itemfor each header of the chain
of protocol headers to be conpressed, starting fromthe outernost

| P header and ending with a TCP header. |In the fornmal description
of the packet formats, this static chain itemfor each header is a
format whose nane is suffixed by "_static". The static chainis

only used in IR packets.

Pelletier, et al. St andards Track [Page 21]

RFC 4996 ROHC- TCP July 2007

Dynani ¢ chai n:

The dynami c chain consists of one itemfor each header of the
chain of protocol headers to be conpressed, starting fromthe
outernmost | P header and ending with a TCP header. The dynanic
chain itemfor the TCP header al so contains a conpressed |ist of

TCP options (see Section 6.3). In the fornmal description of the
packet formats, the dynanic chain itemfor each header type is a
format whose nane is suffixed by " _dynamic". The dynamic chain is

used in both IR and | R-DYN packets.
Replicate chain:

The replicate chain consists of one itemfor each header in the
chain of protocol headers to be conpressed, starting fromthe

outernost | P header and ending with a TCP header. The replicate
chain itemfor the TCP header al so contains a conpressed |ist of

TCP options (see Section 6.3). In the formal description of the
packet formats, the replicate chain itemfor each header type is a
format whose nane is suffixed by " replicate". Header fields that

are not present in the replicate chain are replicated fromthe
base context. The replicate chainis only used in the IR CR
packet .

I rregul ar chain:

The structure of the irregular chain is anal ogous to the structure
of the static chain. For each conpressed packet, the irregular
chain is appended at the specified |location in the general format
of the conpressed packets as defined in Section 7.3. This chain
al so includes the irregular chain itens for TCP options as defined
in Section 6.3.6, which are placed directly after the irregul ar
chain item of the TCP header, and in the sane order as the options

appear in the unconpressed packet. 1In the formal description of
the packet formats, the irregular chain itemfor each header type
is a format whose nane is suffixed by " irregular”. The irregular

chain is used only in CO packets.
The format of the irregular chain for the innernost |P header

differs fromthe format of outer |P headers, since this header is
part of the conpressed base header.

Pelletier, et al. St andards Track [Page 22]

RFC 4996 ROHC- TCP July 2007

6.3. Conpressing TCP Options with List Conpression

This section describes in detail how list conpression is applied to

the TCP options. |In the definition of the packet formats for ROHC

TCP, the nobst frequent TCP options have one encodi ng nethod each, as
listed in the table bel ow

e e e oo o e e e e e e e e oo +
| Opti on nane | Encoding nethod nane

B o e e e e e e e e m o +
NOP	tcp_opt_nop
EQL	tcp_opt_eol
MBS	tcp_opt _nss
WNDOWSCALE	tcp_opt_wscale
TI MESTAMP	tcp_opt_ts
SACK-PERM TTED	tcp_opt_sack_permtted

| SACK | tcp_opt_sack |
| | |

Ceneric options tcp_opt _generic

Each of these encodi ng nethods has an unconpressed format, a fornmat

suffixed by " list_iten and a format suffixed by " _irregular”. In
some cases, a single encoding nethod may have nultiple "_list_itent
or " _irregular" formats, in which case bindings inside these fornats

determine what format is used. This is further described in the
foll owi ng sections.

6.3.1. List Conpression
The TCP options in the unconpressed packet can be represented as an

ordered list, whose order and presence are usually constant between
packets. The generic structure of such a list is as follows:

list: | item1 | item?2 | | itemn |

To conpress this list, ROHC TCP uses a |list conpression schene, which
conpresses each of these itens individually and conbines theminto a
conmpressed list.

The basic principles of |ist-based conpression are the foll ow ng:
1) Wien a context is being initialized, a conplete representation
of the conpressed list of options is transmitted. Al options

that have any content are present in the conpressed list of itens
sent by the conpressor.

Pelletier, et al. St andards Track [Page 23]

RFC 4996 ROHC- TCP July 2007

Then, once the context has been initialized:

2) When the structure AND the content of the |list are unchanged,
no i nformation about the list is sent in conpressed headers.

3) When the structure of the list is constant, and when only the
content defined within the irregular format for one or nore
options is changed, no infornmation about the list needs to be sent
in conpressed base headers; the irregular content is sent as part
of the irregular chain, as described in Section 6.3.6.

4) \Wen the structure of the list changes, a conpressed list is
sent in the conpressed base header, including a representation of
its structure and order. Content defined within the irregular
format of an option can still be sent as part of the irregular
chain (as described in Section 6.3.6), provided that the item
content is not part of the conpressed |ist.

6.3.2. Tabl e-Based |Item Conpression

The Tabl e-based item conpressi on conpresses individual itens sent in
conpressed lists. The conpressor assigns a unique identifier,
"Index", to each item "Itent, of a list.

Conpressor Logic

The conpressor conceptually maintains an itemtable containing all
items, indexed using "Index". The (Index, Iten) pair is sent
together in conpressed lists until the conpressor gains enough
confidence that the deconpressor has observed t he mappi ng between
itenms and their respective index. Confidence is obtained fromthe
reception of an acknow edgnent fromthe deconpressor, or by
sending (I ndex, Iten) pairs using the optimnistic approach. Once
confidence is obtained, the index alone is sent in conpressed
lists to indicate the presence of the itemcorresponding to this

i ndex.

The conpressor nmay reassign an existing index to a newitem by
re-establishing the mappi ng using the procedure described above.

Deconpr essor Logic

The deconpressor conceptually nmaintains an itemtabl e that
contains all (Index, Item) pairs received. The itemtable is
updat ed whenever an (lndex, Iten) pair is received and
deconpression is successfully verified using the CRC. The
deconpressor retrieves the itemfromthe table whenever an index
wi t hout an acconpanying itemis received.

Pelletier, et al. St andards Track [Page 24]

RFC 4996 ROHC- TCP July 2007

If an index wi thout an acconpanying itemis received and the
deconpressor does not have any context for this index, the header
MJUST be discarded and a NACK SHOULD be sent.
6.3.3. Encodi ng of Conpressed Lists
Each item present in a conpressed list is represented by:

o an index into the table of itens

0 a presence bit indicating if a conpressed representation of the
itemis present in the |ist

o an item (if the presence bit is set)

Deconpression of an itemw Il fail if the presence bit is not set and
t he deconpressor has no entry in the context for that item

A conpressed list of TCP options uses the follow ng encodi ng:

0 1 2 3 4 5 6 7
M S S S

| Reserved |PS | m

B LT, oI S S S

| Xl 1, ..., XI_m | moctets, or m* 4 bits
/ R LY

| : Paddi ng :if PS =0 and mis odd

S S S

| |
/ iteml1, ..., itemn / variable
| |

g S S S

Reserved: MJUST be set to zero; otherw se, the deconpressor MJST
di scard the packet.

PS: Indicates size of Xl fields:
PS = 0 indicates 4-bit Xl fields;
PS = 1 indicates 8-bit Xl fields.
m Nunber of Xl item(s) in the conpressed |ist.
XI_1, ..., XI_m mXl items. Each Xl represents one TCP option in

t he unconpressed packet, in the sane order as they appear in the
unconpr essed packet.

Pelletier, et al. St andards Track [Page 25]

RFC 4996 ROHC- TCP July 2007

6.3. 4.

The format of an XI itemis as follows:

L

PS = 0: | X | I ndex
B e I g
o 1 2 3 4 5 6 7
I LR Il IS e SR
PS = 1: | X | Reserved | | ndex

B T S S S T =
X: Indicates whether the itemis present in the list:

X =1 indicates that the itemcorresponding to the Index is
sent inthe iteml1, ..., itemn list;

X =0 indicates that the itemcorresponding to the Index is
not sent and is instead included in the irregular chain.

Reserved: MJUST be set to zero; otherw se, the deconpressor MJST
di scard the packet.

Index: An index into the itemtable. See Section 6. 3. 4.

When 4-bit Xl itens are used, the Xl itens are placed in octets
in the follow ng manner:

0 1 2 3 4 5 6 7
e

| Xl _k | XI_k +1 |
S S SRS

Paddi ng: A 4-bit padding field is present when PS = 0 and the
nunber of Xls is odd. The Padding field MIUST be set to zero;
ot herwi se, the deconpressor MJST discard the packet.

Iltem1l, ..., itemn: Each itemcorresponds to an XI with X =1 in
Xl 1, ..., XI m The fornat of the entries in the itemlist is
described in Section 6. 2.

Item Tabl e Mappi ngs

The itemtable for TCP options list conpression is linted to 16
different items, since it is unlikely that any packet flow will
contain a |l arger nunber of unique options.

Pelletier, et al. St andards Track [Page 26]

RFC 4996 ROHC- TCP July 2007

The mappi ng between the TCP option type and table i ndexes are listed
in the table bel ow

B T +
| Opti on nane | Tabl e index
S S +
NOP	0
EQL	1
MES	2
WNDOW SCALE	3
TI MESTAMP	4

| SACK- PERM TTED | 5 |
| SACK | 6 |
| Ceneric options | 7-15
o e e oo S +

Some TCP options are used nore frequently than others. To sinplify
their conpression, a part of the itemtable is reserved for these
option types, as shown on the table above. Both the conpressor and
t he deconpressor MJST use these nappi ngs between item and i ndexes to
(de) conpress TCP options when using |ist conpression

It is expected that the option types for which an index is reserved
inthe itemtable will only appear once in a list. However, if an
option type is detected twice in the sane options list and if both
options have a different content, the conpressor should conpress the
second occurrence of the option type by mapping it to a generic
conpressed option. Oherwise, if the options have the exact sane
content, the conpressor can still use the same table index for both.

The NOP option

The NOP option can appear nore than once in the list. However,
since its value is always the same, no context information needs
to be transmitted. Miltiple NOP options can thus be mapped to the
sanme i ndex. Since the NOP option does not have any content when
conpressed as a " _list_itent, it will never be present in the item
list. For consistency, the conpressor should still establish an
entry in the list by setting the presence bit, as done for the

ot her type of options.

Li st conpression al ways preserves the original order of each item
in the deconpressed list, whether or not the itemis present in
the conpressed " list itent or if nultiple itens of the sane type
can be mapped to the same index, as for the NOP option

Pelletier, et al. St andards Track [Page 27]

RFC 4996 ROHC- TCP July 2007

The ECL option

The size of the conpressed format for the EOQOL option can be |arger
than one octet, and it is defined so that it includes the option
paddi ng. This is because the EOL should term nate the parsing of
the options, but it can also be foll owed by padding octets that
all have the value zero

The Generic option

The Generic option can be used to conpress any type of TCP option
that does not have a reserved index in the itemtable.

6.3.5. Conpressed Lists in Dynam c Chain

A conmpressed list for TCP options that is part of the dynam c chain
(e.g., in IR or IR DYN packets) nust have all its list itenms present,
i.e., all X-bits in the Xl list MJST be set.

6.3.6. Irregular Chain Items for TCP Options

The " list_itent represents the option inside the conpressed item
list, and the " _irregular” format is used for the option fields that
are expected to change with each packet. Wen an itemof the
specified type is present in the current context, these irregul ar
fields are present in each conpressed packet, as part of the
irregular chain. Since many of the TCP option types are not expected
to change for the duration of a flow, many of the " _irregular”
formats are enpty.

The irregular chain for TCP options is structured anal ogously to the
structure of the TCP options in the unconpressed packet. |If a
conpressed list is present in the conpressed packet, then the
irregular chain for TCP options nmust not contain irregular itens for
the list items that are transmitted inside the conpressed list (i.e.
itens in the list that have the X-bit set inits XlI). The itens that
are not present in the conpressed list, but are present in the
unconpressed list, nust have their respective irregular itens present
in the irregular chain.

6.3.7. Replication of TCP Options
The entire table of TCP options itens is always replicated when using
the IR-CR packet. In the IR CR packet, the list of options for the

new flowis also transmitted as a conpressed list in the IRCR
packet .

Pelletier, et al. St andards Track [Page 28]

RFC 4996 ROHC- TCP July 2007

6.4. Profile-Specific Encodi ng Methods

This section defines encodi ng nethods that are specific to this
profile. These methods are used in the formal definition of the
packet formats in Section 8.

6.4.1. inferred_ip_v4 header_ checksum

Thi s encodi ng nethod conpresses the Header Checksumfield of the |Pv4
header. This checksumis defined in [RFCO791] as foll ows:

Header Checksum 16 bits

A checksum on t he header only. Since sone header fields change
(e.g., time to live), this is reconputed and verified at each
point that the internet header is processed.

The checksumalgorithmis:

The checksumfield is the 16 bit one’'s conpl enent of the one’s
conpl enment sumof all 16 bit words in the header. For purposes
of computing the checksum the value of the checksumfield is
zero.

As descri bed above, the header checksum protects individual hops from
processing a corrupted header. Wen alnost all |P header information
is conpressed away, and when deconpression is verified by a CRC
comput ed over the original header for every conpressed packet, there
is no point in having this additional checksum instead, it can be
reconputed at the deconpressor side

The "inferred_i p_v4_header_checksunt encodi ng met hod t hus conpresses
the | Pv4 header checksum down to a size of zero bits. Using this
encodi ng net hod, the deconpressor infers the value of this field
usi ng the conputation above.

This encoding nethod inplicitly assumes that the conpressor will not
process a corrupted header; otherw se, it cannot guarantee that the
checksum as reconmputed by the deconpressor will be bitwi se identica
to its original value before conpression

Pelletier, et al. St andards Track [Page 29]

RFC 4996 ROHC- TCP July 2007

6.4.2. inferred_m ne_header_ checksum

Thi s encodi ng nethod conpresses the nininal encapsul ati on header
checksum This checksumis defined in [RFC2004] as foll ows:

Header Checksum

The 16-bit one’'s conpl enent of the one’'s conpl enent sum of all
16-bit words in the mnimal forwarding header. For purposes of
conmputing the checksum the value of the checksumfield is O.
The I P header and | P payload (after the m nimal forwarding
header) are not included in this checksum conputation

The "inferred_ni ne_header checksunt encodi ng net hod conpresses the

nm ni mal encapsul ati on header checksum down to a size of zero bits,
i.e., no bits are transnitted in conpressed headers for this field.
Usi ng this encodi ng nmethod, the deconpressor infers the value of this
field using the above conputation.

The notivations and the assunptions for inferring this checksum are
simlar to the ones expl ai ned above in Section 6.4.1

6.4.3. inferred_ip_v4_length

Thi s encodi ng nethod conpresses the Total Length field of the |Pv4
header. The Total Length field of the IPv4 header is defined in
[RFCO791] as follows:

Total Length: 16 bits

Total Length is the length of the datagram nmeasured in octets,
i ncluding internet header and data. This field allows the
length of a datagramto be up to 65,535 octets.

The "inferred_i p_v4_length" encodi ng nethod conpresses the |Pv4
header checksum down to a size of zero bits. Using this encoding
met hod, the deconpressor infers the value of this field by counting
in octets the length of the entire packet after deconpression

Pelletier, et al. St andards Track [Page 30]

RFC 4996 ROHC- TCP July 2007

6.4.4. inferred_ip_v6_length

Thi s encodi ng nethod conpresses the Payload Length field of the |IPv6
header. This length field is defined in [RFC2460] as fol | ows:

Payl oad Length: 16-bit unsigned integer

Length of the I Pv6 payload, i.e., the rest of the packet
following this | Pv6 header, in octets. (Note that any

ext ensi on headers present are considered part of the payl oad,
i.e., included in the length count.)

The "inferred_ i p_v6_|length" encodi ng nethod conpresses the Payl oad
Length field of the | Pv6 header down to a size of zero bits. Using
this encodi ng nethod, the deconpressor infers the value of this field
by counting in octets the Iength of the entire packet after

deconpr essi on.

6.4.5. inferred_ offset

Thi s encodi ng net hod conpresses the data offset field of the TCP
header .

The "inferred offset” encoding nmethod is used on the Data O f set
field of the TCP header. This field is defined in [RFCO793] as:

Data Offset: 4 bits

The nunber of 32 bit words in the TCP Header. This indicates

where the data begins. The TCP header (even one incl uding

options) is an integral nunber of 32 bits |ong.
The "inferred_offset" encodi ng method conpresses the Data O f set
field of the TCP header down to a size of zero bits. Using this
encodi ng net hod, the deconpressor infers the value of this field by
first deconpressing the TCP options list, and by then setting:

data offset = (options length / 4) + 5
The equation above uses integer arithnetic.
6.4.6. baseheader extension_headers

In CO packets (see Section 7.3), the innernost |P header and the TCP
header are conbined to create a conpressed base header. In sone

cases, the | P header will have a nunber of extensi on headers between
itself and the TCP header.

Pelletier, et al. St andards Track [Page 31]

RFC 4996 ROHC- TCP July 2007

To remain formally correct, the base header nust define sone
representation of these extension headers, which is what this
encodi ng nethod is used for. This encoding nmethod skips over all the
ext ensi on headers and does not encode any of the fields. Changed
fields in these headers are encoded in the irregular chain.

6.4.7. baseheader outer_headers

This encodi ng nethod, as well as the baseheader_extensi on_headers
encodi ng net hod descri bed above, is needed for the specification to
remain formally correct. It is used in CO packets (see Section 7.3)
to describe tunneling IP headers and their respective extension
headers (i.e., all headers |ocated before the innernost |P header).

Thi s encodi ng net hod skips over all the fields in these headers and
does not perform any encoding. Changed fields in outer headers are
i nstead handl ed by the irregular chain.

6.4.8. Scal ed Encodi ng of Fields

Sone header fields will exhibit a change pattern where the field
i ncreases by a constant value or by nultiples of the sanme val ue.

Exanpl es of fields that may have this behavior are the TCP Sequence

Nunmber and the TCP Acknow edgnent Nunber. For such fields, ROHC TCP
provides the nmeans to downscale the field val ue before applying LSB

encodi ng, which allows the conpressor to transnmt fewer bits.

To be able to use scal ed encoding, the field is required to fulfill
the follow ng equation

unscal ed_value = scaling factor * scal ed val ue + residue

To use the scal ed encodi ng, the conpressor nust be confident that the
deconpressor has established values for the "residue" and the
"scaling factor", so that it can correctly deconpress the field when
only an LSB-encoded "scal ed_val ue" is present in the conpressed
packet .

Once the conpressor is confident that the value of the scaling_factor
and the value of the residue have been established in the
deconpressor, the conpressor may send conpressed packets using the
scal ed representation of the field. The conpressor MJST NOT use
scal ed encoding with the value of the scaling_factor set to zero.

If the conpressor detects that the value of the residue has changed
or if the conpressor uses a different value for the scaling factor

Pelletier, et al. St andards Track [Page 32]

RFC 4996 ROHC- TCP July 2007

it MJUST NOT use scal ed encoding until it is confident that the
deconpressor has received the new val ue(s) of these fields.

When t he unscal ed value of the field waps around, the value of the
residue is likely to change, even if the scaling_factor remains
constant. In such a case, the conpressor nust act in the sane way as
for any other change in the residue.

The followi ng subsections describe how the scaled encoding is applied
to specific fields in ROHC-TCP, in particular, how the scaling factor
and residue values are established for the different fields.

6.4.8.1. Scaled TCP Sequence Number Encodi ng

For some TCP fl ows, such as data transfers, the payload size will be
constant over periods of tinme. For such flows, the TCP Sequence
Number is bound to increase by nultiples of the payl oad size between
packets, which neans that this field can be a suitable target for
scal ed encodi ng. Wen using this encoding, the payload size will be
used as the scaling factor (i.e., as the value for scaling_factor) of
this encoding. This neans that the scaling factor does not need to
be explicitly transmitted, but is instead inferred fromthe | ength of
the payload in the conpressed packet.

Est abl i shing scaling factor:
The scaling factor is established by sending unscal ed TCP Sequence
Number bits, so that the deconpressor can infer the scaling factor
fromthe payl oad size

Est abl i shi ng residue:

The residue is established identically as the scaling_factor
i.e., by sending unscal ed TCP Sequence Nunber bits.

A detail ed specification of howthe TCP Sequence Nunber uses the
scal ed encodi ng can be found in the definitions of the packet
formats, in Section 8.2.

6.4.8.2. Scal ed Acknowl edgnent Number Encodi ng
Simlar to the pattern exhibited by the TCP Sequence Nunber, the
expected increase in the TCP Acknow edgnent Nunber is often constant
and is therefore suitable for scal ed encodi ng.
For the TCP Acknow edgnment Nunber, the scaling factor depends on the

size of packets flowing in the opposite direction; this information
m ght not be available to the conpressor/deconpressor pair. For this

Pelletier, et al. St andards Track [Page 33]

RFC 4996 ROHC- TCP July 2007

reason, ROHC-TCP uses an explicitly transmtted scaling factor to
conpress the TCP Acknow edgnent Nunber.

Est abl i shing scaling_factor:

The scaling factor is established by explicitly transnmtting the
val ue of the scaling factor (called ack _stride in the fornal
notation in Section 8.2) to the deconpressor, using one of the
packet types that can carry this infornation.

Est abl i shi ng resi due:

The scaling factor is established by sendi ng unscal ed TCP
Acknowl edgnent Nunber bits, so that the deconpressor can infer its
val ue fromthe unscal ed value and the scaling factor (ack_stride).

A detailed specification of how the TCP Acknow edgnent Nunber uses
the scal ed encoding can be found in the definitions of the packet
formats, in Section 8.2

The conpressor MAY use the scal ed acknow edgnent numnber encodi ng;

what value it will use as the scaling factor is up to the conpressor

i npl ementation. In the case where there is a co-located deconpressor
processi ng packets of the sane TCP flow in the opposite direction

the scaling factor for the sequence nunber used for that flow can be

used by the conpressor to deternine a suitable scaling factor for the
TCP Acknow edgnent nunber for this flow

6.5. Encoding Methods Wth External Paranmeters

A nunber of encoding nethods in Section 8.2 have one or nore
arguments for which the derivation of the paraneter’s value is
out si de the scope of the ROHC-FN specification of the header fornats.
This section lists the encoding nethods together with a definition of
each of their parameters

o esp_null (next _header _val ue):

next _header _value: Set to the value of the Next Header field

located in the ESP trailer, usually 12 octets fromthe end of
the packet. Conpression of null-encrypted ESP headers shoul d
only be perforned when the conpressor has prior know edge of

the exact |ocation of the Next Header field.

Pelletier, et al. St andards Track [Page 34]

RFC 4996 ROHC- TCP July 2007

o 1ipve(is_innernmost, ttl _irregular_chain_flag, ip_inner_ecn):

is_innernost: This Boolean flag is set to true when processing
the innernost | P header; otherwise, it is set to false

ttl _irregular_chain_flag: This parameter nust be set to the
val ue that was used for the corresponding

"ttl _irregular_chain_flag" paranmeter of the "co_baseheader"
encodi ng nethod (as defined bel ow) when extracting the
irregular chain for a conpressed header; otherwise, it is set
to zero and ignored for other types of chains.

i p_inner_ecn: This paraneter is bound by the encodi ng net hod,
and therefore it should be undefined when calling this encoding
method. This value is then used to bind the correspondi ng
paraneter in the "tcp" encoding nethod, as its value is needed
when processing the irregular chain for TCP. See the
definition of the "ip_inner_ecn" paraneter for the "tcp"
encodi ng net hod bel ow.

0 ipv4(is_innernmost, ttl_irregular_chain_flag, ip_inner_ecn):
See definition of argunents for "ipv6" above.

o tcp_opt_eol (nbits):
nbits: This paranmeter is set to the length of the paddi ng data
| ocated after the ECL option type octet to the end of the TCP
options in the unconpressed header

o tcp_opt_sack(ack_val ue):

ack_val ue: Set to the value of the Acknow edgment Nunber field
of the TCP header.

o tcp(payl oad_size, ack stride_value, ip_inner_ecn):

payl oad_size: Set to the length (in octets) of the payl oad
foll owi ng the TCP header.

ack_stride_value: This paraneter is the scaling factor used
when scaling the TCP Acknow edgnent Nunber. Its value is set
by the conpressor inplenentation. See Section 6.4.8.2 for
reconmendati ons on how to set this val ue.

i p_inner_ecn: This paraneter binds with the value given to the

correspondi ng "i p_i nner_ecn" paraneter by the "ipv4" or the
"i pv6" encodi ng nmet hod when processing the innernost |P header

Pelletier, et al. St andards Track [Page 35]

RFC 4996 ROHC- TCP July 2007

7.

7.

of this packet. See also the definition of the "ip_inner_ecn"
paraneter to the "ipv6" and "ipv4" encodi ng net hod above.

0 co_baseheader (payl oad_si ze, ack_stride_val ue,
ttl _irregular_chain_flag):

payl oad_size: Set to the length (in octets) of the payl oad
foll owi ng the TCP header.

ack_stride_value: This paraneter is the scaling factor used
when scaling the TCP Acknowl edgnent Nunber. Its value is set
by the conpressor inplenentation. See Section 6.4.8.2 for
reconmendati ons on how to set this val ue.

ttl _irregular_chain_flag: This paraneter is set to one if the
TTL/Hop Limt of an outer header has changed conpared to its
reference in the context; otherwise, it is set to zero. The
val ue used for this paraneter is also used for the

"ttl _irregular_chain_flag" argument for the "ipv4" and "ipv6"
encodi ng met hods when processing the irregular chain, as
defined above for the "ipv6" and "ipv4" encodi ng nethods.

Packet Types (Nornmative)

ROHC- TCP uses three different packet types: the Initialization and
Refresh (I R) packet type, the Context Replication (IR CR) packet
type, and the Conpressed (CO packet type.

Each packet type defines a nunber of packet formats: two packet
formats are defined for the IR type, one packet format is defined for
the IR-CR type, and two sets of eight base header formats are defined
for the COtype with one additional format that is conmon to both
sets.
The profile identifier for ROHC-TCP i s 0x0006.
1. Initialization and Refresh (I R) Packets

ROHC- TCP uses the basic structure of the ROHC | R and | R-DYN packets
as defined in [RFC4995] (Sections 5.2.2.1 and 5.2.2.2, respectively).

Packet type: IR

Thi s packet type conmunicates the static part and the dynam c part
of the context.

For the ROHC-TCP I R packet, the value of the x bit MJST be set to
one. It has the followi ng format, which corresponds to the

Pelletier, et al. St andards Track [Page 36]

RFC 4996 ROHC- TCP July 2007

"Header" and "Payl oad" fields described in Section 5.2.1 of
[RFC4995] :

0 1 2 3 4 5 6 7

Add- CI D oct et : if for small CIDs and (CID!= 0)
B T T T Rt S

| 1 1 1 1 1 1 0 1| IRtype octet
B T T T R S S S

) 0-2 octets of CD) 1-2 octets if for large ClDs
;---+---+---+---+---+---+---+---;

| Profile = 0x06 | 1 octet

B T T T R S S S

| CRC | 1 octet

e R L T IS I SR R

| |

/ Static chain / variable length
| |

| _ _ | _

/ Dynami ¢ chai n / variable length
| |

| |

/ Payl oad / variable |length

CRC. 8-bit CRC, conputed according to Section 5.3.1.1. of
[RFC4995]. The CRC covers the entire IR header, thus excl uding
payl oad, paddi ng, and feedback, if any.
Static chain: See Section 6. 2.
Dynami ¢ chain: See Section 6. 2.
Payl oad: The payl oad of the corresponding original packet, if any.
The payl oad consists of all data after the | ast octet of the TCP
header to end of the unconpressed packet. The presence of a
payl oad is inferred fromthe packet |ength.

Packet type: | R DYN

Thi s packet type conmuni cates the dynamic part of the context.

Pelletier, et al. St andards Track [Page 37]

RFC 4996 ROHC- TCP July 2007

7.

2.

The ROHC-TCP | R-DYN packet has the foll owing fornmat, which
corresponds to the "Header" and "Payl oad" fields described in
Section 5.2.1 of [RFC4995]:

0 1 2 3 4 5 6 7

: Add- CI D oct et : if for small CIDs and (CID!= 0)
B T T S i S S

| 1 1 1 1 1 0 0 0 | IRDYN type octet

B T S S S T =

) 0-2 octets of CID) 1-2 octets if for large ClDs
;---+---+---+---+---+---+---+---;

| Profile = 0x06 | 1 octet

B T S S S T =

| CRC | 1 octet

B LT, oI S S S

| |

/ Dynanmi ¢ chain / variable length
| |

| |

/ Payl oad / variable length

CRC. 8-bit CRC, conmputed according to Section 5.3.1.1 of
[RFC4995]. The CRC covers the entire | R DYN header, thus
excl udi ng payl oad, paddi ng, and feedback, if any.

Dynami ¢ chain: See Section 6. 2.

Payl oad: The payl oad of the correspondi ng original packet, if any.
The payl oad consists of all data after the | ast octet of the TCP
header to end of the unconpressed packet. The presence of a

payl oad is inferred fromthe packet |ength.

Context Replication (IR CR) Packets

Context replication requires a dedicated IR packet format that
uniquely identifies the | R-CR packet for the ROHC-TCP profile. This
section defines the profile-specific part of the I R CR packet

[RFC4164] .

Pelletier, et al. St andards Track [Page 38]

RFC 4996 ROHC- TCP July 2007

Packet type: IR CR

Thi s packet type communicates a reference to a base context al ong
with the static and dynam c parts of the replicated context that
differs fromthe base context.

The ROHC-TCP | R-CR packet follows the general format of the ROHC CR
packet, as defined in [RFC4164], Section 3.5.2. Wth consideration
to the extensibility of the IR packet type defined in [RFC4995], the
ROHC- TCP profil e supports context replication through the profile-
specific part of the IR packet. This is achieved using the bit (x)
left in the IR header for "Profile specific information". For ROHC
TCP, this bit is defined as a flag indicating whether this packet is
an | R packet or an IR CR packet. For the ROHC- TCP | R-CR packet, the
val ue of the x bit MJST be set to zero

Pelletier, et al. St andards Track [Page 39]

RFC 4996 ROHC- TCP July 2007

The ROHC-TCP IR-CR has the followi ng fornmat, which corresponds to the
"Header" and "Payl oad" fields described in Section 5.2.1 of
[RFC4995] :

0 1 2 3 4 5 6 7

: Add- CI D oct et : if for small CIDs and (CID!= 0)
B T T S i S S

| 1 1 1 1 1 1 0 0] IRCR type octet

B T S S S T =

) 0-2 octets of CID) 1-2 octets if for large ClDs
:|----+---+---+---+---+---+---+---:i-
| Profile = 0x06 | 1 octet
B T S S S T =
| CRC | 1 octet
B LT, oI S S S
| B CRC7 | 1 octet
B T T S i S S
Reserved | Base CI D : 1 octet, for small CD, if B=1
B T S S S T =
) Base CI D) 1-2 octets, for large C Ds,
: if B=1
B T T S i S S
| |
/ Replicate chain / variable length
| |
| |
/ Payl oad / variable length

B: B=1 indicates that the Base CID field is present.

CRC:. This CRC covers the entire | R-CR header, thus excluding
payl oad, paddi ng, and feedback, if any. This 8-bit CRCis
cal cul ated according to Section 5.3.1.1 of [RFC4995].

CRC7: The CRC over the original, unconpressed, header. Calcul ated
according to Section 3.5.1.1 of [RFC4164].

Reserved: MJUST be set to zero; otherw se, the deconpressor MJST
di scard the packet.

Pelletier, et al. St andards Track [Page 40]

RFC 4996 ROHC- TCP July 2007

7.

3.

Base CID: CID of base context. Encoded according to [RFC4164],
Section 3.5.3.

Replicate chain: See Section 6.2.

Payl oad: The payl oad of the correspondi ng original packet, if any.
The presence of a payload is inferred fromthe packet |ength.

Conpressed (CO Packets

The ROHC- TCP CO packets comrunicate irregularities in the packet
header. Al CO packets carry a CRC and can update the context.

The general format for a conpressed TCP header is as follows, which
corresponds to the "Header" and "Payl oad" fields described in Section
5.2.1 of [RFC4995]:

0 1 2 3 4 5 6 7

: Add- CI D oct et : if for small CIDs and CID 1-15
Ik LRk S I e TR
| First octet of base header | (with type indication)

B T S S T e o
) 0, 1, or 2 octets of CID) 1-2 octets if large ClDs

S T g
/ Renai nder of base header /[variable nunber of octets
B T S S T e o
: Irregul ar chain :
/ (including irregular chain [/ variable
items for TCP options)

| |
/ Payl oad / variable length

Base header: The conplete set of base headers is defined in
Section 8.

Irregul ar chain: See Section 6.2 and Section 6. 3. 6.

Payl oad: The payl oad of the corresponding original packet, if any.
The presence of a payload is inferred fromthe packet |ength.

Pelletier, et al. St andards Track [Page 41]

RFC 4996 ROHC- TCP July 2007

8. Header Formats (Normative)

This section describes the set of conpressed TCP/|P packet formats.
The normative description of the packet formats is given using the
formal notation for ROHC profiles defined in [RFC4997]. The formal
description of the packet formats specifies all of the information
needed to conpress and deconpress a header relative to the context.

In particular, the notation provides a list of all the fields present
in the unconpressed and conpressed TCP/ | P headers, and defines how to
map from each unconpressed packet to its conpressed equival ent and

vi ce versa

8.1. Design Rationale for Conpressed Base Headers

The conpressed header formats are defined as two separate sets: one
set for the packets where the innernost | P header contains a
sequential IP-ID (either network byte order or byte swapped), and one
set for the packets without sequential IP-1D (either random zero, or
no | P-1D).

These two sets of header formats are referred to as the "sequential "
and the "randont set of header formats, respectively.

In addition, there is one conpressed format that is comobn to both
sets of header formats and that can thus be used regardl ess of the
type of IP-1D behavior. This format can transnit rarely changing
fields and al so send the frequently changing fields coded in variable
lengths. 1t can also change the value of control fields such as

| P-1 D behavi or and ECN behavi or.

Al'l conpressed base headers contain a 3-bit CRC, unless they update
control fields such as "ip_id_behavior" or "ecn_used" that affect the
interpretation of subsequent headers. Headers that can nodify these
control fields carry a 7-bit CRC instead.

When di scussi ng LSB-encoded fields below, "p" equals the

"of fset parant and "k" equals the "numlsbs parani in [RFC4997]. The
encodi ng net hods used in the conpressed base headers are based on the
foll owi ng design criteria:

o BN

Since the MSN is a nunmber generated by the conpressor, it only
needs to be | arge enough to ensure robust operation and to
acconmodate a small anount of reordering [RFC4163]. Therefore,
each conpressed base header has an MSN field that is LSB-
encoded with k=4 and p=4 to handle a reordering depth of up to

Pelletier, et al. St andards Track [Page 42]

RFC 4996 ROHC- TCP July 2007

4 packets. Additional guidance to inprove robustness when
reordering is possible can be found in [RFC4224].

0 TCP Sequence Number

ROHC- TCP has the capability to handle bulk data transfers
efficiently, for which the sequence nunber is expected to

i ncrease by about 1460 octets (which can be represented by 11
bits). For the conpressed base headers to handl e

retransm ssions (i.e., negative delta to the sequence nunber),
the LSB interpretation interval has to handl e negative offsets
about as large as positive offsets, which neans that one nore
bit is needed.

Al so, for ROHC-TCP to be robust to | osses, two additional bits
are added to the LSB encodi ng of the sequence nunber. This
means that the base headers should contain at |east 14 bits of
LSB- encoded sequence nunber when present. According to the

| ogi ¢ above, the LSB offset value is set to be as large as the
positive offset, i.e., p = 2"k-1)-1

0 TCP Acknow edgnent Number

The design criterion for the acknow edgnment nunber is sinlar
to that of the TCP Sequence Nunmber. However, often only every
ot her data packet is acknow edged, which neans that the
expected delta value is twice as large as for sequence nunbers

Therefore, at least 15 bits of acknow edgment nunber should be
used in conpressed base headers. Since the acknow edgnent
nunber is expected to constantly increase, and the only
exception to this is packet reordering (either on the ROHC
channel [RFC3759] or prior to the conpression point), the
negative offset for LSB encoding is set to be 1/4 of the tota
interval, i.e., p=2"k-2)-1

o TCP W ndow
The TCP Wndow field is expected to increase in increnents of
simlar size as the TCP Sequence Nunber, and therefore the
design criterion for the TCP windowis to send at |least 14 bits
when used.

o IP-ID
For the "sequential" set of packet formats, all the conpressed

base headers contain LSB-encoded IP-ID offset bits, where the
offset is the difference between the value of the MSN field and

Pelletier, et al. St andards Track [Page 43]

RFC 4996 ROHC- TCP July 2007

the value of the IP-1D field. The requirenent is that at |east
3 bits of IP-1D should always be present, but it is preferable
to use 4 to 7 bits. Wen k=3 then p=1, and if k>3 then p=3
since the offset is expected to increase nost of the tine.

Each set of header fornmats contains eight different conpressed base
headers. The reason for having this |arge nunber of header fornmats
is that the TCP Sequence Number, TCP Acknow edgnment Nunber, and TCP
W ndow are frequently changing in a non-linear pattern

The design of the header formats is derived fromthe field behavior
anal ysis found in [RFC4413].

Al of the conpressed base headers transmit LSB-encoded MSN bits, the
TCP Push flag, and a CRC, and in addition to this, all the base
headers in the sequential packet format set contain LSB-encoded |P-1D
bits.

The followi ng header fornmats exist in both the sequential and random
packet format sets:

o Format 1: This header format carries changes to the TCP Sequence
Nunmber and is expected to be used on the downstream of a data
transfer.

o Format 2: This header format carries the TCP Sequence Nunber in
scaled formand is expected to be useful for the downstream of a
data transfer where the payload size is constant for multiple
packets.

o Format 3: This header format carries changes in the TCP
Acknow edgrment Number and is expected to be useful for the
acknow edgnment direction of a data transfer.

o Format 4: This header format is simlar to format 3, but carries a
scal ed TCP Acknow edgnent Nunber.

o Format 5: This header format carries both the TCP Sequence Number
and the TCP Acknow edgnent Number and is expected to be useful for
flows that send data in both directions.

o Format 6: This header format is simlar to format 5, but carries
the TCP Sequence Nunber in scaled form when the payload size is
static for certain intervals in a data fl ow

o Format 7: This header format carries changes to both the TCP
Acknowl edgrment Nunber and the TCP W ndow and is expected to be
useful for the acknow edgnent flows of data connections.

Pelletier, et al. St andards Track [Page 44]

RFC 4996 ROHC- TCP July 2007

o Format 8: This header format is used to convey changes to sone of

the nmore sel dom changing fields in the TCP flow, such as ECN
behavi or, RST/SYN FIN flags, the TTL/Hop Linmit, and the TCP

options list. This format carries a 7-bit CRC, since it can
change the structure of the contents of the irregular chain for

subsequent packets. Note that this can be seen as a reduced form

of the common packet fornmat.

0 Conmon header format: The commobn header format can be used for al
ki nds of |P-1D behavi or and shoul d be useful when sone of the nore
rarely changing fields in the P or TCP header change. Since this

header fornmat can update control fields that deci de how the

deconpressor interprets packets, it carries a 7-bit CRC to reduce
the probability of context corruption. This header can basically

convey changes to any of the dynamic fields in the IP and TCP

headers, and it uses a large set of flags to provide information

about which fields are present in the header format.
8.2. Formal Definition of Header Formats

LHEEEEEEErr i rirrirrirrlirgi
// Constants
[EEHEEEE i ririiriirrrrg

| P_I D BEHAVI OR_SEQUENTI AL = O0;

| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED = 1;
| P_I D BEHAVI OR_RANDOM = 2

| P_I| D BEHAVI OR ZERO = 3;

[HELEEE i rrrriirirrri
// dobal control fields

NNy

CONTROL {
ecn_used [171;
msn [16];
}

FEEETEEEEEr bbb bbbt rrrr
/1 Encodi ng nmet hods not specified in FN syntax
[HEEEEEErrr bbb rrrrrng

list _tcp_options "defined in Section 6.3.3"
inferred_i p_v4_header _checksum "defined in Section 6.4.1"
i nferred_m ne_header_checksum "defined in Section 6.4.2"
inferred_ip_v4 length "defined in Section 6.4.3"
inferred_ip_v6_ |l ength "defined in Section 6.4.4"
i nferred_of f set "defined in Section 6.4.5"

Pelletier, et al. St andards Track [Page 45]

RFC 4996 ROHC- TCP
baseheader ext ensi on_headers "defined in Section 6.4.6";
baseheader outer headers "defined in Section 6.4.7";

FELETEDE b r b irri
/'l General encoding nethods
[EEEEEEErrrr bbb bbb rrrrri

static_or_irreg(flag, wdth)
{
UNCOVPRESSED {
field [width];
}

COWPRESSED i rreg_enc {
field =:=irregular(width) [width];
ENFORCE(flag == 1);

}

COMPRESSED st atic_enc {
field == static [0];
ENFORCE(fl ag == 0);

}

}

zero_or _irreg(flag, wdth)
{
UNCOWPRESSED {
field [width];
}

COVPRESSED non_zero {
field == irregular(width) [width];
ENFORCE(fl ag == 0);

}

COWPRESSED zero {
field =:= unconpressed _value(width, 0) [0];
ENFORCE(fl ag == 1);
}
}

vari abl e | ength_32 enc(fl ag)
UNCOWPRESSED {

field [32];
}

COVMPRESSED not _present {

Pelletier, et al. St andards Track

July 2007

[Page 46]

RFC 4996 ROHC- TCP
field == static [0];
ENFORCE(fl ag == 0);

}

COWPRESSED | sb_8_bhit {
field =:=1sb(8, 63) [8];
ENFORCE(flag == 1);

}

COWPRESSED | sb_16_bi t
field =:=1sb(16, 16383) [16];
ENFORCE(fl ag == 2);

}

COWPRESSED irreg_32_bit {
field === irregular(32) [32];
ENFORCE(fl ag == 3);

}

}
optional 32(fl ag)

UNCOMPRESSED {

item[0, 32];

}

COWMPRESSED present {
item==irregular(32) [32];
ENFORCE(fl ag == 1);

}

COWPRESSED not _present {
item=:= conpressed_value(0, 0) [0];
ENFORCE(fl ag == 0);

}

}
Isb 7 or 31
{
UNCOWPRESSED {

item[32];

COVPRESSED |'sb_7 {

di scrininator == '0 [171;
item == 1lsb(7, 8 [71;
}
COWPRESSED | sh_31 {
Pelletier, et al. St andards Track

July 2007

[Page 47]

RFC 4996 ROHC- TCP July 2007

"1 [1]

di scri m nator =: ;
= I sb(31, 256) [31];

item
}
}
opt Isb 7 or_ 31(flag)
{

UNCOWPRESSED {
item[0, 32];

}

COWPRESSED present {
item=:=1sb 7 or 31 [8, 32];
ENFORCE(fl ag == 1);

}

COVPRESSED not _present {
item=:= conpressed value(0, 0) [0];
ENFORCE(fl ag == 0);

}

}

crc3(data_val ue, data_l ength)

UNCOVPRESSED {
}

COWPRESSED {
crc_value =:=
crc(3, 0x06, 0x07, data_value, data length) [3];

}
}

crc7(data_val ue, data_l ength)

UNCOVPRESSED {
}

COWPRESSED ({
crc_value ==
crc(7, 0Ox79, Ox7f, data_value, data_length) [7];

}
}

one_bit _choice

UNCOMPRESSED {
field [1];

Pelletier, et al. St andards Track [Page 48]

RFC 4996 ROHC- TCP July 2007

}

COVMPRESSED zero {
field [11];
ENFORCE(fi el d. UWALUE == 0);
}

COWPRESSED nonzero {
field [117;
ENFORCE(fi el d. WALUE == 1);
}
}

/1 Encoding nmethod for updating a scaled field and its associ ated
/1l control fields. Should be used both when the value is scal ed
/1 or unscaled in a conpressed fornmat.
field scaling(stride_value, scal ed value, unscal ed_val ue)
{

UNCOVPRESSED {

residue_field [32];
}

COMPRESSED no_scal ing {
ENFORCE(stri de_val ue == 0);
ENFORCE(r esi due_fi el d. UVALUE == unscal ed_val ue);
ENFORCE(scal ed_val ue == 0);

}

COMPRESSED scal i ng_used {
ENFORCE(stride_value !'= 0);
ENFORCE(r esi due_fiel d. UVJALUE == (unscal ed_val ue % stri de_val ue));
ENFORCE(unscal ed_val ue ==
scal ed_val ue * stride_value + residue_field. U/ALUE)

}

}

THEETEE bbb rrrrriirrri
/1 1 Pv6 Destination options header

PELTIETEL bbb rrrrriiirrri

i p_dest _opt

UNCOWPRESSED {
next header [8
| ength [8
val ue [1

};
ength. WALUE * 64 + 48];

}

Pelletier, et al. St andards Track [Page 49]

RFC 4996 ROHC- TCP July 2007

DEFAULT {

| ength == static;

next _header =:= static;

val ue == static;
}
COVMPRESSED dest _opt_static {

next header =:=irregular(8) [8];

| ength == irregular(8) [8];
}
COWPRESSED dest _opt _dynani ¢ {

val ue =: =

irregular(length. UWWALUE * 64 + 48) [length. UVALUE * 64 + 48];

}
COVPRESSED dest _opt_0O replicate {

di scrimnator =:= '00000000" [8];
}

COVMPRESSED dest _opt_1 replicate {

di scrimnator =:="'10000000’ [81;
| ength == irregul ar(8) [81;
val ue = =
i rregul ar (I engt h. UVALUE*64+48) [| ength. UVALUE * 64 + 48];
}
COVMPRESSED dest _opt _i rregul ar {
}

}

PEPTTIIEL bbb rrrrninirrri
/1 1 Pv6 Hop-by-Hop options header
PEELLELEE b bbb inrri

i p_hop_opt
{

UNCOWPRESSED {
next _header [8
I ength [8
val ue [1

]
ength. WALUE * 64 + 48];
}

DEFAULT {
| ength
next header
val ue

static;
stati c;
stati c;

}

Pelletier, et al. St andards Track [Page 50]

RFC 4996 ROHC- TCP July 2007

COVPRESSED hop_opt _static {
next header =:= irregular(8) [
| ength = irregular(8) [

0 00

}

COMPRESSED hop_opt _dynam ¢ {
val ue =: =
i rregul ar (1 engt h. UVALUE*64+48) [|ength. UVALUE * 64 + 48];
}

COVPRESSED hop_opt _O_replicate {
di scrimnator =:= '00000000" [8];
}

COMPRESSED hop_opt _1 replicate {

di scriminator = = '10000000’ [81;
| ength == irregul ar(8) [81;
val ue ==
i rregul ar (I engt h. UVALUE*64+48) [| ength. UVALUE * 64 + 48];
}
COVPRESSED hop_opt _irregul ar {
}

}
NNy
/1 1Pv6 Routing header
NNy
i p_rout_opt

UNCOVPRESSED {

next header [8];
I ength [81;
val ue [length. UVALUE * 64 + 48];
}
DEFAULT {
I ength == static;
next header =:= static;
val ue =:= static;
}
COVMPRESSED rout _opt_static {
next header =:= irregul ar(8) [81;
I ength == irregul ar(8) [81;
val ue = =

irregular(léngth.UVALUE*64+48) [Iength. UVALUE * 64 + 48];

Pelletier, et al. St andards Track [Page 51]

RFC 4996 ROHC- TCP July 2007

}
COVPRESSED r out _opt _dynani ¢ {
}
COVPRESSED rout _opt 0O replicate {
di scrimnator =:= '00000000" [8];
}
COVPRESSED rout _opt_0O replicate {
di scrimnator =:="'10000000’ [81;
| ength == irregul ar(8) [81;
val ue ==
i rregul ar (I engt h. UVALUE*64+48) [| ength. UVALUE * 64 + 48];
}
COVPRESSED rout _opt _i rregul ar {
}

}

LHEEEEEEErr i rirrirrirrlirgi
/1 GRE Header
[EEHEEEE i ririiriirrrrg

optional checksunm(fl ag_val ue)

UNCOMPRESSED {
val ue [0, 16]
reservedl [0, 16]

}

COVMPRESSED cs_present {
val ue =:= irregul ar(16) [16 1;
reservedl =:= unconpressed_value(16, 0) [0];
ENFORCE(f | ag_val ue == 1);

}

COWPRESSED not _present {
val ue =: = conpressed_value(0, 0) [0];
reservedl =:= conpressed_value(0, 0) [0];
ENFORCE(f | ag_val ue == 0);

}
}

gre_proto

UNCOWMPRESSED {
protocol [16];

Pelletier, et al. St andards Track [Page 52]

RFC 4996 ROHC- TCP July 2007

}

COWMPRESSED et her v4 {
di scri m nat or conpressed_val ue(1, 0) [171;
pr ot ocol unconpr essed_val ue(16, 0x0800) [O];

}

COWPRESSED et her v6 {
di scri m nat or conpressed_val ue(1, 1) [1
unconpr essed_val ue(16, 0x86DD) [0];

pr ot ocol
}
}
gre
{
UNCOWPRESSED {
c_flag [171;
r flag =: = unconpressed value(1, 0) [1 1];
k flag [171;
s_flag [117;
reserved0 =:= unconpressed_value(9, 0) [9];
versi on =: = unconpressed_value(3, 0) [3 1];
pr ot ocol [16];
checksum and_res [0, 32];
key [0, 321];
sequence_numnber [0, 3217;
}
DEFAULT {
c_flag == static;
k flag == static;
s _flag == static;
pr ot ocol == static;
key == static;
sequence_nunber =:= static;
}
COVMPRESSED gre_static {
protocol =:= gre_proto [171;
c_flag == irregular (1) [171;
k_flag == irregular(1) [171;
s _flag == irregular(1) [17;
paddi ng =:= conpressed_val ue(4, 0) [41;
key == optional 32(k_flag. UWWALUE) [0, 32];
}

COVPRESSED gre_dynam ¢ {
checksum and_res =: =

Pelletier, et al. St andards Track [Page 53]

RFC 4996 ROHC- TCP July 2007

opti onal _checksum(c_fl ag. UVALUE) [O, 16];
sequence_nunmber =:= optional 32(s_flag. UVALUE) [0, 32];
}
COVPRESSED gre_0O replicate {
di scri m nat or == ' 00000000’ [81;
checksum and res =: =
optional checksum(c_flag. UVALUE) [0, 16];
sequence_nunber =:=
optional 32(s_fl ag. UVALUE) [0, 8 321];
}

COWPRESSED gre_1 replicate {

di scri m nat or == ' 10000’ [51;
c_flag == irregular(l) [17;
k_flag == irregular (1) [171;
s_flag == irregular(1) [171;
checksum and res =: =

optional checksun(c_flag. UVALUE) [0, 16];
key =:= optional 32(k_flag. UVALUE) [0, 32];
sequence_nunber =:= optional 32(s_flag. UVALUE) [0O, 32];

}

COWPRESSED gre_irregular {
checksum and res =: =
optional checksum(c_flag. UVALUE) [0O, 16];
sequence_nunmber =:=
opt _Isb_7 or_31(s_fl ag. UVALUE) [0, 8 321];
}
}

LHELLELIEE i ririrrririrrrirrni
/1 M NE header
LHELLI i rrrrrirrrrrirrnd

m ne
{

UNCOWPRESSED {
next _header [8
s_bit [1
res_bhits [7
checksum [16
ori g_dest [32
orig_src [O

}

DEFAULT {
next header =:= static;

Pelletier, et al. St andards Track [Page 54]

RFC 4996

s_bit

res _bits
checksum
ori g_dest
orig_src

}

COWPRESSED ni ne_
next _header
s _bit
/! Reserved
res _bits
ori g_dest
orig_src

}

COVPRESSED ni ne_
}

COVPRESSED ni ne_
di scri m nat or

}

COWPRESSED ni ne_
di scri m nat or
s _bit
res_bits
ori g_dest
orig_src

}

COMPRESSED ri ne_

}
}

[rrrrrnd
/1 Authentication
[HELEErrrrrrrrrri

o

ah
{
UNCOWPRESSED {

next header
| ength
res_bits
spi
sequence_nunbe
aut h_dat a

Pelletier, et al.

ROHC- TCP

static;
static;
i nferred_m ne_header _checksum
stati c;

static;
static {
:= irregul ar(8) [81;
= irregular(l) [171;
ts are included to achi eve byte-alignnent
= irregular(7) [71;
= irreqgular(32) [32 1];

optional 32(s_bit. U/ALUE) [0, 32];
dynanmi c {

O replicate {
=: = ' 00000000" [8];

eplicate {
'’ 10000000’ [8
irregular(1) [1
irregular(7) [7]
[3
[O

e

L1 I I |

i rregul ar(32)
optional 32(s_bit. UVALUE)

irregular {

THETLEE b rrrriiirrri
Header (AH)
PELTLTLEE i rrrriirrri

[81;
[81;
[16];
[32];
r [32];
[

| engt h. UVALUE* 32-32 |

St andards Track

July 2007

[Page 55]

RFC 4996 ROHC- TCP July 2007

}

DEFAULT {
next header == static;
| ength == static;
res _bits == static;
spi == static;
sequence_nunber =:= static;

}

COVPRESSED ah_static {

next _header =:=irregular(8) [8];

Iength == 1irregular(8) [81;

spi == irregular(32) [32];
}
COVPRESSED ah_dynami ¢

res _bits == irregular(16) [16];

sequence_nunber =:=irregular(32) [32];

aut h_dat a ==

i rregul ar (I engt h UVALUE*32-32) [|ength. UVALUE*32-32];

}

COVPRESSED ah_O_repI i cat e {
di scri m nat or = ' 00000000’ [81;
sequence_nunber irregular(32) [32 1;
aut h_dat a =
i rregul ar (I engt h UVALUE*32-32) [|ength. UVALUE*32-32];

}
COWPRESSED ah_1 repli cate {

di scri m nat or =:= '10000000’ [81;
| ength == irregular(8) [81;
res_bhits == irregular(16) [16];
Spi == irregular(32) [32];
sequence_nunber =:=irregular(32) [32];
aut h_dat a ==
ir regul ar (I engt h UVALUE*32-32) [|ength. UVALUE*32-32];
}
COVMPRESSED ah_irregul ar {
sequence_nunber =:=1I1sb 7 or 31 [8, 32];
aut h_dat a ==
ir regul ar (I engt h UVALUE* 32-32) [| ength. UVALUE*32-32];
}

}
(EEEEEEEErrr i rnn

Pelletier, et al. St andards Track [Page 56]

RFC 4996 ROHC- TCP July 2007

/1 ESP header (NULL encrypted)
PELTTITEL bbb rrrrniiirrri

/1 The value of the Next Header field fromthe trailer
/1 part of the packet is passed as a paraneter.
esp_nul | (next _header _val ue)

UNCOWPRESSED {
spi [32
sequence_nunber [32

—_—

}
CONTRCL {
nh_field [8 1];
}
DEFAULT {
spi == static;
sequence_nunber =:= static;
nh_field == static;
}
COVMPRESSED esp_static {
nh_field =:= conpressed_val ue(8, next_header _value) [8 |;
spi == irregul ar(32) [32 1];
}
COVPRESSED esp_dynani ¢ {
sequence_nunber == irregular(32) [32];
}

COMPRESSED esp_0 repllcate {
di scri m nat or = ' 00000000’ [81;
sequence_numnber =irregular(32) [32];

}

COVMPRESSED esp_1 repllcate {
di scri m nat or 10000000’ [81;
spi irregular(32) [32 1;
sequence_nunber irregular(32) [32 1;

}
COWPRESSED esp_irregul ar {

sequence_nunber =:=1I1sb 7 or 31 [8, 32];
}

}

[HELEEE i riririrrrry
/1 1Pv6 Header

Pelletier, et al. St andards Track [Page 57]

RFC 4996 ROHC- TCP July 2007

(EEEEEEEErrr b

fl _enc
{
UNCOWPRESSED {
flow label [20];

}

COWPRESSED f 1 _zero
discrimnator =:="0 [171;
fl ow_| abel =: = unconpressed_val ue(20, 0) [0];
reserved == ' 0000’ [417;

}

COWPRESSED fl _non_zero {

discrimnator =:="1 [171;

fl ow_| abel == irregular(20) [20];
}

}

/1 The is_innernost flag is true if this is the innernost |IP header
/1 If extracting the irregular chain for a conpressed packet:

/1 - ttl _irregular_chain_flag nust have the sane value as it had when
/1 processi ng co_baseheader.

/1 - ip_inner_ecn is bound in this encoding nethod and the val ue that
/1 it gets bound to should be passed to the tcp encodi ng net hod

I For other formats than the irregular chain, these two are ignored
i pv6(is_innernmost, ttl_irregular_chain_flag, ip_inner_ecn)

UNCOWPRESSED {

versi on =: = unconpressed _value(4, 6) [4];
dscp [61;
i p_ecn_fl ags [217;
fl ow_| abel [20];
payl oad_I| ength [16];
next header [81;
ttl _hopl [81;
src_addr [128];
dst _addr [128];
}
DEFAULT {
dscp == static;
i p_ecn_flags == static;
fl ow_| abel == static;
payl oad_l ength =:= inferred_i p_v6_I| ength;
next header == static;
ttl _hopl == static;

Pelletier, et al. St andards Track [Page 58]

RFC 4996 ROHC- TCP July 2007

src_addr
dst _addr

static;
static;

}
COVPRESSED i pv6_static {

version flag =:= "1 [17;
reserved = ='00 [21;
fl ow_| abel == fl _enc [5, 2117;
next _header =:= irregular(8) [81;
src_addr == irreqgular(128) [128];
dst _addr == irreqgular(128) [128];

}

COMPRESSED i pv6_dynani c {
dscp ==irregular(6) [6];
ip_ecn_flags =:=irregular(2) [2];
ttl_hopl == irregular(8) [81];

}

COVPRESSED i pv6_replicate {
dscp ==irregular(6) [6];
ip_ecn_flags =:=irregular(2) [2];
reserved == '000 [31;
fl ow | abel == fl _enc [5, 211];

}

COWMPRESSED i pv6_outer_wi thout _ttl _irregular {
dscp = static_or_irreg(ecn_used. UWALUE, 6) [
i p_ecn_fl ags = static_or_irreg(ecn_used. UVALUE, 2) [
ENFORCE(ttl irregular_chain flag == 0);
ENFORCE(i s_i nnernost == fal se);

oo
N O

}
COVMPRESSED i pv6_outer _with ttl _irregular {

dscp == static_or_irreg(ecn_used. UWWALUE, 6) [0, 6];
ip_ecn flags =:= static_or _irreg(ecn_used. UWWALUE, 2) [0, 2];
ttl _hopl == irregul ar(8) 8 1;

ENFCRCE(ttI_ir}egular_chain_flag == 1);
ENFORCE(i s_i nnernost == fal se);

}

COMPRESSED i pv6_i nnernost _irregul ar {
ENFORCE(i p_i nner _ecn == ip_ecn_fl ags. UVALUE)
ENFORCE(i s_i nnernpst == true);

}

}
(EEEEEEEErrr i rnn

Pelletier, et al. St andards Track [Page 59]

RFC 4996 ROHC- TCP July 2007

/1 1 Pv4d Header
LECETEEEE bbbt rri
i p_id_enc_dyn(behavi or)
UNCOWPRESSED {
ipid][16];

COVPRESSED i p_id_seq {

ip_id==lirregular(16) [16];
ENFORCE((behavi or == | P_I D_BEHAVI OR_SEQUENTI AL) |
(behavi or == | P_I D BEHAVI OR_SEQUENTI AL_SWAPPED) |
(behavi or == | P_I D_BEHAVI OR_RANDOV)) ;
}
COVMPRESSED i p_id_zero {
ip_id = = unconpressed value(16, 0) [0];
ENFORCE(behavi or == | P_I D_BEHAVI OR_ZERO) ;
}

}
i p_id_enc_irreg(behavior)
UNCOWPRESSED {
ip_id[16 1;

COVPRESSED i p_id_seq {

ENFORCE(behavi or == | P_I D_BEHAVI OR_SEQUENTI AL) ;
}
COVPRESSED i p_i d_seq_swapped {
ENFORCE(behavi or == | P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED) ;
}
COVMPRESSED i p_id rand {
ipid==irregular(16) [16];
ENFORCE(behavi or == | P_I D_BEHAVI OR_RANDOM) ;
}
COVMPRESSED i p_id_zero {
ip_id = = unconpressed value(16, 0) [0];
ENFORCE(behavi or == | P_I D_BEHAVI OR_ZERO) ;
}
}
i p_i d_behavi or _choi ce(is_inner)
{

Pelletier, et al. St andards Track [Page 60]

RFC 4996 ROHC- TCP July 2007

UNCOWPRESSED {
behavior [2];

}

DEFAULT {
behavior =:= irregular(2);

}

COWPRESSED sequenti al {

behavior [2];

ENFORCE(i s_i nner == true);

ENFORCE(behavi or . UVALUE == | P_| D_BEHAVI OR_SEQUENTI AL) ;
}

COMPRESSED sequenti al _swapped {
behavior [2];
ENFORCE(i s_i nner == true);
ENFORCE(behavi or . UVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED ;
}

COVPRESSED r andom {

behavior [2];

ENFORCE(behavi or . UVALUE == | P_| D_BEHAVI OR_RANDOM ;
}

COVMPRESSED zero {
behavior [2];
ENFORCE(behavi or . UVALUE == | P_| D_BEHAVI OR_ZERO);
}
}

/1 The is_innernost flag is true if this is the innernost |IP header
/1 If extracting the irregular chain for a conpressed packet:

/1 - ttl _irregular_chain_flag nust have the sane value as it had when
/1 processi ng co_baseheader.

/1 - ip_inner_ecn is bound in this encoding nethod and the val ue that
/1 it gets bound to should be passed to the tcp encodi ng net hod

I For other formats than the irregular chain, these two are ignored
i pv4(is_innernost, ttl_irregular_chain_flag, ip_inner_ecn)

UNCOWPRESSED {
ver sion
hdr _I engt h
dscp

unconpressed_val ue(4, 4) |

[

[

i p_ecn_flags [
[

[

unconpr essed_val ue(4, 5)

| ength
ip_id

Pelletier, et al. St andards Track [Page 61]

RFC 4996 ROHC- TCP July 2007

rf == unconpressed value(l1l, 0) [11;
df [117;
nf =: = unconpressed_value(1l, 0) [11];
frag_of f set =: = unconpressed_val ue(13, 0) [13];
ttl_hopl [81;
pr ot ocol [81;
checksum [16];
src_addr [32 1];
dst _addr [32 1];
}
CONTRCL {
i p_id_behavior [2];
}
DEFAULT {
dscp == static;
i p_ecn_flags == static;
| ength = = inferred_ip_v4 length
df == static;
ttl _hopl == static;
pr ot ocol == static;
checksum == inferred_i p_v4_header_checksum
src_addr == static;
dst _addr == static;
i p_id _behavior =:= static;
}
COVPRESSED i pv4_static {
version flag =:="'0’ [17;
reserved == ' 0000000’ [71;
pr ot ocol = =irregular(8) [81];
src_addr == irregular(32) [32];
dst _addr == irregular(32) [32];
}
COWPRESSED i pv4_dynami ¢ {
reserved =: = '00000’ [51;
df == irregular(l) [171;
i p_id_behavior =:=ip_id_behavior_choice(is_innernost) [2];
dscp == irregul ar(6) [61;
i p_ecn_fl ags == irregular(2) [217;
ttl _hopl == irregular(8) [81;
ip_id ==
i p_id_enc_dyn(ip_id_behavior. U/ALUE) [0, 16];
}

COVPRESSED i pv4_replicate {

Pelletier, et al. St andards Track [Page 62]

RFC 4996 ROHC- TCP

reserved == ' 0000’ [41;
i p_i d_behavior =:=ip_id_behavior_choice(is_
ttl _flag == irregular(l) [17;
df == irregular (1) [171;
dscp == irregul ar(6) [61;
ip ecn_fl ags == irregular(2) [217;
ip_id ==
i p_id_enc dyn(lp i d_behavior. UVALUE) [0O, 16];
ttl hopl =
statlc_or_lrreg(ttl_flag.UVALUE, 8) [0, 81;
}
COVPRESSED i pv4_ outer _without ttl irregular {
ip_id =
|p_|d_enc_|rreg(|p_|d_behaV|or.UVALUE) [O, 16];
dscp == static_or_irreg(ecn_used. WALUE, 6) [
ip_ecn_flags =:= static_or_irreg(ecn_used. UWALUE, 2) |
ENFORCE(ttl irregular_chain flag == 0);
ENFORCE(i s_i nnernost == fal se);
}
COVPRESSED |pv4 outer _with_ttl _irregular {
ip_id :
i p_id_enc |rreg(|p i d_behavi or. UVALUE) [
dscp == static_or_irreg(ecn_used. UWVALUE, 6) |
i p_ecn_flags =:= static_or_irreg(ecn_used. UVALUE, 2) [
ttl _hopl == irregul ar(8) [
ENFORCE(i s_i nnernost == fal se);
ENFORCE(ttl _irregul ar_chain_flag == 1);
}
COVPRESSED i pv4_ |nnernDst _irregular {
ip_id
i p_id_enc |rreg(|p i d_behavior. UWVALUE) [0, 16];
ENFCRCE(lp_lnner_ecn == i p_ecn_fl ags. UVALUE)
ENFORCE(i s_i nnernost == true);
}

}

FELTTEIE bbb niirri
/1 TCP Options
FHEEEEEErrr bbb bbb nrrrr

/1 nbits is bound to the remaining length (in bits) of TCP

/'l options, including the EOL type byte.
tcp_opt _eol (nbits)

UNCOWPRESSED {

Pelletier, et al. St andards Track

[l oNeoNe)

July 2007

innernost) [2];

[Page 63]

RFC 4996 ROHC- TCP July 2007

type =: = unconpressed value(8, 0) [8];
padding =:=
unconpr essed_val ue(nbits-8, 0) [nbits-8];
}
CONTROL {
pad len [8];

COVPRESSED eol _list_item {
pad_| en =:= conpressed_val ue(8, nbits-8) [8];
}

COWPRESSED eol _irregul ar {
pad_len =:= static;
ENFORCE(nbi t s-8 == pad_| en. UVALUE)
}
}

t cp_opt _nop

{
UNCOVPRESSED {

type =:= unconpressed_value(8, 1) [8];

COMPRESSED nop_l i st_item {
}

COVPRESSED nop_irregul ar {

}
}

tcp_opt _nss

UNCOMPRESSED {

type =: = unconpressed value(8, 2) [8];
I ength =:= unconpressed_value(8, 4) [8];
nes 16];
}
COVMPRESSED nss_list_item {
nes =:= irregular(16) [16];
}
COWMPRESSED nss_i rregul ar {
nss == static;
}

}

Pelletier, et al. St andards Track [Page 64]

RFC 4996

tcp_opt _wscal e

UNCOVPRESSED
type =:
| ength =:
wscal e

}

ROHC- TCP

{

unconpressed_value(8, 3) [8
unconpressed_value(8, 3) [8
8

COWMPRESSED wscal e_list_item{

wscale =:=irregular(8) [8];
}
COVPRESSED wscal e_irregul ar {
wscal e =: = static;
}
}
ts |Isb
UNCOWPRESSED {
tsval [32];
}
COWPRESSED tsval _7 {
discrimnator =:="'0’ [171;
t sval ==1Isb(7, -1) [71;
}
COWPRESSED tsval _14 {
discrimnator == "10 [217;
t sval == Isb(14, -1) [14];
}
COWPRESSED tsval 21 {
discrimnator =:="110 [
t sval =:= | sb(21, 0x00040000) [
}
COWPRESSED t sval _29 {
discrimnator == "117 [
t sval =:= | sb(29, 0x04000000) [
}
}
tcp_opt_ts

UNCOMPRESSED {

type ==

Pelletier, et al

unconpressed_val ue(8, 8) [

. St andards Track

1;
l;
l;

31;
21 1;

31;
29 1;

8 1;

July 2007

[Page 65]

RFC 4996 ROHC- TCP
| ength =: = unconpressed_val ue(8, 10)
t sval
t secho
}
COVMPRESSED tsopt _list_ item{
tsval == irregular(32) [32];
tsecho == irregular(32) [32];
}
COVPRESSED t sopt _irregul ar {
tsval =:=ts Isb [8, 16, 24, 32];
tsecho =:=ts Isb [8, 16, 24, 32];
}
}
sack_var _| engt h_enc(base)
{

UNCOWPRESSED {
sack field [32];

}
CONTROL {

sack_offset [32];

ENFORCE(sack_of fset. UVALUE == (sack_fi el d. UVALUE -
}

COWPRESSED | sb_15 {
discrimnator == "0’ [
sack_of fset =:= Isb(15, -1) [
}
COWPRESSED | sh_22 {
discrimnator =:="10 [
sack_of fset == 1Isb(22, -1) |
}
COVWPRESSED | sb_30 {
discrimnator =:="11 [
sack_of f set == Isb(30, -1) [

}
}

sack_bl ock(prev_bl ock_end)

UNCOWMPRESSED {
bl ock_start [32];

Pelletier, et al.

117];
15];

2],
22 1;

21];
30];

St andards Track

July 2007

[Page 66]

RFC 4996

bl ock_end
}

COWMPRESSED ({

bl ock_start =:

ROHC- TCP

[32];

sack_var | ength_enc(prev_block _end) [16, 24, 32];

bl ock_end =
sack_var | ength_enc(bl ock_start)

}
}

[16, 24, 32];

/1 The value of the paranmeter is set to the ack_nunber val ue

/1 of the TCP header

tcp_opt _sack(ack_val ue)

UNCOMPRESSED {

type =: = unconpressed value(8, 5) [8];
| ength [81;
bl ock 1 [64 1;
bl ock_2 [0, 64 1];
bl ock_3 [0, 64 1];
bl ock_4 [0, 64 1];
}
DEFAULT {
length =:= static;
bl ock_2 =:= unconpressed_val ue(0, 0);
bl ock_3 =:= unconpressed_val ue(0, 0);
bl ock_4 =:= unconpressed_val ue(0, 0);
}
COWPRESSED sackl list_item{
di scrimnator =:="'00000007"
bl ock_1 =: = sack_bl ock(ack_val ue);
ENFORCE(| engt h. UVALUE == 10);
}
COWPRESSED sack2_list_item{
di scri m nat or 00000010’

bl ock_1
bl ock_2

}

ENFORCE(| engt h. UVALUE

COVPRESSED sack3 |i st

di scri m nat or
bl ock_1

Pelletier, et al.

sack_bl ock(ack_val ue);
sack_bl ock(bl ock_1 end. UVALUE)
18);

_item{
' 00000011’ ;
sack_bl ock(ack_val ue);

St andards Track

July 2007

[Page 67]

RFC 4996 ROHC- TCP July 2007

bl ock_2 sack_bl ock(bl ock_1 end. UVALUE) ;
bl ock_3 sack block(block 2_end. UVALUE)
ENFORCE(| engt h. UALUE = = 26);

}

COVMPRESSED sack4 I|st _item{
di scri m nat or ' 00000100’

bl ock 1 == sack_block(ack_value);

bl ock_2 =: = sack_bl ock(bl ock_1_end. UVALUE)
bl ock_3 =: = sack_bl ock(bl ock_2_end. UVALUE)
bl ock_4 =: = sack block(block 3_end. UVALUE)

ENFORCE(| engt h. WALUE == 34)
}

COWPRESSED sack_unchanged_irregul ar {

di scrimnator =:= '00000000’
bl ock_1 =:= static;
bl ock_2 == static;
bl ock_3 == static;
bl ock_4 == static;

}

COWPRESSED sackl1_irregul ar {
di scrimnator =:= '00000001’
bl ock 1 =: = sack_bl ock(ack_val ue);
ENFORCE(| engt h. UVALUE == 10);

}

COVPRESSED sack2_irregul ar {
di scrimnator =:= '00000010’
bl ock 1 =: = sack_bl ock(ack_val ue);
bl ock_2 =: = sack_bl ock(bl ock_1_end. UVALUE)
ENFORCE(| engt h. UVALUE == 18);

}

COMPRESSED sack3_irregul ar {
di scri m nat or ' 00000017"

bl ock 1 =: = sack_bl ock(ack_val ue);
bl ock_2 =: = sack_bl ock(bl ock_1_end. UVALUE)
bl ock_3 =: = sack block(block 2_end. UVALUE)

ENFORCE(| engt h. UVALUE == 26);
}

COWMPRESSED sack4_irregul ar {
di scri m nat or ' 00000100’

bl ock_1 :;: sack_bl ock(ack_val ue);
bl ock_2 =: = sack_bl ock(bl ock_1_end. UVALUE)
bl ock_3 =: = sack_bl ock(bl ock_2 end. UVALUE)

Pelletier, et al. St andards Track [Page 68]

RFC 4996 ROHC- TCP July 2007

bl ock_4 =: = sack_bl ock(bl ock_3_end. UVALUE)
ENFORCE(| engt h. UVALUE == 34);
}
}

tcp_opt _sack permtted

UNCOWPRESSED {
type =: = unconpressed_value(8, 4) [8];
I ength unconpressed_value(8, 2) [8];

}

COVMPRESSED sack permitted list _item{
}

COVMPRESSED sack _permitted_irregul ar {

}
}

tcp_opt _generic

UNCOMPRESSED {

type [8]

| ength_nsb =:= unconpressed value(l1l, 0) [1];

I ength_| sb [71;

contents [Iength | en. UVALUE*8-16];
}
CONTRCL {

option_static [1];
}
DEFAULT {

type == static;

length_| sb == static;

contents == static;
}
COVMPRESSED generic_list_item{

type == irregul ar(8) [81;

option_static =:= one_bit_choice [171;

I ength_| sb == irregular(7) [71;

contents ==

irregular(length_| sb. UVALUE*8-16) [|ength_Il en. UVALUE*8-16];

}

/1 Used when context of option has option_static set to one
COMPRESSED generic_static_irregular {

Pelletier, et al. St andards Track [Page 69]

RFC 4996 ROHC- TCP July 2007

ENFORCE(opti on_static. UVALUE == 1);
}

/1 An itemthat can change, but currently is unchanged
COVPRESSED generic_stable_irregul ar {
discrimnator == '11111111" [8];
ENFORCE(opti on_static. UVALUE == 0);
}

/1l An itemthat is assunmed to change constantly.
/1 Length is not allowed to change here, since a |length change is
/1 nost likely to cause new NOPs or an EQL | ength change
COWPRESSED generic_full _irregular {
di scrimnator =:="00000000’ [81;
contents ==
irregular(length_| sb. UVALUE*8-16) [|ength_| sb. UVALUE*8-16];
ENFORCE(opti on_static. UVALUE == 0);

}
}

tcp_list_presence_enc(presence)

UNCOMPRESSED {
tcp_options;
}

COWMPRESSED | i st _not _present {
tcp_options == static [0];
ENFORCE(pr esence == 0);

COWPRESSED | i st _present {
tcp_options == list_tcp_options [VAR ABLE];
ENFORCE(pr esence == 1);

}
}

PELTTITEL bbb rrrrniiirrri
/'l TCP Header
LEELTELL P iirrri
port replicate(flags)
UNCOVPRESSED {
port [16];

COMPRESSED port_static_enc {

Pelletier, et al. St andards Track [Page 70]

RFC 4996 ROHC- TCP
port =:= static [0];
ENFORCE(f 1 ags == 0b00);

}

COVPRESSED port _| sb8 {
port =:=1sh(8, 64) [8];
ENFORCE(f | ags == 0b01);

}

COMPRESSED port _irr_enc {
port =:=irregular(16) [16];
ENFORCE(f | ags == 0b10);

}

}
tcp_irreg_ip_ecn(ip_inner_ecn)
{

UNCOWPRESSED {
ip_ecn flags [2];
}

COVMPRESSED ecn_present {

/1 This field does not exist in the unconpressed header
/1 and therefore cannot use unconpressed _val ue.

ip_ecn_flags ==

conpressed _value(2, ip_inner_ecn) [2];

ENFORCE(ecn_used. UVALUE == 1);

}

COVMPRESSED ecn_not _present {
ip_ecn flags =:= static [0];
ENFORCE(ecn_used. UVALUE == 0);

}

}
rsf_index_enc
{
UNCOWPRESSED {

rsf_flag [3 1;

COVPRESSED none {
rsf idx =='00 [21];
rsf _flag =:= unconpressed_val ue(3, 0x00);
}
COVPRESSED rst_only {
rsf idx =='01 [2];
Pelletier, et al. St andards Track

July 2007

[Page 71]

RFC 4996 ROHC- TCP July 2007

rsf _flag =:= unconpressed_val ue(3, 0x04);

}

COVPRESSED syn_only {
rsf_idx 100 [2 1;
rsf_flag unconpressed_val ue(3, 0x02);

}

COWPRESSED fin_only {
rsf _idx =="11 [2];
rsf_flag =:= unconpressed_val ue(3, 0x01);
}
}

optional _2bit_paddi ng(used_fI ag)
{
UNCOMPRESSED {

}

COVMPRESSED used {
paddi ng =: = conpressed_value(2, 0x0) [2];
ENFORCE(used_flag == 1);

}

COWPRESSED unused {
paddi ng =: = conpressed_val ue(0, 0x0);
ENFORCE(used_flag == 0);
}
}

/1 ack _stride value is the user-selected stride for scaling the
/1l TCP ack_nunber

/'l ip_inner_ecn is the value bound when processing the innernost
/'l I P header (ipv4 or ipv6 encoding nethod)

tcp(payl oad_si ze, ack_stride_val ue, ip_inner_ecn)

UNCOWPRESSED {
src_port [
dst _port [
seq_nunber [
ack_nunber [
dat a_of f set [

tcp_res _flags [

[
[
[
[
[

NN OO

tcp_ecn_flags
urg_flag
ack _flag
psh_fl ag
rsf_flags

WRRPRPNADNWWER R

[T S S Y S—

Pelletier, et al. St andards Track [Page 72]

Pelletier, et al.

RFC 4996 ROHC- TCP

wi ndow [16];
checksum [16];
urg_ptr [16 1;
options [(data_offset. U/ALUE-5)*32];
}
CONTRCL {
seq_nunber scal ed [32 1];
seq_nunber _residue =:=
field_scaling(payl oad_size, seq_nunmber_scal ed. UVALUE,
seq_nunber. UVALUE) [32 |;
ack _stride [16];
ack_nunber _scal ed [32 1];

ack_nunber residue =:=

July 2007

field_scaling(ack_stride. UVALUE, ack_nunber_scal ed. UVALUE,

ack_nunber. UVALUE) [

32 1,

ENFORCE(ack_stri de. UVALUE == ack_stride_val ue);

}
I NI TIAL {
ack_stride =: = unconpr essed_val ue(16, 0);
}
DEFAULT {
src_port == static;
dst _port == static;
seq_nunber == static;
ack_nunber == static;
dat a_of f set =:= inferred_of fset;
tcp_res flags =:= static;
tcp_ecn_flags =:= static;
urg flag == static;
ack _flag =: = unconpressed_val ue(1, 1);
rsf_flags =: = unconpressed_val ue(3, 0);
wi ndow == static;
urg ptr == static;
}
COVMPRESSED tcp_static {
src_port =:=irregular(16) [16];
dst_port =:=irregular(16) [16];
}
COMPRESSED t cp_dynami ¢ {
ecn_used =:= one_bit_choice [
ack _stride_flag == irregular(1) [
ack_zero == irregular (1) [
urp_zero == irregular(l) [

St andards Track

N

[Page 73]

RFC 4996 ROHC- TCP July 2007

tcp_res_flags == irregul ar(4) [41;
tcp_ecn_fl ags == irregular(2) [21;
urg_flag == irregular(l) [17;
ack _flag == irregular (1) [171;
psh_fl ag == irregular(1) [171;
rsf_flags == irregul ar(3) [31;
nsn == irregul ar(16) [16];
seq_nunber =:= irregul ar(32) [32 7;
ack_nunber ==

zero_or_irreg(ack_zero. CVALUE, 32) [0, 32]
wi ndow == irregul ar (16) [16];
checksum == irregul ar (16) [16];
urg_ptr ==

zero_or _irreg(urp_zero. CVALUE, 16) [O, 16];

ack_stride =
static_or |rreg(ack stride_flag. CVALUE, 16) [O, 16];

options list_tcp_options [VAR ABLE];
}
COVMPRESSED tcp_replicate {

reserved =="0 [17;
wi ndow_pr esence == irregular (1) [171;
list_present == irregular(1) [171;
src_port_presence == irregul ar(2) [217;
dst _port_presence == irregul ar(2) [21;
ack_stride_flag == irregular(l) [17;
ack_presence == irregular(l) [117;
ur p_presence == irregular (1) [171;
urg_flag == irregular (1) [171;
ack flag = = irregular(l1) [17;
psh _fl ag == irregular(l) [171;
rsf_flags =: = rsf_i ndex_enc [217;
ecn_used =: = one_bit_choice [17;
nmsn == irregul ar (16) [16];
seq_nunber == irregul ar(32) [32 7];
src_port ==

port_replicat e(src port _presence) [0, 8 16];
dst_port

port_replicat e(dst port _presence) [0, 8 16];
wi ndow

static_or_i rreg(vw ndow /| presence, 16) [0, 16];
ur g_poi nt ==

static_or |rreg(urp presence, 16) [0, 16];
ack_nunber

static_or |rreg(ack presence, 32) [0, 327];
ecn paddlng ==

optional _2bit padd| ng(ecn_used. CVALUE) [0, 21;

tcp_res flags =: =

Pelletier, et al. St andards Track [Page 74]

RFC 4996 ROHC- TCP July 2007

static_or |rreg(ecn used. CVALUE, 4) [0, 417;
tcp_ecn flags =

static_or |rreg(ecn used. CVALUE, 2) [0, 27;
checksum == irregul ar (16) [16];

ack_stride ==

static_or |rreg(ack stride flag. CVALUE, 16) [0, 16];
options

tcp_list presence enc(llst _present.CVALUE) [VARI ABLE];

}
COVPRESSED tcp_irregular {
ip_ecn flags =:=tcp_irreg_ip_ecn(ip_inner_ecn) [0, 21];
tcp_res flags =:=
static_or_irreg(ecn_used. CVALUE, 4) [0, 417;
tcp_ecn_flags =: =
static_or_irreg(ecn_used. CVALUE, 2) [0, 21;
checksum == irregul ar (16) [16];
}

}

FECETEEEEE b r bbb bbb rrrrtngd
/'l Encodi ng nmet hods used in conpressed base headers
[EEETEEEE bbb bbb rrrrirrrrri

dscp_enc(fl ag)
{
UNCOWPRESSED {
dscp [6];

COMPRESSED st atic_enc {
dscp =:= static [0];
ENFORCE(flag == 0);

}

COVWPRESSED irreg {
dscp =:= i rregul ar(6) [61;
paddi ng =: = conpressed _value(2, 0) [2];
ENFCRCE(fIag == 1);

}

}
i p_id_Isb(behavior, k, p)
{

UNCOWMPRESSED {
ip_id][16];

Pelletier, et al. St andards Track [Page 75]

RFC 4996 ROHC- TCP July 2007

CONTROL {
ip_id offset [16]
i p_id_nbo [16]

}
COVPRESSED nbo {
ip_id_offset == 1Isb(k, p) [k1;
ENFORCE(behavi or == | P_I D_BEHAVI OR_SEQUENTI AL) ;
ENFORCE(i p_i d_of fset. UVALUE == ip_id. UWVALUE - msn. UVALUE) ;
}
COMPRESSED non_nbo {
ip_id offset == Isb(k, p) [k];
ENFORCE(behavi or == | P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED) ;
ENFORCE(i p_i d_nbo. UVALUE ==
(i p_id. UVALUE / 256) + (ip_id. UVALUE % 256) * 256);
ENFORCE(i p_i d_nbo. ULENGTH == 16);
ENFORCE(i p_id_of fset. UWVALUE == i p_id _nbo. UVALUE - nsn. UVALUE);
}

}
optional _ip_id_Isb(behavior, indicator)
UNCOWPRESSED {
ipid][16];

COWMPRESSED short {

ip_id == ip_id_|lsb(behavior, 8, 3) [8];
ENFORCE((behavi or == | P_I D_BEHAVI OR_SEQUENTI AL) ||
(behavi or == | P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED)) ;
ENFORCE(i ndi cator == 0);
}
COWPRESSED | ong {
ipid==irregular(16) [16];
ENFORCE((behavi or == | P_I D_BEHAVI OR_SEQUENTI AL) ||
(behavi or == | P_I D BEHAVI OR_SEQUENTI AL_SWAPPED)) ;
ENFORCE(i ndi cator == 1);
}

ENFORCE((behavi or ==
(behavi or ==

BEHAVI OR_RANDOM) | |

COVMPRESSED not _present {
I
| BEHAVI OR_ZERO)) ;

P 1D

P_ID_
}

}

dont _fragnent (version)

Pelletier, et al. St andards Track [Page 76]

RFC 4996

UNCOVPRESSED {
df [117];

COWPRESSED v4 {
df == irreqgular(l)
ENFORCE(ver si on ==
}

COVPRESSED v6 {
df =:= conpressed_v
ENFORCE(ver si on ==
}
}

ROHC- TCP

[1];

4);

alue(1, 0) [1 1];
6);

(bbb

/1 Actual start of conp
/1 lnportant note:

/1 The base header is the conpressed representation
| P header AND the TCP header.

/1 of the innernost

ressed packet formats

FEEEEEEEEE b r s

July 2007

/1 ttl _irregular _chain flag is set by the user if the TTL/Hop Linmt

/1 of an outer header h

as changed.

The sane val ue nust be passed as

/1 an argunment to the ipv4/ipvé encodi ng nmet hods when extracting

/1 the irregular chain
co_baseheader (payl oad_s
ttl _irreg

UNCOWPRESSED v4 {
out er _headers
versi on
header _| ength
dscp
i p_ecn_flags
| ength
ip_id
rf
df
nf
frag of fset
ttl _hopl
next header
checksum
src_addr
dest _addr

ext ensi on_headers =

Pelletier, et al.

itens.
i ze, ack_stride_val ue,
ul ar _chai n_f | ag)

baseheader outer headers
unconpr essed_val ue(4, 4)
unconpr essed_val ue(4, 5)

unconpr essed_val ue(1, 0)

unconpr essed_val ue(1, 0)
unconpressed_val ue(13, 0)

St andards Track

= baseheader ext ensi on_headers

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

VAR ABLE |;
4],
l;

[ex)]

wpac>a>5+AFAFAHrAhac>>

N O

32
VARI ABLE];

[Page 77]

RFC 4996

src_port

dest _port
seq_nunber
ack_nunber
dat a_of f set
tcp_res_flags
tcp_ecn_flags
urg_flag
ack_fl ag
psh_fl ag
rsf_flags

wi ndow
tcp_checksum
urg_ptr
options

}
UNCOVPRESSED V6 {

out er _headers =:= baseheader_outer_headers
versi on =: = unconpressed_val ue(4, 6)

dscp

i p_ecn_fl ags
flow_ | abel

payl oad_| ength
next header
ttl _hopl
src_addr

dest _addr

ext ensi on_headers =:

src_port

dest _port
seq_nunber
ack_nunber
dat a_of f set
tcp_res_flags
tcp_ecn_flags
urg flag
ack_fl ag
psh_flag
rsf_flags

wi ndow
tcp_checksum

urg_ptr
options

ENFORCE(i p_i d_behavi or. UVALUE ==

CONTROL {

Pelletier, et al.

= baseheader _ext ensi on_headers

ROHC- TCP

NN OO

WFRPRPFRPPNRARRPOWERPE

[Y T S S S S—

-
()]

——— — — — — — — — — — — —
-
]
—

[
(]

July 2007

[(data_of fset. U/ALUE-5)*32]

41,

16];

,_,,_|,_|,_|,_|,_|_,,_|,_|,_|,_|,_|_,,_|,_|,_|,_,__,,_|,_|,_”_,__,
[a—

16]

VARI ABLE];

[(data_offset.UVALUE-55*32 |

| P_| D_BEHAVI OR_RANDOM ;

St andards Track

[Page 78]

RFC 4996

}

i p_i d_behavi or

seq_nunber scal ed

seq_nunber _resi due

field_scaling(payl oad_si ze,
seq_nunber .

ack _stride

ack_nunber _scal ed
_residue

ack_nunber

ROHC- TCP July 2007

[2];
[32];

seq_nunber _scal ed. UVALUE,
UVALUE) [32 1;
[]’
[]!

field_scaling(ack_stride. UVALUE, ack_numnber_scal ed. UVALUE,

I NITIAL {

}

ack_stride

DEFAULT {

Pel | eti er,

tcp_ecn_flags
dat a_of f set
tcp_res_flags
rsf_flags

dest _port

dscp

src_port
urg_flag

wi ndow

dest _addr
version

ttl _hopl
src_addr

df

ack_nunber
urg_ptr
seq_nunber

ack flag

/1 The default
/1 the list in

—
o
=

section 6.3.1 (i.e

ack_nunber
ENFORCE(ack_stride_val ue

.UVALUE) [32];
ack_stri de. UVALUE)

unconpr essed_val ue(16, 0);

static;

i nferred_of fset;

static;

unconpr essed_val ue(3, 0);
static;

static;

static;

unconpressed_val ue(1, 0);
static;

static
static
static
static
static
static
static
static;

unconpressed_val ue(1, 1);

"options" is case 2) and 3) from
not hi ng present in the

/'l baseheader itself)

payl oad_I| ength
checksum

| ength

fl ow | abel

next _header

i p_ecn_fl ags

inferred_ip_v6_| ength;
inferred_i p_v4_header _checksum
inferred ip_v4 | ength;

static;

static;

static;

/'l The tcp_ checksun1has no default,

/it
i p_i d_behavi or

et al.

is considered a part of tcp_lrregular

static;

St andards Track [Page 79]

RFC 4996 ROHC- TCP July 2007

ecn_used == static;

/| Default is to have no TTL in irregular chain
/1 Can only be nonzero if co_comon is used
ENFORCE(ttl _irregul ar_chain_flag == 0);

}

PELLTIIEL i rrrrninirrri
/1 Common conpressed packet format
PEELLELEE bbb irrri

COWPRESSED co_common {
di scri m nat or
ttl _hopl _outer flag

1111101 [

~

conpressed_value(1, ttl _irregular_chain flag) [11];
ack _flag == irregular (1) [171;
psh_fl ag == irregular(1) [171;
rsf_flags == rsf_index_enc [217;
nsn =:=Isb(4 4) [41;
seq_i ndi cat or == irregular(2) [217;
ack_i ndi cat or == irregular(2) [217;
ack_stride_indicator == irregular(1) [171;
wi ndow_i ndi cat or == irregular(1) [171;
i p_id_indicator == irregular(l1) [17;
urg _ptr_present == irregular(l) [171;
reserved =: = conpressed_val ue(1, 0) [17;
ecn_used =1 = one_bit_choice [17;
dscp_present == irregular (1) [171;
ttl _hopl _present == irregular (1) [171;
|ist _present == |rregular(1) [17;
i p_i d_behavi or == ip_id_behavior_choice(true) [21;
urg_flag == irregular(l) [17;
df =: = dont _fragment (versi on. UWALUE) [17;
header _crc == crc7(TH S. WWALUE, THI S. ULENGTH) [7];
seq_nunber ==

vari abl e | ength_32 enc(seq indicator. CVALUE) [0, 8, 16, 32];

ack_nunber ==

vari abl e | ength_32 enc(ack i ndicator. CVALUE) [0, 8, 16, 32];
ack_stride
static_or_i rreg(ack st ride_indicator. CVALUE, 16) [O, 16];

wi ndow

static_or_irreg(w ndow i ndi cator. CVALUE, 16) [0, 16];
ip_id

optional _ip_id_l sb(| p_| d_behavi or. UVALUE,

ip i d_i ndi cat or. CVALUE) [O, 8 16 1;

urg_ptr =

static_or_irreg(urg_ ptr _present. CVALUE, 16) [0, 16];
dscp ==

Pelletier, et al. St andards Track [Page 80]

RFC 4996 ROHC- TCP July 2007

dscp_enc(dscp_ present CVALUE) [0, 81;
ttl _hopl

static_or_irreg(ttl hopl _present. CVALUE, 8) [0, 81;
options

tcp_list_presence_ enc(l i st_present. CVALUE) [VAR ABLE];

}

/1 Send LSBs of sequence nunber
COWPRESSED rnd_1 {

discrimnator =:="'101110 [61;
seq_nunber == | sb(18, 65535) [18];
nsn == Isb(4, 4) [41];
psh_fl ag == irregular(l) [171;
header crc == crc3(TH S. UWWALUE, THI S. ULENGTH) [3];

ENFORCE((i p_i d_ behaV| or. UVALUE == | P_I D_BEHAVI OR_RANDOM) | |
(ip_i d_behaV| or. UWALUE == | P_I D_BEHAVI OR_ZERO));
}
/1 Send scal ed sequence nunber LSBs
COWMPRESSED rnd_2 {
di scri m nat or == "1100 [47,
seq_nunber _scaled =:=1Isb(4, 7) [41;
nmsn == Isb(4, 4) [41;
psh_fl ag :::irregular(l) [17;
header crc == crc3(TH S. UWVALUE, THI S. ULENGTH) [3];
ENFORCE(pay! oad_si ze 1= 0);
ENFORCE((i p_i d_behavi or. UVALUE == | P_| D_BEHAVI OR_RANDOM) | |
(i p_id_behavior. UALUE == | P_I D BEHAVI OR _ZERO)) ;
}
/1 Send acknowl edgnent nunber LSBs
COVMPRESSED rnd_3 {
di scrimnator == '0 [17;
ack_nunber == | sb(15, 8191) [15 7;
nmsn == Isb(4, 4) [41;
psh_fl ag == irregular(1) 1];
header crc == crc3(TH S. UWALUE, THI S. ULENGTH) [3];
ENF(RCE((l p_id_ behaV| or. UVALUE == | P_I| D_BEHAVI OR_RANDOM) | |
(ip_i d_behaV| or. UWWALUE == | P_I D_BEHAVI OR_ZERO)) ;
}
/1 Send acknow edgnment nunber scal ed
COWMPRESSED rnd_4 {
di scri m nat or = ="1107 [417;
ack_nunber _scaled =:=Isb(4, 3) [41;
nmsn == Isb(4, 4) [41;
psh_fl ag == irregular (1) [171;
header crc = = crc3(TH S. UVALUE, THI S. ULENGTH) [3];

Pelletier, et al. St andards Track [Page 81]

RFC 4996 ROHC- TCP July 2007

ENFORCE(ack_stride. UVALUE ! = 0);
ENFORCE((i p_i d_behavi or. UWWVALUE == | P_| D_BEHAVI OR_RANDOM) | |
(i p_i d_behavi or. UWVALUE == | P_I D_BEHAVI CR_ZERO)) ;
}

/1 Send ACK and sequence nunber
COVWPRESSED rnd_5 {

di scriminator = = 100’ [31;
psh_flag == irregular(l) [17;
nmsn == Isb(4, 4) [41;
header _crc == crc3(TH S. UWVALUE, THI S. ULENGTH) [3];
seq_nunber == | sb(14, 8191) [14];
ack_nunber == I sb(15, 8191) [15];
ENFCRCE((lp id_ behaV|or UVALUE == | P_I D_BEHAVI OR_RANDOV | |
(|p_|d_behaV|or UWALUE == | P_I D BEHAVI OR ZERQO));

}

/1 Send both ACK and scal ed sequence nunber LSBs
COVMPRESSED rnd_6 {

di scri m nat or = = 1010’ [41;
header crc == crc3(TH S. UWWALUE, THI S. ULENGTH) [3];
psh_fl ag == irregular (1) [171;
ack_nunber == | sb(16, 16383) [16];
nsn == Isb(4, 4) [417;
seq_nunber _scaled =:=1Isb(4, 7) [41;
ENFORCE(payl oad_size !'= 0);

ENFORCE((i p_i d_behavi or. UVALUE ==

| P_I D_BEHAVI OR_RANDOV) | |
(i p_id_behavior. UWALUE == I P_ID B

) BEHAVI OR_ZERO)) ;
}

/1 Send ACK and w ndow
COWPRESSED rnd_7 {
di scri m nat or
ack_nunber

101111’
| sb(18, 65535)

1,
l;
61];

PRARRPO
ed m

wi ndow i rregul ar(16)
nen I sb(4, 4) 1
psh _fl ag irregular(1) ;

header crc crc3(THI S. UVALUE, THI S. ULENGTH) [3];
ENFCRCE((lp id_ behaV|or UVALUE == | P_I D_BEHAVI OR_RANDOM
(|p_|d_behaV|or UVALUE == | P_| D_BEHAVI OR ZERO)) ;

}

/1 An extended packet type for sel dom changing fields
/'l Can send LSBs of TTL, RSF flags, change ECN behavior, and
/1 options I|ist
COVPRESSED rnd_8 {
di scri m nat or
rsf_flags

'10110° [51;
rsf _index_enc [2

Pelletier, et al. St andards Track [Page 82]

RFC 4996 ROHC- TCP July 2007

list present == irregular(l) [171;
header _crc == crc7(TH S. UVALUE, THI S. ULENGTH) [7];
nmsn =:= |sb(4, 4) [41;
psh_fl ag == irregular (1) [171;
ttl _hopl == Isb(3, 3) [31;
ecn_used =:= one_bhit_choice [17;
seq_nunber == | sb(16, 65535) [16];
ack_nunber =:= | sb(16, 16383) [16 1;
opti ons ==
tep_list presence enc(list_present. CVALUE) [VAR ABLE];
ENFORCE((i p_i d_behavi or. UWWALUE == | P_I D_BEHAVI OR_RANDOM | |
(i p_i d_behavi or. UVALUE == | P_I D_BEHAVI OR_ZERO)) ;
}
/1l Send LSBs of sequence nunber
COWPRESSED seq_1 {
discrimnator =:="'1010 [41;
ip_id = = ip_id_Isb(ip_id behavior. UWALUE, 4, 3) [4];
seq_nunber == | sb(16, 32767) [16];
nmsn == |sb(4, 4) [41;
psh_flag == irregular(l) [17;
header _crc == crc3(TH S. UWVALUE, THI S. ULENGTH) [31;
ENFORCE((i p_i d_ behaV|or UVALUE == | P_I D_BEHAVI OR_SEQUENTI AL) |
(|p_|d_behaV|or WALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED)) ;
}
/1 Send scal ed sequence nunber LSBs
COWPRESSED seq_2 {
di scri m nat or = = ' 11010’ [51;
ip_id ==
i p_id_|lsb(ip_id_behavior.UVALUE, 7, 3) [717;
seq_nunber_scaled == Isb(4, 7) [417;
nmsn == Isb(4, 4) [41;
psh_fl ag == irregular (1) [171;
header crc = = crc3(TH S. UVALUE, THI S. ULENGTH) [3];

ENFCRCE(paonad size '= 0);
ENFORCE((i p_i d_behavi or. UVALUE == | P_| D_BEHAVI OR_SEQUENTI AL) | |
(i p_i d_behavi or. UVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED)) ;
}

/1 Send acknowl edgnent nunber LSBs
COMPRESSED seq_3 {

di scrimnator == "1001 [41;
ip_id == ip_id_Isb(ip_id_behavior. UWALUE, 4, 3) [4];
ack_nunber == | sb(16, 16383) [16];
nsn == | sb(4, 4) [41;

Pelletier, et al. St andards Track [Page 83]

RFC 4996 ROHC- TCP July 2007

psh_fl ag == irregular(l) [171;
header crc == crc3(TH S. UWALUE, THI S. ULENGTH) [31;
ENFORCE((i p_i d_behavi or. UWALUE == | P_I D_BEHAVI OR_SEQUENTI AL) ||

(i p_id_behavior. UVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED)) ;
}

/1 Send scal ed acknow edgnent nunber scal ed
COWPRESSED seq_4 {

di scri m nat or =="'0 [171;
ack_nunber _scaled =:= | sb(4, 3) [41;
/1 Due to havi ng very fewip_id bits, no negative of fset

ip_id == p_| d_I sb(ip_id _behavior. U/ALUE, 3, 1) [3];
nmsn = Isb(4, 4) 4 1;
psh_flag :::|rregular(1) 1];
header _crc == crc3(TH S. UVALUE, THI S. ULENGTH) [3]

ENF(PCE(ack_stride. UVJALUE ! = 0);
ENFORCE((i p_i d_behavi or. UVALUE == | P_I D_BEHAVI OR_SEQUENTI AL) ||
(i p_id_behavior. UVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED)) ;
}

/1 Send ACK and sequence nunber
COWPRESSED seq_5 {

di scrimnator =:="'1000’ [41;
ip_id == ip_id_lsb(ip_id_behavior.UVALUE, 4, 3) [4];
ack_nunber == | sb(16, 16383) [16];
seq_nunber == | sb(16, 32767) [16];
nmsn == Isb(4, 4) [41;
psh_fl ag == irregular(1) [17;
header crc == crc3(TH S. UVALUE, THI S. ULENGTH) [31;
ENF(RCE((ip_id_ behaV| or. UVALUE == | P_I D_BEHAVI OR_SEQUENTI AL) | |
(ip_i d_behaV| or. WALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED)) ;

}

/1 Send both ACK and scal ed sequence nunber LSBs

COWPRESSED seq_6 {
di scri m nat or == 11011 [51;
seq_ nunber_scaled =:=1sb(4, 7) [41;
ip_id == ip_id_Isb(ip_id_behavior. UALUE, 7, 3) [7];
ack_nunber == | sb(16, 16383) [16];
msn == Isb(4, 4) [41
psh_fl ag :::irregular(l) [17;
header crc == crc3(TH S. WALUE, TH S. ULENGTH) [3];

I

ENFCRCE(payl oad_size != 0);
ENFORCE((i p_i d_behavi or. UVALUE == | P_| D_BEHAVI OR_SEQUENTI AL) ||
(i p_id_behavior. UVALUE ==

Pelletier, et al. St andards Track [Page 84]

RFC 4996 ROHC- TCP July 2007

| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED)) ;
}

/1 Send ACK and w ndow
COWPRESSED seq_7 {

discrimnator =:="'1100 [417;
wi ndow == | sb(15, 16383) [15];
ip_id == ip_id_lsb(ip_id_behavior.U/ALUE, 5 3) [51];
ack_nunber == | sb(16, 32767) [16];
nmsn == Isb(4, 4) [41;
psh_fl ag == irregular(1) [171;
header crc == crc3(TH S. UVALUE, THI S. ULENGTH) [31;
N

ENFORCE((i p_i d_ behaV|or UVALUE == | P_| D_BEHAVI OR_SEQUENTI AL)
(|p_|d_behaV|or WALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED)) ;

}

/1 An extended packet type for seldom changing fields

/1l Can send LSBs of TTL, RSF flags, change ECN behavi or, and
/1 options |ist

COMPRESSED seq_8 {

discrimnator =:="1011 [41;
ip_id == ip_id_|Isb(ip_id_behavior. UALUE, 4, 3) [4];
list present == irregular(l) [17;
header crc = = crc7(TH S. UVALUE, THI S. ULENGTH) [71;
nmsn == |sb(4, 4) [41;
psh_flag == irregular(l) [17;
ttl_hopl == Isb(3, 3) [31;
ecn_used =:= one_bit_choice [171;
ack_nunber == | sb(15, 8191) [15];
rsf _flags == rsf _index_enc [21;
seq_nunber == | sb(14, 8191) [14 1;
options

tep_list presence enc(list_present. CVALUE) [VAR ABLE];
ENFORCE((i p_i d_behavi or. UWVALUE == | P_I D_BEHAVI OR_SEQUENTI AL) |

(i p_i d_behavi or. UVALUE ==
| P_I D_BEHAVI OR_SEQUENTI AL_SWAPPED)) ;

Pelletier, et al. St andards Track [Page 85]

RFC 4996 ROHC- TCP July 2007

8.3. Feedback Formats and Options
8.3.1. Feedback Fornmats

This section describes the feedback formats for the ROHC TCP profile,
foll owi ng the general ROHC feedback format described in Section 5.2.3
of [RFC4995].

Al'l feedback formats carry a field | abeled MSN. The MSN field
contains LSBs of the MSN control field described in Section 6.1.1.
The sequence nunber to use is the MSN corresponding to the | ast
header that was successfully CRC-8 validated or CRC verified.

FEEDBACK- 1
0 1 2 3 4 5 6 7
g
| VSN |
e

MBN: The LSB-encoded naster sequence nunber.

A FEEDBACK-1 is an ACK. In order to send a NACK or a STATI C NACK,
FEEDBACK- 2 nust be used.

FEEDBACK- 2

0 1 2 3 4 5 6 7
e

| Ackt ype| VBN |
B T T T Rt S
| VBN |
B T T T R S S S
| CRC |
B T S S T e o
/ Feedback options /
B T T T Rt S
Ackt ype:

0 = ACK

1 = NACK

2 = STATI C- NACK

3 is reserved (MJUST NOT be used for parsability)

Pelletier, et al. St andards Track [Page 86]

RFC 4996 ROHC- TCP July 2007

MBN: The LSB-encoded naster sequence nunber.

CRC. 8-bit CRC conputed over the entire feedback el ement (as
defined in Section 5.3.1.1 of [RFC4995]). For the purpose of
computing the CRC, the CRCfield is zero. The CRC is calcul ated
usi ng the pol ynonm al defined in [RFC4995].

Feedback options: A variable nunber of feedback options, see
Section 8.3.2. Options nmay appear in any order

A FEEDBACK-2 of type NACK or STATIG-NACK is always inplicitly an
acknow edgnent for a successfully deconpressed packet, which packet
corresponds to the MBN of the feedback el ement, unless the MSN- NOT-
VALI D option (Section 8.3.2.2) appears in the feedback el enent.

The FEEDBACK-2 format always carries a CRC and is thus nore robust
than the FEEDBACK-1 format. Wen receiving FEEDBACK-2, the
conpressor MJST verify the information by conputing the CRC and by
conparing the result with the CRC carried in the feedback format. |If
the two are not identical, the feedback el ement MJUST be di scarded.

8.3.2. Feedback Options

A ROHC- TCP f eedback option has variable I ength and the follow ng
general format:

0 1 2 3 4 5 6 7
M S S S

| Opt Type | Opt Len |

e

/ option data / Opt Length (octets)
B T T S i S S

Each ROHC- TCP f eedback option can appear at nobst once within a
FEEDBACK- 2.

8.3.2.1. The REJECT Option

The REJECT option informs the conpressor that the deconpressor does
not have sufficient resources to handle the flow.

e

| Opt Type =2 | Opt Len =0
B T T S i S S

When receiving a REJECT option, the conpressor MJST stop conpressing

the packet flow, and SHOULD refrain fromattenpting to increase the
nunber of conpressed packet flows for sone tine. The REJECT option

Pelletier, et al. St andards Track [Page 87]

RFC 4996 ROHC- TCP July 2007

MUST NOT appear nore than once in the FEEDBACK-2 format; otherwi se,
the conpressor MJST discard the entire feedback el ement.

8.3.2.2. The MSN NOT-VALID Option

The MSN- NOT-VALI D option indicates that the MSN of the feedback is
not valid.

Ik LRk S I e TR
| Opt Type =3 | Opt Len =0 |

e

A conpressor MJST ignore the MBN of the feedback el enent when this
option is present. Consequently, a NACK or a STATI C-NACK f eedback
type sent with the MSN-NOT-VALID option is equivalent to a STATI G
NACK with respect to the semantics of the feedback nessage.

The MSN- NOT- VALI D option MJST NOT appear nore than once in the
FEEDBACK-2 fornmat and MJUST NOT appear in the sane feedback el enent as
the MSN option; otherw se, the conpressor MJST discard the entire

f eedback el enment.

8.3.2.3. The MSN Option
The MSN option provides 2 additional bits of NMSN

Ik LRk S I e TR
| Opt Type =4 | Opt Len =1 |
B T S S T e o

| MSBN | Reserved |
B T T T Rt S

These 2 bits are the least significant bits of the MSN and are thus
concatenated with the 14 bits already present in the FEEDBACK-2
format.

The MSN option MJST NOT appear nore than once in the FEEDBACK-2
format and MUST NOT appear in the sane feedback el enent as the MBN
NOT- VALI D option; otherw se, the conpressor MJST discard the entire
f eedback el ement.

8.3.2.4. The CONTEXT_MEMORY Feedback Option
The CONTEXT_MEMORY option nmeans that the deconpressor does not have

sufficient menory resources to handl e the context of the packet flow,
as the flowis currently conpressed.

Pelletier, et al. St andards Track [Page 88]

RFC 4996 ROHC- TCP July 2007

0 1 2 3 4 5 6 7
g S S S S

| Opt Type =9 | Opt Len =0

g S S

When recei ving a CONTEXT_MEMORY option, the conpressor SHOULD take
actions to conpress the packet flowin a way that requires |ess
deconpressor nmenory resources, or stop conpressing the packet flow

The CONTEXT_MEMORY option MJST NOT appear nore than once in the
FEEDBACK-2 format; otherw se, the conpressor MJST discard the entire
f eedback el enent.

8.3.2.5. Unknown Option Types

10.

If an option type unknown to the conpressor is encountered, the
conmpressor MJST continue parsing the rest of the FEEDBACK el enent,
which is possible since the length of the option is explicit, but
MUST ot herwi se ignore the unknown option

Security Considerations

A mal functioning or malicious header conpressor could cause the
header deconpressor to reconstitute packets that do not match the
original packets but still have valid IP and TCP headers, and

possi bly also valid TCP checksuns. Such corruption nmay be detected
with end-to-end authentication and integrity nmechanisns that will not
be affected by the conpression. Mreover, this header conpression
schene uses an internal checksum for verification of reconstructed
headers. This reduces the probability of produci ng deconpressed
headers not matching the original ones w thout this being noticed.

Deni al - of -service attacks are possible if an intruder can introduce
(for example) bogus IR CO or FEEDBACK packets onto the |link and

t hereby cause conpression efficiency to be reduced. However, an
intruder having the ability to inject arbitrary packets at the link
layer in this manner raises additional security issues that dwarf
those related to the use of header conpression

| ANA Consi der ati ons

The ROHC profile identifier 0x0006 has been reserved by the | ANA for
the profile defined in this docunent.

A ROHC profile identifier has been reserved by the 1 ANA for the
profile defined in this docunent. Profiles 0x0000-0x0005 have
previously been reserved; this profile is 0x0006. As for previous

Pelletier, et al. St andards Track [Page 89]

RFC 4996 ROHC- TCP July 2007

11.

12.

12.

ROHC profiles, profile nunbers Oxnn06 have been reserved for future
updates of this profile.

Profile Usage Docunent
identifier

0x0006 RCOHC TCP [RFC4996]
0xnn06 Reserved

Acknow edgrent s

The authors would like to thank Q an Zhang, Hong Bin Liao, Richard
Price, and Fredrik Lindstroemfor their work with early versions of
this specification. Thanks also to Robert Finking and Carsten

Bor mann for val uabl e input.

Addi tional thanks: this docunment was reviewed during working group
|ast-call by conmitted reviewers Joe Touch and Ted Faber, as well as
by Sally Floyd, who provided a review at the request of the Transport
Area Directors.

Ref er ences
1. Nornmtive References

[RFCO791] Postel, J., "Internet Protocol", STD 5, RFC 791,
Sept enmber 1981.

[RFCO793] Postel, J., "Transm ssion Control Protocol", STD 7,
RFC 793, Septenber 1981.

[RFC2004] Perkins, C., "Mninmal Encapsulation within IP", RFC 2004,
Cct ober 1996.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

[RFC2460] Deering, S. and R Hinden, "Internet Protocol, Version 6
(1 Pv6) Specification", RFC 2460, Decenber 1998.

[RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
Mar ch 2000.

[RFC2890] Dommety, G, "Key and Sequence Nunber Extensions to GRE',
RFC 2890, Septenber 2000.

Pelletier, et al. St andards Track [Page 90]

RFC 4996

ROHC- TCP July 2007

[RFC4A164] Pelletier, G, "RObust Header Conpression (ROHC): Context
Replication for ROHC Profiles", RFC 4164, August 2005.

[RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
Decenber 2005.

[RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, Decenber 2005.

[RFC4995] Jonsson, L-E., Pelletier, G, and K Sandlund, "The RCObust
Header Conpression (ROHC) Framewor k", RFC 4995, July 2007.

[RFC4997] Finking, R and G Pelletier, "Fornmal Notation for Robust
Header Conpression (ROHC-FN)", RFC 4997, July 2007.

12.2. Informative References

[RFC1144] Jacobson, V., "Conpressing TCP/|IP headers for | ow speed
serial links", RFC 1144, February 1990.

[RFC1323] Jacobson, V., Braden, B., and D. Bornman, "TCP Extensions
for H gh Performance", RFC 1323, My 1992.

[RFC2018] Mathis, M, WMhdavi, J., Floyd, S., and A Ronmanow, "TCP
Sel ective Acknow edgnent Options", RFC 2018, Cctober 1996.

[RFC2507] Degermark, M, Nordgren, B., and S. Pink, "IP Header
Conpression", RFC 2507, February 1999.

[RFC2581] Al lman, M, Paxson, V., and W Stevens, "TCP Congestion
Control", RFC 2581, April 1999.

[RFC2883] Floyd, S., Mhdavi, J., Mathis, M, and M Podol sky, "An
Extension to the Sel ective Acknow edgenent (SACK) Option
for TCP', RFC 2883, July 2000.

[RFC3095] Bormann, C., Burneister, C, Degernmark, M, Fukushima, H.,
Hannu, H., Jonsson, L-E., Hakenberg, R, Koren, T., Le,
K., Liu, Z, Martensson, A, Myazaki, A, Svanbro, K.,
W ebke, T., Yoshimura, T., and H Zheng, "RObust Header
Conpression (ROHC): Framework and four profiles: RTP, UDP,
ESP, and unconpressed", RFC 3095, July 2001.

[RFC3168] Ramakrishnan, K, Floyd, S., and D. Black, "The Addition

of Explicit Congestion Notification (ECN) to IP",
RFC 3168, Septenber 2001.

Pelletier, et al. St andards Track [Page 91]

RFC 4996

[RFC3759]

[RFC4163]

[RFC4224]

[RFC4413]

ROHC- TCP July 2007

Jonsson, L-E., "ROobust Header Conpression (ROHC):
Term nol ogy and Channel Mappi ng Exanpl es", RFC 3759,
April 2004.

Jonsson, L-E., "RObust Header Conpression (ROHC):
Requirements on TCP/| P Header Conpression", RFC 4163,
August 2005.

Pelletier, G, Jonsson, L-E., and K Sandl und, "RObust
Header Conpression (ROHC): ROHC over Channels That Can
Reor der Packets", RFC 4224, January 2006.

West, M and S. McCann, "TCP/IP Field Behavior", RFC 4413,
March 2006.

Pelletier, et al. St andards Track [Page 92]

RFC 4996 ROHC- TCP July 2007

Aut hors’ Addr esses

Chyslain Pelletier
Eri csson

Box 920

Lulea SE-971 28
Sweden

Phone: +46 (0) 8 404 29 43
EMai | : ghysl ain. pelletier@ricsson.com

Kri stof er Sandl und
Eri csson

Box 920

Lulea SE-971 28
Sweden

Phone: +46 (0) 8 404 41 58
EMui | : kristofer.sandl und@ricsson.com

Lars-Eri k Jonsson
Optand 737
Ostersund SE-831 92
Sweden

Phone: +46 70 365 20 58
EMail: lars-eri k@ ejonsson.com

Mar k A West

Si enmens/ Roke Manor

Roke Manor Research Ltd.
Ronsey, Hanpshire S061 0ZN
UK

Phone: +44 1794 833311
EMai | : mar k. a. west @ oke. co. uk
URI : http://ww. roke. co. uk

Pelletier, et al. St andards Track [Page 93]

RFC 4996 ROHC- TCP July 2007

Ful I Copyright Statenent
Copyright (C The | ETF Trust (2007).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCORED BY (I F ANY), THE | NTERNET SCCI ETY, THE | ETF TRUST AND
THE | NTERNET ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS
OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF
THE | NFORVATI ON HEREI'N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. [Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of I PR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the information to the |ETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Pelletier, et al. St andards Track [Page 94]

