Net wor k Wor ki ng Group 4691
RFC- 5 Jeff Rulifson
June 2, 1969

DEL

: DEL, 02/06/69 1010: 58 JFR : .DSN=1; .LSP=0; ['=] AND NOT SP ; ['7?];
dual transmni ssion?

ABSTRACT

The Decode- Encode Language (DEL) is a nmachi ne i ndependent | anguage
tailored to two specific conputer network tasks:

accepting i nput codes frominteractive consol es, giving inediate
f eedback, and packing the resulting information into nessage
packets for network transm ssin.

and accepting nessage packets from anot her conputer, unpacking
them building trees of display information, and sending other
information to the user at his interactive station

This is a working docunent for the evolution of the DEL | anguage.
Comment s shoul d be made through Jeff Rulifson at SR

FORWARD

The initial ARPA network working group met at SRI on Cctober 25-26,
1968.

It was generally agreed beforehand that the runmming of interactive
progranms across the network was the first problemthat would be
faced.

This group, already in agreenent about the underlaying notions of
a DEL-1i ke approach, set down sone terninol ogy, expectations for
DEL prograns, and |lists of proposed senmantic capability.

At the nmeeting were Andrews, Baray, Carr, Crocker, Rulifson, and
St ought on.

A second round of neetings was then held in a pieceneal way.

Crocker neet with Rulifson at SRI on Novenber 18, 1968. This
resulted in the incorporation of formal co-routines.

and Stoughton neet with Rulifson at SRI on Decenmbeer 12, 1968. It
was decided to neet again, as a group, probably at UTAH, in late
January 1969.

The first public release of this paper was at the BBN NET neeting in
Canbri dge on February 13, 1969.

NET STANDARD TRANSLATORS

NST The NST library is the set of prograns necessary to nesh
efficiently with the code conpiled at the user sites fromthe DEL
prograns it receives. The NST-DEL approach to NET interactive system
conmmuni cation is intended to operate over a broad spectrum

The | owest | evel of NST-DEL usage is direct transmission to the
server-host, information in the sane format that user prograns
woul d receive at the user-host.

In this node, the NST defaults to inaction. The DEL program
does not receive universal hardware representation input but
input in the normal fashion for the user-host.

And the DEL 1 program beconmes nerely a nessage buil der and
sender.

A nore internedi ate use of NST-DEL is to have echo tables for a
TTY at the user-host.

In this node, the DEL programwould run a full duplex TTY for
t he user.

It woul d echo characters, translate themto the character set
of the server-host, pack the translated characters in nessages,
and on appropriate break characters send the nessages.

Wien nessages come fromthe server-host, the DEL program woul d
translate themto the user-host character set and print them on
his TTY.

A nore anbitious task for DEL is the operation of |arge,
di spl ay-oriented systens fromrenote consol es over the NET.

Large interactive systens usually offer a ot of feedback to
the user. The unusual nature of the feedback make it

i npossible to nodel with echo table, and thus a user program
nmust be activated in a TSS each tinme a button state is changed.

This puts an unnecessarily large load on a TSS, and if the
systemis being run through the NET it could easily | oad two
syst ens.

To avoid this double overloading of TSS, a DEL program will

run on the user-host. It will handle all the inmediate
f eedback, much like a conplicated echo table. At appropriate
button pushes, nessage will be sent to the server-host and

di spl ay updates received in return

One of the nore difficult, and often neglected, problens is the
effective sinmulation of one nonstandard consol e on anot her non-
st andard consol e.

W attenpt to offer a means of solving this problemthrough
the co-routine structure of DEL prograns. For the
conplicated interactive systens, part of the DEL prograns
will be constructed by the server-host progranmers.
Interfaces between this programand the input stream may
easily be inserted by programers at the user-host site.

UNI VERSAL HARDWARE REPRESENTATI ON

To mninmze the nunber of translators needed to nap any facility's
user codes to any other facility, there is a universal hardware
representation.

This is sinply a way of talking, in general terns, about all the
hardware devices at all the interactive display stations in the initia
net wor k.

For exanple, a display is thought of as being a square, the

m d- poi nt has coordinates (0.0), the range is -1 to 1 on both
axes. A point may now be specified to any accuracy, regardl ess of
the particul ar nunber of density of rastor points on a display.

The representation is discussed in the senmantic expl anations
acconpanyi ng the formal description of DEL.

| NTRODUCTI ON TO THE NETWORK STANDARD TRANSLATOR (NST)

Suppose that a user at a renote site, say Utah, is entered in the
AH system and wants to run NLS.

The first step is to enter NLS in the normal way. At that tine
the Uah systemw Il request a synbolic programfrom NLS

REP This programis witten in DEL. It is called the NLS
Renmot e Encode Program (REP)

The program accepts input in the Universal Hardware
Representation and translates it to a formusable by NLS.

It may pack characters in a buffer, also do sonme |oca
f eedback.

When the programis first received at Uah it is conpiled and
| oaded to be run in conjunction with a standard library.

Al input fromthe Uah console first goes to the NLS NEP. It is
processed, parsed, blocked, translated, etc. Wien NEP receives a
character appropriate to its state it may finally initiate
transfers to the 940. The bits transferred are in a form
acceptable to the 940, and maybe in a standard formso that the
NLSW need not differentiate between Utah and other NET users.

ADVANTAGES OF NST

After each node has inplenented the library part of the NST, it
need only write one program for each subsystem nanely the
synbolic file it sends to each user that maps the NET hardware
representation into its own special bit formats.

This is the m ninum programr ng that can be expected if
console is used to its fullest extent.

Since the NST which runs the encode translation is coded at the
user site, it can take advantage of hardware at its consoles to
the fullest extent. It can also add or renove hardware
features without requiring new or different translation tables
fromthe host.

Local users are also kept up to date on any changes in the system
offered at the host site. As new features are added,

the host programmers change the synbolic encode program \en
this new programis conpiled and used at the user site, the new
features are automatically included.

The advant ages of having the encode translation prograns
transferred synbolically should be obvious.

Each site can translate any way it sees fit. Thus nmachine code
for each site can be produced to fit that site; faster run
tinmes and greater code density will be the result.

Moreover, extra synbolic prograns, coded at the user site, may

be easily interfaced between the user’s nonitor system and the
DEL program fromthe host nmachine. This should ease the
probl em of consol e extension (e.g. acconmobdati ng unusual keys and
buttons) without loss of the flexibility needed for nan-machi ne

i nteraction.

It is expected that when there is matching hardware, the synbolic
prograns will take this into account and avoid any unnecessary
conputing. This is imediately possible through the code
translation constructs of DEL. It nay soneday be possible through
program conpositi on (when Crocker tells us how??)

AH NLS - USER CONSOLE COMMUNI CATI ON - AN EXAMPLE
BLOCK DI AGRAM

The right side of the picture represents functions done at the
user’s main conputer; the left side represents those done at the
host conputer.

Each | abel in the picture corresponds to a statenent with the
same nane.

There are four trails associated with this picture. The first
links (in a forward direction) the |abels which are concerned
only with network information. The second |inks the total
information flow (again in a forward direction). The last two
are equivalent to the first two but in a backward direction
They may be set with pointers tl1 through t4 respectively.

[">tif:] ORI" >nif"]; ["<tif:] OR["<nif"];
USER- TO- HOST TRANSM SSI ON

Keyboard is the set of input devices at the user’s console.

Input bits fromstations, after drifting through |evels of nonitor
and interrupt handlers, eventually cone to the encode transl ator.
[>ni f (encode)]

Encode maps the semi -raw input bits into an input streamin a
formsuited to the serving-host subsystemwhich will process the
input. [>nif(hrt)<nif(keyboard)]

The Encode program was supplied by the server-host subsystem
when the subsystemwas first requested. It is sent to the user
machine in synbolic formand is conpiled at the user machine
into code particularly suited to that nachine.

It may pack to break characters, map nmultiple characters to
single characters and vice versa, do character translation, and
gi ve i medi ate feedback to the user

1 dm I medi ate feedback fromthe encode translator first goes to
| ocal display managenent, where it is mapped fromthe NET standard
to the | ocal display hardware

A wi de range of echo output nmay cone fromthe encode
translator. Sinple character echoes would be a nininmum while
command and nachi ne-state feedback will be comon.

It is reasonable to expect control and feedback functions not
even done at the server-host user stations to be done in |oca
di splay control. For exanple, people with high-speed displays
may want to selectively clear curves on a Culler display, a
function which is inpossible on a storage tube.

Qut put fromthe encode translator for the server-host goes to the
invisible IMP, is broken into appropriate sizes and | abel ed by the
encode translator, and then goes to the NET-to-host translator

Qutput fromthe user may be nore than on-line input. It may be

| arger itens such as conputer-generated data, or files
generated and used exclusively at the server-host site but
stored at the user-host site.

Information of this kind may avoid translation, if it is already in
server-host format, or it may undergo yet another kind of translation
if it is a block of data.

hrp It finally gets to the host, and nust then go through the

host reception program This maps and reorders the standard
transm ssion-styl e packets of bits sent by the encode prograns

i nto nmessages acceptable to the host. This program nmay well be
part of the nonitor of the host machine. [>tif(net node)<nif (code)]

HOST- TO- USER TRANSM SSI ON

decode Qutput fromthe server-host initially goes through decode
a translation map sinilar to, and perhaps nore conplicated than,
the encode map. [>nif(urt)>tif(inmp ctrl)<tif(net node)]

This map at least formats display output into a sinplified
| ogi cal -entity output stream of which nmeani ngful pieces nay be
dealt with in various ways at the user site.

The Decode program was sent to the host nmachine at the sane
time that the Encode programwas sent to the user nachine.
The programis initially in synbolic formand is conpiled
for efficient running at the host nachi ne.

Li nes of charaters should be logically identified so that
different line widths can be handl ed at the user site.

Sonme formof logical line identification nust al so be nade.
For exanple, if a straight line is to be drawn across the
display this fact should be transnmitted, rather than a
series of 500 short vectors.

As things firmup, nore and nore conplicated structura
display information (in the manner of LEAP) should be sent
and accommpdated at user sites so that the responsibility for
real -tine display mani pul ation may shift closer to the user

inmp ctrl The server-host may al so want to send contro
information to IMPs. Formatting of this information is done by
the host decoder. [>tif(urt) <tif(decode)]

The other control information supplied by the host decoder is
nmessage break up and identification so that proper assenbly and
sorting can be done at the user site.

Fromthe host decoder, information does to the invisible | MP, and
directly to the NET-to-user translator. The only operation done
on the nessages is that they nmay be shuffl ed.

urt The user reception transl ator accepts nessages fromthe
user-site IMP 1 and fixes themup for user-site display.
[>nif(d ctrl)>tif(prgmectrl)<tif(inp ctrl)<nif(decode)]

The minimal action is a reordering of the nessage pieces.

detrl For display output, however, nore needs to be done. The
NET | ogi cal display information nmust be put in the format of

the user site. Display control does this job. Since it

coordi nates between (encode) and (decode) it is able to offer
features of display managenent local to the user site.
[>nif(display)<nif(urt)]

prgnctrl Anot her action rmay be the selective translation and
routing of information to particular user-site subsystens.
[>tif(dctrl)<tif(urt)]
For exanple, blocks of floating-point information nay be
converted to user-style words and sent, in block form to a
subsystem for processing or storage.
The styles and translation of this information may well be a
conpact binary format suitable for quick translation, rather
than a print-inage-oriented format.

(di spl ay) is the output to the user. [<nif(d ctrl)]

USER- TO- HOST | NDI RECT TRANSM SSI ON

(net node) This is the node where a renpote user can link to a node
indirectly through anot her node. [<ni f(decode)<tif(hrt)]

DEL SYNTAX
NOTES FOR NLS USERS

Al'l statements in this branch which are not part of the conpiler
nmust end with a peri od.

To conpile the DEL conpiler:

Set this pattern for the content analyzer ((synbol for up arrow)P1l
SE(P1) <-"-;). The pointer "del"” is on the first character of pattern

Junp to the first statenent of the conpiler. The pointer "c
is on this statenent.

And out put the compiler to file ('/A-DEL’). The pointer "f"
is on the nane of the file for the conpiler output -

PROGRAMS
SYNTAX
-neta file (k=100. m=300, n=20, s=900)
file = nesdecl $decl aration $procedure "FI N SH'
procedure =
procnane (
(
type "FUNCTI ON' /
"PROCEDURE") .id (type .id / -enpty)) /
"CO ROUTI NE") ' /
$decl aration | abel edst $(1 abel edst ';) "endp."
| abel edst = ((left arrow synbol).id ': / .enpty) statenent;
type = "INTECER' / "REAL" ;

procnanme = .id;

Functions are differentiated from procedures to aid conpilers in
better code production and run tine checks.

Functions return val ues.
Procedures do not return val ues.

Co-routines do not have names or argunents. Their initial
envocation points are given the pipe declaration

It is not clear just how gl obal declarations are to be??
DECLARATI ONS
SYNTAX

decl aration = nunbertype / structuredtype / label / Icl2uhr /
uhr2rnt / pipetype;

nunbertype = : ("REAL" / "I NTECGER') ("CONSTANT" conlist /
varlist);
conlist =

.id " (left arrow synbol)const ant

$('. .id " (left arrow synbol)constant);
varlist =

.id (" (left arrow symbol)constant / .enpty)

$('. .id(’(left arrow synbol)constant / .enpty));
idlist = .id $('. .id);
structuredtype = (tree" / "pointer"” / "buffer"”) idlist;
| abel = "LABEL1" idlist;

pi petype = Pl PE" pairedids $(', pairedids);

pairedids = .id .id;
procnane = .id;

i ntegerv = .id;

pi penane = .id;

| abelv = .id;

Vari abl es which are declared to be constant, nay be put in
read-only menory at run tine.

The | abel declaration is to declare cells which nmay contain the
machi ne addresses of labels in the programas their values. This
is not the B5500 | abel declaration

In the pipe declaration the first .ID of each pair is the nane of
the pipe, the second is thke initial starting point for the pipe.

ARl THVETI C

SYNTAX

exp "I F* conjunct "THEN' exp "ELSE" exp;

sum = term (

"+ sum/

- sum/
-enpty);
term= factor (
"* term/
"I term/
"(up arrow synbol) term/
.enpty);
factor = '- factor / bitop;
bitop = conplinent (
"/ bitop [/
"/"\ bitop /
"& bitop / (
.enpty);
complinment = "--" primary / primary;
(synbol for up arrow) nmeans nod. and /\ neans excl usive or

Notice that the uniary minus is allowable, and parsed so you can
wite x*-y.

Since there is no standard convention with bitwi se operators, they
all have the same precedence, and parentheses nust be used for

gr oupi ng.
Conmpliment is the |I’'s conplinent.
It is assuned that all arithnetic and bit operations take place in
the node and style of the machine running the code. Anyone who
t akes advantage of word lengths, two's conplinent arithnetic, etc.
will eventually have problens.
PRI MARY
SYNTAX
primary =

constant /

builtin/

variable / (

bl ock /

"(exp)

variable = .id (

"(synmbol for left arrow) exp /

"(block ") [/

.enpty);
constant = integer / real / string;
builtin =

nmesinfo /

cortnin /

("MN'" / "MAX") exp $('. exp) '/

par ent hesi zed expressi ons may be a series of expressions. The
value of a series is the value of the | ast one executed at run tine.

Subroutines may have one call by nane argunent.

Expressions nmay be mixed. Strings are a big problen? Rulifson
al so wants to get rid of real numbers!!

CONJUNCTI VE EXPRESSI ON
SYNTAX

conjunct = disjunct ("AND' conjunct / .enpty);

di sjunct = negation ("OR' negation / .enpty);

negation = "NOTI" relation / relation

relation
"(conjunct ') /
sum (
"<=" sum/

" sum /

< sum/

> sum /

= sum/

sum /

.enpty);

The conjunct construct is rigged in such a way that a conjunct
which is not a sumneed not have a val ue, and nmay be eval uated
using junps in the code. Reference to the conjunct is nade only
in places where a logical decisionis called for (e.g. if and
whil e statenents).

We hope that nmost compilers will be smart enough to skip
unnecessary evaluations at run tine. |[|.e a conjunct in which the
left part is false or a disjunct with the left part true need not
have the corresponding right part eval uated.

ARl THVETI C EXPRESSI ON

SYNTAX
statenent = conditional / unconditional

uncondi tional = |loopst / cases / cibtrikst / uist / treest /
block / null [/ exp;

conditional = "IF" conjunct "THEN' unconditional (
"ELSE" conditional /
.enpty);
bl ock = "begi n" exp $('; exp) "end"
An expressions nay be a statenent. |In conditional statements the
el se part is optional while in expressions it is mandatory. This
is a side effect of the way the left part of the syntax rules are
or der ed.
SEM - TREE MANI PULATI ON AND TESTI NG
SYNTAX

treest = setpntr / insertpntr / deletepntr;

setpntr "set" "pointer" pntrnane "to" pntrexp
pntrexp = direction pntrexp / pntrnane;
insertpntr = "insert" pntrexp "as"

(("left" / "right") "brother") /

(("first" [/ "last:) "daughter") "of" pntrexp;
direction =

"up" /
"down" /

"forward" /

"backward: /

"head" /

"tail";
plantree = "replace" pntrnane "with" pntrexp
del etepntr = "del ete: pntrnane;
tree ="' (treel ') ;

treel = nodenane $nodenane ;

nodename = terminal / '(treel ')
termnal = treenanme / buffername / point ernane;
treename = id;

treedecl = "pointer" .id/ "tree" .id;

Extra parentheses in tree building results in linear subcategorization,
just as in LISP.

FLOW AND CONTRCL
control st = gost / subst / |oopstr / casest;
GO TO STATEMENTS
gost = "GO "TO' (labelv / .id);
assignlabel = "ASSIGN' .id "TO' |abelv;
SUBROUTI NES
subst = callst / returnst / cortnout;
call st = "CALL" procnane (exp / .enptyu);
returnst = "RETURN' (exp / .enpty);
cortnout = "STUFF" exp "IN' pi penang;
cortnin = "FETCH' pi penane;

FETCH is a builtin function whose value is conputed by envoki ng
t he nanmed co-routi ne.

LOOP STATEMENTS
SYNTAX

| oopst = whilest / untilst / forst;

whil est = "WHI LE" conjunct "DO' statenent;
untilst = "UNTIL" conjunct "DJ' statenent;
forst = "FOR' integerv - exp ("BY" exp / .enpty) "TO' exp

"DO' statenents;

The val ue of while and until statements is defined to be false
and true (or 0 and non-zero) respectively.

For statenents evaluate their initial exp, by part, and to part
once, at initialization tinme. The running index of for
statenments is not available for change within the loop, it nmay
only be read. |If, sonme conpilers can take advantage of this
(say put it in a register) all the better. The increnent and
the to bound will both be rounded to integers during the
initialization.

CASE STATEMENTS

SYNTAX
casest = ithcasest / condcasest;
ithcasest = "I THCASE" exp "OF' "BEGQ N' statenment $(’;

statement) "END';

condcasest = "CASE" exp "OF" "BEG N' condcs $('; condcs)
"OTHERW SE" st atenent "END';

condcs = conjunct ': statement;

The val ue of a case statenent is the value of the | ast case execut ed.

EXTRA STATEMENTS
nul I = "NULL";
I/ O STATEMENTS
i ost = nessagest / dspyst ;
MESSAGES
SYNTAX
nmessagest = buildnmes / denand;

buil dnmest = startnmes / appendnmes / sendnes;

startmes = "start" "nessage";
appendnes = "append" "nessage" "byute" exp;
sendnes = "send" "nessage";

demandnes = "demand" " Message";

nesinfo =
n get n n rressa.gell n byt elI
"messagel” "length" /

"nmessage” enpty: ' ?;

mesdecl = "nmessage" "bytes" "are" ,byn "bits" |ong"
DI SPLAY BUFFERS
SYNTAX
dspyst = startbuffer / bufappend / estab;
startbuffer - "start” "buffer"”;
buf append = "append" bufstuff $(' & bufstuff);
buf stuff =:
"paraneters” dspyparm $('. dspyparm /
"character" exp /
"string"1l strilng /
"vector" ("front exp ':exp / .enpty) "to" exp '. exp /
"position" (onoff / .enpty) "beamt "to" exp '= exp/
curve" ;
dspyparm F :
"intensity" "to" exp /

"character" "width" "to" exp /

"blink" onoff /
"italics" onff;
onoff = "on" [/ "off";
estab = "establish" buffernane;
LOG CAL SCREEN

The screen is taken to be a square. The coordinates are
normalized from-1 to +1 on both axes.

Associated with the screen is a position register, called
PREG. The register is a triple <x.y.r> where x and y
specify a point on the screen and r is a rotation in
radi ans, counter clockw se, fromthe x-axis.
The intensity, called INTENSITY, is a real nunber in the
range fromO to 1. O is black, 1 is as light as your
di splay can go, and nunbers in between specify the relative
log of the intensity difference.
Character frane size.
Blink bit.

BUFFER BUI LDI NG
The term nal nodes of semi-trees are either seni-tree nanes
or display buffers. A display buffer is a series of |ogica
entities, called bufstuff.
When the buffer is initilized, it is enpty. If no
paraneters are initially appended, those in effect at the
end of the display of the last node in the sem-tree will be in
effect for the display of this node.
As the buffer is built, the logical entities are added to it.
Wien it is established as a buffername, the buffer is
cl osed, and further appends are prohibited. It is only a
buf f er name has been established that it may be used in a tree
bui | di ng statenent.

LOG CAL | NPUT DEVI CES
wand
Joy Stick
Keyboar d
But t ons
Li ght Pens
M ce

AUDI O QUTPUT DEVI CES

. end

SAMPLE PROGRANS

Programto run display and keyboard as tty.

to run NLS
i nput part
di spl ay part
DEMAND MESSAGE
Wil e LENGTH " O DO
| THCASE GETBYTE OF Begin
| THCASE GETBYTE OF % il e area ui pdate% BEG N
Witeral area%
%ressage area%
Ymanme area%
Y%oug%
%sequence specs%
%ilter specs%
% ormat specs%
%comuand feedback |ine%
% iler area%
Ygate ti me%
%echo register%
BEG N YDEL control %
DI STRI BUTI ON LI ST
Steve Carr
Department of Conputer Science
Uni versity of U ah
Salt Lake City, Uah 84112
Phone 801-322-7211 X8224
Steve Crocker
Boel ter Hall
Uni versity of California
Los Angeles, California
Phone 213-825-4864
Jeff Rulifson
Stanford Research Institute
333 Ravenswood
Menl o Park, California 94035
Phone 415-326-6200 X4116
Ron St ought on
Conput er Research Laboratory
University of California

Santa Barbara, California 93106
Phone 805-961-3221

Mehnet Bar ay

Cor ey Hal l

University of California
Berkeley, California 94720
Phone 415-843- 2621

