
Network Working Group C. Bormann
Request for Comments: 5049 Universitaet Bremen TZI
Category: Standards Track Z. Liu
 Nokia Research Center
 R. Price
 EADS Defence and Security Systems Limited
 G. Camarillo, Ed.
 Ericsson
 December 2007

 Applying Signaling Compression (SigComp)
 to the Session Initiation Protocol (SIP)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 This document describes some specifics that apply when Signaling
 Compression (SigComp) is applied to the Session Initiation Protocol
 (SIP), such as default minimum values of SigComp parameters,
 compartment and state management, and a few issues on SigComp over
 TCP. Any implementation of SigComp for use with SIP must conform to
 this document and SigComp, and in addition, support the SIP and
 Session Description Protocol (SDP) static dictionary.

Bormann, et al. Standards Track [Page 1]

RFC 5049 Applying SigComp to SIP December 2007

Table of Contents

 1. Introduction ..3
 2. Terminology ...3
 3. Compliance with This Specification3
 4. Minimum Values of SigComp Parameters for SIP/SigComp3
 4.1. decompression_memory_size (DMS) for SIP/SigComp4
 4.2. state_memory_size (SMS) for SIP/SigComp4
 4.3. cycles_per_bit (CPB) for SIP/SigComp5
 4.4. SigComp_version (SV) for SIP/SigComp5
 4.5. locally available state (LAS) for SIP/SigComp5
 5. Delimiting SIP Messages and SigComp Messages on the Same Port ...5
 6. Continuous Mode over TCP ..6
 7. Too-Large SIP Messages ..7
 8. SIP Retransmissions ...7
 9. Compartment and State Management for SIP/SigComp7
 9.1. Remote Application Identification8
 9.2. Identifier Comparison Rules10
 9.3. Compartment Opening and Closure11
 9.4. Lack of a Compartment13
 10. Recommendations for Network Administrators13
 11. Private Agreements ..14
 12. Backwards Compatibility14
 13. Interactions with Transport Layer Security (TLS)14
 14. Example ...15
 15. Security Considerations17
 16. IANA Considerations ...17
 17. Acknowledgements ..17
 18. References ..18
 18.1. Normative References18
 18.2. Informative References19

Bormann, et al. Standards Track [Page 2]

RFC 5049 Applying SigComp to SIP December 2007

1. Introduction

 SigComp [RFC3320] is a solution for compressing messages generated by
 application protocols. Although its primary driver is to compress
 SIP [RFC3261] messages, the solution itself has been intentionally
 designed to be application agnostic so that it can be applied to any
 application protocol; this is denoted as ANY/SigComp. Consequently,
 many application-dependent specifics are left out of the base
 standard. It is intended that a separate specification be used to
 describe those specifics when SigComp is applied to a particular
 application protocol.

 This document binds SigComp and SIP; this is denoted as SIP/SigComp.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Compliance with This Specification

 Any SigComp implementation that is used for the compression of SIP
 messages MUST conform to this document, as well as to [RFC3320].
 Additionally, it must support the SIP/SDP static dictionary, as
 specified in [RFC3485], and the mechanism for discovering SigComp
 support at the SIP layer, as specified in [RFC3486].

4. Minimum Values of SigComp Parameters for SIP/SigComp

 In order to support a wide range of capabilities among endpoints
 implementing SigComp, SigComp defines a few parameters to describe
 SigComp behavior (see Section 3.3 of [RFC3320]). For each parameter,
 [RFC3320] specifies a minimum value that any SigComp endpoint MUST
 support for ANY/SigComp. Those minimum values were determined with
 the consideration of all imaginable devices in which SigComp may be
 implemented. Scalability was also considered as a key factor.

 However, some of the minimum values specified in [RFC3320] are too
 small to allow good performance for SIP message compression.
 Therefore, they are increased for SIP/SigComp as specified in the
 following sections. For completeness, those parameters that are the
 same for SIP/SigComp as they are for ANY/SigComp are also listed.

 The new minimum values are specific to SIP/SigComp and, thus, do not
 apply to any other application protocols. A SIP/SigComp endpoint MAY
 offer additional resources over and above the minimum values

Bormann, et al. Standards Track [Page 3]

RFC 5049 Applying SigComp to SIP December 2007

 specified in this document if available; these resources can be
 advertised to remote endpoints as described in Section 9.4.9 of
 [RFC3320].

4.1. decompression_memory_size (DMS) for SIP/SigComp

 Minimum value for ANY/SigComp: 2048 bytes, as specified in Section
 3.3.1 of [RFC3320].

 Minimum value for SIP/SigComp: 8192 bytes.

 Reason: a DMS of 2048 bytes is too small for SIP message compression
 as it seriously limits the compression ratio and even makes
 compression impossible for certain messages. For example, the
 condition set by [RFC3320] for SigComp over UDP means: C + 2*B + R +
 2*S + 128 < DMS (each term is described below). Therefore, if DMS is
 too small, at least one of C, B, R, or S will be severely restricted.
 On the other hand, DMS is memory that is only temporarily needed
 during decompression of a SigComp message (the memory can be
 reclaimed when the message has been decompressed). Therefore, a
 requirement of 8 KB should not cause any problems for an endpoint
 that already implements SIP, SigComp, and applications that use SIP.

 C size of compressed application message, depending on R
 B size of bytecode. Note: two copies -- one as part of the
 SigComp message and one in UDVM (Universal Decompressor Virtual
 Machine) memory.
 R size of circular buffer in UDVM memory
 S any additional state uploaded other than that created from the
 content of the circular buffer at the end of decompression
 (similar to B, two copies of S are needed)
 128 the smallest address in UDVM memory to copy bytecode to

4.2. state_memory_size (SMS) for SIP/SigComp

 Minimum value for ANY/SigComp: 0 (zero) bytes, as specified in
 Section 3.3.1 of [RFC3320].

 Minimum value for SIP/SigComp: 2048 bytes.

 Reason: a non-zero SMS allows an endpoint to upload a state in the
 first SIP message sent to a remote endpoint without the uncertainty
 of whether the remote endpoint will have enough memory to store such
 a state. A non-zero SMS obviously requires the SIP/SigComp
 implementation to keep state. Based on the observation that there is
 little gain from stateless SigComp compression, the assumption is
 that purely stateless SIP implementations are unlikely to provide a

Bormann, et al. Standards Track [Page 4]

RFC 5049 Applying SigComp to SIP December 2007

 SigComp function. Stateful implementations should have little
 problem to keep 2K additional state for each compartment (see Section
 9).

 Note: SMS is a parameter that applies to each individual compartment.
 An endpoint MAY offer different SMS values for different compartments
 as long as the SMS value is not less than 2048 bytes.

4.3. cycles_per_bit (CPB) for SIP/SigComp

 Minimum value for ANY/SigComp: 16, as specified in Section 3.3.1 of
 [RFC3320].

 Minimum value for SIP/SigComp: 16 (same as above).

4.4. SigComp_version (SV) for SIP/SigComp

 For ANY/SigComp: 0x01, as specified in Section 3.3.2 of [RFC3320].

 For SIP/SigComp: >= 0x02 (at least SigComp + NACK).

 Note that this implies that the provisions of [RFC4077] apply. That
 is, decompression failures result in SigComp NACK messages sent back
 to the originating compressor. It also implies that the compressor
 need not make use of the methods detailed in Section 2.4 of [RFC4077]
 (Detecting Support for NACK); for example, it can use optimistic
 compression methods right from the outset.

4.5. locally available state (LAS) for SIP/SigComp

 Minimum LAS for ANY/SigComp: none, see Section 3.3.3 of [RFC3320].

 Minimum LAS for SIP/SigComp: the SIP/SDP static dictionary as defined
 in [RFC3485].

 Note that, since support for the static SIP/SDP dictionary is
 mandatory, it does not need to be advertised.

5. Delimiting SIP Messages and SigComp Messages on the Same Port

 In order to limit the number of ports required by a SigComp-aware
 endpoint, it is possible to allow both SigComp messages and ’vanilla’
 SIP messages (i.e., uncompressed SIP messages with no SigComp header)
 to arrive on the same port.

 For a message-based transport such as UDP or Stream Control
 Transmission Protocol (SCTP), distinguishing between SigComp and
 non-SigComp messages can be done per message. The receiving endpoint

Bormann, et al. Standards Track [Page 5]

RFC 5049 Applying SigComp to SIP December 2007

 checks the first octet of the UDP/SCTP payload to determine whether
 the message has been compressed using SigComp. If the MSBs (Most
 Significant Bits) of the octet are "11111", then the message is
 considered to be a SigComp message and is parsed as per [RFC3320].
 If the MSBs of the octet take any other value, then the message is
 assumed to be an uncompressed SIP message, and it is passed directly
 to the application with no further effect on the SigComp layer.

 For a stream-based transport such as TCP, distinguishing between
 SigComp and non-SigComp messages has to be done per connection. The
 receiving endpoint checks the first octet of the TCP data stream to
 determine whether the stream has been compressed using SigComp. If
 the MSBs of the octet are "11111", then the stream is considered to
 contain SigComp messages and is parsed as per [RFC3320]. If the MSBs
 of the octet take any other value, then the stream is assumed to
 contain uncompressed SIP messages, and it is passed directly to the
 application with no further effect on the SigComp layer. Note that
 SigComp message delimiters MUST NOT be used if the stream contains
 uncompressed SIP messages.

 Applications MUST NOT mix SIP messages and SigComp messages on a
 single TCP connection. If the TCP connection is used to carry
 SigComp messages, then all messages sent over the connection MUST
 have a SigComp header and be delimited by the use of 0xFFFF, as
 described in [RFC3320].

 Section 11 of [RFC4896] details a simple set of bytecodes, intended
 to be "well-known", that implement a null decompression algorithm.
 These bytecodes effectively allow SigComp peers to send selected
 SigComp messages with uncompressed data. If a SIP implementation has
 reason to send both compressed and uncompressed SIP messages on a
 single TCP connection, the compressor can be instructed to use these
 bytecodes to send uncompressed SIP messages that are also valid
 SigComp messages.

6. Continuous Mode over TCP

 Continuous Mode is a special feature of SigComp, which is designed to
 improve the overall compression ratio for long-lived connections.
 Its use requires pre-agreement between the SigComp compressor and
 decompressor. Continuous mode is not used with SIP/SigComp.

 Reason: continuous mode requires the transport itself to provide a
 certain level of protection against denial-of-service attacks. TCP
 alone is not considered to provide enough protection.

Bormann, et al. Standards Track [Page 6]

RFC 5049 Applying SigComp to SIP December 2007

7. Too-Large SIP Messages

 SigComp does not support the compression of messages larger than 64k.
 Therefore, if a SIP application sending compressed SIP messages to
 another SIP application over a transport connection (e.g., a TCP
 connection) needs to send a SIP message larger than 64k, the SIP
 application MUST NOT send the message over the same TCP connection.
 The SIP application SHOULD send the message over a different
 transport connection (to do this, the SIP application may need to
 establish a new transport connection).

8. SIP Retransmissions

 When SIP messages are retransmitted, they need to be re-compressed,
 taking into account any SigComp states that may have been created or
 invalidated since the previous transmission. Implementations MUST
 NOT cache the result of compressing the message and retransmit such a
 cached result.

 The reason for this behavior is that it is impossible to know whether
 the failure causing the retransmission occurred on the message being
 retransmitted or on the response to that message. If the response
 was lost, any state changes effected by the first instance of the
 retransmitted message would already have taken place. If these state
 changes removed a state that the previously transmitted message
 relied upon, then retransmission of the same compressed message would
 lead to a decompression failure.

 Note that a SIP retransmission may be caused by the original message
 or its response being lost by a decompression failure. In this case,
 a NACK will have been sent by the decompressor to the compressor,
 which may use the information in this NACK message to adjust its
 compression parameters. Note that, on an unreliable transport, such
 a NACK message may still be lost, so if a compressor used some form
 of optimistic compression, it MAY want to switch to a method less
 likely to cause any form of decompression failure when compressing a
 SIP retransmission.

9. Compartment and State Management for SIP/SigComp

 An application exchanging compressed traffic with a remote
 application has a compartment that contains state information needed
 to compress outgoing messages and to decompress incoming messages.
 To increase the compression efficiency, the application must assign
 distinct compartments to distinct remote applications.

Bormann, et al. Standards Track [Page 7]

RFC 5049 Applying SigComp to SIP December 2007

9.1. Remote Application Identification

 SIP/SigComp applications identify remote applications by their SIP/
 SigComp identifiers. Each SIP/SigComp application MUST have a SIP/
 SigComp identifier URN (Uniform Resource Name) that uniquely
 identifies the application. Usage of a URN provides a persistent and
 unique name for the SIP/SigComp identifier. It also provides an easy
 way to guarantee uniqueness. This URN MUST be persistent as long as
 the application stores compartment state related to other SIP/SigComp
 applications.

 A SIP/SigComp application SHOULD use a UUID (Universally Unique
 IDentifier) URN as its SIP/SigComp identifier, due to the
 difficulties in equality comparisons for other kinds of URNs. The
 UUID URN [RFC4122] allows for non-centralized computation of a URN
 based on time, unique names (such as a Media Access Control (MAC)
 address), or a random number generator. If a URN scheme other than
 UUID is used, the URN MUST be selected such that the application can
 be certain that no other SIP/SigComp application would choose the
 same URN value.

 Note that the definition of SIP/SigComp identifier is similar to the
 definition of instance identifier in [OUTBOUND]. One difference is
 that instance identifiers are only required to be unique within their
 AoR (Address of Record) while SIP/SigComp identifiers are required to
 be globally unique.

 Even if instance identifiers are only required to be unique within
 their AoR, devices may choose to generate globally unique instance
 identifiers. A device with a globally unique instance identifier
 SHOULD use its instance identifier as its SIP/SigComp identifier.

 Note: Using the same value for an entity’s instance and
 SIP/SigComp identifiers improves the compression ratio of header
 fields that carry both identifiers (e.g., a Contact header field
 in a REGISTER request).

 Server farms that share SIP/SigComp state across servers MUST use the
 same SIP/SigComp identifier for all their servers.

 SIP/SigComp identifiers are carried in the ’sigcomp-id’ SIP URI
 (Uniform Resource Identifier) or Via header field parameter. The
 ’sigcomp-id’ SIP URI parameter is a ’uri-parameter’, as defined by
 the SIP ABNF (Augmented Backus-Naur Form, Section 25.1 of [RFC3261]).
 The following is its ABNF [RFC4234]:

 uri-sip-sigcomp-id = "sigcomp-id=" 1*paramchar

Bormann, et al. Standards Track [Page 8]

RFC 5049 Applying SigComp to SIP December 2007

 The SIP URI ’sigcomp-id’ parameter MUST contain a URN [RFC2141].

 The Via ’sigcomp-id’ parameter is a ’via-extension’, as defined by
 the SIP ABNF (Section 25.1 of [RFC3261]). The following is its ABNF
 [RFC4234]:

 via-sip-sigcomp-id = "sigcomp-id" EQUAL
 LDQUOT *(qdtext / quoted-pair) RDQUOT

 The Via ’sigcomp-id’ parameter MUST contain a URN [RFC2141].

 The following is an example of a ’sigcomp-id’ SIP URI parameter:

 sigcomp-id=urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128

 The following is an example of a Via header field with a ’sigcomp-id’
 parameter:

 Via: SIP/2.0/UDP server1.example.com:5060
 ;branch=z9hG4bK87a7
 ;comp=sigcomp
 ;sigcomp-id="urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128"

 The following is an example of a REGISTER request that carries
 ’sigcomp-id’ parameters in a Via entry and in the Contact header
 field. Additionally, it also carries a ’+sip.instance’ Contact
 header field parameter.

 REGISTER sip:example.net SIP/2.0
 Via: SIP/2.0/UDP 192.0.2.247:2078;branch=z9hG4bK-et736vsjirav;
 rport;sigcomp-id="urn:uuid:2e5fdc76-00be-4314-8202-1116fa82a473"
 From: "Joe User" <sip:2145550500@example.net>;tag=6to4gh7t5j
 To: "Joe User" <sip:2145550500@example.net>
 Call-ID: 3c26700c1adb-lu1lz5ri5orr
 CSeq: 215196 REGISTER
 Max-Forwards: 70
 Contact: <sip:2145550500@192.0.2.247:2078;
 sigcomp-id=urn:uuid:2e5fdc76-00be-4314-8202-1116fa82a473>;
 q=1.0; expires=3600;
 +sip.instance="<urn:uuid:2e5fdc76-00be-4314-8202-1116fa82a473>"
 Content-Length: 0

 SIP messages are matched with remote application identifiers as
 follows:

 Outgoing requests: the remote application identifier is the SIP/
 SigComp identifier of the URI to which the request is sent. If
 the URI does not contain a SIP/SigComp identifier, the remote

Bormann, et al. Standards Track [Page 9]

RFC 5049 Applying SigComp to SIP December 2007

 application identifier is the IP address plus port of the datagram
 carrying the request for connectionless transport protocols, and
 the transport connection (e.g., a TCP connection) carrying the
 request for connection-oriented transport protocols (this is to
 support legacy SIP/SigComp applications).

 Incoming responses: the remote application identifier is the same as
 that of the previously sent request that initiated the transaction
 to which the response belongs.

 Incoming requests: the remote application identifier is the SIP/
 SigComp identifier of the top-most Via entry. If the Via header
 field does not contain a SIP/SigComp identifier, the remote
 application identifier is the source IP address plus port of the
 datagram carrying the request for connectionless transport
 protocols, and the transport connection (e.g., a TCP connection)
 carrying the request for connection-oriented transport protocols
 (this is to support legacy SIP/SigComp applications).

 Outgoing responses: the remote application identifier is the same as
 that of the previously received request that initiated the
 transaction to which the response belongs. Note that, due to
 standard SIP Via header field processing, this identifier will be
 present in the top-most Via entry in such responses (as long as it
 was present in the top-most Via entry of the previously received
 request).

 A SIP/SigComp application placing its URI with the ’comp=sigcomp’
 parameter in a header field MUST add a ’sigcomp-id’ parameter with
 its SIP/SigComp identifier to that URI.

 A SIP/SigComp application generating its own Via entry containing the
 ’comp=sigcomp’ parameter MUST add a ’sigcomp-id’ parameter with its
 SIP/SigComp identifier to that Via entry.

 A given remote application identifier is mapped to a particular
 SigComp compartment ID following the rules given in Section 9.3.

9.2. Identifier Comparison Rules

 Equality comparisons between SIP/SigComp identifiers are performed
 using the rules for URN equality that are specific to the scheme in
 the URN. If the element performing the comparisons does not
 understand the URN scheme, it performs the comparisons using the
 lexical equality rules defined in RFC 2141 [RFC2141]. Lexical
 equality may result in two URNs being considered unequal when they
 are actually equal. In this specific usage of URNs, the only element
 that provides the URN is the SIP/SigComp application identified by

Bormann, et al. Standards Track [Page 10]

RFC 5049 Applying SigComp to SIP December 2007

 that URN. As a result, the SIP/SigComp application SHOULD provide
 lexically equivalent URNs in each registration it generates. This is
 likely to be normal behavior in any case; applications are not likely
 to modify the value of their SIP/SigComp identifiers so that they
 remain functionally equivalent yet lexicographically different from
 previous identifiers.

9.3. Compartment Opening and Closure

 SIP applications need to know when to open a new compartment and when
 to close it. The lifetime of SIP/SigComp compartments is linked to
 registration state. Compartments are opened at SIP registration time
 and are typically closed when the registration expires or is
 canceled.

 Note: Linking the lifetime of SIP/SigComp compartments to
 registration state limits the applicability of this specification.
 In particular, SIP user agents that do not register but, for
 example, only handle PUBLISH or SUBSCRIBE/NOTIFY transactions are
 not able create SIP/SigComp compartments following this
 specification. Previous revisions of this specification also
 defined compartments valid during a SIP transaction or a SIP
 dialog. Those compartments covered all possible SIP entities,
 including those that do not handle REGISTER transactions.
 However, it was decided to eliminate those types of compartments
 because the complexity they introduced (e.g., edge proxy servers
 were required to keep dialog state) was higher than the benefits
 they brought in most deployment scenarios.

 Usually, any states created during the lifetime of a compartment will
 be "logically" deleted when the compartment is closed. As described
 in Section 6.2 of [RFC3320], a logical deletion can become a physical
 deletion only when no compartment continues to exist that created the
 (same) state.

 A SigComp endpoint may offer to keep a state created upon request
 from a SigComp peer endpoint beyond the default lifetime of a
 compartment (i.e., beyond the duration of its associated
 registration). This may be used to improve compression efficiency of
 subsequent SIP messages generated by the same remote application at
 the SigComp peer endpoint. To indicate that such state will continue
 to be available, the SigComp endpoint can inform its peer SigComp
 endpoint by announcing the (partial) state ID in the returned SigComp
 parameters at the end of the registration that was supposed to limit
 the lifetime of the SigComp state. That signals the state will be
 maintained. The mandatory support for the SigComp Negative

Bormann, et al. Standards Track [Page 11]

RFC 5049 Applying SigComp to SIP December 2007

 Acknowledgement (NACK) Mechanism [RFC4077] in SIP/SigComp ensures
 that it is possible to recover from synchronization errors regarding
 compartment lifetimes.

 As an operational concern, bugs in the compartment management
 implementation are likely to lead to sporadic, hard-to-diagnose
 failures. Decompressors may therefore want to cache old state and,
 if still available, allow access while logging diagnostic
 information. Both compressors and decompressors use the SigComp
 Negative Acknowledgement (NACK) Mechanism [RFC4077] to recover from
 situations where such old state may no longer be available.

 A REGISTER transaction causes an application to open a new
 compartment to be valid for the duration of the registration
 established by the REGISTER transaction.

 A SIP application that needs to send a compressed SIP REGISTER (i.e.,
 a user agent generating a REGISTER or a proxy server relaying one to
 its next hop) SHOULD open a compartment for the request’s remote
 application identifier. A SIP application that receives a compressed
 SIP REGISTER (i.e., the registrar or a proxy relaying the REGISTER to
 its next-hop) SHOULD open a compartment for the request’s remote
 application identifier.

 These compartments MAY be closed if the REGISTER request is responded
 with a non-2xx final response, or when the registration expires or is
 canceled. However, applications MAY also choose to keep these
 compartments open for a longer period of time, as discussed
 previously. For a given successful registration, applications SHOULD
 NOT close their associated compartments until the registration is
 over.

 Note: A SIP network can be configured so that regular SIP traffic
 to and from a user agent traverses a different set of proxies than
 the initial REGISTER transaction. The path the REGISTER
 transaction follows is typically determined by configuration data.
 The path subsequent requests traverse is determined by the Path
 [RFC3327] and the Service-Route [RFC3308] header fields in the
 REGISTER transaction and by the Record-Route and the Route header
 fields in dialog-creating transactions. Previous revisions of
 this document supported the use of different paths for different
 types of traffic. However, for simplicity reasons, this document
 now assumes that networks using compression will be configured so
 that subsequent requests follow the same path as the initial
 REGISTER transaction in order to achieve the best possible
 compression. Section 10 provides network administrators with
 recommendations so that they can configure the networks properly.

Bormann, et al. Standards Track [Page 12]

RFC 5049 Applying SigComp to SIP December 2007

 If, following the rules above, a SIP application is supposed to open
 a compartment for a remote application identifier for which it
 already has a compartment (e.g., the SIP application registers
 towards a second registrar using the same edge proxy server as for
 its registration towards its first registrar), the SIP application
 MUST use the already existing compartment. That is, the SIP
 application MUST NOT open a new compartment.

9.4. Lack of a Compartment

 The use of stateless compression (i.e., compression without a
 compartment) is not typically worthwhile and may even result in
 message expansion. Therefore, if a SIP application does not have a
 compartment for a message it needs to send, it MAY choose not to
 compress it even in the presence of the ’comp=sigcomp’ parameter.
 Section 5 describes how a SIP application can send compressed and
 uncompressed messages over the same TCP connection. Note that RFC
 3486 [RFC3486] states the following:

 "If the next-hop URI contains the parameter comp=sigcomp, the
 client SHOULD compress the request using SigComp".

 Experience since RFC 3486 [RFC3486] was written has shown that
 stateless compression is, in most cases, not worthwhile. That is why
 it is not recommended to use it any longer.

10. Recommendations for Network Administrators

 Network administrators can configure their networks so that the
 compression efficiency achieved is increased. The following
 recommendations help network administrators perform their task.

 For a given user agent, the route sets for incoming requests (created
 by a Path header field) and for outgoing requests (created by a
 Service-Route header field) are typically the same. However,
 registrars can, if they wish, insert proxies in the latter route that
 do not appear in the former route and vice versa. It is RECOMMENDED
 that registrars are configured so that proxies performing SigComp
 compression appear in both routes.

 The routes described previously apply to requests sent outside a
 dialog. Requests inside a dialog follow a route constructed using
 Record-Route header fields. It is RECOMMENDED that the proxies
 performing SigComp that are in the route for requests outside a
 dialog are configured to place themselves (by inserting themselves in
 the Record-Route header fields) in the routes used for requests
 inside dialogs.

Bormann, et al. Standards Track [Page 13]

RFC 5049 Applying SigComp to SIP December 2007

 When a user agent’s registration expires, proxy servers performing
 compression may close their associated SIP/SigComp compartment. If
 the user agent is involved in a dialog that was established before
 the registration expired, subsequent requests within the dialog may
 not be compressed any longer. In order to avoid this situation, it
 is RECOMMENDED that user agents are registered as long as they are
 involved in a dialog.

11. Private Agreements

 SIP/SigComp implementations that are subject to private agreements
 MAY deviate from this specification, if the private agreements
 unambiguously specify so. Plausible candidates for such deviations
 include:

 o Minimum values (Section 4).
 o Use of continuous mode (Section 6).
 o Compartment definition (Section 9).

12. Backwards Compatibility

 SigComp has a number of parameters that can be configured per
 endpoint. This document specifies a profile for SigComp when used
 for SIP compression that further constrains the range that some of
 these parameters may take. Examples of this are Decompressor Memory
 Size, State Memory Size, and SigComp Version (support for NACK).
 Additionally, this document specifies how SIP/SigComp applications
 should perform compartment mapping.

 When this document was written, there were already a few existing
 SIP/SigComp deployments. The rules in this document have been
 designed to maximize interoperability with those legacy SIP/SigComp
 implementations. Nevertheless, implementers should be aware that
 legacy SIP/SigComp implementations may not conform to this
 specification. Examples of problems with legacy applications would
 be smaller DMS than mandated in this document, lack of NACK support,
 or a different compartment mapping.

13. Interactions with Transport Layer Security (TLS)

 Endpoints exchanging SIP traffic over a TLS [RFC4346] connection can
 use the compression provided by TLS. Two endpoints exchanging SIP/
 SigComp traffic over a TLS connection that provides compression need
 to first compress the SIP messages using SigComp and then pass them
 to the TLS layer, which will compress them again. When receiving
 data, the processing order is reversed.

Bormann, et al. Standards Track [Page 14]

RFC 5049 Applying SigComp to SIP December 2007

 However, compressing messages this way twice does not typically bring
 significant gains. Once a message is compressed using SigComp, TLS
 is not usually able to compress it further. Therefore, TLS will
 normally only be able to compress SigComp code sent between
 compressor and decompressor. Since the gain of having SigComp code
 compressed should be minimal in most cases, it is NOT RECOMMENDED to
 use TLS compression when SigComp compression is being used.

14. Example

 Figure 1 shows an example message flow where the user agent and the
 outbound proxy exchange compressed SIP traffic. Compressed messages
 are marked with a (c).

 User Agent Outbound Proxy Registrar

 |(1) REGISTER (c) | |
 |---------------->| |
 | |(2) REGISTER |
 | |---------------->|
 | |(3) 200 OK |
 | |<----------------|
 |(4) 200 OK (c) | |
 |<----------------| |
 |(5) INVITE (c) | |
 |---------------->| |
 | |(6) INVITE |
 | |------------------------------>
 | |(7) 200 OK |
 | |<------------------------------
 |(8) 200 OK (c) | |
 |<----------------| |
 |(9) ACK (c) | |
 |---------------->| |
 | |(10) ACK |
 | |------------------------------>
 |(11) BYE (c) | |
 |---------------->| |
 | |(12) BYE |
 | |------------------------------>
 | |(13) 200 OK |
 | |<------------------------------
 |(14) 200 OK (c) | |
 |<----------------| |

 Figure 1: Example Message Flow

Bormann, et al. Standards Track [Page 15]

RFC 5049 Applying SigComp to SIP December 2007

 The user agent in Figure 1 is initially configured (e.g., using the
 SIP configuration framework [CONFIG]) with the URI of its outbound
 proxy. That URI contains the outbound proxy’s SIP/SigComp
 identifier, referred to as ’Outbound-id’, in a ’sigcomp-id’
 parameter.

 When the user agent sends an initial REGISTER request (1) to the
 outbound proxy’s URI, the user agent opens a new compartment for
 ’Outbound-id’. This compartment will be valid for the duration of
 the registration, at least.

 On receiving this REGISTER request (1), the outbound proxy opens a
 new compartment for the SIP/SigComp identifier that appears in the
 ’sigcomp-id’ parameter of the top-most Via entry. This identifier,
 which is the user agent’s SIP/SigComp identifier, is referred to as
 ’UA-id’. The compartment opened by the outbound proxy will be valid
 for the duration of the registration, at least. The outbound proxy
 adds a Path header field with its own URI, which contains the
 ’Outbound-id’ SIP/SigComp identifier, to the REGISTER request and
 relays it to the registrar (2).

 When the registrar receives the REGISTER request (2), it constructs
 the route future incoming requests (to the user agent) will follow
 using the Contact and the Path header fields. Future incoming
 requests will traverse the outbound proxy before reaching the user
 agent.

 The registrar also constructs the route future outgoing requests
 (from the user agent) will follow and places it in a Service-Route
 header field in a 200 (OK) response (3). Future outgoing requests
 will always traverse the outbound proxy. The registrar has ensured
 that the outbound proxy performing compression handles both incoming
 and outgoing requests.

 When the outbound proxy receives a 200 (OK) response (3), it inspects
 the top-most Via entry. This entry’s SIP/SigComp identifier ’UA-id’
 matches that of the compartment created before. Therefore, the
 outbound proxy uses that compartment to compress it and relay it to
 the user agent.

 On receiving the 200 (OK) response (4), the user agent stores the
 Service-Route header field in order to use it to send future outgoing
 requests. The Service-Route header field contains the outbound
 proxy’s URI, which contains the ’Outbound-id’ SIP/SigComp identifier.

 At a later point, the user agent needs to send an INVITE request (5).
 According to the Service-Route header field received previously, the
 user agent sends the INVITE request (5) to the outbound proxy’s URI.

Bormann, et al. Standards Track [Page 16]

RFC 5049 Applying SigComp to SIP December 2007

 Since this URI’s SIP/SigComp identifier ’Outbound-id’ matches that of
 the compartment created before, this compartment is used to compress
 the INVITE request.

 On receiving the INVITE request (5), the outbound proxy Record Routes
 and relays the INVITE request (6) forward. The outbound proxy Record
 Routes to ensure that all SIP messages related to this new dialog are
 routed through the outbound proxy.

 Finally, the dialog is terminated by a BYE transaction (11) that also
 traverses the outbound proxy.

15. Security Considerations

 The same security considerations as described in [RFC3320] apply to
 this document. Note that keeping SigComp states longer than the
 duration of a SIP dialog should not pose new security risks because
 the state has been allowed to be created in the first place.

16. IANA Considerations

 The IANA has registered the ’sigcomp-id’ Via header field parameter,
 which is defined in Section 9.1, under the Header Field Parameters
 and Parameter Values subregistry within the SIP Parameters registry:

 Predefined
 Header Field Parameter Name Values Reference
 ---------------------------- --------------- --------- ---------
 Via sigcomp-id No [RFC5049]

 The IANA has registered the ’sigcomp-id’ SIP URI parameter, which is
 defined in Section 9.1, under the SIP/SIPS URI Parameters subregistry
 within the SIP Parameters registry:

 Parameter Name Predefined Values Reference
 -------------- ----------------- ---------
 sigcomp-id No [RFC5049]

17. Acknowledgements

 The authors would like to thank the following people for their
 comments and suggestions: Jan Christoffersson, Joerg Ott, Mark West,
 Pekka Pessi, Robert Sugar, Jonathan Rosenberg, Robert Sparks, Juergen
 Schoenwaelder, and Tuukka Karvonen. Abigail Surtees and Adam Roach
 performed thorough reviews of this document.

Bormann, et al. Standards Track [Page 17]

RFC 5049 Applying SigComp to SIP December 2007

18. References

18.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2141] Moats, R., "URN Syntax", RFC 2141, May 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3308] Calhoun, P., Luo, W., McPherson, D., and K. Peirce, "Layer
 Two Tunneling Protocol (L2TP) Differentiated Services
 Extension", RFC 3308, November 2002.

 [RFC3320] Price, R., Bormann, C., Christoffersson, J., Hannu, H.,
 Liu, Z., and J. Rosenberg, "Signaling Compression
 (SigComp)", RFC 3320, January 2003.

 [RFC3327] Willis, D. and B. Hoeneisen, "Session Initiation Protocol
 (SIP) Extension Header Field for Registering Non-Adjacent
 Contacts", RFC 3327, December 2002.

 [RFC3485] Garcia-Martin, M., Bormann, C., Ott, J., Price, R., and A.
 Roach, "The Session Initiation Protocol (SIP) and Session
 Description Protocol (SDP) Static Dictionary for Signaling
 Compression (SigComp)", RFC 3485, February 2003.

 [RFC3486] Camarillo, G., "Compressing the Session Initiation
 Protocol (SIP)", RFC 3486, February 2003.

 [RFC4077] Roach, A., "A Negative Acknowledgement Mechanism for
 Signaling Compression", RFC 4077, May 2005.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122, July
 2005.

 [RFC4234] Crocker, D., Ed., and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", RFC 4234, October 2005.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

Bormann, et al. Standards Track [Page 18]

RFC 5049 Applying SigComp to SIP December 2007

 [RFC4896] Surtees, A., West, M., and A. Roach, "Signaling
 Compression (SigComp) Corrections and Clarifications", RFC
 4896, June 2007.

18.2. Informative References

 [CONFIG] Petrie, D. and S. Channabasappa, "A Framework for Session
 Initiation Protocol User Agent Profile Delivery", Work in
 Progress, June 2007.

 [OUTBOUND] Jennings, C. and R. Mahy, "Managing Client Initiated
 Connections in the Session Initiation Protocol (SIP)",
 Work in Progress, March 2007.

Bormann, et al. Standards Track [Page 19]

RFC 5049 Applying SigComp to SIP December 2007

Authors’ Addresses

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28334
 Germany

 Phone: +49 421 218 63921
 Fax: +49 421 218 7000
 EMail: cabo@tzi.org

 Zhigang Liu
 Nokia Research Center
 955 Page Mill Road
 Palo Alto, CA 94304
 USA

 Phone: +1 650 796 4578
 EMail: zhigang.c.liu@nokia.com

 Richard Price
 EADS Defence and Security Systems Limited
 Meadows Road
 Queensway Meadows
 Newport, Gwent NP19 4SS

 Phone: +44 (0)1633 637874
 EMail: richard.price@eads.com

 Gonzalo Camarillo (editor)
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Gonzalo.Camarillo@ericsson.com

Bormann, et al. Standards Track [Page 20]

RFC 5049 Applying SigComp to SIP December 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Bormann, et al. Standards Track [Page 21]

