
Network Working Group A. Melnikov, Ed.
Request for Comments: 5092 Isode Ltd.
Obsoletes: 2192 C. Newman
Updates: 4467 Sun Microsystems
Category: Standards Track November 2007

 IMAP URL Scheme

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 IMAP (RFC 3501) is a rich protocol for accessing remote message
 stores. It provides an ideal mechanism for accessing public mailing
 list archives as well as private and shared message stores. This
 document defines a URL scheme for referencing objects on an IMAP
 server.

 This document obsoletes RFC 2192. It also updates RFC 4467.

Melnikov & Newman Standards Track [Page 1]

RFC 5092 IMAP URL Scheme November 2007

Table of Contents

 1. Introduction ..2
 2. Conventions Used in This Document3
 3. IMAP userinfo Component (iuserinfo)4
 3.1. IMAP Mailbox Naming Scope4
 3.2. IMAP User Name and Authentication Mechanism4
 3.3. Limitations of enc-user6
 4. IMAP Server ...7
 5. Lists of Messages ...7
 6. A Specific Message or Message Part8
 6.1. URLAUTH Authorized URL9
 6.1.1. Concepts ..9
 6.1.1.1. URLAUTH9
 6.1.1.2. Mailbox Access Key9
 6.1.1.3. Authorized Access Identifier9
 6.1.1.4. Authorization Mechanism10
 6.1.1.5. Authorization Token10
 6.1.2. URLAUTH Extensions to IMAP URL10
 7. Relative IMAP URLs ...11
 7.1. absolute-path References12
 7.2. relative-path References12
 8. Internationalization Considerations13
 9. Examples ...13
 9.1. Examples of Relative URLs16
 10. Security Considerations16
 10.1. Security Considerations Specific to URLAUTH Authorized
 URL ..17
 11. ABNF for IMAP URL Scheme17
 12. IANA Considerations ...21
 12.1. IANA Registration of imap: URI Scheme21
 13. References ..22
 13.1. Normative References22
 13.2. Informative References23
 Appendix A. Sample Code..24
 Appendix B. List of Changes since RFC 2192.........................30
 Appendix C. List of Changes since RFC 4467.........................31
 Appendix D. Acknowledgments..31

1. Introduction

 The IMAP URL scheme is used to designate IMAP servers, mailboxes,
 messages, MIME bodies [MIME], and search programs on Internet hosts
 accessible using the IMAP protocol over TCP.

 The IMAP URL follows the common Internet scheme syntax as defined in
 [URI-GEN]. If :<port> is omitted, the port defaults to 143 (as
 defined in Section 2.1 of [IMAP4]).

Melnikov & Newman Standards Track [Page 2]

RFC 5092 IMAP URL Scheme November 2007

 An absolute IMAP URL takes one of the following forms:

 imap://<iserver>[/]

 imap://<iserver>/<enc-mailbox>[<uidvalidity>][?<enc-search>]

 imap://<iserver>/<enc-mailbox>[<uidvalidity>]<iuid>
 [<isection>][<ipartial>][<iurlauth>]

 The first form is used to refer to an IMAP server (see Section 4),
 the second form refers to the contents of a mailbox or a set of
 messages resulting from a search (see Section 5), and the final form
 refers to a specific message or message part, and possibly a byte
 range in that part (see Section 6). If [URLAUTH] extension is
 supported, then the final form can have the <iurlauth> component (see
 Section 6.1 for more details).

 The <iserver> component common to all types of absolute IMAP URLs has
 the following syntax expressed in ABNF [ABNF]:

 [iuserinfo "@"] host [":" port]

 The <iserver> component is the same as "authority" defined in
 [URI-GEN]. The syntax and uses of the <iuserinfo> ("IMAP userinfo
 component") are described in detail in Section 3. The syntax of
 <host> and <port> is described in [URI-GEN].

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [KEYWORDS].

 This document references many productions from [URI-GEN]. When the
 document needs to emphasize IMAP URI-specific differences from [URI-
 GEN] (i.e., for parts of IMAP URIs that have more restricted syntax
 than generic URIs), it uses a non-terminal i<foo> to define an IMAP-
 specific version of the non-terminal <foo> from [URI-GEN].

 Note that the ABNF syntax shown in Section 11 is normative. Sections
 2-6 may use a less formal syntax that does not necessarily match the
 normative ABNF shown in Section 11. If there are any differences
 between the syntax shown in Sections 2-6 and Section 11, then the
 syntax shown in Section 11 must be treated as authoritative. Non-
 syntax requirements included in Sections 2-6 are, of course,
 normative.

Melnikov & Newman Standards Track [Page 3]

RFC 5092 IMAP URL Scheme November 2007

3. IMAP userinfo Component (iuserinfo)

 The <iuserinfo> component conforms to the generic syntax of
 <userinfo> defined in [URI-GEN]. It has the following syntax
 expressed in ABNF [ABNF]:

 enc-user [iauth] / [enc-user] iauth

 The meaning of the different parts is described in subsections of
 this section.

3.1. IMAP Mailbox Naming Scope

 The "enc-user" part of the "iuserinfo" component, if present, denotes
 mailbox naming scope. If it is absent, the IMAP URL can only
 reference mailboxes with globally unique names, i.e., mailboxes with
 names that don’t change depending on the user the client
 authenticated as to the IMAP server. Note that not all IMAP
 implementations support globally unique names.

 For example, a personal mailbox described by the following URL
 <imap://michael@example.org/INBOX> is most likely different from a
 personal mailbox described by <imap://bester@example.org/INBOX>, even
 though both URLs use the same mailbox name.

3.2. IMAP User Name and Authentication Mechanism

 The userinfo component (see [URI-GEN]) of an IMAP URI may contain an
 IMAP user name (a.k.a. authorization identity [SASL], "enc-user")
 and/or an authentication mechanism. (Note that the "enc-user" also
 defines a mailbox naming scope as described in Section 3.1). The
 IMAP user name and the authentication mechanism are used in the
 "LOGIN" or "AUTHENTICATE" commands after making the connection to the
 IMAP server.

 If no user name and no authentication mechanism are supplied, the
 client MUST authenticate as anonymous to the server. If the server
 advertises AUTH=ANONYMOUS IMAP capability, the client MUST use the
 AUTHENTICATE command with ANONYMOUS [ANONYMOUS] SASL mechanism. If
 SASL ANONYMOUS is not available, the (case-insensitive) user name
 "anonymous" is used with the "LOGIN" command and the Internet email
 address of the end user accessing the resource is supplied as the
 password. The latter option is given in order to provide for
 interoperability with deployed servers.

 Note that, as described in RFC 3501, the "LOGIN" command MUST NOT be
 used when the IMAP server advertises the LOGINDISABLED capability.

Melnikov & Newman Standards Track [Page 4]

RFC 5092 IMAP URL Scheme November 2007

 An authentication mechanism (as used by the IMAP AUTHENTICATE
 command) can be expressed by adding ";AUTH=<enc-auth-type>" to the
 end of the user name in an IMAP URL. When such an <enc-auth-type> is
 indicated, the client SHOULD request appropriate credentials from
 that mechanism and use the "AUTHENTICATE" command instead of the
 "LOGIN" command. If no user name is specified, one MUST be obtained
 from the mechanism or requested from the user/configuration as
 appropriate.

 The string ";AUTH=*" indicates that the client SHOULD select an
 appropriate authentication mechanism. (Though the ’*’ character in
 this usage is not strictly a delimiter, it is being treated like a
 sub-delim [URI-GEN] in this instance. It MUST NOT be percent-encoded
 in this usage, as ";AUTH=%2A" will not match this production.) It
 MAY use any mechanism listed in the response to the CAPABILITY
 command (or CAPABILITY response code) or use an out-of-band security
 service resulting in a PREAUTH connection. If no user name is
 specified and no appropriate authentication mechanisms are available,
 the client SHOULD fall back to anonymous login as described above.
 The behavior prescribed in this section allows a URL that grants
 read-write access to authorized users and read-only anonymous access
 to other users.

 If a user name is included with no authentication mechanism, then
 ";AUTH=*" is assumed.

 Clients must take care when resolving a URL that requires or requests
 any sort of authentication, since URLs can easily come from untrusted
 sources. Supplying authentication credentials to the wrong server
 may compromise the security of the user’s account; therefore, the
 program resolving the URL should meet at least one of the following
 criteria in this case:

 1) The URL comes from a trusted source, such as a referral server
 that the client has validated and trusts according to site policy.
 Note that user entry of the URL may or may not count as a trusted
 source, depending on the experience level of the user and site
 policy.

 2) Explicit local site policy permits the client to connect to the
 server in the URL. For example, a company example.com may have a
 site policy to trust all IMAP server names ending in example.com,
 whereas such a policy would be unwise for example.edu where random
 students can set up IMAP servers.

 3) The user confirms that connecting to that domain name with the
 specified credentials and/or mechanism is permitted. For example,
 when using "LOGIN" or SASL PLAIN with Transport Layer Security

Melnikov & Newman Standards Track [Page 5]

RFC 5092 IMAP URL Scheme November 2007

 (TLS), the IMAP URL client presents a dialog box "Is it OK to send
 your password to server "example.com"? Please be aware the owners
 of example.com will be able to reuse your password to connect to
 other servers on your behalf".

 4) A mechanism is used that validates the server before passing
 potentially compromising client credentials. For example, a site
 has a designated TLS certificate used to certify site-trusted IMAP
 server certificates, and this has been configured explicitly into
 the IMAP URL client. Another example is use of a Simple
 Authentication and Security Layer (SASL) mechanism such as
 DIGEST-MD5 [DIGEST-MD5], which supports mutual authentication.

 5) An authentication mechanism is used that will not reveal any
 information to the server that could be used to compromise future
 connections. Examples are SASL ANONYMOUS [ANONYMOUS] or GSSAPI
 [GSSAPI].

 URLs that do not include a user name but include an authentication
 mechanism (";AUTH=<mech>") must be treated with extra care, since for
 some <mech>s they are more likely to compromise the user’s primary
 account. A URL containing ";AUTH=*" must also be treated with extra
 care since it might fall back on a weaker security mechanism.
 Finally, clients are discouraged from using a plaintext password as a
 fallback with ";AUTH=*" unless the connection has strong encryption.

 A program interpreting IMAP URLs MAY cache open connections to an
 IMAP server for later reuse. If a URL contains a user name, only
 connections authenticated as that user may be reused. If a URL does
 not contain a user name or authentication mechanism, then only an
 anonymous connection may be reused.

 Note that if unsafe or reserved characters such as " " (space) or ";"
 are present in the user name or authentication mechanism, they MUST
 be percent-encoded as described in [URI-GEN].

3.3. Limitations of enc-user

 As per Sections 3.1 and 3.2 of this document, the IMAP URI enc-user
 has two purposes:

 1) It provides context for user-specific mailbox paths such as
 "INBOX" (Section 3.1).

 2) It specifies that resolution of the URL requires logging in as
 that user and limits use of that URL to only that user (Section
 3.2).

Melnikov & Newman Standards Track [Page 6]

RFC 5092 IMAP URL Scheme November 2007

 An obvious limitation of using the same field for both purposes is
 that the URL can be resolved only by the mailbox owner. In order to
 avoid this restriction, implementations should use globally unique
 mailbox names (see Section 3.1) whenever possible.

 Note: There is currently no general way in IMAP of learning a
 globally unique name for a mailbox. However, by looking at the
 NAMESPACE [NAMESPACE] command result, it is possible to determine
 whether or not a mailbox name is globally unique.

 The URLAUTH component overrides the second purpose of the enc-user in
 the IMAP URI and by default permits the URI to be resolved by any
 user permitted by the <access> identifier. URLAUTH and <access>
 identifier are described in Section 6.1.

4. IMAP Server

 An IMAP URL referring to an IMAP server has the following form:

 imap://<iserver>[/]

 This URL type is frequently used to describe a location of an IMAP
 server, both in referrals and in configuration. It may optionally
 contain the <iuserinfo> component (see Sections 3 and 11). A program
 interpreting this URL would issue the standard set of commands it
 uses to present a view of the content of the IMAP server, as visible
 to the user described by the "enc-user" part of the <iuserinfo>
 component, if the "enc-user" part is specified.

5. Lists of Messages

 An IMAP URL referring to a list of messages has the following form:

 imap://<iserver>/<enc-mailbox>[<uidvalidity>][?<enc-search>]

 The <enc-mailbox> field is used as the argument to the IMAP4 "SELECT"
 or "EXAMINE" command. Note that if unsafe or reserved characters
 such as " " (space), ";", or "?" are present in <enc-mailbox>, they
 MUST be percent-encoded as described in [URI-GEN].

 The <uidvalidity> field is optional. If it is present, it MUST be
 the same as the value of IMAP4 UIDVALIDITY response code at the time
 the URL was created. This MUST be used by the program interpreting
 the IMAP URL to determine if the URL is stale. If the IMAP URL is
 stale, then the program should behave as if the corresponding mailbox
 doesn’t exist.

Melnikov & Newman Standards Track [Page 7]

RFC 5092 IMAP URL Scheme November 2007

 Note that the <uidvalidity> field is a modifier to the <enc-mailbox>,
 i.e., it is considered a part of the last "component" (as used in
 [URI-GEN]) of the <enc-mailbox>. This is significant during relative
 URI resolution.

 The "?<enc-search>" field is optional. If it is not present, the
 program interpreting the URL will present the entire content of the
 mailbox.

 If the "?<enc-search>" field is present, the program interpreting the
 URL should use the contents of this field as arguments following an
 IMAP4 SEARCH command. These arguments are likely to contain unsafe
 characters such as " " (space) (which are likely to be present in the
 <enc-search>). If unsafe characters are present, they MUST be
 percent-encoded as described in [URI-GEN].

 Note that quoted strings and non-synchronizing literals [LITERAL+]
 are allowed in the <enc-search> content; however, synchronizing
 literals are not allowed, as their presence would effectively mean
 that the agent interpreting IMAP URLs needs to parse an <enc-search>
 content, find all synchronizing literals, and perform proper command
 continuation request handling (see Sections 4.3 and 7 of [IMAP4]).

6. A Specific Message or Message Part

 An IMAP URL referring to a specific message or message part has the
 following form:

 imap://<iserver>/<enc-mailbox>[<uidvalidity>]<iuid>
 [<isection>][<ipartial>][<iurlauth>]

 The <enc-mailbox> and [uidvalidity] are as defined in Section 5
 above.

 If <uidvalidity> is present in this form, it SHOULD be used by the
 program interpreting the URL to determine if the URL is stale.

 The <iuid> refers to an IMAP4 message Unique Identifier (UID), and it
 SHOULD be used as the <set> argument to the IMAP4 "UID FETCH"
 command.

 The <isection> field is optional. If not present, the URL refers to
 the entire Internet message as returned by the IMAP command "UID
 FETCH <uid> BODY.PEEK[]". If present, the URL refers to the object
 returned by a "UID FETCH <uid> BODY.PEEK[<section>]" command. The
 type of the object may be determined by using a "UID FETCH <uid>
 BODYSTRUCTURE" command and locating the appropriate part in the

Melnikov & Newman Standards Track [Page 8]

RFC 5092 IMAP URL Scheme November 2007

 resulting BODYSTRUCTURE. Note that unsafe characters in [isection]
 MUST be percent-encoded as described in [URI-GEN].

 The <ipartial> field is optional. If present, it effectively appends
 "<<partial-range>>" to the end of the UID FETCH BODY.PEEK[<section>]
 command constructed as described in the previous paragraph. In other
 words, it allows the client to request a byte range of the
 message/message part.

 The <iurlauth> field is described in detail in Section 6.1.

6.1. URLAUTH Authorized URL

 URLAUTH authorized URLs are only supported by an IMAP server
 advertising the URLAUTH IMAP capability [URLAUTH].

6.1.1. Concepts

6.1.1.1. URLAUTH

 URLAUTH is a component, appended at the end of a URL, that conveys
 authorization to access the data addressed by that URL. It contains
 an authorized access identifier, an authorization mechanism name, and
 an authorization token. The authorization token is generated from
 the URL, the authorized access identifier, authorization mechanism
 name, and a mailbox access key.

 Note: This specification only allows for the URLAUTH component in
 IMAP URLs describing a message or its part.

6.1.1.2. Mailbox Access Key

 The mailbox access key is an unpredictable, random string. To ensure
 unpredictability, the random string with at least 128 bits of entropy
 is generated by software or hardware (not by the human user).

 Each user has a table of mailboxes and an associated mailbox access
 key for each mailbox. Consequently, the mailbox access key is per-
 user and per-mailbox. In other words, two users sharing the same
 mailbox each have a different mailbox access key for that mailbox,
 and each mailbox accessed by a single user also has a different
 mailbox access key.

6.1.1.3. Authorized Access Identifier

 The authorized <access> identifier restricts use of the URLAUTH
 authorized URL to certain users authorized on the server, as
 described in Section 6.1.2.

Melnikov & Newman Standards Track [Page 9]

RFC 5092 IMAP URL Scheme November 2007

6.1.1.4. Authorization Mechanism

 The authorization mechanism is the algorithm by which the URLAUTH is
 generated and subsequently verified, using the mailbox access key.

6.1.1.5. Authorization Token

 The authorization token is a deterministic string of at least 128
 bits that an entity with knowledge of the secret mailbox access key
 and URL authorization mechanism can use to verify the URL.

6.1.2. URLAUTH Extensions to IMAP URL

 A specific message or message part IMAP URL can optionally contain
 ";EXPIRE=<datetime>" and/or ";URLAUTH=<access>:<mech>:<token>".

 When ";EXPIRE=<datetime>" is used, this indicates the latest date and
 time that the URL is valid. After that date and time, the URL has
 expired and server implementations MUST reject the URL. If
 ";EXPIRE=<datetime>" is not used, the URL has no expiration, but can
 still be revoked using the RESETKEY command [URLAUTH].

 The URLAUTH takes the form ";URLAUTH=<access>:<mech>:<token>", and it
 MUST be at the end of the URL. It is composed of three parts. The
 <access> portion provides the authorized access identifiers that may
 constrain the operations and users that are permitted to use this
 URL. The <mech> portion provides the authorization mechanism used by
 the IMAP server to generate the authorization token that follows.
 The <token> portion provides the authorization token, which can be
 generated using the GENURLAUTH command [URLAUTH].

 The "submit+" <access> identifier prefix, followed by a userid,
 indicates that only a userid authorized as a message submission
 entity on behalf of the specified userid is permitted to use this
 URL. The IMAP server does not validate the specified userid but does
 validate that the IMAP session has an authorization identity that is
 authorized as a message submission entity. The authorized message
 submission entity MUST validate the userid prior to contacting the
 IMAP server.

 The "user+" <access> identifier prefix, followed by a userid,
 indicates that use of this URL is limited to IMAP sessions that are
 logged in as the specified userid (that is, have authorization
 identity as that userid).

 Note: If a SASL mechanism that provides both authorization and
 authentication identifiers is used to authenticate to the IMAP
 server, the "user+" <access> identifier MUST match the

Melnikov & Newman Standards Track [Page 10]

RFC 5092 IMAP URL Scheme November 2007

 authorization identifier. If the SASL mechanism can’t transport
 the authorization identifier, the "user+" <access> identifier MUST
 match the authorization identifier derived from the authentication
 identifier (see [SASL]).

 The "authuser" <access> identifier indicates that use of this URL is
 limited to authenticated IMAP sessions that are logged in as any
 non-anonymous user (that is, have authorization identity as a non-
 anonymous user) of that IMAP server. To restate this: use of this
 type of URL is prohibited to anonymous IMAP sessions, i.e., any
 URLFETCH command containing this type of URL issued in an anonymous
 session MUST return NIL in the URLFETCH response.

 The "anonymous" <access> identifier indicates that use of this URL is
 not restricted by session authorization identity; that is, any IMAP
 session in authenticated or selected state (as defined in [IMAP4]),
 including anonymous sessions, may issue a URLFETCH [URLAUTH] using
 this URL.

 The authorization token is represented as an ASCII-encoded
 hexadecimal string, which is used to authorize the URL. The length
 and the calculation of the authorization token depend upon the
 mechanism used, but in all cases, the authorization token is at least
 128 bits (and therefore at least 32 hexadecimal digits).

 Example:

 <imap://joe@example.com/INBOX/;uid=20/;section=1.2;urlauth=
 submit+fred:internal:91354a473744909de610943775f92038>

7. Relative IMAP URLs

 Relative IMAP URLs are permitted and are resolved according to the
 rules defined in [URI-GEN]. In particular, in IMAP URLs parameters
 (such as ";uid=" or ";section=") are treated as part of the normal
 path with respect to relative URL resolution.

 [URI-GEN] defines four forms of relative URLs: <inetwork-path>,
 <iabsolute-path>, <irelative-path>, and <ipath-empty>. Their syntax
 is defined in Section 11.

 A relative reference that begins with two slash characters is termed
 a network-path reference (<inetwork-path>); such references are
 rarely used, because in most cases they can be replaced with an
 equivalent absolute URL. A relative reference that begins with a
 single slash character is termed an absolute-path reference
 (<iabsolute-path>; see also Section 7.1). A relative reference that
 does not begin with a slash character is termed a relative-path

Melnikov & Newman Standards Track [Page 11]

RFC 5092 IMAP URL Scheme November 2007

 reference (<irelative-path>; see also Section 7.2). The final form
 is <ipath-empty>, which is "same-document reference" (see Section 4.4
 of [URI-GEN]).

 The following observations about relative URLs are important:

 The <iauth> grammar element (which is a part of <iuserinfo>, which
 is, in turn, a part of <iserver>; see Section 3) is considered part
 of the user name for purposes of resolving relative IMAP URLs. This
 means that unless a new user name/server specification is included in
 the relative URL, the authentication mechanism is inherited from the
 base IMAP URL.

 URLs always use "/" as the hierarchy delimiter for the purpose of
 resolving paths in relative URLs. IMAP4 permits the use of any
 hierarchy delimiter in mailbox names. For this reason, relative
 mailbox paths will only work if the mailbox uses "/" as the hierarchy
 delimiter. Relative URLs may be used on mailboxes that use other
 delimiters, but in that case, the entire mailbox name MUST be
 specified in the relative URL or inherited as a whole from the base
 URL.

 If an IMAP server allows for mailbox names starting with "./" or
 "../", ending with "/." or "/..", or containing sequences "/../" or
 "/./", then such mailbox names MUST be percent-encoded as described
 in [URI-GEN]. Otherwise, they would be misinterpreted as dot-
 segments (see Section 3.3 of [URI-GEN]), which are processed
 specially during the relative path resolution process.

7.1. absolute-path References

 A relative reference that begins with a single slash character is
 termed an absolute-path reference (see Section 4.2 of [URI-GEN]). If
 an IMAP server permits mailbox names with a leading "/", then the
 leading "/" MUST be percent-encoded as described in [URI-GEN].
 Otherwise, the produced absolute-path reference URI will be
 misinterpreted as a network-path reference [URI-GEN] described by the
 <inetwork-path> non-terminal.

7.2. relative-path References

 A relative reference that does not begin with a slash character is
 termed a relative-path reference [URI-GEN]. Implementations MUST NOT
 generate or accept relative-path IMAP references.

 See also Section 4.2 of [URI-GEN] for restrictions on relative-path
 references.

Melnikov & Newman Standards Track [Page 12]

RFC 5092 IMAP URL Scheme November 2007

8. Internationalization Considerations

 IMAP4, Section 5.1.3 [IMAP4] includes a convention for encoding non-
 US-ASCII characters in IMAP mailbox names. Because this convention
 is private to IMAP, it is necessary to convert IMAP’s encoding to one
 that can be more easily interpreted by a URL display program. For
 this reason, IMAP’s modified UTF-7 encoding for mailboxes MUST be
 converted to UTF-8 [UTF-8]. Since 8-bit octets are not permitted in
 URLs, the UTF-8 octets are percent-encoded as required by the URL
 specification [URI-GEN], Section 2.1. Sample code is included in
 Appendix A to demonstrate this conversion.

 IMAP user names are UTF-8 strings and MUST be percent-encoded as
 required by the URL specification [URI-GEN], Section 2.1.

 Also note that IMAP SEARCH criteria can contain non-US-ASCII
 characters. 8-bit octets in those strings MUST be percent-encoded as
 required by the URL specification [URI-GEN], Section 2.1.

9. Examples

 The following examples demonstrate how an IMAP4 client program might
 translate various IMAP4 URLs into a series of IMAP4 commands.
 Commands sent from the client to the server are prefixed with "C:",
 and responses sent from the server to the client are prefixed with
 "S:".

 The URL:

 <imap://minbari.example.org/gray-council;UIDVALIDITY=385759045/;
 UID=20/;PARTIAL=0.1024>

 may result in the following client commands and server responses:

 <connect to minbari.example.org, port 143>
 S: * OK [CAPABILITY IMAP4rev1 STARTTLS AUTH=ANONYMOUS] Welcome
 C: A001 AUTHENTICATE ANONYMOUS
 S: +
 C: c2hlcmlkYW5AYmFieWxvbjUuZXhhbXBsZS5vcmc=
 S: A001 OK Welcome sheridan@babylon5.example.org
 C: A002 SELECT gray-council
 <client verifies the UIDVALIDITY matches>
 C: A003 UID FETCH 20 BODY.PEEK[]<0.1024>

 The URL:

 <imap://psicorp.example.org/˜peter/%E6%97%A5%E6%9C%AC%E8%AA%9E/
 %E5%8F%B0%E5%8C%97>

Melnikov & Newman Standards Track [Page 13]

RFC 5092 IMAP URL Scheme November 2007

 may result in the following client commands:

 <connect to psicorp.example.org, port 143>
 S: * OK [CAPABILITY IMAP4rev1 STARTTLS AUTH=CRAM-MD5] Welcome
 C: A001 LOGIN ANONYMOUS bester@psycop.psicorp.example.org
 C: A002 SELECT ˜peter/&ZeVnLIqe-/&U,BTFw-
 <commands the client uses for viewing the contents of
 the mailbox>

 The URL:

 <imap://;AUTH=GSSAPI@minbari.example.org/gray-council/;uid=20/
 ;section=1.2>

 may result in the following client commands:

 <connect to minbari.example.org, port 143>
 S: * OK Greetings
 C: A000 CAPABILITY
 S: * CAPABILITY IMAP4rev1 STARTTLS AUTH=GSSAPI
 S: A000 OK
 C: A001 AUTHENTICATE GSSAPI
 <authentication exchange>
 C: A002 SELECT gray-council
 C: A003 UID FETCH 20 BODY.PEEK[1.2]

 If the following relative URL is located in that body part:

 <;section=1.4>

 this could result in the following client commands:

 C: A004 UID FETCH 20 (BODY.PEEK[1.2.MIME]
 BODY.PEEK[1.MIME]
 BODY.PEEK[HEADER.FIELDS (Content-Location)])
 <Client looks for Content-Location headers in
 result. If no such headers, then it does the following>
 C: A005 UID FETCH 20 BODY.PEEK[1.4]

 The URL:

 <imap://;AUTH=*@minbari.example.org/gray%20council?
 SUBJECT%20shadows>

Melnikov & Newman Standards Track [Page 14]

RFC 5092 IMAP URL Scheme November 2007

 could result in the following:

 <connect to minbari.example.org, port 143>
 S: * OK Welcome
 C: A001 CAPABILITY
 S: * CAPABILITY IMAP4rev1 AUTH=DIGEST-MD5
 S: A001 OK
 C: A002 AUTHENTICATE DIGEST-MD5
 <authentication exchange>
 S: A002 OK user lennier authenticated
 C: A003 SELECT "gray council"
 ...
 C: A004 SEARCH SUBJECT shadows
 S: * SEARCH 8 10 13 14 15 16
 S: A004 OK SEARCH completed
 C: A005 FETCH 8,10,13:16 ALL
 ...

 In the example above, the client has implementation-dependent
 choices. The authentication mechanism could be anything, including
 PREAUTH. The final FETCH command could fetch more or less
 information about the messages, depending on what it wishes to
 display to the user.

 The URL:

 <imap://john;AUTH=*@minbari.example.org/babylon5/personel?
 charset%20UTF-8%20SUBJECT%20%7B14+%7D%0D%0A%D0%98%D0%B2%
 D0%B0%D0%BD%D0%BE%D0%B2%D0%B0>

 shows that 8-bit data can be sent using non-synchronizing literals
 [LITERAL+]. This could result in the following:

 <connect to minbari.example.org, port 143>
 S: * OK Hi there
 C: A001 CAPABILITY
 S: * CAPABILITY IMAP4rev1 LITERAL+ AUTH=DIGEST-MD5
 S: A001 OK
 C: A002 AUTHENTICATE DIGEST-MD5
 <authentication exchange>
 S: A002 OK user john authenticated
 C: A003 SELECT babylon5/personel
 ...
 C: A004 SEARCH CHARSET UTF-8 SUBJECT {14+}
 C: XXXXXXXXXXXXXX
 S: * SEARCH 7 10 12
 S: A004 OK SEARCH completed
 C: A005 FETCH 7,10,12 ALL

Melnikov & Newman Standards Track [Page 15]

RFC 5092 IMAP URL Scheme November 2007

 ...

 where XXXXXXXXXXXXXX is 14 bytes of UTF-8 encoded data as specified
 in the URL above.

9.1. Examples of Relative URLs

 The following absolute-path reference

 </foo/;UID=20/..>

 is the same as

 </foo>

 That is, both of them reference the mailbox "foo" located on the IMAP
 server described by the corresponding Base URI.

 The following relative-path reference

 <;UID=20>

 references a message with UID in the mailbox specified by the Base
 URI.

 The following edge case example demonstrates that the ;UIDVALIDITY=
 modifier is a part of the mailbox name as far as relative URI
 resolution is concerned:

 <..;UIDVALIDITY=385759045/;UID=20>

 In this example, ".." is not a dot-segment [URI-GEN].

10. Security Considerations

 Security considerations discussed in the IMAP specification [IMAP4]
 and the URI specification [URI-GEN] are relevant. Security
 considerations related to authenticated URLs are discussed in Section
 3.2 of this document.

 Many email clients store the plaintext password for later use after
 logging into an IMAP server. Such clients MUST NOT use a stored
 password in response to an IMAP URL without explicit permission from
 the user to supply that password to the specified host name.

 Clients resolving IMAP URLs that wish to achieve data confidentiality
 and/or integrity SHOULD use the STARTTLS command (if supported by the

Melnikov & Newman Standards Track [Page 16]

RFC 5092 IMAP URL Scheme November 2007

 server) before starting authentication, or use a SASL mechanism, such
 as GSSAPI, that provides a confidentiality security layer.

10.1. Security Consideration Specific to URLAUTH Authorized URL

 The "user+<userid>" <access> identifier limits resolution of that URL
 to a particular userid, whereas the "submit+<userid>" <access>
 identifier is more general and simply requires that the session be
 authorized by a user that has been granted a "submit" role within the
 authentication system. Use of either of these mechanisms limits the
 scope of the URL. An attacker who cannot authenticate using the
 appropriate credentials cannot make use of the URL.

 The "authuser" and "anonymous" <access> identifiers do not have this
 level of protection. These access identifiers are primarily useful
 for public export of data from an IMAP server, without requiring that
 it be copied to a web or anonymous FTP server.

 The decision to use the "authuser" <access> identifier should be made
 with caution. An "authuser" <access> identifier can be used by any
 authorized user of the IMAP server; therefore, use of this access
 identifier should be limited to content that may be disclosed to any
 authorized user of the IMAP server.

 The decision to use the "anonymous" <access> identifier should be
 made with extreme caution. An "anonymous" <access> identifier can be
 used by anyone; therefore, use of this access identifier should be
 limited to content that may be disclosed to anyone.

11. ABNF for IMAP URL Scheme

 Formal syntax is defined using ABNF [ABNF], extending the ABNF rules
 in Section 9 of [IMAP4]. Elements not defined here can be found in
 [ABNF], [IMAP4], [IMAPABNF], or [URI-GEN]. Strings are not case
 sensitive, and free insertion of linear white space is not permitted.

 sub-delims-sh = "!" / "$" / "’" / "(" / ")" /
 "*" / "+" / ","
 ;; Same as [URI-GEN] sub-delims,
 ;; but without ";", "&" and "=".

 uchar = unreserved / sub-delims-sh / pct-encoded

 achar = uchar / "&" / "="
 ;; Same as [URI-GEN] ’unreserved / sub-delims /
 ;; pct-encoded’, but ";" is disallowed.

 bchar = achar / ":" / "@" / "/"

Melnikov & Newman Standards Track [Page 17]

RFC 5092 IMAP URL Scheme November 2007

 enc-auth-type = 1*achar
 ; %-encoded version of [IMAP4] "auth-type"

 enc-mailbox = 1*bchar
 ; %-encoded version of [IMAP4] "mailbox"

 enc-search = 1*bchar
 ; %-encoded version of [IMAPABNF]
 ; "search-program". Note that IMAP4
 ; literals may not be used in
 ; a "search-program", i.e., only
 ; quoted or non-synchronizing
 ; literals (if the server supports
 ; LITERAL+ [LITERAL+]) are allowed.

 enc-section = 1*bchar
 ; %-encoded version of [IMAP4] "section-spec"

 enc-user = 1*achar
 ; %-encoded version of [IMAP4] authorization
 ; identity or "userid".

 imapurl = "imap://" iserver ipath-query
 ; Defines an absolute IMAP URL

 ipath-query = ["/" [icommand]]
 ; Corresponds to "path-abempty ["?" query]"
 ; in [URI-GEN]

 Generic syntax for relative URLs is defined in Section 4.2 of
 [URI-GEN]. For ease of implementation, the relative IMAP URL syntax
 is defined below:

 imapurl-rel = inetwork-path

 / iabsolute-path
 / irelative-path
 / ipath-empty

 inetwork-path = "//" iserver ipath-query
 ; Corresponds to ’"//" authority path-abempty
 ; ["?" query]’ in [URI-GEN]

 iabsolute-path = "/" [icommand]
 ; icommand, if present, MUST NOT start with ’/’.
 ;
 ; Corresponds to ’path-absolute ["?" query]’
 ; in [URI-GEN]

Melnikov & Newman Standards Track [Page 18]

RFC 5092 IMAP URL Scheme November 2007

 irelative-path = imessagelist /
 imsg-or-part
 ; Corresponds to ’path-noscheme ["?" query]’
 ; in [URI-GEN]

 imsg-or-part = (imailbox-ref "/" iuid-only ["/" isection-only]
 ["/" ipartial-only]) /
 (iuid-only ["/" isection-only]
 ["/" ipartial-only]) /
 (isection-only ["/" ipartial-only]) /
 ipartial-only

 ipath-empty = 0<pchar>
 ; Zero characters.
 ; The same-document reference.

 The following three rules are only used in the presence of the IMAP
 [URLAUTH] extension:

 authimapurl = "imap://" iserver "/" imessagepart
 ; Same as "imapurl" when "[icommand]" is
 ; "imessagepart"

 authimapurlfull = authimapurl iurlauth
 ; Same as "imapurl" when "[icommand]" is
 ; "imessagepart iurlauth"

 authimapurlrump = authimapurl iurlauth-rump

 enc-urlauth = 32*HEXDIG

 iurlauth = iurlauth-rump iua-verifier

 iua-verifier = ":" uauth-mechanism ":" enc-urlauth

 iurlauth-rump = [expire] ";URLAUTH=" access

 access = ("submit+" enc-user) / ("user+" enc-user) /
 "authuser" / "anonymous"

 expire = ";EXPIRE=" date-time
 ; date-time is defined in [DATETIME]

 uauth-mechanism = "INTERNAL" / 1*(ALPHA / DIGIT / "-" / ".")
 ; Case-insensitive.
 ; New mechanisms MUST be registered with IANA.

Melnikov & Newman Standards Track [Page 19]

RFC 5092 IMAP URL Scheme November 2007

 iauth = ";AUTH=" ("*" / enc-auth-type)

 icommand = imessagelist /
 imessagepart [iurlauth]

 imailbox-ref = enc-mailbox [uidvalidity]

 imessagelist = imailbox-ref ["?" enc-search]
 ; "enc-search" is [URI-GEN] "query".

 imessagepart = imailbox-ref iuid [isection] [ipartial]

 ipartial = "/" ipartial-only

 ipartial-only = ";PARTIAL=" partial-range

 isection = "/" isection-only

 isection-only = ";SECTION=" enc-section

 iserver = [iuserinfo "@"] host [":" port]
 ; This is the same as "authority" defined
 ; in [URI-GEN]. See [URI-GEN] for "host"
 ; and "port" definitions.

 iuid = "/" iuid-only

 iuid-only = ";UID=" nz-number
 ; See [IMAP4] for "nz-number" definition

 iuserinfo = enc-user [iauth] / [enc-user] iauth
 ; conforms to the generic syntax of
 ; "userinfo" as defined in [URI-GEN].

 partial-range = number ["." nz-number]
 ; partial FETCH. The first number is
 ; the offset of the first byte,
 ; the second number is the length of
 ; the fragment.

 uidvalidity = ";UIDVALIDITY=" nz-number
 ; See [IMAP4] for "nz-number" definition

Melnikov & Newman Standards Track [Page 20]

RFC 5092 IMAP URL Scheme November 2007

12. IANA Considerations

 IANA has updated the "imap" definition in the "Uniform Resource
 Identifier scheme registry" to point to this document.

 The registration template (as per [URI-REG]) is specified in Section
 12.1 of this document.

12.1. IANA Registration of imap: URI Scheme

 This section provides the information required to register the imap:
 URI scheme.

 URI scheme name: imap

 Status: permanent

 URI scheme syntax:

 See Section 11 of [RFC5092].

 URI scheme semantics:

 The imap: URI scheme is used to designate IMAP servers, mailboxes,
 messages, MIME bodies [MIME] and their parts, and search programs
 on Internet hosts accessible using the IMAP protocol.

 There is no MIME type associated with this URI.

 Encoding considerations:

 See Section 8 of [RFC5092].

 Applications/protocols that use this URI scheme name:

 The imap: URI is intended to be used by applications that might
 need access to an IMAP mailstore. Such applications may include
 (but are not limited to) IMAP-capable web browsers; IMAP clients
 that wish to access a mailbox, message, or edit a message on the
 server using [CATENATE]; [SUBMIT] clients and servers that are
 requested to assemble a complete message on submission using
 [BURL].

 Interoperability considerations:

 A widely deployed IMAP client Netscape Mail (and possibly
 Mozilla/Thunderbird/Seamonkey) uses a different imap: scheme
 internally.

Melnikov & Newman Standards Track [Page 21]

RFC 5092 IMAP URL Scheme November 2007

 Security considerations:

 See Security Considerations (Section 10) of [RFC5092].

 Contact:

 Alexey Melnikov <alexey.melnikov@isode.com>

 Author/Change controller:

 IESG

 References:

 [RFC5092] and [IMAP4].

13. References

13.1. Normative References

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [IMAP4] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, March 2003.

 [IMAPABNF] Melnikov, A. and C. Daboo, "Collected Extensions to
 IMAP4 ABNF", RFC 4466, April 2006.

 [ABNF] Crocker, D., Ed., and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", RFC 4234, October 2005.

 [MIME] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [URI-GEN] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [NAMESPACE] Gahrns, M. and C. Newman, "IMAP4 Namespace", RFC 2342,
 May 1998.

 [LITERAL+] Myers, J., "IMAP4 non-synchronizing literals", RFC 2088,
 January 1997.

Melnikov & Newman Standards Track [Page 22]

RFC 5092 IMAP URL Scheme November 2007

 [ANONYMOUS] Zeilenga, K., "Anonymous Simple Authentication and
 Security Layer (SASL) Mechanism", RFC 4505, June 2006.

 [DATETIME] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, July 2002.

 [URLAUTH] Crispin, M., "Internet Message Access Protocol (IMAP) -
 URLAUTH Extension", RFC 4467, May 2006.

13.2. Informative References

 [SUBMIT] Gellens, R. and J. Klensin, "Message Submission for
 Mail", RFC 4409, April 2006.

 [BURL] Newman, C., "Message Submission BURL Extension", RFC
 4468, May 2006.

 [CATENATE] Resnick, P., "Internet Message Access Protocol (IMAP)
 CATENATE Extension", RFC 4469, April 2006.

 [SASL] Melnikov, A., Ed., and K. Zeilenga, Ed., "Simple
 Authentication and Security Layer (SASL)", RFC 4422,
 June 2006.

 [GSSAPI] Melnikov, A., Ed., "The Kerberos V5 ("GSSAPI") Simple
 Authentication and Security Layer (SASL) Mechanism", RFC
 4752, November 2006.

 [DIGEST-MD5] Leach, P. and C. Newman, "Using Digest Authentication as
 a SASL Mechanism", RFC 2831, May 2000.

 [URI-REG] Hansen, T., Hardie, T., and L. Masinter, "Guidelines and
 Registration Procedures for New URI Schemes", BCP 115,
 RFC 4395, February 2006.

Melnikov & Newman Standards Track [Page 23]

RFC 5092 IMAP URL Scheme November 2007

Appendix A. Sample Code

 Here is sample C source code to convert between URL paths and IMAP
 mailbox names, taking into account mapping between IMAP’s modified
 UTF-7 [IMAP4] and hex-encoded UTF-8, which is more appropriate for
 URLs. This code has not been rigorously tested nor does it
 necessarily behave reasonably with invalid input, but it should serve
 as a useful example. This code just converts the mailbox portion of
 the URL and does not deal with parameters, query, or server
 components of the URL.

/* Copyright (C) The IETF Trust (2007). This version of
 sample C code is part of RFC XXXX; see the RFC itself
 for full legal notices.

 Regarding this sample C code (or any portion of it), the authors
 make no guarantees and are not responsible for any damage
 resulting from its use. The authors grant irrevocable permission
 to anyone to use, modify, and distribute it in any way that does
 not diminish the rights of anyone else to use, modify, and
 distribute it, provided that redistributed derivative works do
 not contain misleading author or version information.

 Derivative works need not be licensed under similar terms.
 */

#include <stdio.h>
#include <string.h>

/* hexadecimal lookup table */
static const char hex[] = "0123456789ABCDEF";

#define XX 127
/*
 * Table for decoding hexadecimal in %encoding
 */
static const char index_hex[256] = {
 XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX,
 XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX,
 XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX,
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,XX,XX, XX,XX,XX,XX,
 XX,10,11,12, 13,14,15,XX, XX,XX,XX,XX, XX,XX,XX,XX,
 XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX,
 XX,10,11,12, 13,14,15,XX, XX,XX,XX,XX, XX,XX,XX,XX,
 XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX,
 XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX,
 XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX,
 XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX,

Melnikov & Newman Standards Track [Page 24]

RFC 5092 IMAP URL Scheme November 2007

 XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX,
 XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX,
 XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX,
 XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX,
 XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX, XX,XX,XX,XX,
};
#define HEXCHAR(c) (index_hex[(unsigned char)(c)])

/* "gen-delims" excluding "/" but including "%" */
#define GENERAL_DELIMS_NO_SLASH ":?#[]@" "%"

/* "gen-delims" (excluding "/", but including "%")
 plus subset of "sub-delims" */
#define GENERAL_UNSAFE_NO_SLASH GENERAL_DELIMS_NO_SLASH ";&=+"
#define OTHER_UNSAFE " \"<>\\^‘{|}"

/* URL unsafe printable characters */
static const char mailbox_url_unsafe[] = GENERAL_UNSAFE_NO_SLASH
 OTHER_UNSAFE;

/* UTF7 modified base64 alphabet */
static const char base64chars[] =
 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";

#define UNDEFINED 64

/* UTF16 definitions */
#define UTF16MASK 0x03FFUL
#define UTF16SHIFT 10
#define UTF16BASE 0x10000UL
#define UTF16HIGHSTART 0xD800UL
#define UTF16HIGHEND 0xDBFFUL
#define UTF16LOSTART 0xDC00UL
#define UTF16LOEND 0xDFFFUL

/* Convert an IMAP mailbox to a URL path
 * dst needs to have roughly 4 times the storage space of src
 * Hex encoding can triple the size of the input
 * UTF-7 can be slightly denser than UTF-8
 * (worst case: 8 octets UTF-7 becomes 9 octets UTF-8)
 */
void MailboxToURL(char *dst, char *src)
{
 unsigned char c, i, bitcount;
 unsigned long ucs4, utf16, bitbuf;
 unsigned char base64[256], utf8[6];

 /* initialize modified base64 decoding table */

Melnikov & Newman Standards Track [Page 25]

RFC 5092 IMAP URL Scheme November 2007

 memset(base64, UNDEFINED, sizeof (base64));
 for (i = 0; i < sizeof (base64chars); ++i) {
 base64[(int) base64chars[i]] = i;
 }

 /* loop until end of string */
 while (*src != ’\0’) {
 c = *src++;
 /* deal with literal characters and &- */
 if (c != ’&’ || *src == ’-’) {
 /* NB: There are no "URL safe" characters after the ’˜’ */
 if (c < ’ ’ || c > ’˜’ ||
 strchr(mailbox_url_unsafe, c) != NULL) {
 /* hex encode if necessary */
 dst[0] = ’%’;
 dst[1] = hex[c >> 4];
 dst[2] = hex[c & 0x0f];
 dst += 3;
 } else {
 /* encode literally */
 *dst++ = c;
 }
 /* skip over the ’-’ if this is an &- sequence */
 if (c == ’&’) ++src;

 } else {
 /* convert modified UTF-7 -> UTF-16 -> UCS-4 -> UTF-8 -> HEX */
 bitbuf = 0;
 bitcount = 0;
 ucs4 = 0;
 while ((c = base64[(unsigned char) *src]) != UNDEFINED) {
 ++src;
 bitbuf = (bitbuf << 6) | c;
 bitcount += 6;
 /* enough bits for a UTF-16 character? */
 if (bitcount >= 16) {
 bitcount -= 16;
 utf16 = (bitcount ? bitbuf >> bitcount
 : bitbuf) & 0xffff;
 /* convert UTF16 to UCS4 */
 if
 (utf16 >= UTF16HIGHSTART && utf16 <= UTF16HIGHEND) {
 ucs4 = (utf16 - UTF16HIGHSTART) << UTF16SHIFT;
 continue;
 } else if
 (utf16 >= UTF16LOSTART && utf16 <= UTF16LOEND) {
 ucs4 += utf16 - UTF16LOSTART + UTF16BASE;
 } else {

Melnikov & Newman Standards Track [Page 26]

RFC 5092 IMAP URL Scheme November 2007

 ucs4 = utf16;
 }
 /* convert UTF-16 range of UCS4 to UTF-8 */
 if (ucs4 <= 0x7fUL) {
 utf8[0] = (unsigned char) ucs4;
 i = 1;
 } else if (ucs4 <= 0x7ffUL) {
 utf8[0] = 0xc0 | (unsigned char) (ucs4 >> 6);
 utf8[1] = 0x80 | (unsigned char) (ucs4 & 0x3f);
 i = 2;
 } else if (ucs4 <= 0xffffUL) {
 utf8[0] = 0xe0 | (unsigned char) (ucs4 >> 12);
 utf8[1] = 0x80 | (unsigned char) ((ucs4 >> 6) & 0x3f);
 utf8[2] = 0x80 | (unsigned char) (ucs4 & 0x3f);
 i = 3;
 } else {
 utf8[0] = 0xf0 | (unsigned char) (ucs4 >> 18);
 utf8[1] = 0x80 | (unsigned char) ((ucs4 >> 12) & 0x3f);
 utf8[2] = 0x80 | (unsigned char) ((ucs4 >> 6) & 0x3f);
 utf8[3] = 0x80 | (unsigned char) (ucs4 & 0x3f);
 i = 4;
 }
 /* convert utf8 to hex */
 for (c = 0; c < i; ++c) {
 dst[0] = ’%’;
 dst[1] = hex[utf8[c] >> 4];
 dst[2] = hex[utf8[c] & 0x0f];
 dst += 3;
 }
 }
 }
 /* skip over trailing ’-’ in modified UTF-7 encoding */
 if (*src == ’-’) ++src;
 }
 }
 /* terminate destination string */
 *dst = ’\0’;
}

/* Convert hex coded UTF-8 URL path to modified UTF-7 IMAP mailbox
 * dst should be about twice the length of src to deal with non-hex
 * coded URLs
 */
int URLtoMailbox(char *dst, char *src)
{
 unsigned int utf8pos = 0;
 unsigned int utf8total, i, c, utf7mode, bitstogo, utf16flag;
 unsigned long ucs4 = 0, bitbuf = 0;

Melnikov & Newman Standards Track [Page 27]

RFC 5092 IMAP URL Scheme November 2007

 utf7mode = 0; /* is the output UTF7 currently in base64 mode? */
 utf8total = 0; /* how many octets is the current input UTF-8 char;
 0 == between characters */
 bitstogo = 0; /* bits that need to be encoded into base64; if
 bitstogo != 0 then utf7mode == 1 */
 while ((c = (unsigned char)*src) != ’\0’) {
 ++src;
 /* undo hex-encoding */
 if (c == ’%’ && src[0] != ’\0’ && src[1] != ’\0’) {
 c = HEXCHAR(src[0]);
 i = HEXCHAR(src[1]);
 if (c == XX || i == XX) {
 return 0;
 } else {
 c = (char)((c << 4) | i);
 }
 src += 2;
 }
 /* normal character? */
 if (c >= ’ ’ && c <= ’˜’) {
 /* switch out of UTF-7 mode */
 if (utf7mode) {
 if (bitstogo) {
 *dst++ = base64chars[(bitbuf << (6 - bitstogo)) & 0x3F];
 }
 *dst++ = ’-’;
 utf7mode = 0;
 bitstogo = bitbuf = 0;
 }
 *dst++ = c;
 /* encode ’&’ as ’&-’ */
 if (c == ’&’) {
 *dst++ = ’-’;
 }
 continue;
 }
 /* switch to UTF-7 mode */
 if (!utf7mode) {
 *dst++ = ’&’;
 utf7mode = 1;
 }
 /* Encode US-ASCII characters as themselves */
 if (c < 0x80) {
 ucs4 = c;
 utf8total = 1;
 } else if (utf8total) {
 /* this is a subsequent octet of a multi-octet character */
 /* save UTF8 bits into UCS4 */

Melnikov & Newman Standards Track [Page 28]

RFC 5092 IMAP URL Scheme November 2007

 ucs4 = (ucs4 << 6) | (c & 0x3FUL);
 if (++utf8pos < utf8total) {
 continue;
 }
 } else {
 /* this is the first octet of a multi-octet character */
 utf8pos = 1;
 if (c < 0xE0) {
 utf8total = 2;
 ucs4 = c & 0x1F;
 } else if (c < 0xF0) {
 utf8total = 3;
 ucs4 = c & 0x0F;
 } else {
 /* NOTE: can’t convert UTF8 sequences longer than 4 */
 utf8total = 4;
 ucs4 = c & 0x03;
 }
 continue;
 }
 /* Finished with UTF-8 character. Make sure it isn’t an
 overlong sequence. If it is, return failure. */
 if ((ucs4 < 0x80 && utf8total > 1) ||
 (ucs4 < 0x0800 && utf8total > 2) ||
 (ucs4 < 0x00010000 && utf8total > 3) ||
 (ucs4 < 0x00200000 && utf8total > 4) ||
 (ucs4 < 0x04000000 && utf8total > 5) ||
 (ucs4 < 0x80000000 && utf8total > 6)) {
 return 0;
 }
 /* loop to split ucs4 into two utf16 chars if necessary */
 utf8total = 0;
 do {
 if (ucs4 >= UTF16BASE) {
 ucs4 -= UTF16BASE;
 bitbuf = (bitbuf << 16) | ((ucs4 >> UTF16SHIFT)
 + UTF16HIGHSTART);
 ucs4 = (ucs4 & UTF16MASK) + UTF16LOSTART;
 utf16flag = 1;
 } else {
 bitbuf = (bitbuf << 16) | ucs4;
 utf16flag = 0;
 }
 bitstogo += 16;
 /* spew out base64 */
 while (bitstogo >= 6) {
 bitstogo -= 6;
 *dst++ = base64chars[(bitstogo ? (bitbuf >> bitstogo)

Melnikov & Newman Standards Track [Page 29]

RFC 5092 IMAP URL Scheme November 2007

 : bitbuf)
 & 0x3F];
 }
 } while (utf16flag);
 }
 /* if in UTF-7 mode, finish in ASCII */
 if (utf7mode) {
 if (bitstogo) {
 *dst++ = base64chars[(bitbuf << (6 - bitstogo)) & 0x3F];
 }
 *dst++ = ’-’;
 }
 /* tie off string */
 *dst = ’\0’;
 return 1;
}

Appendix B. List of Changes since RFC 2192

 Updated boilerplate, list of editor’s, etc.
 Updated references.
 Updated ABNF not to use _, to use SP instead of SPACE, etc.
 Updated example domains to use example.org.
 Fixed ABNF error in "imessagelist" non-terminal.
 Updated ABNF, due to changes in RFC 3501, RFC 4466, and RFC 3986.
 Renamed "iuserauth" non-terminal to <iuserinfo>.
 Clarified that the userinfo component describes both authorization
 identity and mailbox naming scope.
 Allow for non-synchronizing literals in "enc-search".
 Added "ipartial" specifier that denotes a partial FETCH.
 Moved URLAUTH text from RFC 4467 to this document.
 Updated ABNF for the whole server to allow missing trailing "/"
 (e.g., "imap://imap.example.com" is now valid and is the same as
 "imap://imap.example.com/").
 Clarified how relative-path references are constructed.
 Added more examples demonstrating relative-path references.
 Added rules for relative URLs and restructured ABNF as the result.
 Removed text on use of relative URLs in MHTML.
 Added examples demonstrating security considerations when resolving
 URLs.
 Recommend usage of STARTTLS/SASL security layer to protect
 confidential data.
 Removed some advices about connection reuse that were incorrect.
 Removed URLs referencing a list of mailboxes, as this feature
 hasn’t seen any deployments.
 Clarified that user name "anonymous" is case-insensitive.

Melnikov & Newman Standards Track [Page 30]

RFC 5092 IMAP URL Scheme November 2007

Appendix C. List of Changes since RFC 4467

 Renamed <mechanism> to <uauth-mechanism>. Restructured ABNF.

Appendix D. Acknowledgments

 Text describing URLAUTH was lifted from [URLAUTH] by Mark Crispin.

 Stephane H. Maes contributed some ideas to this document; he also
 co-edited early versions of this document.

 The editors would like to thank Mark Crispin, Ken Murchison, Ted
 Hardie, Zoltan Ordogh, Dave Cridland, Kjetil Torgrim Homme, Lisa
 Dusseault, Spencer Dawkins, Filip Navara, Shawn M. Emery, Sam
 Hartman, Russ Housley, and Lars Eggert for the time they devoted to
 reviewing this document and/or for the comments received.

Authors’ Addresses

 Chris Newman (Author/Editor)
 Sun Microsystems
 3401 Centrelake Dr., Suite 410
 Ontario, CA 91761
 EMail: chris.newman@sun.com

 Alexey Melnikov (Editor)
 Isode Limited
 5 Castle Business Village
 36 Station Road
 Hampton, Middlesex
 TW12 2BX, UK
 EMail: Alexey.Melnikov@isode.com
 URI: http://www.melnikov.ca/

Melnikov & Newman Standards Track [Page 31]

RFC 5092 IMAP URL Scheme November 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Melnikov & Newman Standards Track [Page 32]

