
Network Working Group P. Srisuresh
Request for Comments: 5128 Kazeon Systems
Category: Informational B. Ford
 M.I.T.
 D. Kegel
 kegel.com
 March 2008

 State of Peer-to-Peer (P2P) Communication across
 Network Address Translators (NATs)

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Abstract

 This memo documents the various methods known to be in use by
 applications to establish direct communication in the presence of
 Network Address Translators (NATs) at the current time. Although
 this memo is intended to be mainly descriptive, the Security
 Considerations section makes some purely advisory recommendations
 about how to deal with security vulnerabilities the applications
 could inadvertently create when using the methods described. This
 memo covers NAT traversal approaches used by both TCP- and UDP-based
 applications. This memo is not an endorsement of the methods
 described, but merely an attempt to capture them in a document.

Srisuresh, et al. Informational [Page 1]

RFC 5128 State of P2P Communication across NATs March 2008

Table of Contents

 1. Introduction and Scope ..3
 2. Terminology and Conventions Used4
 2.1. Endpoint ...5
 2.2. Endpoint Mapping ...5
 2.3. Endpoint-Independent Mapping5
 2.4. Endpoint-Dependent Mapping5
 2.5. Endpoint-Independent Filtering6
 2.6. Endpoint-Dependent Filtering6
 2.7. P2P Application ..7
 2.8. NAT-Friendly P2P Application7
 2.9. Endpoint-Independent Mapping NAT (EIM-NAT)7
 2.10. Hairpinning ...7
 3. Techniques Used by P2P Applications to Traverse NATs7
 3.1. Relaying ...8
 3.2. Connection Reversal ..9
 3.3. UDP Hole Punching ...11
 3.3.1. Peers behind Different NATs12
 3.3.2. Peers behind the Same NAT14
 3.3.3. Peers Separated by Multiple NATs16
 3.4. TCP Hole Punching ...18
 3.5. UDP Port Number Prediction19
 3.6. TCP Port Number Prediction21
 4. Recent Work on NAT Traversal22
 5. Summary of Observations ..23
 5.1. TCP/UDP Hole Punching23
 5.2. NATs Employing Endpoint-Dependent Mapping23
 5.3. Peer Discovery ..24
 5.4. Hairpinning ...24
 6. Security Considerations ..24
 6.1. Lack of Authentication Can Cause Connection Hijacking24
 6.2. Denial-of-Service Attacks25
 6.3. Man-in-the-Middle Attacks26
 6.4. Security Impact from EIM-NAT Devices26
 7. Acknowledgments ..27
 8. References ...27
 8.1. Normative References27
 8.2. Informative References27

Srisuresh, et al. Informational [Page 2]

RFC 5128 State of P2P Communication across NATs March 2008

1. Introduction and Scope

 The present-day Internet has seen ubiquitous deployment of Network
 Address Translators (NATs). There are a variety of NAT devices and a
 variety of network topologies utilizing NAT devices in deployments.
 The asymmetric addressing and connectivity regimes established by
 these NAT devices have created unique problems for peer-to-peer (P2P)
 applications and protocols, such as teleconferencing and multiplayer
 online gaming. These issues are likely to persist even into the IPv6
 world. During the transition to IPv6, some form of NAT may be
 required to enable IPv4-only nodes to communicate with IPv6-only
 nodes [NAT-PT], although the appropriate protocols and guidelines for
 this use of NAT are still unresolved [NAT-PT-HIST]. Even a future
 "pure IPv6 world" may still include firewalls, which employ similar
 filtering behavior of NATs but without the address translation
 [V6-CPE-SEC]. The filtering behavior interferes with the functioning
 of P2P applications. For this reason, IPv6 applications that use the
 techniques described in this document for NAT traversal may also work
 with some firewalls that have filtering behavior similar to NATs.

 Currently deployed NAT devices are designed primarily around the
 client/server paradigm, in which relatively anonymous client machines
 inside a private network initiate connections to public servers with
 stable IP addresses and DNS names. NAT devices encountered en route
 provide dynamic address assignment for the client machines. The
 illusion of anonymity (private IP addresses) and inaccessibility of
 the internal hosts behind a NAT device is not a problem for
 applications such as Web browsers, which only need to initiate
 outgoing connections. This illusion of anonymity and inaccessibility
 is sometimes perceived as a privacy benefit. As noted in Section 2.2
 of [RFC4941], this perceived privacy may be illusory in a majority of
 cases utilizing Small-Office-Home-Office (SOHO) NATs.

 In the peer-to-peer paradigm, Internet hosts that would normally be
 considered "clients" not only initiate sessions to peer nodes, but
 also accept sessions initiated by peer nodes. The initiator and the
 responder might lie behind different NAT devices with neither
 endpoint having a permanent IP address or other form of public
 network presence. A common online gaming architecture, for example,
 involves all participating application hosts contacting a publicly
 addressable rendezvous server for registering themselves and
 discovering peer hosts. Subsequent to the communication with the
 rendezvous server, the hosts establish direct connections with each
 other for fast and efficient propagation of updates during game play.
 Similarly, a file sharing application might contact a well-known
 rendezvous server for resource discovery or searching, but establish
 direct connections with peer hosts for data transfer. NAT devices
 create problems for peer-to-peer connections because hosts behind a

Srisuresh, et al. Informational [Page 3]

RFC 5128 State of P2P Communication across NATs March 2008

 NAT device normally have no permanently visible public ports on the
 Internet to which incoming TCP or UDP connections from other peers
 can be directed. RFC 3235 [NAT-APPL] briefly addresses this issue.

 NAT traversal strategies that involve explicit signaling between
 applications and NAT devices, namely [NAT-PMP], [NSIS-NSLP], [SOCKS],
 [RSIP], [MIDCOM], and [UPNP] are out of the scope of this document.
 These techniques, if available, are a complement to the techniques
 described in the document. [UNSAF] is in scope.

 In this document, we summarize the currently known methods by which
 applications work around the presence of NAT devices, without
 directly altering the NAT devices. The techniques described predate
 BEHAVE documents ([BEH-UDP], [BEH-TCP], and [BEH-ICMP]). The scope
 of the document is restricted to describing currently known
 techniques used to establish 2-way communication between endpoints of
 an application. Discussion of timeouts, RST processing, keepalives,
 and so forth that concern a running session are outside the scope of
 this document. The scope is also restricted to describing techniques
 for TCP- and UDP-based applications. It is not the objective of this
 document to provide solutions to NAT traversal problems for
 applications in general [BEH-APP] or to a specific class of
 applications [ICE].

2. Terminology and Conventions Used

 In this document, the IP addresses 192.0.2.1, 192.0.2.128, and
 192.0.2.254 are used as example public IP addresses [RFC3330].
 Although these addresses are all from the same /24 network, this is a
 limitation of the example addresses available in [RFC3330]. In
 practice, these addresses would be on different networks. As for the
 notation for ports usage, all clients use ports in the range of
 1-2000 and servers use ports in the range of 20000-21000. NAT
 devices use ports 30000 and above for endpoint mapping.

 Readers are urged to refer to [NAT-TERM] for information on NAT
 taxonomy and terminology. Unless prefixed with a NAT type or
 explicitly stated otherwise, the term NAT, used throughout this
 document, refers to Traditional NAT [NAT-TRAD]. Traditional NAT has
 two variations, namely, Basic NAT and Network Address Port Translator
 (NAPT). Of these, NAPT is by far the most commonly deployed NAT
 device. NAPT allows multiple private hosts to share a single public
 IP address simultaneously.

 An issue of relevance to P2P applications is how the NAT behaves when
 an internal host initiates multiple simultaneous sessions from a
 single endpoint (private IP, private port) to multiple distinct
 endpoints on the external network.

Srisuresh, et al. Informational [Page 4]

RFC 5128 State of P2P Communication across NATs March 2008

 [STUN] further classifies NAT implementations using the terms "Full
 Cone", "Restricted Cone", "Port Restricted Cone", and "Symmetric".
 Unfortunately, this terminology has been the source of much
 confusion. For this reason, this document adapts terminology from
 [BEH-UDP] to distinguish between NAT implementations.

 Listed below are terms used throughout this document.

2.1. Endpoint

 An endpoint is a session-specific tuple on an end host. An endpoint
 may be represented differently for each IP protocol. For example, a
 UDP or TCP session endpoint is represented as a tuple of (IP address,
 UDP/TCP port).

2.2. Endpoint Mapping

 When a host in a private realm initiates an outgoing session to a
 host in the public realm through a NAT device, the NAT device assigns
 a public endpoint to translate the private endpoint so that
 subsequent response packets from the external host can be received by
 the NAT, translated, and forwarded to the private endpoint. The
 assignment by the NAT device to translate a private endpoint to a
 public endpoint and vice versa is called Endpoint Mapping. NAT uses
 Endpoint Mapping to perform translation for the duration of the
 session.

2.3. Endpoint-Independent Mapping

 "Endpoint-Independent Mapping" is defined in [BEH-UDP] as follows:

 The NAT reuses the port mapping for subsequent packets sent from
 the same internal IP address and port (X:x) to any external IP
 address and port.

2.4. Endpoint-Dependent Mapping

 "Endpoint-Dependent Mapping" refers to the combination of "Address-
 Dependent Mapping" and "Address and Port-Dependent Mapping" as
 defined in [BEH-UDP]:

 Address-Dependent Mapping

 The NAT reuses the port mapping for subsequent packets sent from
 the same internal IP address and port (X:x) to the same external
 IP address, regardless of the external port.

Srisuresh, et al. Informational [Page 5]

RFC 5128 State of P2P Communication across NATs March 2008

 Address and Port-Dependent Mapping

 The NAT reuses the port mapping for subsequent packets sent from
 the same internal IP address and port (X:x) to the same external
 IP address and port while the mapping is still active.

2.5. Endpoint-Independent Filtering

 "Endpoint-Independent Filtering" is defined in [BEH-UDP] as follows:

 The NAT filters out only packets not destined to the internal
 address and port X:x, regardless of the external IP address and
 port source (Z:z). The NAT forwards any packets destined to
 X:x. In other words, sending packets from the internal side of
 the NAT to any external IP address is sufficient to allow any
 packets back to the internal endpoint.

 A NAT device employing the combination of "Endpoint-Independent
 Mapping" and "Endpoint-Independent Filtering" will accept incoming
 traffic to a mapped public port from ANY external endpoint on the
 public network.

2.6. Endpoint-Dependent Filtering

 "Endpoint-Dependent Filtering" refers to the combination of "Address-
 Dependent Filtering" and "Address and Port-Dependent Filtering" as
 defined in [BEH-UDP].

 Address-Dependent Filtering

 The NAT filters out packets not destined to the internal address
 X:x. Additionally, the NAT will filter out packets from Y:y
 destined for the internal endpoint X:x if X:x has not sent
 packets to Y:any previously (independently of the port used by
 Y). In other words, for receiving packets from a specific
 external endpoint, it is necessary for the internal endpoint to
 send packets first to that specific external endpoint’s IP
 address.

 Address and Port-Dependent Filtering

 The NAT filters out packets not destined for the internal
 address X:x. Additionally, the NAT will filter out packets from
 Y:y destined for the internal endpoint X:x if X:x has not sent
 packets to Y:y previously. In other words, for receiving
 packets from a specific external endpoint, it is necessary for
 the internal endpoint to send packets first to that external
 endpoint’s IP address and port.

Srisuresh, et al. Informational [Page 6]

RFC 5128 State of P2P Communication across NATs March 2008

 A NAT device employing "Endpoint-Dependent Filtering" will accept
 incoming traffic to a mapped public port from only a restricted set
 of external endpoints on the public network.

2.7. P2P Application

 A P2P application is an application that uses the same endpoint to
 initiate outgoing sessions to peering hosts as well as accept
 incoming sessions from peering hosts. A P2P application may use
 multiple endpoints for peer-to-peer communication.

2.8. NAT-Friendly P2P Application

 A NAT-friendly P2P application is a P2P application that is designed
 to work effectively even as peering nodes are located in distinct IP
 address realms, connected by one or more NATs.

 One common way P2P applications establish peering sessions and remain
 NAT-friendly is by using a publicly addressable rendezvous server for
 registration and peer discovery purposes.

2.9. Endpoint-Independent Mapping NAT (EIM-NAT)

 An Endpoint-Independent Mapping NAT (EIM-NAT, for short) is a NAT
 device employing Endpoint-Independent Mapping. An EIM-NAT can have
 any type of filtering behavior. BEHAVE-compliant NAT devices are
 good examples of EIM-NAT devices. A NAT device employing Address-
 Dependent Mapping is an example of a NAT device that is not EIM-NAT.

2.10. Hairpinning

 Hairpinning is defined in [BEH-UDP] as follows:

 If two hosts (called X1 and X2) are behind the same NAT and
 exchanging traffic, the NAT may allocate an address on the
 outside of the NAT for X2, called X2’:x2’. If X1 sends traffic
 to X2’:x2’, it goes to the NAT, which must relay the traffic
 from X1 to X2. This is referred to as hairpinning.

 Not all currently deployed NATs support hairpinning.

3. Techniques Used by P2P Applications to Traverse NATs

 This section reviews in detail the currently known techniques for
 implementing peer-to-peer communication over existing NAT devices,
 from the perspective of the application or protocol designer.

Srisuresh, et al. Informational [Page 7]

RFC 5128 State of P2P Communication across NATs March 2008

3.1. Relaying

 The most reliable, but least efficient, method of implementing peer-
 to-peer communication in the presence of a NAT device is to make the
 peer-to-peer communication look to the network like client/server
 communication through relaying. Consider the scenario in figure 1.
 Two client hosts, A and B, have each initiated TCP or UDP connections
 to a well-known rendezvous server S. The Rendezvous Server S has a
 publicly addressable IP address and is used for the purposes of
 registration, discovery, and relay. Hosts behind NAT register with
 the server. Peer hosts can discover hosts behind NATs and relay all
 end-to-end messages using the server. The clients reside on separate
 private networks, and their respective NAT devices prevent either
 client from directly initiating a connection to the other.

 Registry, Discovery
 Combined with Relay
 Server S
 192.0.2.128:20001
 |
 +----------------------------+----------------------------+
 | ^ Registry/ ^ ^ Registry/ ^ |
 | | Relay-Req Session(A-S) | | Relay-Req Session(B-S) | |
 | | 192.0.2.128:20001 | | 192.0.2.128:20001 | |
 | | 192.0.2.1:62000 | | 192.0.2.254:31000 | |
 | |
 +--------------+ +--------------+
 | 192.0.2.1 | | 192.0.2.254 |
 | | | |
 | NAT A | | NAT B |
 +--------------+ +--------------+
 | |
 | ^ Registry/ ^ ^ Registry/ ^ |
 | | Relay-Req Session(A-S) | | Relay-Req Session(B-S) | |
 | | 192.0.2.128:20001 | | 192.0.2.128:20001 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 Client A Client B
 10.0.0.1:1234 10.1.1.3:1234

 Figure 1: Use of a Relay Server to communicate with peers

 Instead of attempting a direct connection, the two clients can simply
 use the server S to relay messages between them. For example, to
 send a message to client B, client A simply sends the message to
 server S along its already established client/server connection, and
 server S then sends the message on to client B using its existing
 client/server connection with B.

Srisuresh, et al. Informational [Page 8]

RFC 5128 State of P2P Communication across NATs March 2008

 This method has the advantage that it will always work as long as
 both clients have connectivity to the server. The enroute NAT device
 is not required to be EIM-NAT. The obvious disadvantages of relaying
 are that it consumes the server’s processing power and network
 bandwidth, and communication latency between the peering clients is
 likely to be increased even if the server has sufficient I/O
 bandwidth and is located correctly topology-wise. The TURN protocol
 [TURN] defines a method of implementing application agnostic,
 session-oriented, packet relay in a relatively secure fashion.

3.2. Connection Reversal

 The following connection reversal technique for a direct
 communication works only when one of the peers is behind a NAT device
 and the other is not. For example, consider the scenario in figure
 2. Client A is behind a NAT, but client B has a publicly addressable
 IP address. Rendezvous Server S has a publicly addressable IP
 address and is used for the purposes of registration and discovery.
 Hosts behind a NAT register their endpoints with the server. Peer
 hosts discover endpoints of hosts behind a NAT using the server.

Srisuresh, et al. Informational [Page 9]

RFC 5128 State of P2P Communication across NATs March 2008

 Registry and Discovery
 Server S
 192.0.2.128:20001
 |
 +----------------------------+----------------------------+
 | ^ Registry Session(A-S) ^ ^ Registry Session(B-S) ^ |
 | | 192.0.2.128:20001 | | 192.0.2.128:20001 | |
 | | 192.0.2.1:62000 | | 192.0.2.254:1234 | |
 | |
 | ^ P2P Session (A-B) ^ | P2P Session (B-A) | | | |
 | | 192.0.2.254:1234 | | 192.0.2.1:62000 | |
 | | 192.0.2.1:62000 | v 192.0.2.254:1234 v |
 | |
 +--------------+ |
 | 192.0.2.1 | |
 | | |
 | NAT A | |
 +--------------+ |
 | |
 | ^ Registry Session(A-S) ^ |
 | | 192.0.2.128:20001 | |
 | | 10.0.0.1:1234 | |
 | |
 | ^ P2P Session (A-B) ^ |
 | | 192.0.2.254:1234 | |
 | | 10.0.0.1:1234 | |
 | |
 Private Client A Public Client B
 10.0.0.1:1234 192.0.2.254:1234

 Figure 2: Connection reversal using Rendezvous server

 Client A has private IP address 10.0.0.1, and the application is
 using TCP port 1234. This client has established a connection with
 server S at public IP address 192.0.2.128 and port 20001. NAT A has
 assigned TCP port 62000, at its own public IP address 192.0.2.1, to
 serve as the temporary public endpoint address for A’s session with
 S; therefore, server S believes that client A is at IP address
 192.0.2.1 using port 62000. Client B, however, has its own permanent
 IP address, 192.0.2.254, and the application on B is accepting TCP
 connections at port 1234.

 Now suppose client B wishes to establish a direct communication
 session with client A. B might first attempt to contact client A
 either at the address client A believes itself to have, namely,
 10.0.0.1:1234, or at the address of A as observed by server S,
 namely, 192.0.2.1:62000. In either case, the connection will fail.
 In the first case, traffic directed to IP address 10.0.0.1 will

Srisuresh, et al. Informational [Page 10]

RFC 5128 State of P2P Communication across NATs March 2008

 simply be dropped by the network because 10.0.0.1 is not a publicly
 routable IP address. In the second case, the TCP SYN request from B
 will arrive at NAT A directed to port 62000, but NAT A will reject
 the connection request because only outgoing connections are allowed.

 After attempting and failing to establish a direct connection to A,
 client B can use server S to relay a request to client A to initiate
 a "reversed" connection to client B. Client A, upon receiving this
 relayed request through S, opens a TCP connection to client B at B’s
 public IP address and port number. NAT A allows the connection to
 proceed because it is originating inside the firewall, and client B
 can receive the connection because it is not behind a NAT device.

 A variety of current peer-to-peer applications implement this
 technique. Its main limitation, of course, is that it only works so
 long as only one of the communicating peers is behind a NAT device.
 If the NAT device is EIM-NAT, the public client can contact external
 server S to determine the specific public endpoint from which to
 expect Client-A-originated connection and allow connections from just
 those endpoints. If the NAT device is EIM-NAT, the public client can
 contact the external server S to determine the specific public
 endpoint from which to expect connections originated by client A, and
 allow connections from just that endpoint. If the NAT device is not
 EIM-NAT, the public client cannot know the specific public endpoint
 from which to expect connections originated by client A. In the
 increasingly common case where both peers can be behind NATs, the
 Connection Reversal method fails. Connection Reversal is not a
 general solution to the peer-to-peer connection problem. If neither
 a "forward" nor a "reverse" connection can be established,
 applications often fall back to another mechanism such as relaying.

3.3. UDP Hole Punching

 UDP hole punching relies on the properties of EIM-NATs to allow
 appropriately designed peer-to-peer applications to "punch holes"
 through the NAT device(s) enroute and establish direct connectivity
 with each other, even when both communicating hosts lie behind NAT
 devices. When one of the hosts is behind a NAT that is not EIM-NAT,
 the peering host cannot predictably know the mapped endpoint to which
 to initiate a connection. Further, the application on the host
 behind non-EIM-NAT would be unable to reuse an already established
 endpoint mapping for communication with different external
 destinations, and the hole punching technique would fail.

 This technique was mentioned briefly in Section 5.1 of RFC 3027
 [NAT-PROT], first described in [KEGEL], and used in some recent
 protocols [TEREDO, ICE]. Readers may refer to Section 3.4 for
 details on "TCP hole punching".

Srisuresh, et al. Informational [Page 11]

RFC 5128 State of P2P Communication across NATs March 2008

 We will consider two specific scenarios, and how applications are
 designed to handle both of them gracefully. In the first situation,
 representing the common case, two clients desiring direct peer-to-
 peer communication reside behind two different NATs. In the second,
 the two clients actually reside behind the same NAT, but do not
 necessarily know that they do.

3.3.1. Peers behind Different NATs

 Consider the scenario in figure 3. Clients A and B both have private
 IP addresses and lie behind different NAT devices. Rendezvous Server
 S has a publicly addressable IP address and is used for the purposes
 of registration, discovery, and limited relay. Hosts behind a NAT
 register their public endpoints with the server. Peer hosts discover
 the public endpoints of hosts behind a NAT using the server. Unlike
 in Section 3.1, peer hosts use the server to relay just connection
 initiation control messages, instead of end-to-end messages.

 The peer-to-peer application running on clients A and B use UDP port
 1234. The rendezvous server S uses UDP port 20001. A and B have
 each initiated UDP communication sessions with server S, causing NAT
 A to assign its own public UDP port 62000 for A’s session with S, and
 causing NAT B to assign its port 31000 to B’s session with S,
 respectively.

Srisuresh, et al. Informational [Page 12]

RFC 5128 State of P2P Communication across NATs March 2008

 Registry and Discovery Combined
 with Limited Relay
 Server S
 192.0.2.128:20001
 |
 +----------------------------+----------------------------+
 | ^ Registry Session(A-S) ^ ^ Registry Session(B-S) ^ |
 | | 192.0.2.128:20001 | | 192.0.2.128:20001 | |
 | | 192.0.2.1:62000 | | 192.0.2.254:31000 | |
 | |
 | ^ P2P Session (A-B) ^ ^ P2P Session (B-A) ^ |
 | | 192.0.2.254:31000 | | 192.0.2.1:62000 | |
 | | 192.0.2.1:62000 | | 192.0.2.254:31000 | |
 | |
 +--------------+ +--------------+
 | 192.0.2.1 | | 192.0.2.254 |
 | | | |
 | EIM-NAT A | | EIM-NAT B |
 +--------------+ +--------------+
 | |
 | ^ Registry Session(A-S) ^ ^ Registry Session(B-S) ^ |
 | | 192.0.2.128:20001 | | 192.0.2.128:20001 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 | ^ P2P Session (A-B) ^ ^ P2P Session (B-A) ^ |
 | | 192.0.2.254:31000 | | 192.0.2.1:62000 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 Client A Client B
 10.0.0.1:1234 10.1.1.3:1234

 Figure 3: UDP Hole Punching to set up direct connectivity

 Now suppose that client A wants to establish a UDP communication
 session directly with client B. If A simply starts sending UDP
 messages to B’s public endpoint 192.0.2.254:31000, then NAT B will
 typically discard these incoming messages (unless it employs
 Endpoint-Independent Filtering), because the source address and port
 number do not match those of S, with which the original outgoing
 session was established. Similarly, if B simply starts sending UDP
 messages to A’s public endpoint, then NAT A will typically discard
 these messages.

 Suppose A starts sending UDP messages to B’s public endpoint, and
 simultaneously relays a request through server S to B, asking B to
 start sending UDP messages to A’s public endpoint. A’s outgoing
 messages directed to B’s public endpoint (192.0.2.254:31000) cause
 EIM-NAT A to open up a new communication session between A’s private

Srisuresh, et al. Informational [Page 13]

RFC 5128 State of P2P Communication across NATs March 2008

 endpoint and B’s public endpoint. At the same time, B’s messages to
 A’s public endpoint (192.0.2.1:62000) cause EIM-NAT B to open up a
 new communication session between B’s private endpoint and A’s public
 endpoint. Once the new UDP sessions have been opened up in each
 direction, clients A and B can communicate with each other directly
 without further burden on the server S. Server S, which helps with
 relaying connection initiation requests to peer nodes behind NAT
 devices, ends up like an "introduction" server to peer hosts.

 The UDP hole punching technique has several useful properties. Once
 a direct peer-to-peer UDP connection has been established between two
 clients behind NAT devices, either party on that connection can in
 turn take over the role of "introducer" and help the other party
 establish peer-to-peer connections with additional peers, minimizing
 the load on the initial introduction server S. The application does
 not need to attempt to detect the kind of NAT device it is behind,
 since the procedure above will establish peer-to-peer communication
 channels equally well if either or both clients do not happen to be
 behind a NAT device. The UDP hole punching technique even works
 automatically with multiple NATs, where one or both clients are
 distant from the public Internet via two or more levels of address
 translation.

3.3.2. Peers behind the Same NAT

 Now consider the scenario in which the two clients (probably
 unknowingly) happen to reside behind the same EIM-NAT, and are
 therefore located in the same private IP address space, as in figure
 4. A well-known Rendezvous Server S has a publicly addressable IP
 address and is used for the purposes of registration, discovery, and
 limited relay. Hosts behind the NAT register with the server. Peer
 hosts discover hosts behind the NAT using the server and relay
 messages using the server. Unlike in Section 3.1, peer hosts use the
 server to relay just control messages, instead of all end-to-end
 messages.

 Client A has established a UDP session with server S, to which the
 common EIM-NAT has assigned public port number 62000. Client B has
 similarly established a session with S, to which the EIM-NAT has
 assigned public port number 62001.

Srisuresh, et al. Informational [Page 14]

RFC 5128 State of P2P Communication across NATs March 2008

 Registry and Discovery Combined
 with Limited Relay
 Server S
 192.0.2.128:20001
 |
 ^ Registry Session(A-S) ^ | ^ Registry Session(B-S) ^
 | 192.0.2.128:20001 | | | 192.0.2.128:20001 |
 | 192.0.2.1:62000 | | | 192.0.2.1:62001 |
 |
 +--------------+
 | 192.0.2.1 |
 | |
 | EIM-NAT |
 +--------------+
 |
 +-----------------------------+----------------------------+
 | ^ Registry Session(A-S) ^ ^ Registry Session(B-S) ^ |
 | | 192.0.2.128:20001 | | 192.0.2.128:20001 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 | ^ P2P Session-try1(A-B) ^ ^ P2P Session-try1(B-A) ^ |
 | | 192.0.2.1:62001 | | 192.0.2.1:62000 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 | ^ P2P Session-try2(A-B) ^ ^ P2P Session-try2(B-A) ^ |
 | | 10.1.1.3:1234 | | 10.0.0.1:1234 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 Client A Client B
 10.0.0.1:1234 10.1.1.3:1234

 Figure 4: Use of local and public endpoints to communicate with peers

 Suppose that A and B use the UDP hole punching technique as outlined
 above to establish a communication channel using server S as an
 introducer. Then A and B will learn each other’s public endpoints as
 observed by server S, and start sending each other messages at those
 public endpoints. The two clients will be able to communicate with
 each other this way as long as the NAT allows hosts on the internal
 network to open translated UDP sessions with other internal hosts and
 not just with external hosts. This situation is referred to as
 "Hairpinning", because packets arriving at the NAT from the private
 network are translated and then looped back to the private network
 rather than being passed through to the public network.

 For example, consider P2P session-try1 above. When A sends a UDP
 packet to B’s public endpoint, the packet initially has a source
 endpoint of 10.0.0.1:1234 and a destination endpoint of

Srisuresh, et al. Informational [Page 15]

RFC 5128 State of P2P Communication across NATs March 2008

 192.0.2.1:62001. The NAT receives this packet, translates it to have
 a source endpoint of 192.0.2.1:62000 and a destination endpoint of
 10.1.1.3:1234, and then forwards it on to B.

 Even if the NAT device supports hairpinning, this translation and
 forwarding step is clearly unnecessary in this situation, and adds
 latency to the dialog between A and B, besides burdening the NAT.
 The solution to this problem is straightforward and is described as
 follows.

 When A and B initially exchange address information through the
 Rendezvous server S, they include their own IP addresses and port
 numbers as "observed" by themselves, as well as their public
 endpoints as observed by S. The clients then simultaneously start
 sending packets to each other at each of the alternative addresses
 they know about, and use the first address that leads to successful
 communication. If the two clients are behind the same NAT, as is the
 case in figure 4 above, then the packets directed to their private
 endpoints (as attempted using P2P session-try2) are likely to arrive
 first, resulting in a direct communication channel not involving the
 NAT. If the two clients are behind different NATs, then the packets
 directed to their private endpoints will fail to reach each other at
 all, but the clients will hopefully establish connectivity using
 their respective public endpoints. It is important that these
 packets be authenticated in some way, however, since in the case of
 different NATs it is entirely possible for A’s messages directed at
 B’s private endpoint to reach some other, unrelated node on A’s
 private network, or vice versa.

 The [ICE] protocol employs this technique effectively, in that
 multiple candidate endpoints (both private and public) are
 communicated between peering end hosts during an offer/answer
 exchange. Endpoints that offer the most efficient end-to-end
 connection(s) are selected eventually for end-to-end data transfer.

3.3.3. Peers Separated by Multiple NATs

 In some topologies involving multiple NAT devices, it is not possible
 for two clients to establish an "optimal" P2P route between them
 without specific knowledge of the topology. Consider for example the
 scenario in figure 5.

Srisuresh, et al. Informational [Page 16]

RFC 5128 State of P2P Communication across NATs March 2008

 Registry and Discovery Combined
 with Limited Relay
 Server S
 192.0.2.128:20001
 |
 ^ Registry Session(A-S) ^ | ^ Registry Session(B-S) ^
 | 192.0.2.128:20001 | | | 192.0.2.128:20001 |
 | 192.0.2.1:62000 | | | 192.0.2.1:62001 |
 |
 +--------------+
 | 192.0.2.1 |
 | |
 | EIM-NAT X |
 | (Supporting |
 | Hairpinning) |
 +--------------+
 |
 +----------------------------+----------------------------+
 | ^ Registry Session(A-S) ^ ^ Registry Session(B-S) ^ |
 | | 192.0.2.128:20001 | | 192.0.2.128:20001 | |
 | | 192.168.1.1:30000 | | 192.168.1.2:31000 | |
 | |
 | ^ P2P Session (A-B) ^ ^ P2P Session (B-A) ^ |
 | | 192.0.2.1:62001 | | 192.0.2.1:62000 | |
 | | 192.168.1.1:30000 | | 192.168.1.2:31000 | |
 | |
 +--------------+ +--------------+
192.168.1.1		192.168.1.2
EIM-NAT A		EIM-NAT B
 +--------------+ +--------------+
 | |
 | ^ Registry Session(A-S) ^ ^ Registry Session(B-S) ^ |
 | | 192.0.2.128:20001 | | 192.0.2.128:20001 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 | ^ P2P Session (A-B) ^ ^ P2P Session (B-A) ^ |
 | | 192.0.2.1:62001 | | 192.0.2.1:62000 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 Client A Client B
 10.0.0.1:1234 10.1.1.3:1234

 Figure 5: Use of Hairpinning in setting up direct communication

 Suppose NAT X is an EIM-NAT deployed by a large Internet Service
 Provider (ISP) to multiplex many customers onto a few public IP
 addresses, and NATs A and B are small consumer NAT gateways deployed

Srisuresh, et al. Informational [Page 17]

RFC 5128 State of P2P Communication across NATs March 2008

 independently by two of the ISP’s customers to multiplex their
 private home networks onto their respective ISP-provided IP
 addresses. Only server S and NAT X have globally routable IP
 addresses; the "public" IP addresses used by NAT A and NAT B are
 actually private to the ISP’s addressing realm, while client A’s and
 B’s addresses in turn are private to the addressing realms of NATs A
 and B, respectively. Just as in the previous section, server S is
 used for the purposes of registration, discovery, and limited relay.
 Peer hosts use the server to relay connection initiation control
 messages, instead of all end-to-end messages.

 Now suppose clients A and B attempt to establish a direct peer-to-
 peer UDP connection. The optimal method would be for client A to
 send messages to client B’s public address at NAT B,
 192.168.1.2:31000 in the ISP’s addressing realm, and for client B to
 send messages to A’s public address at NAT B, namely,
 192.168.1.1:30000. Unfortunately, A and B have no way to learn these
 addresses, because server S only sees the "global" public endpoints
 of the clients, 192.0.2.1:62000 and 192.0.2.1:62001. Even if A and B
 had some way to learn these addresses, there is still no guarantee
 that they would be usable because the address assignments in the
 ISP’s private addressing realm might conflict with unrelated address
 assignments in the clients’ private realms. The clients therefore
 have no choice but to use their global public endpoints as seen by S
 for their P2P communication, and rely on NAT X to provide
 hairpinning.

3.4. TCP Hole Punching

 In this section, we will discuss the "TCP hole punching" technique
 used for establishing direct TCP connection between a pair of nodes
 that are both behind EIM-NAT devices. Just as with UDP hole
 punching, TCP hole punching relies on the properties of EIM-NATs to
 allow appropriately designed peer-to-peer applications to "punch
 holes" through the NAT device and establish direct connectivity with
 each other, even when both communicating hosts lie behind NAT
 devices. This technique is also known sometimes as "Simultaneous TCP
 Open".

 Most TCP sessions start with one endpoint sending a SYN packet, to
 which the other party responds with a SYN-ACK packet. It is
 permissible, however, for two endpoints to start a TCP session by
 simultaneously sending each other SYN packets, to which each party
 subsequently responds with a separate ACK. This procedure is known
 as "Simultaneous TCP Open" technique and may be found in figure 6 of
 the original TCP specification ([TCP]). However, "Simultaneous TCP
 Open" is not implemented correctly on many systems, including NAT
 devices.

Srisuresh, et al. Informational [Page 18]

RFC 5128 State of P2P Communication across NATs March 2008

 If a NAT device receives a TCP SYN packet from outside the private
 network attempting to initiate an incoming TCP connection, the NAT
 device will normally reject the connection attempt by either dropping
 the SYN packet or sending back a TCP RST (connection reset) packet.
 In the case of SYN timeout or connection reset, the application
 endpoint will continue to resend a SYN packet, until the peer does
 the same from its end.

 Let us consider the case where a NAT device supports "Simultaneous
 TCP Open" sessions. When a SYN packet arrives with source and
 destination endpoints that correspond to a TCP session that the NAT
 device believes is already active, then the NAT device would allow
 the packet to pass through. In particular, if the NAT device has
 just recently seen and transmitted an outgoing SYN packet with the
 same address and port numbers, then it will consider the session
 active and allow the incoming SYN through. If clients A and B can
 each initiate an outgoing TCP connection with the other client timed
 so that each client’s outgoing SYN passes through its local NAT
 device before either SYN reaches the opposite NAT device, then a
 working peer-to-peer TCP connection will result.

 This technique may not always work reliably for the following
 reason(s). If either node’s SYN packet arrives at the remote NAT
 device too quickly (before the peering node had a chance to send the
 SYN packet), then the remote NAT device may either drop the SYN
 packet or reject the SYN with a RST packet. This could cause the
 local NAT device in turn to close the new NAT session immediately or
 initiate end-of-session timeout (refer to Section 2.6 of [NAT-TERM])
 so as to close the NAT session at the end of the timeout. Even as
 both peering nodes simultaneously initiate continued SYN
 retransmission attempts, some remote NAT devices might not let the
 incoming SYNs through if the NAT session is in an end-of-session
 timeout state. This in turn would prevent the TCP connection from
 being established.

 In reality, the majority of NAT devices (more than 50%) support
 Endpoint-Independent Mapping and do not send ICMP errors or RSTs in
 response to unsolicited incoming SYNs. As a result, the Simultaneous
 TCP Open technique does work across NAT devices in the majority of
 TCP connection attempts ([P2P-NAT], [TCP-CHARACT]).

3.5. UDP Port Number Prediction

 A variant of the UDP hole punching technique exists that allows
 peer-to-peer UDP sessions to be created in the presence of some NATs
 implementing Endpoint-Dependent Mapping. This method is sometimes
 called the "N+1" technique [BIDIR] and is explored in detail by
 Takeda [SYM-STUN]. The method works by analyzing the behavior of the

Srisuresh, et al. Informational [Page 19]

RFC 5128 State of P2P Communication across NATs March 2008

 NAT and attempting to predict the public port numbers it will assign
 to future sessions. The public ports assigned are often predictable
 because most NATs assign mapping ports in sequence.

 Consider the scenario in figure 6. Two clients, A and B, each behind
 a separate NAT, have established separate UDP connections with
 rendezvous server S. Rendezvous server S has a publicly addressable
 IP address and is used for the purposes of registration and
 discovery. Hosts behind a NAT register their endpoints with the
 server. Peer hosts discover endpoints of the hosts behind NAT using
 the server.

 Registry and Discovery
 Server S
 192.0.2.128:20001
 |
 |
 +----------------------------+----------------------------+
 | ^ Registry Session(A-S) ^ ^ Registry Session(B-S) ^ |
 | | 192.0.2.128:20001 | | 192.0.2.128:20001 | |
 | | 192.0.2.1:62000 | | 192.0.2.254:31000 | |
 | |
 | ^ P2P Session (A-B) ^ ^ P2P Session (B-A) ^ |
 | | 192.0.2.254:31001 | | 192.0.2.1:62001 | |
 | | 192.0.2.1:62001 | | 192.0.2.254:31001 | |
 | |
 +---------------------+ +--------------------+
192.0.2.1		192.0.2.254
NAT A		NAT B
(Endpoint-Dependent		(Endpoint-Dependent
Mapping)		Mapping)
 +---------------------+ +--------------------+
 | |
 | ^ Registry Session(A-S) ^ ^ Registry Session(B-S) ^ |
 | | 192.0.2.128:20001 | | 192.0.2.128:20001 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 | ^ P2P Session (A-B) ^ ^ P2P Session (B-A) ^ |
 | | 192.0.2.254:31001 | | 192.0.2.1:62001 | |
 | | 10.0.0.1:1234 | | 10.1.1.3:1234 | |
 | |
 Client A Client B
 10.0.0.1:1234 10.1.1.3:1234

 Figure 6: UDP Port Prediction to set up direct connectivity

Srisuresh, et al. Informational [Page 20]

RFC 5128 State of P2P Communication across NATs March 2008

 NAT A has assigned its UDP port 62000 to the communication session
 between A and S, and NAT B has assigned its port 31000 to the session
 between B and S. By communicating with server S, A and B learn each
 other’s public endpoints as observed by S. Client A now starts
 sending UDP messages to port 31001 at address 192.0.2.254 (note the
 port number increment), and client B simultaneously starts sending
 messages to port 62001 at address 192.0.2.1. If NATs A and B assign
 port numbers to new sessions sequentially, and if not much time has
 passed since the A-S and B-S sessions were initiated, then a working
 bidirectional communication channel between A and B should result.
 A’s messages to B cause NAT A to open up a new session, to which NAT
 A will (hopefully) assign public port number 62001, because 62001 is
 next in sequence after the port number 62000 it previously assigned
 to the session between A and S. Similarly, B’s messages to A will
 cause NAT B to open a new session, to which it will (hopefully)
 assign port number 31001. If both clients have correctly guessed the
 port numbers each NAT assigns to the new sessions, then a
 bidirectional UDP communication channel will have been established.

 Clearly, there are many things that can cause this trick to fail. If
 the predicted port number at either NAT already happens to be in use
 by an unrelated session, then the NAT will skip over that port number
 and the connection attempt will fail. If either NAT sometimes or
 always chooses port numbers non-sequentially, then the trick will
 fail. If a different client behind NAT A (or B, respectively) opens
 up a new outgoing UDP connection to any external destination after A
 (B) establishes its connection with S but before sending its first
 message to B (A), then the unrelated client will inadvertently
 "steal" the desired port number. This trick is therefore much less
 likely to work when either NAT involved is under load.

 Since in practice an application implementing this trick would still
 need to work even when one of the NATs employs Endpoint-Independent
 Mapping, the application would need to detect beforehand what kind of
 NAT is involved on either end and modify its behavior accordingly,
 increasing the complexity of the algorithm and the general
 brittleness of the network. Finally, port number prediction has
 little chance of working if either client is behind two or more
 levels of NAT and the NAT(s) closest to the client employs Endpoint-
 Dependent Mapping.

3.6. TCP Port Number Prediction

 This is a variant of the "TCP Hole Punching" technique to set up
 direct peer-to-peer TCP sessions across NATs employing Address-
 Dependent Mapping.

Srisuresh, et al. Informational [Page 21]

RFC 5128 State of P2P Communication across NATs March 2008

 Unfortunately, this trick may be even more fragile and timing-
 sensitive than the UDP port number prediction trick described
 earlier. First, predicting the public port a NAT would assign could
 be wrong. In addition, if either client’s SYN arrives at the
 opposite NAT device too quickly, then the remote NAT device may
 reject the SYN with a RST packet, causing the local NAT device in
 turn to close the new session and make future SYN retransmission
 attempts using the same port numbers futile.

4. Recent Work on NAT Traversal

 [P2P-NAT] has a detailed discussion on the UDP and TCP hole punching
 techniques for NAT traversal. [P2P-NAT] also lists empirical results
 from running a test program [NAT-CHECK] across a number of commercial
 NAT devices. The results indicate that UDP hole punching works
 widely on more than 80% of the NAT devices, whereas TCP hole punching
 works on just over 60% of the NAT devices tested. The results also
 indicate that TCP or UDP hairpinning is not yet widely available on
 commercial NAT devices, as less than 25% of the devices passed the
 tests ([NAT-CHECK]) for Hairpinning. Readers may also refer to
 [JENN-RESULT] and [SAIK-RESULT] for empirical test results in
 classifying publicly available NAT devices. [JENN-RESULT] provides
 results of NAT classification using tests spanning across different
 IP protocols. [SAIK-RESULT] focuses exclusively on classifying NAT
 devices by the TCP behavioral characteristics.

 [TCP-CHARACT] and [NAT-BLASTER] focus on TCP hole punching, exploring
 and comparing several alternative approaches. [NAT-BLASTER] takes an
 analytical approach, analyzing different cases of observed NAT
 behavior and ways applications might address them. [TCP-CHARACT]
 adopts a more empirical approach, measuring the commonality of
 different types of NAT behavior relevant to TCP hole punching. This
 work finds that using more sophisticated techniques than those used
 in [P2P-NAT], up to 88% of currently deployed NATs can support TCP
 hole punching.

 [TEREDO] is a NAT traversal service that uses relay technology to
 connect IPv4 nodes behind NAT devices to IPv6 nodes, external to the
 NAT devices. [TEREDO] provides for peer communication across NAT
 devices by tunneling packets over UDP, across the NAT device(s) to a
 relay node. Teredo relays act as Rendezvous servers to relay traffic
 from private IPv4 nodes to the nodes in the external realm and vice
 versa.

 [ICE] is a NAT traversal protocol for setting up media sessions
 between peer nodes for a class of multi-media applications. [ICE]
 requires peering nodes to run the Simple Traversal of the UDP
 Protocol through NAT (STUN) protocol [STUN] on the same port number

Srisuresh, et al. Informational [Page 22]

RFC 5128 State of P2P Communication across NATs March 2008

 used to terminate media session(s). Applications that use signaling
 protocols such as SIP ([SIP]) may embed the NAT traversal attributes
 for the media session within the signaling sessions and use the
 offer/answer type of exchange between peer nodes to set up end-to-end
 media session(s) across NAT devices. [ICE-TCP] is an extension of
 ICE for TCP-based media sessions.

 A number of online gaming and media-over-IP applications, including
 Instant Messaging applications, use the techniques described in the
 document for peer-to-peer connection establishment. Some
 applications may use multiple distinct rendezvous servers for
 registration, discovery, and relay functions for load balancing,
 among other reasons. For example, the well-known media-over-IP
 application "Skype" uses a central public server for login and
 different public servers for end-to-end relay function.

5. Summary of Observations

5.1. TCP/UDP Hole Punching

 TCP/UDP hole punching appears to be the most efficient existing
 method of establishing direct TCP/UDP peer-to-peer communication
 between two nodes that are both behind NATs. This technique has been
 used with a wide variety of existing NATs. However, applications may
 need to prepare to fall back to simple relaying when direct
 communication cannot be established.

 The TCP/UDP hole punching technique has a caveat in that it works
 only when the traversing NAT is EIM-NAT. When the NAT device enroute
 is not EIM-NAT, the application is unable to reuse an already
 established endpoint mapping for communication with different
 external destinations and the technique would fail. However, many of
 the NAT devices deployed in the Internet are EIM-NAT devices. That
 makes the TCP/UDP hole punching technique broadly applicable
 [P2P-NAT]. Nevertheless, a substantial fraction of deployed NATs do
 employ Endpoint-Dependent Mapping and do not support the TCP/UDP hole
 punching technique.

5.2. NATs Employing Endpoint-Dependent Mapping

 NATs Employing Endpoint-Dependent Mapping weren’t a problem with
 client-server applications such as Web browsers, which only need to
 initiate outgoing connections. However, in recent times, P2P
 applications such as Instant Messaging and Voice-over-IP have been in
 wide use. NATs employing Endpoint-Dependent Mapping are not suitable
 for P2P applications as techniques such as TCP/UDP hole punching will
 not work across these NAT devices.

Srisuresh, et al. Informational [Page 23]

RFC 5128 State of P2P Communication across NATs March 2008

5.3. Peer Discovery

 Application peers may be present within the same NAT domain or
 external to the NAT domain. In order for all peers (those within or
 external to the NAT domain) to discover the application endpoint, an
 application may choose to register its private endpoints in addition
 to public endpoints with the rendezvous server.

5.4. Hairpinning

 Support for hairpinning is highly beneficial to allow hosts behind
 EIM-NAT to communicate with other hosts behind the same NAT device
 through their public, possibly translated, endpoints. Support for
 hairpinning is particularly useful in the case of large-capacity NATs
 deployed as the first level of a multi-level NAT scenario. As
 described in Section 3.3.3, hosts behind the same first-level NAT but
 different second-level NATs do not have a way to communicate with
 each other using TCP/UDP hole punching techniques, unless the first-
 level NAT also supports hairpinning. This would be the case even
 when all NAT devices in a deployment preserve endpoint identities.

6. Security Considerations

 This document does not inherently create new security issues.
 Nevertheless, security risks may be present in the techniques
 described. This section describes security risks the applications
 could inadvertently create in attempting to support direct
 communication across NAT devices.

6.1. Lack of Authentication Can Cause Connection Hijacking

 Applications must use appropriate authentication mechanisms to
 protect their connections from accidental confusion with other
 connections as well as from malicious connection hijacking or
 denial-of-service attacks. Applications effectively must interact
 with multiple distinct IP address domains, but are not generally
 aware of the exact topology or administrative policies defining these
 address domains. While attempting to establish connections via
 TCP/UDP hole punching, applications send packets that may frequently
 arrive at an entirely different host than the intended one.

 For example, many consumer-level NAT devices provide Dynamic Host
 Configuration Protocol (DHCP) services that are configured by default
 to hand out site-local IP addresses in a particular address range.
 Say, a particular consumer NAT device, by default, hands out IP
 addresses starting with 192.168.1.100. Most private home networks
 using that NAT device will have a host with that IP address, and many
 of these networks will probably have a host at address 192.168.1.101

Srisuresh, et al. Informational [Page 24]

RFC 5128 State of P2P Communication across NATs March 2008

 as well. If host A at address 192.168.1.101 on one private network
 attempts to establish a connection by UDP hole punching with host B
 at 192.168.1.100 on a different private network, then as part of this
 process host A will send discovery packets to address 192.168.1.100
 on its local network, and host B will send discovery packets to
 address 192.168.1.101 on its network. Clearly, these discovery
 packets will not reach the intended machine since the two hosts are
 on different private networks, but they are very likely to reach SOME
 machine on these respective networks at the standard UDP port numbers
 used by this application, potentially causing confusion, especially
 if the application is also running on those other machines and does
 not properly authenticate its messages.

 This risk due to aliasing is therefore present even without a
 malicious attacker. If one endpoint, say, host A, is actually
 malicious, then without proper authentication the attacker could
 cause host B to connect and interact in unintended ways with another
 host on its private network having the same IP address as the
 attacker’s (purported) private address. Since the two endpoint hosts
 A and B presumably discovered each other through a public rendezvous
 server S, providing registration, discovery, and limited relay
 services, and neither S nor B has any means to verify A’s reported
 private address, applications may be advised to assume that any IP
 address they find to be suspect until they successfully establish
 authenticated two-way communication.

6.2. Denial-of-Service Attacks

 Applications and the public servers that support them must protect
 themselves against denial-of-service attacks, and ensure that they
 cannot be used by an attacker to mount denial-of-service attacks
 against other targets. To protect themselves, applications and
 servers must avoid taking any action requiring significant local
 processing or storage resources until authenticated two-way
 communication is established. To avoid being used as a tool for
 denial-of-service attacks, applications and servers must minimize the
 amount and rate of traffic they send to any newly discovered IP
 address until after authenticated two-way communication is
 established with the intended target.

 For example, applications that register with a public rendezvous
 server can claim to have any private IP address, or perhaps multiple
 IP addresses. A well-connected host or group of hosts that can
 collectively attract a substantial volume of connection attempts
 (e.g., by offering to serve popular content) could mount a denial-
 of-service attack on a target host C simply by including C’s IP
 address in its own list of IP addresses it registers with the
 rendezvous server. There is no way the rendezvous server can verify

Srisuresh, et al. Informational [Page 25]

RFC 5128 State of P2P Communication across NATs March 2008

 the IP addresses, since they could well be legitimate private network
 addresses useful to other hosts for establishing network-local
 communication. The application protocol must therefore be designed
 to size- and rate-limit traffic to unverified IP addresses in order
 to avoid the potential damage such a concentration effect could
 cause.

6.3. Man-in-the-Middle Attacks

 Any network device on the path between a client and a public
 rendezvous server can mount a variety of man-in-the-middle attacks by
 pretending to be a NAT. For example, suppose host A attempts to
 register with rendezvous server S, but a network-snooping attacker is
 able to observe this registration request. The attacker could then
 flood server S with requests that are identical to the client’s
 original request except with a modified source IP address, such as
 the IP address of the attacker itself. If the attacker can convince
 the server to register the client using the attacker’s IP address,
 then the attacker can make itself an active component on the path of
 all future traffic from the server AND other hosts to the original
 client, even if the attacker was originally only able to snoop the
 path from the client to the server.

 The client cannot protect itself from this attack by authenticating
 its source IP address to the rendezvous server, because in order to
 be NAT-friendly the application must allow intervening NATs to change
 the source address silently. This appears to be an inherent security
 weakness of the NAT paradigm. The only defense against such an
 attack is for the client to authenticate and potentially encrypt the
 actual content of its communication using appropriate higher-level
 identities, so that the interposed attacker is not able to take
 advantage of its position. Even if all application-level
 communication is authenticated and encrypted, however, this attack
 could still be used as a traffic analysis tool for observing who the
 client is communicating with.

6.4. Security Impact from EIM-NAT Devices

 Designing NAT devices to preserve endpoint identities does not weaken
 the security provided by the NAT device. For example, a NAT device
 employing Endpoint-Independent Mapping and Endpoint-Dependent
 Filtering is no more "promiscuous" than a NAT device employing
 Endpoint-Dependent Mapping and Endpoint-Dependent Filtering.
 Filtering incoming traffic aggressively using Endpoint-Dependent
 Filtering while employing Endpoint-Independent Mapping allows a NAT
 device to be friendly to applications without compromising the
 principle of rejecting unsolicited incoming traffic.

Srisuresh, et al. Informational [Page 26]

RFC 5128 State of P2P Communication across NATs March 2008

 Endpoint-Independent Mapping could arguably increase the
 predictability of traffic emerging from the NAT device, by revealing
 the relationships between different TCP/UDP sessions and hence about
 the behavior of applications running within the enclave. This
 predictability could conceivably be useful to an attacker in
 exploiting other network- or application-level vulnerabilities. If
 the security requirements of a particular deployment scenario are so
 critical that such subtle information channels are of concern, then
 perhaps the NAT device was not to have been configured to allow
 unrestricted outgoing TCP/UDP traffic in the first place. A NAT
 device configured to allow communication originating from specific
 applications at specific ports, or via tightly controlled
 application-level gateways, may accomplish the security requirements
 of such deployment scenarios.

7. Acknowledgments

 The authors wish to thank Henrik Bergstrom, David Anderson, Christian
 Huitema, Dan Wing, Eric Rescorla, and other BEHAVE work group members
 for their valuable feedback on early versions of this document. The
 authors also wish to thank Francois Audet, Kaushik Biswas, Spencer
 Dawkins, Bruce Lowekamp, and Brian Stucker for agreeing to be
 technical reviewers for this document.

8. References

8.1. Normative References

 [NAT-TERM] Srisuresh, P. and M. Holdrege, "IP Network Address
 Translator (NAT) Terminology and Considerations", RFC
 2663, August 1999.

 [NAT-TRAD] Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022,
 January 2001.

 [BEH-UDP] Audet, F., Ed., and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127, RFC 4787, January 2007.

8.2. Informative References

 [BEH-APP] Ford, B., Srisuresh, P., and D. Kegel, "Application
 Design Guidelines for Traversal through Network Address
 Translators", Work in Progress, March 2007.

Srisuresh, et al. Informational [Page 27]

RFC 5128 State of P2P Communication across NATs March 2008

 [BEH-ICMP] Srisuresh, P., Ford, B., Sivakumar, S., and S. Guha,
 "NAT Behavioral Requirements for ICMP protocol", Work
 in Progress, February 2008.

 [BEH-TCP] Guha, S., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", Work
 in Progress, April 2007.

 [BIDIR] Peer-to-Peer Working Group, NAT/Firewall Working
 Committee, "Bidirectional Peer-to-Peer Communication
 with Interposing Firewalls and NATs", August 2001.
 http://www.peer-to-peerwg.org/tech/nat/

 [ICE] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Methodology for Network Address Translator
 (NAT) Traversal for Offer/Answer Protocols", Work in
 Progress, October 2007.

 [ICE-TCP] Rosenberg, J., "TCP Candidates with Interactive
 Connectivity Establishment (ICE)", Work in Progress,
 July 2007.

 [JENN-RESULT] Jennings, C., "NAT Classification Test Results", Work
 in Progress, July 2007.

 [KEGEL] Kegel, D., "NAT and Peer-to-Peer Networking", July
 1999. http://www.alumni.caltech.edu/˜dank/peer-nat.html

 [MIDCOM] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A.,
 and A. Rayhan, "Middlebox communication architecture
 and framework", RFC 3303, August 2002.

 [NAT-APPL] Senie, D., "Network Address Translator (NAT)-Friendly
 Application Design Guidelines", RFC 3235, January 2002.

 [NAT-BLASTER] Biggadike, A., Ferullo, D., Wilson, G., and Perrig, A.,
 "Establishing TCP Connections Between Hosts Behind
 NATs", ACM SIGCOMM ASIA Workshop, April 2005.

 [NAT-CHECK] Ford, B., "NAT check Program" available online as
 http://midcom-p2p.sourceforge.net, February 2005.

 [NAT-PMP] Cheshire, S., Krochmal, M., and K. Sekar, "NAT Port
 Mapping Protocol (NAT-PMP)", Work in Progress, October
 2006.

Srisuresh, et al. Informational [Page 28]

RFC 5128 State of P2P Communication across NATs March 2008

 [NAT-PROT] Holdrege, M. and P. Srisuresh, "Protocol Complications
 with the IP Network Address Translator", RFC 3027,
 January 2001.

 [NAT-PT] Tsirtsis, G. and P. Srisuresh, "Network Address
 Translation - Protocol Translation (NAT-PT)", RFC 2766,
 February 2000.

 [NAT-PT-HIST] Aoun, C. and E. Davies, "Reasons to Move the Network
 Address Translator - Protocol Translator (NAT-PT) to
 Historic Status", RFC 4966, July 2007.

 [NSIS-NSLP] Stiemerling, M., Tschofenig, H., Aoun, C., and E.
 Davies, "NAT/Firewall NSIS Signaling Layer Protocol
 (NSLP)", Work in Progress, July 2007.

 [P2P-NAT] Ford, B., Srisuresh, P., and Kegel, D., "Peer-to-Peer
 Communication Across Network Address Translators",
 Proceedings of the USENIX Annual Technical Conference
 (Anaheim, CA), April 2005.

 [RFC3330] IANA, "Special-Use IPv4 Addresses", RFC 3330, September
 2002.

 [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, September 2007.

 [RSIP] Borella, M., Lo, J., Grabelsky, D., and G. Montenegro,
 "Realm Specific IP: Framework", RFC 3102, October 2001.

 [SAIK-RESULT] Guha, Saikat, "NAT STUNT Results" available online as
 https://www.guha.cc/saikat/stunt-results.php.

 [SIP] Rosenberg, J., Schulzrinne, H., Camarillo, G.,
 Johnston, A., Peterson, J., Sparks, R., Handley, M.,
 and E. Schooler, "SIP: Session Initiation Protocol",
 RFC 3261, June 2002.

 [SOCKS] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D.,
 and L. Jones, "SOCKS Protocol Version 5", RFC 1928,
 March 1996.

 [STUN] Rosenberg, J., Weinberger, J., Huitema, C., and R.
 Mahy, "STUN - Simple Traversal of User Datagram
 Protocol (UDP) Through Network Address Translators
 (NATs)", RFC 3489, March 2003.

Srisuresh, et al. Informational [Page 29]

RFC 5128 State of P2P Communication across NATs March 2008

 [SYM-STUN] Takeda, Y., "Symmetric NAT Traversal using STUN", Work
 in Progress, June 2003.

 [TCP] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [TCP-CHARACT] Guha, S., and Francis, P., "Characterization and
 Measurement of TCP Traversal through NATs and
 Firewalls", Proceedings of Internet Measurement
 Conference (IMC), Berkeley, CA, October 2005, pp. 199-
 211.

 [TEREDO] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
 Network Address Translations (NATs)", RFC 4380,
 February 2006.

 [TURN] Rosenberg, J., Mahy, R., and P. Matthews, "Traversal
 Using Relays around NAT (TURN): Relay Extensions to
 Session Traversal Utilities for NAT (STUN)", Work in
 Progress, January 2008.

 [UNSAF] Daigle, L., Ed., and IAB, "IAB Considerations for
 UNilateral Self-Address Fixing (UNSAF) Across Network
 Address Translation", RFC 3424, November 2002.

 [UPNP] UPnP Forum, "Internet Gateway Device (IGD) Standardized
 Device Control Protocol V 1.0", November 2001,
 http://www.upnp.org/standardizeddcps/igd.asp

 [V6-CPE-SEC] Woodyatt, J., "Recommended Simple Security Capabilities
 in Customer Premises Equipment for Providing
 Residential IPv6 Internet Service", Work in Progress,
 June 2007.

Srisuresh, et al. Informational [Page 30]

RFC 5128 State of P2P Communication across NATs March 2008

Authors’ Addresses

 Pyda Srisuresh
 Kazeon Systems, Inc.
 1161 San Antonio Rd.
 Mountain View, CA 94043
 USA

 Phone: (408)836-4773
 EMail: srisuresh@yahoo.com

 Bryan Ford
 Laboratory for Computer Science
 Massachusetts Institute of Technology
 77 Massachusetts Ave.
 Cambridge, MA 02139
 USA

 Phone: (617) 253-5261
 EMail: baford@mit.edu
 Web: http://www.brynosaurus.com/

 Dan Kegel
 Kegel.com
 901 S. Sycamore Ave.
 Los Angeles, CA 90036
 USA

 Phone: 323 931-6717
 EMail: dank@kegel.com
 Web: http://www.kegel.com/

Srisuresh, et al. Informational [Page 31]

RFC 5128 State of P2P Communication across NATs March 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Srisuresh, et al. Informational [Page 32]

