Net wor k Wor ki ng Group P. GQuenther, Ed

Request for Comments: 5228 Sendnmai |, |nc.
bsol etes: 3028 T. Showalter, Ed
Cat egory: Standards Track January 2008

Sieve: An Email Filtering Language
Status of This Menp

This docunent specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Abst r act

Thi s docunent describes a |language for filtering emai|l nessages at
time of final delivery. It is designed to be inplenentable on either
a mail client or mail server. It is nmeant to be extensible, sinple,
and i ndependent of access protocol, nmail architecture, and operating
system It is suitable for running on a mail server where users nay
not be allowed to execute arbitrary prograns, such as on black box

I nternet Message Access Protocol (I MAP) servers, as the base | anguage
has no variables, loops, or ability to shell out to externa

pr ogr ans.

Quent her & Showal ter St andards Track [Page 1]

RFC 5228

Tabl e of Contents

1

Sieve: An Email Filtering Language January 2008

Introducti On 4
1.1. Conventions Used in This Docunent 4
1.2. Exanmple Mail Messages 5
DS ON oot e 6
2.1. Formof the Language 6
2.2, Wit eSPACE . . 7
2.3, COMMTBNL S .. 7
2.4, Literal Data e 7
2.4.1. Nunbers 7
2.4, 2. StIiNgS .o e 8
2.4.2.1. String Lists e 9
2.4.2.2. Headers 9
2.4.2.3. ADAresses e 10

2.4.2.4. Encoding Characters Using
"encoded-character” 10
2. 8. TSt S 11
2.5.1. Test Lists ... 12
2.6, ArQUIMBNL S . 12
2.6.1. Positional Arguments 12
2.6.2. Tagged ArguImBNtS ittt 12
2.6.3. Optional Arguments 13
2.6.4. Types of Argunments 13
2.7. String Conpari SONt e 13
2.7.1. Match Type ... 14
2.7.2. Conparisons across Character Sets 15
2.7.3. Comparat OrsS e 15
2.7.4. Conparisons against Addresses 16
2.8, Bl OCKS .. 17
2.9, CONMMMBNAS . .ot 17
2.10. BEvaluation 18
2.10.1. Action Interaction 18
2.10.2. Inplicit Keep 18
2.10. 3. Message Uniqueness in a Mailbox 19
2.10.4. Limits on Nunmbers of Actions 19
2.10.5. Extensions and Optional Features 19
2.00. 6. ErrorsS ... 20
2.10.7. Limits on Execution 20
Control CommBands e 21
3.1, Control if .. 21
3.2. Control require e 22
3.3, CoNtrol Stop ...t 22
Action CoMTBNASt e e e e e 23
4.1. Action fileinto 23
4.2, Action redirect e 23
4.3, Action Keep 24
4.4, Action discard 25

Quent her & Showal ter St andards Track [Page 2]

RFC 5228 Sieve: An Email Filtering Language January 2008

5. Test CommMBNAS 26
5.1, Test addresst 26
5.2. Test allof 27
5.3. Test anyof 27
5.4, Test envel ope 27
. 5. Test eXi StS ... 28
5.6. Test fal se 28
5.7. Test header 29
5. 8. Test NOt 29
. 9. Test S Ze ... e 29
5.10. TesSt trUe ... 30

6. Extensibility e 30
6.1. Capability String e 31
6.2. 1ANA Considerati ons 31

6.2.1. Tenplate for Capability Registrations 32
6.2.2. Handling of Existing Capability Registrations 32
6.2.3. Initial Capability Registrations 32
6.3. Capability Transport, 33

7. TransSm SSI ON ..ot 33

8. Par S NO .o 34
8.1. Lexical Tokens 34
8. 2., AN Al ... 36
8.3. Statement Elements 36

9. Extended Exanpl e e 37

10. Security Considerati Ons 38

11, AcknOowW edgIment S o 39

12. Normative References e 39

13. Informative References i 40

14. Changes from RFC 3028 41

Quent her & Showal ter St andards Track [Page 3]

RFC 5228 Sieve: An Email Filtering Language January 2008

1

1

I ntroduction

This meno docunents a | anguage that can be used to create filters for
electronic mail. It is not tied to any particular operating system
or mail architecture. It requires the use of [IMAIL]-conpliant
messages, but shoul d otherw se generalize to nmany systens.

The | anguage is powerful enough to be useful but limted in order to
allow for a safe server-side filtering system The intention is to
make it inmpossible for users to do anything nore conplex (and
dangerous) than wite sinple mail filters, along with facilitating
the use of graphical user interfaces (GJs) for filter creation and
mani pul ation. The base | anguage was not designed to be Turing-
conplete: it does not have a loop control structure or functions.

Scripts witten in Sieve are executed during final delivery, when the

message i s noved to the user-accessible nmailbox. |In systens where
the Mail Transfer Agent (MIA) does final delivery, such as
traditional Unix mail, it is reasonable to filter when the MIA
deposits nmail into the user’s nail box.

There are a nunber of reasons to use a filtering system Mail
traffic for nmost users has been increasing due to increased usage of
emai |, the energence of unsolicited email as a form of advertising,
and increased usage of mailing lists.

Experience at Carnegie Mellon has shown that if a filtering systemis
made available to users, many will make use of it in order to file
messages from specific users or nmailing lists. However, nmany others
did not nmake use of the Andrew systenmis FLAMES filtering | anguage

[FLAMES] due to difficulty in setting it up

Because of the expectation that users will make use of filtering if
it is offered and easy to use, this | anguage has been nade sinple
enough to allow many users to nake use of it, but rich enough that it
can be used productively. However, it is expected that GU -based
editors will be the preferred way of editing filters for a large
number of users.

1. Conventions Used in This Docunent

In the sections of this docunent that discuss the requirenents of
vari ous keywords and operators, the follow ng conventions have been
adopt ed.

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in [KEYWORDS] .

Quent her & Showal ter St andards Track [Page 4]

RFC 5228 Sieve: An Email Filtering Language January 2008

Each section on a comand (test, action, or control) has a line

| abel ed "Usage:". This line describes the usage of the command,
including its name and its argunents. Required argunents are |isted
i nside angl e brackets ("<" and ">"). Optional argunents are listed

i nsi de square brackets ("[" and "]"). Each argunment is foll owed by
its type, so "<key: string>" represents an argunent called "key" that
is a string. Literal strings are represented with doubl e-quoted
strings. Alternatives are separated with sl ashes, and parent heses
are used for grouping, simlar to [ABNF].

In the "Usage:" line, there are three special pieces of syntax that
are frequently repeated, MATCH TYPE, COVPARATOR, and ADDRESS- PART.
These are discussed in sections 2.7.1, 2.7.3, and 2.7.4,
respectively.

The formal granmar for these comands is defined in section 8 and is
the authoritative reference on how to construct conmands, but the
formal grammar does not specify the order, senantics, nunber or types
of argunents to commands, or the |egal conmmand names. The intent is
to allow for extension w thout changing the grammar.

1.2. Exanple Mail Messages

The following nail nessages will be used throughout this docunent in
exanpl es.

Message A

Date: Tue, 1 Apr 1997 09:06: 31 -0800 (PST)
From coyote@lesert. exanple.org
To: roadrunner @cne. exanpl e. com

Subject: | have a present for you

Look, I'msorry about the whole anvil thing, and | really
didn't mean to try and drop it on you fromthe top of the
cliff. | want to try to nake it up to you. |[|’'ve got sone
great birdseed over here at ny place--top of the line
stuff--and if you cone by, I'lIl have it all wapped up

for you. I'mreally sorry for all the problens |I’'ve caused

for you over the years, but | know we can work this out.

Wle E. Coyote " Super Geni us" coyot e@lesert. exanpl e. org

Quent her & Showal ter St andards Track [Page 5]

RFC 5228 Sieve: An Email Filtering Language January 2008

Message B

From youcoul dberich! @epl y-by-postal -mail.invalid
Sender: blff @le. res. exanpl e. com

To: rube@ andru. exanpl e. com

Date: Mbn, 31 Mar 1997 18:26:10 -0800

Subj ect: $$$ YOU, TOO, CAN BE A M LLIONAI RE! $3$$

YOU MAY HAVE ALREADY WON TEN M LLI ON DOLLARS, BUT | DOUBT
T SO JUST POST THI' S TO SI X HUNDRED NEWSGROUPS! | T WLL
GUARANTEE THAT YOU GET AT LEAST FI VE RESPONSES W TH MONEY!
MONEY! MONEY! COLD HARD CASH YOU W LL RECElI VE OVER

$20, 000 | N LESS THAN TWD MONTHS! AND I T°S LEGAL! It

2. Design
2.1. Formof the Language

The | anguage consists of a set of commands. Each command consists of
a set of tokens delimted by whitespace. The conmand identifier is
the first token and it is followed by zero or nore argunent tokens.
Arguments rmay be literal data, tags, bl ocks of commands, or test
conmands.

Wth the exceptions of strings and coments, the language is limted
to US-ASCI| characters. Strings and comments may contain octets

outside the US-ASCI|I range. Specifically, they will nornally be in
UTF-8, as specified in [UTF-8]. NUL (US-ASCIl 0) is never permitted
in scripts, while CR and LF can only appear as the CRLF |ine ending.

Note: While this specification permits arbitrary octets to appear
in Sieve scripts inside strings and coments, this has made it
difficult to robustly handle Sieve scripts in prograns that are
sensitive to the encodings used. The "encoded-character"
capability (section 2.4.2.4) provides an alternative neans of
representing such octets in strings using just US-ASCl

characters. As such, the use of non-UTF-8 text in scripts should
be considered a deprecated feature that nmay be abandoned.

Tokens other than strings are considered case-insensitive.

Quent her & Showal ter St andards Track [Page 6]

RFC 5228 Sieve: An Email Filtering Language January 2008

2.2. \Witespace

Whi t espace is used to separate tokens. \Witespace is nmade up of
tabs, newl ines (CRLF, never just CR or LF), and the space character.
The ampunt of whitespace used is not significant.

2.3. Comments

Two types of comments are offered. Comments are semantically

equi val ent to whitespace and can be used anypl ace that whitespace is
(with one exception in nulti-line strings, as described in the
gramar) .

Hash coments begin with a "#" character that is not contained within
a string and continue until the next CRLF.

Exanple: if size :over 100k { # this is a coment
di scard
}

Bracketed comments begin with the token "/*" and end with "*/"
outside of a string. Bracketed comments may span multiple |ines.
Bracketed comments do not nest.

Exanple: if size :over 100K { /* this is a coment
this is still a comment */ discard /* this is a comment
*/;
}

2.4, Literal Data

Literal data neans data that is not executed, nerely evaluated "as
is", to be used as argunents to commands. Literal data is limted to
nunbers, strings, and string lists.

2.4.1. Nunbers

Nunmbers are given as ordinary deci mal nunbers. As a shorthand for
expressing |larger values, such as nessage sizes, a suffix of "K'

"M, or "G' MAY be appended to indicate a multiple of a power of two.
To be conparable with the power-of-two-based versions of Sl units
that conputers frequently use, "K' specifies kibi-, or 1,024 (2710)
tinmes the value of the nunber; "M specifies nebi-, or 1,048,576
(27220) times the value of the nunber; and "G' specifies gibi-, or
1,073,741,824 (2730) tines the value of the nunber [BINARY-SI].

Quent her & Showal ter St andards Track [Page 7]

RFC 5228 Sieve: An Email Filtering Language January 2008

| mpl enent ati ons MUST support integer values in the inclusive range
zero to 2,147,483,647 (231 - 1), but MAY support |arger val ues

Only non-negative integers are pernmitted by this specification
2.4.2. Strings

Scripts involve |large nunbers of string values as they are used for
pattern matchi ng, addresses, textual bodies, etc. Typically, short
quoted strings suffice for nost uses, but a nore convenient formis
provi ded for |onger strings such as bodies of nessages.

A quoted string starts and ends with a single double quote (the <">
character, US-ASCI| 34). A backslash ("\", US-ASCII 92) inside of a
quoted string is followed by either another backslash or a double
quote. These two-character sequences represent a single backslash or
doubl e quote within the value, respectively.

Scripts SHOULD NOT escape other characters with a backsl ash

An undefined escape sequence (such as "\a" in a context where "a" has
no special nmeaning) is interpreted as if there were no backslash (in
this case, "\a" is just "a"), though that may be changed by

ext ensi ons.

Non-printing characters such as tabs, CRLF, and control characters
are pernmitted in quoted strings. Quoted strings MAY span nultiple
lines. An unencoded NUL (US-ASCII 0) is not allowed in strings; see
section 2.4.2.4 for how it can be encoded.

As nessage header data is converted to [UTF-8] for conparison (see
section 2.7.2), nost string values will use the UTF-8 encodi ng.
However, inplenmentations MJST accept all strings that match the
grammar in section 8 The ability to use non-UTF-8 encoded strings
mat ches existing practice and has proven to be useful both in tests
for invalid data and in argunents containing raw M ME parts for
extension actions that generate outgoi ng nessages.

For entering larger anbunts of text, such as an email nessage, a
multi-line formis allowed. It starts with the keyword "text:"
followed by a CRLF, and ends with the sequence of a CRLF, a single
peri od, and another CRLF. The CRLF before the final period is
considered part of the value. |In order to allow the nessage to
contain lines with a single dot, lines are dot-stuffed. That is,
when conposi ng a nessage body, an extra '.’' is added before each line
that begins with a '.’ When the server interprets the script, these
extra dots are renobved. Note that a line that begins with a dot

foll owed by a non-dot character is not interpreted as dot-stuffed;

Quent her & Showal ter St andards Track [Page 8]

RFC 5228 Sieve: An Email Filtering Language January 2008

that is, ".foo" is interpreted as ".foo". However, because this is
potentially anbi guous, scripts SHOULD be properly dot-stuffed so such
lines do not appear

Not e that a hashed conment or whitespace nmay occur in between the
"text:" and the CRLF, but not within the string itself. Bracketed
coments are not allowed here

2.4.2.1. String Lists

When mat ching patterns, it is frequently convenient to match agai nst
groups of strings instead of single strings. For this reason, a list
of strings is allowed in nany tests, inplying that if the test is
true using any one of the strings, then the test is true.

For instance, the test 'header :contains ["To", "Cc"]
["nme@xanpl e. conf, "ne00@ andru. exanple.conf]’ is true if either a To
header or Cc header of the input nessage contains either of the enai
addresses "ne@xanpl e. com' or "ne00@ andr u. exanpl e. cont'.

Conversely, in any case where a list of strings is appropriate, a
single string is allowed wi thout being a nenber of a list: it is
equivalent to a list with a single nenber. This nmeans that the test
"exists "To"' is equivalent to the test "exists ["To"]’.

2.4.2.2. Headers

Headers are a subset of strings. In the Internet Message
Specification [IMAIL], each header line is allowed to have whitespace
nearly anywhere in the line, including after the field nane and

bef ore the subsequent colon. Extra spaces between the header nane
and the ":" in a header field are ignored.

A header nane never contains a colon. The "From' header refers to a

line beginning "From"™ (or "From :", etc.). No header will match
the string "From" due to the trailing colon

Simlarly, no header will match a syntactically invalid header nane.
An i npl enentati on MJUST NOT cause an error for syntactically invalid
header nanes in tests.

Header lines are unfolded as described in [IMAIL] section 2.2.3.

Interpretation of header data SHOULD be done according to [M ME3]
section 6.2 (see section 2.7.2 below for details).

Quent her & Showal ter St andards Track [Page 9]

RFC 5228 Sieve: An Email Filtering Language January 2008

2.4.2.3. Addresses

A nunmber of conmands call for emmil addresses, which are also a
subset of strings. Wen these addresses are used in outbound
contexts, addresses nust be conpliant with [IMAIL], but are further
constrained within this docunent. Using the synbols defined in
[IMAIL], section 3, the syntax of an address is

si eve- address = addr-spec ; sinple address

/ phrase "<" addr-spec ">" ; nanme & addr-spec
That is, routes and group syntax are not permitted. |If nmultiple
addresses are required, use a string list. Naned groups are not
permitted.

It is an error for a script to execute an action with a value for use
as an outbound address that doesn’t match the "sieve-address” syntax.

2.4.2.4. Encoding Characters Using "encoded-character"

Wien the "encoded-character"” extension is in effect, certain
character sequences in strings are replaced by their decoded val ue.
Thi s happens after escape sequences are interpreted and dot-
unstuffing has been done. |nplenentations SHOULD support "encoded-
character".

Arbitrary octets can be enbedded in strings by using the syntax
encoded-arb-octets. The sequence is replaced by the octets with the
hexadeci mal val ues gi ven by each hex-pair.

bl ank

encoded- arb-octets
hex- pair-seq

hex- pai r

WEP / CRLF

"${hex:" hex-pair-seq "}"

*pbl ank hex-pair *(1*blank hex-pair) *blank
1*2HEXDI G

Where WBP and HEXDI G non-terninals are defined in Appendix B.1 of
[ABNF] .

It may be inconvenient or undesirable to enter Unicode characters
verbatim and for these cases the syntax encoded-uni code-char can be
used. The sequence is replaced by the UTF-8 encoding of the

speci fied Unicode characters, which are identified by the hexadeci ma
val ue of uni code- hex.

encoded- uni code- char
uni code- hex- seq

"${uni code: " uni code- hex-seq "}"
*bl ank uni code- hex

*(1*bl ank uni code- hex) *bl ank
1*HEXDI G

uni code- hex

Quent her & Showal ter St andards Track [Page 10]

RFC 5228 Sieve: An Email Filtering Language January 2008

2.

5.

It is an error for a script to use a hexadecinmal value that isn't in
either the range 0 to D7/FF or the range EO0O0 to 10FFFF. (The range
D800 to DFFF is excluded as those character nunbers are only used as
part of the UTF-16 encoding formand are not applicable to the UTF-8
encodi ng that the syntax here represents.)

Not e: | nplenentati ons MJUST NOT rai se an error for an out-of-range
Uni code val ue unl ess the sequence containing it is well-forned
according to the granmar.

The capability string for use with the require command is "encoded-
character".

In the followi ng script, nessage B is discarded, since the specified
test string is equivalent to "$$%".

Exanpl e: require "encoded-character”;
i f header :contains "Subject" "$${hex:24 24}" {
di scard

The foll owi ng exanpl es denonstrate valid and invalid encodi ngs and
how t hey are handl ed:

"$${ hex: 40} " -> "$@

"${hex: 40 }" ->"@

"${HEX: 40}" ->"@

"${ hex: 40" -> "${hex: 40"

"${ hex: 400} " -> "${hex: 400}"
"${hex: 4${ hex: 30}}" -> "${hex: 40}"
"${uni code: 40} " ->"@

"${ uni code: 40}" -> "${ unicode: 40}"
" ${ UNI CODE: 40} " > @

" ${ Unl CoDE: 0000040}" -> " @

"${ Uni code: 40} " ->"@

" ${ Uni code: Cool }" -> "${Uni code: Cool }"
"${uni code: 200000}" -> error

" ${ Uni code: DF01} -> error

Tests

Tests are given as argunents to commands in order to control their
actions. In this docunent, tests are given to if/elsif to decide
whi ch bl ock of code is run.

Quent her & Showal ter St andards Track [Page 11]

RFC 5228 Sieve: An Email Filtering Language January 2008

2.5.1. Test Lists

Some tests ("allof" and "anyof", which inplenment |ogical "and" and

| ogical "or", respectively) may require nore than a single test as an
argunent. The test-list syntax el enent provides a way of grouping
tests as a comua-separated |ist in parentheses.

Exanple: if anyof (not exists ["Front, "Date"],
header :contains "from "fool @xanple.conl) {
di scard

}
2.6. Argunents

In order to specify what to do, npbst conmands take argunents. There
are three types of arguments: positional, tagged, and optional

It is an error for a script, on a single command, to use conflicting
argunents or to use a tagged or optional argunent nore than once

2.6.1. Positional Arguments

Positional argunments are given to a command that discerns their
meani ng based on their order. Wen a command takes positiona
argunents, all positional argunents nust be supplied and nust be in
the order prescribed.

2.6.2. Tagged Argunents

This docunent provides for tagged argunents in the style of
CommonLl SP. These are also simlar to flags given to commands in
nost conmand-1ine systens.

A tagged argunent is an argunment for a command that begins with ":'
followed by a tag nam ng the argument, such as ":contains". This
argunent neans that zero or nore of the next tokens have sone
particul ar neani ng dependi ng on the argunent. These next tokens nmay
be literal data, but they are never bl ocks.

Tagged argunents are simlar to positional arguments, except that
i nstead of the neaning being derived fromthe comuand, it is derived
fromthe tag.

Tagged argunents mnust appear before positional argunments, but they

may appear in any order with other tagged argunents. For sinplicity
of the specification, this is not expressed in the syntax definitions

Quent her & Showal ter St andards Track [Page 12]

RFC 5228 Sieve: An Email Filtering Language January 2008

with commands, but they still nmay be reordered arbitrarily provided
t hey appear before positional argunents. Tagged argunents nmay be
nm xed with optional argunents.

Tagged argunents SHOULD NOT take tagged arguments as arguments.
2.6.3. Optional Argunents

Optional argunments are exactly like tagged argunments except that they
may be left out, in which case a default value is inplied. Because
optional argunments tend to result in shorter scripts, they have been
used far nore than tagged argunents.

One particularly noteworthy case is the ":conparator" argunent, which
all ows the user to specify which conparator [COLLATION] will be used
to conpare two strings, since different |anguages nay inpose

di fferent orderings on UTF-8 [UTF-8] strings.

2.6.4. Types of Argunents

Abstractly, argunents may be literal data, tests, or blocks of
commands. In this way, an "if" control structure is nerely a conmand
that happens to take a test and a block as argunments and nmay execute
the bl ock of code

However, this abstraction is anbiguous froma parsing standpoint.

The grammar in section 8.2 presents a parsable version of this:
Argunments are string lists (string-lists), nunbers, and tags, which
may be followed by a test or a test list (test-list), which may be
foll owed by a block of commands. No nore than one test or test |ist,
or nore than one bl ock of conmands, nmay be used, and commands t hat
end with a block of conmands do not end w th senicol ons.

2.7. String Conparison

When mat chi ng one string agai nst another, there are a nunber of ways
of performing the match operation. These are acconplished with three
types of matches: an exact nmatch, a substring match, and a w ldcard
gl ob-style match. These are described bel ow

In order to provide for matches between character sets and case

insensitivity, Sieve uses the conparators defined in the Internet
Application Protocol Collation Registry [COLLATI QN .

Quent her & Showal ter St andards Track [Page 13]

RFC 5228 Sieve: An Email Filtering Language January 2008

However, when a string represents the nane of a header, the
conparator is never user-specified. Header conparisons are always
done with the "i;ascii-casemap" operator, i.e., case-insensitive
compari sons, because this is the way things are defined in the
message specification [IMAIL].

2.7.1. Match Type

Commands that perform string conparisons may have an optional match
type argunent. The three match types in this specification are
":contains", ":is", and ":matches"

The ":contains" match type describes a substring match. |f the val ue
argunent contains the key argunent as a substring, the match is true.
For instance, the string "frobnitzni contains "frob" and "nit", but
not "fbni'. The enpty key ("") is contained in all val ues.

The ":is" match type describes an absolute match; if the contents of
the first string are absolutely the same as the contents of the
second string, they match. Only the string "frobnitzn' is the string
"frobnitzm'. The enpty key ("") only ":is" matches with the enpty
val ue.

The ": nmatches" match type specifies a wildcard match using the
characters "*" and "?"; the entire value nust be matched. "*"

mat ches zero or nore characters in the value and "?" matches a single
character in the value, where the conparator that is used (see
section 2.7.3) defines what a character is. For example, the
conmparators "i;octet" and "i;ascii-casemap” define a character to be
a single octet, so "?" wll always match exactly one octet when one
of those conparators is in use. 1In contrast, a Unicode-based
conparator would define a character to be any UTF-8 octet sequence
encodi ng one Uni code character and thus "?" may match nore than one

octet. "?" and "*" may be escaped as "\\?" and "*" in strings to
mat ch agai nst thensel ves. The first backsl ash escapes the second
backsl ash; together, they escape the "*". This is awkward, but it is

commonpl ace in several programmi ng | anguages that use gl obs and
regul ar expressions.

In order to specify what type of match is supposed to happen
commands that support matching take optional argunments ":matches”
":is", and ":contains". Commands default to using ":is" matching if
no match type argunent is supplied. Note that these nodifiers
interact with conparators; in particular, only conparators that
support the "substring match" operation are suitable for matching
with ":contains" or ":matches". It is an error to use a conparator
with ":contains” or ":matches" that is not conpatible with it.

Quent her & Showal ter St andards Track [Page 14]

RFC 5228 Sieve: An Email Filtering Language January 2008

It is an error to give nore than one of these argunents to a given
conmand.

For conveni ence, the "MATCH TYPE' syntax elenent is defined here as
fol | ows:

Synt ax: ":is" [":contains" / ":matches"
2.7.2. Conparisons across Character Sets

Messages may involve a nunber of character sets. 1In order for
conparisons to work across character sets, inplenentations SHOULD
i mpl enent the foll ow ng behavi or

Conmpari sons are perforned on octets. Inplenentations convert text
fromheader fields in all charsets [M ME3] to Unicode, encoded as
UTF-8, as input to the conparator (see section 2.7.3).

| npl enent ati ons MUST be capabl e of converting US-ASCI 1, | SO 8859-
1, the US-ASCI| subset of |SO 8859-* character sets, and UTF-8.
Text that the inplenmentation cannot convert to Unicode for any
reason MAY be treated as plain US-ASCI| (including any [M ME3]
syntax) or processed according to |local conventions. An encoded
NUL octet (character zero) SHOULD NOT cause early term nation of

t he header content being conpared agai nst.

If inplenentations fail to support the above behavior, they MJST
conformto the follow ng:

No two strings can be considered equal if one contains octets
greater than 127.

2.7.3. Conparators
In order to allow for |anguage-i ndependent, case-i ndependent matches,
the match type nmay be coupled with a conparator nane. The Internet
Application Protocol Collation Registry [COLLATION] provides the
framework for describing and nani ng conparators.

Al'l i nmpl ementations MJST support the "i;octet" conparator (sinply

conmpares octets) and the "i;ascii-casemap" conparator (which treats
upper case and | owercase characters in the US-ASCI | subset of UTF-8 as
the sane). |If left unspecified, the default is "i;ascii-casenmap"”

Some conparators nay not be usable with substring matches; that is,
they may only work with ":is". It is an error to try to use a
conmparator with ":matches" or ":contains" that is not conpatible with
it.

Quent her & Showal ter St andards Track [Page 15]

RFC 5228 Sieve: An Email Filtering Language January 2008

Sieve treats a conparator result of "undefined" the sanme as a result
of "no-match". That is, this base specification does not provide any
means to directly detect invalid conparator input.

A comparator is specified by the ":conparator"™ option with comrands
that support matching. This option is followed by a string providing
the nane of the conparator to be used. For convenience, the syntax
of a conparator is abbreviated to "COWARATOR', and (repeated in
several tests) is as follows:

Synt ax: ":conparator" <conparator-nanme: string>

So in this exanple,

Exanple: if header :contains :conparator "i;octet" "Subject"
"MAKE MONEY FAST" {
di scard
}

woul d di scard any nessage with subjects |ike "You can MAKE MONEY
FAST", but not "You can Make Mney Fast", since the conparator used
is case-sensitive
Conparators other than "i;octet" and "i;ascii-casemap" nust be
declared with require, as they are extensions. |If a conparator
declared with require is not known, it is an error, and execution
fails. |If the conparator is not declared with require, it is also an
error, even if the conparator is supported. (See section 2.10.5.)

Both ": matches" and ":contains" match types are conpatible with the
"i;octet" and "i;ascii-casemap" conparators and may be used with
t hem

It is an error to give nore than one of these argunents to a given
conmand.

2.7.4. Conparisons agai nst Addresses

Addresses are one of the nost frequent things represented as strings.
These are structured, and being able to conpare against the |ocal -
part or the domain of an address is useful, so sone tests that act
excl usi vel y on addresses take an additional optional argunent that
specifies what the test acts on

These optional argunents are ":local part", ":domain", and ":all"
which act on the local-part (left side), the domain-part (right
side), and the whol e address.

Quent her & Showal ter St andards Track [Page 16]

RFC 5228 Sieve: An Email Filtering Language January 2008

If an address is not syntactically valid, then it will not be matched
by tests specifying ":local part" or ":domain".

The ki nd of conparison done, such as whether or not the test done is
case-insensitive, is specified as a conparator argunent to the test.

If an optional address-part is omtted, the default is ":al

It is an error to give nore than one of these argunents to a given
comand.

For conveni ence, the "ADDRESS- PART" syntax el enment is defined here as
fol | ows:

Synt ax: "“:localpart" / ":domain" / ":all"
2.8. Blocks

Bl ocks are sets of conmands enclosed within curly braces and supplied
as the final argunent to a comand. Such a conmand is a contro
structure: when executed it has control over the nunber of times the
commands in the block are executed.

Wth the conmands supplied in this nmenp, there are no | oops. The
control structures supplied--if, elsif, and else--run a bl ock either
once or not at all.

2.9. Commmands

Si eve scripts are sequences of conmands. Conmands can take any of
the tokens above as argunents, and argunments nay be either tagged or
positional argunents. Not all conmmands take all argunents.

There are three ki nds of commands: test conmands, action conmands,
and control commands.

The sinplest is an action command. An action conmand is an
identifier followed by zero or nore argunents, term nated by a

sem col on. Action commands do not take tests or blocks as argunents.
The actions referenced in this docunent are:

- keep, to save the nessage in the default |ocation

- fileinto, to save the nessage in a specific mail box
- redirect, to forward the nessage to another address
- discard, to silently throw away the nessage

Quent her & Showal ter St andards Track [Page 17]

RFC 5228 Sieve: An Email Filtering Language January 2008

A control conmmand is a conmand that affects the parsing or the flow
of execution of the Sieve script in sone way. A control structure is
a control conmand that ends with a bl ock instead of a sem col on.

A test command is used as part of a control command. It is used to
specify whether or not the bl ock of code given to the control conmand
i s executed.

2.10. Eval uation

2.10.1. Action Interaction

Sone actions cannot be used with other actions because the result
woul d be absurd. These restrictions are noted throughout this meno.

Ext ensi on actions MJST state how they interact with actions defined
in this specification

2.10.2. Inplicit Keep

Previ ous experience with filtering systenms suggests that cases tend
to be missed in scripts. To prevent errors, Sieve has an "inplicit
keep".

An implicit keep is a keep action (see section 4.3) perforned in
absence of any action that cancels the inplicit keep.

An implicit keep is performed if a nessage is not witten to a
mai | box, redirected to a new address, or explicitly thrown out. That
is, if afileinto, a keep, a redirect, or a discard is perfornmed, an
inmplicit keep is not.

Some actions nmay be defined to not cancel the inplicit keep. These
actions may not directly affect the delivery of a nessage, and are
used for their side effects. None of the actions specified in this
docunent neet that criteria, but extension actions nay.

For instance, with any of the short nessages offered above, the
foll owi ng script produces no actions.

Exanple: if size :over 500K { discard; }

As a result, the inplicit keep is taken

Quent her & Showal ter St andards Track [Page 18]

RFC 5228 Sieve: An Email Filtering Language January 2008

2.10.3. Message Uni queness in a Mil box
| mpl ement ati ons SHOULD NOT deliver a nmessage to the sanme mail box nore
than once, even if a script explicitly asks for a nessage to be
witten to a mail box tw ce.
The test for equality of two nessages is inplenentation-defined.

If a script asks for a nmessage to be witten to a nmail box twice, it
MUST NOT be treated as an error.

2.10.4. Limts on Nunbers of Actions
Site policy MAY linmit the nunber of actions taken and MAY inpose
restrictions on which actions can be used together. |In the event
that a script hits a policy limt on the nunber of actions taken for
a particul ar nmessage, an error occurs.
| mpl enent ati ons MUST all ow at | east one keep or one fileinto. |If
fileinto is not inplenented, inplenentations MIST allow at | east one
keep.

2.10.5. Extensions and Optional Features

Because of the differing capabilities of many nmail systens, severa

features of this specification are optional. Before any of these

ext ensi ons can be executed, they nust be declared with the "require"
action.

If an extension is not enabled with "require", inplenentations MJST
treat it as if they did not support it at all. This protects scripts

fromhaving their behavior altered by extensions that the script
aut hor might not have even been aware of.

| mpl enent ati ons MUST NOT execute any Sieve script test or conmand
subsequent to "require" if one of the required extensions is
unavai | abl e.

Note: The reason for this restriction is that prior experiences
wi th | anguages such as LISP and Tcl suggest that this is a
wor kabl e way of noting that a given script uses an extension

Ext ensi ons that define actions MJUST state how they interact with
actions discussed in the base specification.

Quent her & Showal ter St andards Track [Page 19]

RFC 5228 Sieve: An Email Filtering Language January 2008

2.10. 6. Errors

In any progranmi ng | anguage, there are conpile-time and run-tine
errors.

Conpile-tinme errors are ones in syntax that are detectable if a
syntax check i s done.

Run-time errors are not detectable until the script is run. This
includes transient failures like disk full conditions, but al so
i ncl udes issues like invalid conbinations of actions.

When an error occurs in a Sieve script, all processing stops.

| mpl enent ati ons MAY choose to do a full parse, then evaluate the
script, then do all actions. Inplenentations night even go so far as
to ensure that execution is atomc (either all actions are executed
or none are executed).

O her inplenmentations nay choose to parse and run at the sanme tine.
Such inplementations are sinpler, but have issues with parti al
failure (sone actions happen, others don't).

| npl enent ati ons MUST perform syntactic, semantic, and run-tine checks

on code that is actually executed. |nplenmentations MAY performthose
checks or any part of themon code that is not reached during
execution.

When an error happens, inplenmentations MJST notify the user that an
error occurred and which actions (if any) were taken, and do an
inmplicit keep.

2.10.7. Linmts on Execution

I mpl enentations may limt certain constructs. However, this
specification places a | ower bound on sone of these linits.

| mpl enent ati ons MUST support fifteen | evels of nested bl ocks.

| mpl enent ati ons MUST support fifteen | evels of nested test lists.

Quent her & Showal ter St andards Track [Page 20]

RFC 5228 Sieve: An Email Filtering Language January 2008

3. Control Conmands

Control structures are needed to allow for nultiple and conditiona
actions.

3.1. Control if

There are three pieces to if: "if", "elsif", and "else". Each is
actually a separate command in terns of the grammar. However, an
elsif or else MIST only follow an if or elsif. An error occurs if
these conditions are not net.

Usage: if <testl: test> <blockl: block>
Usage: el sif <test2: test> <block2: bl ock>
Usage: el se <bl ock3: bl ock>

The senantics are sinilar to those of any of the many other
programm ng | anguages these control structures appear in. Wen the
interpreter sees an "if", it evaluates the test associated with it.
If the test is true, it executes the block associated with it.

If the test of the "if" is false, it evaluates the test of the first

"elsif" (if any). |If the test of "elsif" is true, it runs the
elsif’'s block. An elsif may be followed by an elsif, in which case,
the interpreter repeats this process until it runs out of elsifs.

When the interpreter runs out of elsifs, there may be an "el se" case.
If there is, and none of the if or elsif tests were true, the
interpreter runs the else’'s bl ock

This provides a way of perform ng exactly one of the blocks in the
chai n.

In the followi ng exanple, both nessages A and B are dropped.

Exanple: require "fileinto"

i f header :contains "fronm "coyote" {
di scard

} elsif header :contains ["subject"] ["$$$"] {
di scard

} else {
fileinto "1 NBOX";

}

Quent her & Showal ter St andards Track [Page 21]

RFC 5228 Sieve: An Email Filtering Language January 2008

When the script belowis run over nessage A, it redirects the nessage
to acm@xanpl e.com nessage B, to postnaster @xanpl e.com any ot her
nmessage is redirected to fiel d@xanple.com

Exanple: if header :contains ["Fronmf] ["coyote"] {
redi rect "acmaxanpl e. cont;
} elsif header :contains "Subject" "$$$" {
redi rect "postmaster @xanpl e. cont';
} else {
redirect "fiel d@xanple.conf;
}

Note that this definition prohibits the "... else if ..." sequence
used by C This is intentional, because this construct produces a
shift-reduce conflict.

3.2. Control require
Usage: require <capabilities: string-list>
The require action notes that a script makes use of a certain
extension. Such a declaration is required to use the extension, as
di scussed in section 2.10.5. Miltiple capabilities can be decl ared
with a single require.
The require conmand, if present, MJST be used before anything other
than a require can be used. An error occurs if a require appears
after a command ot her than require.
Exanple: require ["fileinto", "reject"];

Exanple: require "fileinto"
require "vacation";

3.3. Control stop
Usage: stop

The "stop" action ends all processing. |If the inplicit keep has not
been cancelled, then it is taken

Quent her & Showal ter St andards Track [Page 22]

RFC 5228 Sieve: An Email Filtering Language January 2008

4.

4,

4.

Acti on Conmands

Thi s docunent supplies four actions that may be taken on a nessage:
keep, fileinto, redirect, and discard.

| mpl enent ati ons MUST support the "keep", "discard", and "redirect"
actions.

| mpl enent ati ons SHOULD support "fileinto"

I mpl enentations MAY linmt the nunber of certain actions taken (see
section 2.10.4).

1. Action fileinto
Usage: fileinto <mail box: string>

The "fileinto" action delivers the nessage into the specified
mai | box. | npl enentati ons SHOULD support fileinto, but in some
environnents this nmay be inpossible. |nplenentations MAY pl ace
restrictions on mail box nanmes; use of an invalid nail box nane MAY be
treated as an error or result in delivery to an inplenentation-

defined mail box. |If the specified mail box doesn’t exist, the
i npl enentation MAY treat it as an error, create the mail box, or
deliver the nessage to an inplenentation-defined mailbox. If the

i mpl enentation uses a different encodi ng schene than UTF-8 for
mai | box names, it SHOULD reencode the mail box name fromUTF-8 to its
encodi ng schenme. For exanple, the Internet Message Access Protoco
[MAP] uses nodified UTF-7, such that a nail box argunent of "odds &
ends" woul d appear in | MAP as "odds & ends".

The capability string for use with the require command is "fileinto"

In the follow ng script, message Ais filed into mail box
"1 NBOX. harassment ".

Exanple: require "fileinto"
i f header :contains ["from''] "coyote" {
fileinto "1 NBOX harassment"”
}
2. Action redirect
Usage: redirect <address: string>
The "redirect” action is used to send the nessage to another user at

a supplied address, as a mail forwarding feature does. The
"redirect" action nmakes no changes to the nessage body or existing

Quent her & Showal ter St andards Track [Page 23]

RFC 5228 Sieve: An Email Filtering Language January 2008

headers, but it nmay add new headers. In particular, existing

Recei ved headers MJST be preserved and the count of Received headers
in the outgoing nessage MUST be larger than the same count on the
nmessage as received by the inplenmentation. (An inplenentation that
adds a Recei ved header before processing the nessage does not need to
add anot her when redirecting.)

The message is sent back out with the address fromthe redirect
command as an envel ope recipient. |Inplenentations MAY conbi ne
separate redirects for a given nessage into a single subnmission wth
mul ti ple envel ope recipients. (This is not a Mail User Agent (MJA)-
style forward, which creates a new nessage with a different sender
and nessage ID, wapping the old nessage in a new one.)

The envel ope sender address on the outgoing nessage is chosen by the
sieve inplenmentation. It MAY be copied fromthe nmessage being
processed. However, if the nessage being processed has an enpty
envel ope sender address the outgoing nessage MJST al so have an enpty
envel ope sender address. This last requirenent is inposed to prevent
loops in the case where a nmessage is redirected to an invalid address
when then returns a delivery status notification that also ends up
being redirected to the same invalid address.

A sinple script can be used for redirecting all nail:
Exanpl e: redirect "bart@xanple.cont;

| mpl enent ati ons MUST take neasures to inplenment | oop control

possi bly including addi ng headers to the nessage or counting Received
headers as specified in section 6.2 of [SMIP]. |If an inplenentation
detects a loop, it causes an error

| mpl ement ati ons MJST provide neans of linmiting the nunber of
redirects a Sieve script can perform See section 10 for nore
details.

| mpl enent ati ons MAY ignore a redirect action silently due to policy
reasons. For exanple, an inplenentati on MAY choose not to redirect
to an address that is known to be undeliverable. Any ignored
redirect MJST NOT cancel the inplicit keep

4.3. Action keep
Usage: keep
The "keep" action is whatever action is taken in lieu of all other

actions, if no filtering happens at all; generally, this sinply neans
to file the nessage into the user’s main nail box. This conmand

Quent her & Showal ter St andards Track [Page 24]

RFC 5228 Sieve: An Email Filtering Language January 2008

provides a way to execute this action wi thout needing to know the
nane of the user’'s nmain nailbox, providing a way to call it wthout
needi ng to understand the user’s setup or the underlying nail system

For instance, in an inplenentation where the | MAP server is running
scripts on behalf of the user at tine of delivery, a keep command is
equivalent to a fileinto "1 NBOX".

Exanple: if size :under 1M{ keep; } else { discard; }
Note that the above script is identical to the one bel ow
Exanple: if not size :under 1M { discard; }

4. 4. Action discard
Usage: di scard

Discard is used to silently throw away the nessage. It does so by
sinmply canceling the inplicit keep. |If discard is used with other
actions, the other actions still happen. Discard is conpatible with
all other actions. (For instance, fileinto+discard is equivalent to
fileinto.)

Di scard MUST be silent; that is, it MJIST NOT return a non-delivery
notification of any kind ([DSN], [MDN], or otherw se).

In the followi ng script, any mail from"idiot @xanple.con is thrown
out .

Exanple: if header :contains ["front] ["idi ot @xanple.con'] {
di scard;
}

VWil e an inportant part of this |anguage, "discard" has the potenti al
to create serious problens for users: Students who | eave thensel ves

I ogged in to an unattended machine in a public conputer lab may find
their script changed to just "discard". |n order to protect users in
this situation (along with sinmilar situations), inplenentations MAY
keep nessages destroyed by a script for an indefinite period, and NAY
di sall ow scripts that throw out all mail.

Quent her & Showal ter St andards Track [Page 25]

RFC 5228 Sieve: An Email Filtering Language January 2008

5.

5.

Test Conmmands

Tests are used in conditionals to decide which part(s) of the
conditional to execute

| mpl enent ati ons MUST support these tests: "address", "allof",
"anyof", "exists", "false", "header", "not", "size", and "true"

| mpl enent ati ons SHOULD support the "envel ope" test.
1. Test address

Usage: address [COWPARATOR] [ADDRESS- PART] [MATCH TYPE]
<header-list: string-list> <key-list: string-list>

The "address" test matches Internet addresses in structured headers
that contain addresses. It returns true if any header contains any
key in the specified part of the address, as nodified by the
conparator and the match keyword. \Wether there are other addresses
present in the header doesn't affect this test; this test does not
provide any way to deternine whether an address is the only address
in a header.

Li ke envel ope and header, this test returns true if any conbination
of the header-1list and key-list argunments match and returns fal se
ot herw se.

Internet email addresses [IMAIL] have the sonewhat awkward
characteristic that the local-part to the left of the at-sign is
consi dered case sensitive, and the domain-part to the right of the
at-sign is case insensitive. The "address" conmand does not dea

with this itself, but provides the ADDRESS- PART argument for allow ng
users to deal with it

The address primtive never acts on the phrase part of an emai
address or on conments within that address. It also never acts on
group nanes, although it does act on the addresses within the group
construct.

| mpl enentati ons MUST restrict the address test to headers that
contai n addresses, but MJST include at |east From To, Cc, Bcc,
Sender, Resent-From and Resent-To, and it SHOULD i ncl ude any ot her
header that utilizes an "address-list" structured header body.

Exanple: if address :is :all "front "tim@xanple.cont {
di scard
}

Quent her & Showal ter St andards Track [Page 26]

RFC 5228 Sieve: An Email Filtering Language January 2008

5.2. Test allof
Usage: all of <tests: test-list>
The "allof" test perforns a |logical AND on the tests supplied to it.

Exanple: allof (false, false) => false
all of (false, true) => false
allof (true, true) => true

The allof test takes as its argunent a test-list.
5.3. Test anyof
Usage: anyof <tests: test-list>
The "anyof" test perforns a logical OR on the tests supplied to it.

Exanpl e: anyof (false, false) => false
anyof (false, true) => true
anyof (true, true) => true

5.4. Test envel ope

Usage: envel ope [COVPARATOR] [ADDRESS- PART] [MATCH TYPE]
<envel ope-part: string-list> <key-list: string-list>

The "envel ope" test is true if the specified part of the [SMIP] (or
equi val ent) envel ope matches the specified key. This specification
defines the interpretation of the (case insensitive) "front and "to"
envel ope-parts. Additional envel ope-parts nay be defined by other
ext ensi ons; inpl enentati ons SHOULD consi der unknown envel ope parts an
error.

If one of the envel ope-part strings is (case insensitive) "front,
then mat chi ng occurs agai nst the FROM address used in the SMIP MAI L
command. The null reverse-path is matched agai nst as the enpty
string, regardl ess of the ADDRESS- PART argunent specifi ed.

If one of the envel ope-part strings is (case insensitive) "to", then
mat chi ng occurs agai nst the TO address used in the SMIP RCPT command
that resulted in this nessage getting delivered to this user. Note
that only the nost recent TOis available, and only the one rel evant
to this user.

The envel ope-part is a string list and may contain nore than one

paraneter, in which case all of the strings specified in the key-Ilist
are nmatched against all parts given in the envel ope-part |ist.

Quent her & Showal ter St andards Track [Page 27]

RFC 5228 Sieve: An Email Filtering Language January 2008

Li ke address and header, this test returns true if any conbi nation of
t he envel ope-part list and key-list arguments match and returns fal se
ot herw se.

Al'l tests agai nst envel opes MJST drop source routes.

If the SMIP transaction involved several RCPT commands, only the data
fromthe RCPT command that caused delivery to this user is available
in the "to" part of the envel ope.

If a protocol other than SMIP is used for nessage transport,
i npl enent ati ons are expected to adapt this conmand appropriately.

The envel ope command is optional. |nplenentations SHOULD support it,
but the necessary infornmation may not be available in all cases. The
capability string for use with the require command is "envel ope".
Exanpl e: require "envel ope";

if envelope :all :is "fromt "tim@xanple.com {

di scard;
}
5.5. Test exists

Usage: exi sts <header-nanes: string-1list>
The "exists" test is true if the headers listed in the header-nanes
argunent exist within the nmessage. All of the headers nust exist or

the test is fal se.

The following exanple throws out nmail that doesn’'t have a From header
and a Date header.

Exanple: if not exists ["Fron,"Date"] {
di scard;
}
5.6. Test false
Usage: fal se

The "fal se" test always evaluates to false.

Quent her & Showal ter St andards Track [Page 28]

RFC 5228 Sieve: An Email Filtering Language January 2008

5.7. Test header

Usage: header [COWPARATOR] [MATCH TYPE]
<header-names: string-list> <key-list: string-list>

The "header" test evaluates to true if the value of any of the naned
headers, ignoring leading and trailing whitespace, matches any key.
The type of match is specified by the optional match argunent, which
defaults to ":is" if not specified, as specified in section 2.6.

Li ke address and envelope, this test returns true if any conbi nation
of the header-nanes |list and key-list argunents match and returns
fal se otherw se
If a header listed in the header-names argunment exists, it contains
the enmpty key (""). However, if the naned header is not present, it
does not match any key, including the enpty key. So if a nmessage
cont ai ned t he header

X- Caf f ei ne: C8HLIONAQ2
these tests on that header evaluate as foll ows:

header :is ["X-Caffeine"] [""] => fal se
header :contains ["X-Caffeine"] [""] => true

Testing whether a given header is either absent or doesn’'t contain
any non-whi tespace characters can be done using a negated "header"
test:
not header :matches "Cc" "7?*"

5.8. Test not
Usage: not <testl: test>
The "not" test takes sone other test as an argunent, and yields the
opposite result. "not false" evaluates to "true" and "not true"
eval uates to "fal se"

5.9. Test size
Usage: size <":over" [/ ":under"> <limt: nunber>
The "size" test deals with the size of a nessage. It takes either a

tagged argunent of ":over" or ":under", followed by a nunber
representing the size of the nmessage.

Quent her & Showal ter St andards Track [Page 29]

RFC 5228 Sieve: An Email Filtering Language January 2008

If the argunent is ":over", and the size of the nessage is greater
than the nunber provided, the test is true; otherwise, it is false.

If the argunent is ":under", and the size of the message is |ess than
the nunber provided, the test is true; otherwise, it is false.
Exactly one of ":over" or ":under" nust be specified, and anything
else is an error.

The size of a nessage is defined to be the nunber of octets in the
[MAIL] representation of the nmessage

Note that for a nessage that is exactly 4,000 octets, the nessage is
nei ther ":over" nor ":under" 4000 octets.

5.10. Test true

Usage: true

The "true" test always evaluates to true.
6. Extensibility

New control conmmands, actions, and tests can be added to the

| anguage. Sites nust make these features known to their users; this
docunent does not define a way to discover the |ist of extensions
supported by the server.

Any extensions to this |anguage MJUST define a capability string that
uniquely identifies that extension. Capability string are case-
sensitive; for exanple, "foo" and "FOO' are different capabilities.

If a new version of an extension changes the functionality of a
previously defined extension, it MJST use a different nane.
Extensions may register a set of related capabilities by registering
just a unique prefix for them The "conparator-" prefix is an
exanple of this. The prefix MJST end with a "-" and MJUST NOT overl ap
any existing registrations.

In a situation where there is a script subnission protocol and an

ext ensi on adverti senent mechani smaware of the details of this

| anguage, scripts submtted can be checked against the mail server to
prevent use of an extension that the server does not support.

Ext ensi ons MJUST state how they interact with constraints defined in
section 2.10, e.g., whether they cancel the inplicit keep, and which
actions they are conpatible and inconpatible with. Extensions MJST
NOT change t he behavior of the "require"” control command or alter the
interpretation of the argunent to the "require" control

Quent her & Showal ter St andards Track [Page 30]

RFC 5228 Sieve: An Email Filtering Language January 2008

Extensi ons that can subnmit new email nessages or otherw se generate
new protocol requests MJST consider | oop suppression, at least to
docunent any security considerations.

6.1. Capability String

Capability strings are typically short strings describing what
capabilities are supported by the server

Capability strings beginning with "vnd." represent vendor-defined
extensions. Such extensions are not defined by Internet standards or
RFCs, but are still registered with ANA in order to prevent
conflicts. Extensions starting with "vnd." SHOULD be foll owed by the
nane of the vendor and product, such as "vnd.acne. rocket-sled"

The follow ng capability strings are defined by this docunent:

encoded- character The string "encoded-character"” indicates that the
i mpl enentati on supports the interpretation of
"${hex:...}" and "${unicode:...}" in strings.

envel ope The string "envel ope" indicates that the inplenmentation
supports the "envel ope” command.

fileinto The string "fileinto" indicates that the inplenentation
supports the "fileinto" conmand.

conmparator- The string "conparator-elbonia" is provided if the
i npl ement ati on supports the "el boni a* conparat or
Therefore, all inplenentations have at |east the
"conparator-i;octet" and "conparator-i;ascii-casenap"
capabilities. However, these conparators nmay be used
wi t hout being declared with require.

6. 2. | ANA Consi derations

In order to provide a standard set of extensions, a registry is

mai nt ai ned by ANA. This registry contains both vendor-controlled
capability names (beginning with "vnd.") and | ETF-controlled
capability nanmes. Vendor-controlled capability nanmes may be
registered on a first-come, first-served basis, by applying to | ANA
with the formin the followi ng section. Registration of capability
prefixes that do not begin with "vnd." REQUI RES a standards track or
| ESG approved experinental RFC

Ext ensi ons desi gned for interoperable use SHOULD use | ETF-controll ed
capability nanes.

Quent her & Showal ter St andards Track [Page 31]

RFC 5228 Sieve: An Email Filtering Language January 2008

6. 2.

1

Tenpl ate for Capability Registrations

The following tenplate is to be used for registering new Sieve
ext ensions with | ANA

To:

i ana@ ana. org

Subj ect: Registration of new Sieve extension

Capability name: [the string for use in the "require’ statenent]
Descri ption: [a brief description of what the extension adds

or changes]

RFC nunber : [for extensions published as RFCs]
Contact address: [email and/or physical address to contact for

6. 2.

2.

addi tional information]

Handl i ng of Existing Capability Registrations

In order to bring the existing capability registrations in line with
the new tenplate, | ANA has nodified each as foll ows:

1

2.

6.2.3.

The "capability name" and "capability argunents" fields have been
elimnated

The "capability keyword" field have been renaned to "Capability
name"

An enpty "Description" field has been added

The "Standards Track/ | ESG approved experinental RFC nunber" field
has been renaned to "RFC nunber"

The "Person and email address to contact for further infornmation"
field should be renanmed to "Contact address”

Initial Capability Registrations

This RFC updates the following entries in the 1 ANA registry for Sieve
ext ensi ons.

Capabi l ity nane: encoded-character
Descri ption: changes the interpretation of strings to allow

arbitrary octets and Uni code characters to be
represented usi ng US- ASCl

RFC nunber : RFC 5228 (Si eve base spec)
Cont act address: The Sieve discussion list <ietf-nta-filters@nt. org>

Capability nane: fileinto
Descri ption: adds the "fileinto' action for delivering to a

mai | box ot her than the default

RFC nunber : RFC 5228 (Si eve base spec)
Cont act address: The Sieve discussion list <ietf-nta-filters@nt. org>

Quent her & Showal ter St andards Track [Page 32]

RFC 5228 Sieve: An Email Filtering Language January 2008

Capabi lity nane: envel ope

Descri ption: adds the 'envelope’ test for testing the nessage
transport sender and recipient address
RFC nunber : RFC 5228 (Si eve base spec)

Cont act address: The Sieve discussion list <ietf-nta-filters@nt. org>

Capability nane: conparator-* (anything starting with "conparator-")

Descri ption: adds the indicated conparator for use with the
: conpar at or ar gunent
RFC nunber : RFC 5228 (Si eve base spec) and [COLLATI ON]

Cont act address: The Sieve discussion list <ietf-nta-filters@nt. org>
6.3. Capability Transport

A met hod of advertising which capabilities an inplenmentation supports
is difficult due to the wi de range of possible inplenentations. Such
a mechani sm however, should have the property that the

i npl enentation can adverti se the conplete set of extensions that it
supports.

7. Transm ssion
The [M ME] type for a Sieve script is "application/sieve"

The registration of this type for RFC 2048 requirenents is updated as
fol | ows:

Subj ect: Registration of MM nedia type application/sieve

M ME nedia type nane: application

M ME subtype nane: sieve

Requi red paraneters: none

Optional paraneters: none

Encodi ng consi derations: Mst Sieve scripts will be textual,
written in UTF-8. Wen non-7bit characters are used,
quoted-printable is appropriate for transport systens
that require 7bit encodi ng.

Security considerations: Discussed in section 10 of this RFC

Interoperability considerations: Discussed in section 2.10.5
of this RFC

Publ i shed specification: this RFC

Applications that use this nedia type: sieve-enabled nai
servers and clients

Addi tional infornmation:
Magi ¢ nunber (s):
File extension(s): .siv .sieve
Maci ntosh File Type Code(s):

Quent her & Showal ter St andards Track [Page 33]

RFC 5228 Sieve: An Email Filtering Language January 2008

Person & email address to contact for further information:
See the discussion list at ietf-nta-filters@nt. org.

I nt ended usage:
COVIVON

Aut hor / Change controller
The SI EVE WG, del egated by the | ESG

8. Parsing
The Sieve grammar is separated into tokens and a separate granmmar as
nmost progranmm ng | anguages are. Additional rules are supplied here
for conmon argunents to various |anguage facilities

8.1. Lexical Tokens

Sieve scripts are encoded in UTF-8. The foll owi ng assunes a valid
UTF- 8 encodi ng; special characters in Sieve scripts are all US-ASCl I

The following are tokens in Sieve:

- identifiers

- tags

- nunbers

- quoted strings

- multi-line strings

- other separators

Identifiers, tags, and nunbers are case-insensitive, while quoted
strings and nulti-line strings are case-sensitive.

Bl anks, horizontal tabs, CRLFs, and comments ("whitespace") are

i gnored except as they separate tokens. Sonme whitespace is required
to separate otherw se adjacent tokens and in specific places in the
multi-line strings. CR and LF can only appear in CRLF pairs.

The ot her separators are single individual characters and are
mentioned explicitly in the granmar.

The lexical structure of sieve is defined in the follow ng granmar
(as described in [ABNF]):

bracket - comment = "/*" *not-star 1*STAR
*(not-star-slash *not-star 1*STAR) "/"
; No */ allowed inside a coment.
; (No * is allowed unless it is the |ast
; character, or unless it is followed by a
; character that isn't a slash.)

Quent her & Showal ter St andards Track [Page 34]

RFC 5228 Sieve: An Email Filtering Language January 2008

conment = bracket-coment / hash-coment

hash- conment = "#" *octet-not-crlf CRLF

i dentifier = (ALPHA / " ") *(ALPHA/ DIGT/ "_")

multi-line = "text:" *(SP / HTAB) (hash-comment / CRLF)
*(multiline-literal / nmultiline-dotstart)
"." CRLF

multiline-litera

1
—

octet-not-period *octet-not-crlf] CRLF

"." 1*octet-not-crlf CRLF
; Aline containing only "." ends the
; multi-line. Renove a leading '.’ if
; followed by another .

mul tiline-dotstart

not - st ar = CRLF / 9%01-09 / 9%O0B-0C / 9%O0E-29 / %2B-FF
; either a CRLF pair, OR a single octet
; other than NUL, CR, LF, or star

not - st ar - sl ash = CRLF / 9%01-09 / 9%O0B-0C / 9%OE-29 / 9%2B-2E /
% 30- FF
; either a CRLF pair, OR a single octet
; other than NUL, CR LF, star, or slash

numnber = 1*DIA T [QUANTIFIER]

octet-not-crlf = %01-09 / 9%O0B-0C / 9%OE- FF
; a single octet other than NUL, CR or LF

9%01-09 / 9%&O0B-0C / 9%OE-2D / 9%2F- FF
; a single octet other than NUL,
; CR, LF, or period

oct et - not - peri od

9%01-09 / 9%&OB-0C / 9%OE-21 / 9%23-5B / %5D- FF
; a single octet other than NUL,
; CR, LF, doubl e-quote, or backsl ash

oct et - not - gspeci al

QUANTI FI ER ="K/ "M [/ "G

quot ed- ot her "\" octet-not-qgspecia
; represents just the octet-no-qgspecia

; character. SHOULD NOT be used
guot ed- saf e = CRLF / octet-not-qspecial

; either a CRLF pair, OR a single octet other
; than NUL, CR, LF, doubl e-quote, or backsl ash

Quent her & Showal ter St andards Track [Page 35]

RFC 5228 Sieve: An Email Filtering Language January 2008

8.

8.

2.

3.

guot ed- speci al = "\" (DQUOTE / "\")
; represents just a doubl e-quote or backsl ash

quot ed-string = DQUOTE quot ed-text DQUOTE
quot ed- t ext = *(quoted-safe / quoted-special / quoted-other)
STAR = "
t ag =":" identifier
whi t e- space = 1*(SP / CRLF / HTAB) / comment

G ammar

The following is the granmar of Sieve after it has been lexically
interpreted. No whitespace or comments appear below The start
synbol is "start"

ar gunent = string-list / nunber / tag
argunent s = *argunent [test / test-list]

bl ock = "{" commuands "}"

conmand = identifier arguments (";" / block)
commrands = *command

start = commands

string = quoted-string / multi-line

string-1list "[" string *("," string) "]" / string

; if there is only a single string, the brackets
; are optiona
t est = identifier argunents
test-1list ="(" test *("," test) ")"
St at ement El enents
These el enents are collected fromthe "Syntax" sections el sewhere in
this docunent, and are provided here in [ABNF] syntax so that they

can be nodified by extensions.

ADDRESS- PART = ":localpart" / ":domain" / ":all"

Quent her & Showal ter St andards Track [Page 36]

RFC 5228 Sieve: An Email Filtering Language January 2008

COWPARATOR = ":conparator" string

MATCH- TYPE "is" |/ ":contains" / ":matches"

9. Extended Exanpl e

The following is an extended exanple of a Sieve script. Note that it
does not make use of the inplicit keep

#

Exanple Sieve Filter

Declare any optional features or extension used by the script
#

require ["fileinto"];

#

Handl e nmessages from known mailing lists

Move nmessages from | ETF filter discussion list to filter nail box
#

if header :is "Sender" "owner-ietf-ma-filters@nct. org"

fileinto "filter"; # nove to "filter" rmail box
}
#
Keep all nessages to or from people in ny conpany
#
el sif address :DOMAIN :is ["Fronmt, "To"] "exanple.cont
{
keep; # keep in "In" mail box
}
#
Try and catch unsolicited email. |If a message is not to ne,
or it contains a subject known to be spam file it away.
#
el sif anyof (NOT address :all :contains
["To", "Cc", "Bcc"] "me@xanpl e.cont,
header : matches "subject"”
["*make*money*fast*", "*university*dipl*mas*"])
{
fileinto "spant; # nmove to "spant nmail box
}
el se
{ .
Move all other (non-conpany) mail to "personal"
mai | box.
fileinto "personal”;
}

Quent her & Showal ter St andards Track [Page 37]

RFC 5228 Sieve: An Email Filtering Language January 2008

10.

Security Considerations

Users mnmust get their mail. It is inperative that whatever

i mpl enent ati ons use to store the user-defined filtering scripts
protect them from unauthorized nodification, to preserve the
integrity of the mail system An attacker who can nodify a script
can cause mail to be discarded, rejected, or forwarded to an

unaut hori zed recipient. |In addition, it’s possible that Sieve
scripts might expose private information, such as mail box nanes, or
emai | addresses of favored (or disfavored) correspondents. Because
of that, scripts SHOULD al so be protected from unauthorized
retrieval

Several commands, such as "discard", "redirect", and "fileinto"
allow for actions to be taken that are potentially very dangerous.

Use of the "redirect” command to generate notifications nmay easily
overwhel mthe target address, especially if it was not designed to
handl e | arge nessages.

Allowing a single script to redirect to nmultiple destinations can be
used as a neans of anplifying the nunber of nessages in an attack
Moreover, if |oop detection is not properly inplenented, it may be
possi ble to set up exponentially growi ng nessage | oops. Accordingly,
Si eve i npl enent ati ons:

(1) MUST inplenment facilities to detect and break nessage | oops. See
section 6.2 of [SMIP] for additional information on basic |oop
detection strategies.

(2) MUST provide the nmeans for administrators to limt the ability of
users to abuse redirect. In particular, it MJST be possible to
limt the nunber of redirects a script can perform
Additionally, if no use cases exist for using redirect to
multiple destinations, this limt SHOULD be set to 1. Additiona
limts, such as the ability to restrict redirect to local users,
MAY al so be inpl enent ed.

(3) MUST provide facilities to log use of redirect in order to
facilitate tracki ng down abuse.

(4) MAY use script analysis to determ ne whether or not a given
script can be executed safely. While the Sieve |anguage is
sufficiently conplex that full analysis of all possible scripts
is conputationally infeasible, the majority of real-world scripts
are anmenable to analysis. For exanple, an inplenentation m ght

Quent her & Showal ter St andards Track [Page 38]

RFC 5228 Sieve: An Email Filtering Language January 2008

all ow scripts that it has deternmined are safe to run unhi ndered,
bl ock scripts that are potentially problematic, and subject
uncl assifiable scripts to additional auditing and | oggi ng.

Allowing redirects at all may not be appropriate in situations where
emai | accounts are freely available and/or not trackable to a hunman
who can be hel d accountabl e for creating nessage bonbs or other
abuse.

As with any filter on a nessage stream if the Sieve inplenentation
and the nmail agents 'behind Sieve in the nessage streamdiffer in
their interpretation of the nessages, it nmay be possible for an
attacker to subvert the filter. O particular note are differences
in the interpretation of nalforned nmessages (e.g., missing or extra
syntax characters) or those that exhibit corner cases (e.g., NUL
octets encoded via [M ME3]).

11. Acknow edgnents

Thi s docunent has been revised in part based on coments and

di scussions that took place on and off the SIEVE mailing |ist.

Thanks to Sharon Chisholm Cyrus Daboo, Ned Freed, Arnt QGul brandsen,
M chael Haardt, Kjetil TorgrimHomme, Barry Leiba, Mark E. Mallett,
Al exey Mel ni kov, Eric Rescorla, Rob Sienborski, and N gel Sw nson for
revi ews and suggesti ons.

12. Nornmtive References

[ABNF] Crocker, D., Ed., and P. Overell, "Augnented BNF for
Syntax Specifications: ABNF', RFC 4234, Cctober 2005.

[COLLATI ON] Newnman, C., Duerst, M, and A Cul brandsen, "Internet
Application Protocol Collation Registry", RFC 4790, March

2007.
[1 MAIL] Resnick, P., Ed., "Internet Message Format", RFC 2822,
April 2001.

[KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

[M ME] Freed, N. and N. Borenstein, "Miltipurpose |Internet Mil
Extensions (M ME) Part One: Format of I|nternet Message
Bodi es", RFC 2045, Novenber 1996.

[M ME3] Moore, K., "M ME (Ml tipurpose Internet Miil Extensions)

Part Three: Message Header Extensions for Non-ASClI
Text", RFC 2047, Novenber 1996.

Quent her & Showal ter St andards Track [Page 39]

RFC 5228 Sieve: An Email Filtering Language January 2008
[SMTP] Klensin, J., Ed., "Sinple Mail Transfer Protocol", RFC
2821, April 2001.

[UTF- 8] Yergeau, F., "UTF-8, a transformation format of |SO
10646", STD 63, RFC 3629, Novenber 2003.

13. Informative References
[BINARY-SI] "Standard | EC 60027-2: Letter synbols to be used in

el ectrical technology - Part 2: Tel econmuni cati ons and
el ectroni cs", January 1999.

[DSN| Moore, K. and G Vaudreuil, "An Extensible Message For nat
for Delivery Status Notifications", RFC 3464, January
2003.

[FLAMES] Borenstein, N, and C. Thyberg, "Power, Ease of Use, and

Cooperative Work in a Practical Miltinedia Message
Systent, Int. J. of Man-Machine Studies, April, 1991.
Reprinted in Conputer-Supported Cooperative Wrk and

G oupwar e, Saul Greenberg, editor, Harcourt Brace
Jovanovi ch, 1991. Reprinted in Readings in G oupware and
Conmput er - Supported Cooperative Wrk, Ronald Baecker,

edi tor, Morgan Kaufnmann, 1993.

[1 MAP] Crispin, M, "Internet Message Access Protocol - version
4revl", RFC 3501, March 2003.

[MDN] Hansen, T., Ed., and G Vaudreuil, Ed., "Message
Di sposition Notification", RFC 3798, May 2004.

[RFC3028] Showal ter, T., "Sieve: A Miil Filtering Language", RFC
3028, January 2001.

Quent her & Showal ter St andards Track [Page 40]

RFC 5228 Sieve: An Email Filtering Language January 2008

14. Changes from RFC 3028

This following list is a sunmary of the changes that have been nade
in the Sieve | anguage base specification from[RFC3028].

1. Renoved ban on tests having side-effects

2. Renoved reject extension (will be specified in a separate RFC)

3. Clarified description of conparators to match [COLLATI ON], the
new base specification for them

4. Require stripping of leading and trailing whitespace in "header'
t est

5. darified or tightened handling of many mnor itens, including:
- invalid [M ME3] encoding
- invalid addresses in headers
- invalid header field nanes in tests

"undefined’ conparator result

- unknown envel ope parts
- null return-path in "envel ope" test

6. Capability strings are case-sensitive

7. Clarified that fileinto shoul d reencode non-ASCI | nail box
names to match the nail store’s conventions

8. Errors in the ABNF were corrected

9. The references were updated and split into normative and
informative

10. Added encoded-character capability and deprecated (but did not
renove) use of arbitrary binary octets in Sieve scripts.

11. Updated I ANA registration tenplate, and added | ANA
considerations to pernmit capability prefix registrations.

12. Added .sieve as a valid extension for Sieve scripts.

Editors’ Addresses

Philip CGuenther

Sendmai |, Inc.

6425 Christie St. Ste 400
Eneryville, CA 94608

EMai | : guent her @endnmai | . com

Ti m Showal t er
EMai | : tjs@saux. com

Quent her & Showal ter St andards Track [Page 41]

RFC 5228 Sieve: An Email Filtering Language January 2008

Ful I Copyright Statenent
Copyright (C The | ETF Trust (2008).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCORED BY (I F ANY), THE | NTERNET SCCI ETY, THE | ETF TRUST AND
THE | NTERNET ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS
OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF
THE | NFORVATI ON HEREI'N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. [Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of I PR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the information to the |ETF at
ietf-ipr@etf.org.

Quent her & Showal ter St andards Track [Page 42]

