
Network Working Group K. Homme
Request for Comments: 5229 University of Oslo
Updates: 5228 January 2008
Category: Standards Track

 Sieve Email Filtering: Variables Extension

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 In advanced mail filtering rule sets, it is useful to keep state or
 configuration details across rules. This document updates the Sieve
 filtering language (RFC 5228) with an extension to support variables.
 The extension changes the interpretation of strings, adds an action
 to store data in variables, and supplies a new test so that the value
 of a string can be examined.

Homme Standards Track [Page 1]

RFC 5229 Sieve: Variables Extension January 2008

1. Introduction

 This is an extension to the Sieve language defined by [SIEVE]. It
 adds support for storing and referencing named data. The mechanisms
 detailed in this document will only apply to Sieve scripts that
 include a require clause for the "variables" extension. The require
 clauses themselves are not affected by this extension.

 Conventions for notations are as in [SIEVE] section 1.1, including
 use of [KEYWORDS] and [ABNF]. The grammar builds on the grammar of
 [SIEVE]. In this document, "character" means a character from the
 ISO 10646 coded character set [ISO10646], which may consist of
 multiple octets coded in [UTF-8], and "variable" is a named reference
 to data stored or read back using the mechanisms of this extension.

2. Capability Identifier

 The capability string associated with the extension defined in this
 document is "variables".

3. Interpretation of Strings

 This extension changes the semantics of quoted-string, multi-line-
 literal and multi-line-dotstuff found in [SIEVE] to enable the
 inclusion of the value of variables.

 When a string is evaluated, substrings matching variable-ref SHALL be
 replaced by the value of variable-name. Only one pass through the
 string SHALL be done. Variable names are case insensitive, so "foo"
 and "FOO" refer to the same variable. Unknown variables are replaced
 by the empty string.

 variable-ref = "${" [namespace] variable-name "}"
 namespace = identifier "." *sub-namespace
 sub-namespace = variable-name "."
 variable-name = num-variable / identifier
 num-variable = 1*DIGIT

 Examples:
 "&%${}!" => unchanged, as the empty string is an illegal
 identifier
 "${doh!}" => unchanged, as "!" is illegal in identifiers

 The variable "company" holds the value "ACME". No other variables
 are set.

 "${full}" => the empty string
 "${company}" => "ACME"

Homme Standards Track [Page 2]

RFC 5229 Sieve: Variables Extension January 2008

 "${BAD${Company}" => "${BADACME"
 "${President, ${Company} Inc.}"
 => "${President, ACME Inc.}"

 The expanded string MUST use the variable values that are current
 when control reaches the statement the string is part of.

 Strings where no variable substitutions take place are referred to as
 constant strings. Future extensions may specify that passing non-
 constant strings as arguments to its actions or tests is an error.

 Namespaces are meant for future extensions that make internal state
 available through variables. These variables SHOULD be put in a
 namespace whose first component is the same as its capability string.
 Such extensions SHOULD state which, if any, of the variables in its
 namespace are modifiable with the "set" action.

 References to namespaces without a prior require statement for the
 relevant extension MUST cause an error.

 Tests or actions in future extensions may need to access the
 unexpanded version of the string argument and, e.g., do the expansion
 after setting variables in its namespace. The design of the
 implementation should allow this.

3.1. Quoting and Encoded Characters

 The semantics of quoting using backslash are not changed: backslash
 quoting is resolved before doing variable substitution. Similarly,
 encoded character processing (see Section 2.4.2.4 of [SIEVE]) is
 performed before doing variable substitution, but after quoting.

 Examples:
 "${fo\o}" => ${foo} => the expansion of variable foo.
 "${fo\\o}" => ${fo\o} => illegal identifier => left verbatim.
 "\${foo}" => ${foo} => the expansion of variable foo.
 "\\${foo}" => \${foo} => a backslash character followed by the
 expansion of variable foo.

 If it is required to include a character sequence such as
 "${beep}" verbatim in a text literal, the user can define a
 variable to circumvent expansion to the empty string.

 Example:
 set "dollar" "$";
 set "text" "regarding ${dollar}{beep}";

Homme Standards Track [Page 3]

RFC 5229 Sieve: Variables Extension January 2008

 Example:
 require ["encoded-character", "variables"];
 set "name" "Ethelbert"
 if header :contains "Subject" "dear${hex:20 24 7b 4e}ame}" {
 # the test string is "dear Ethelbert"
 }

3.2. Match Variables

 A "match variable" has a name consisting only of decimal digits and
 has no namespace component.

 The decimal value of the match variable name will index the list of
 matching strings from the most recently evaluated successful match of
 type ":matches". The list is empty if no match has been successful.

 Note: Extra leading zeroes are allowed and ignored.

 The list will contain one string for each wildcard ("?" and "*") in
 the match pattern. Each string holds the substring from the source
 value that the corresponding wildcard expands to, possibly the empty
 string. The wildcards match as little as possible (non-greedy
 matching).

 The first string in the list has index 1. If the index is out of
 range, the empty string will be substituted. Index 0 contains the
 matched part of the source value.

 The interpreter MUST short-circuit tests, i.e., not perform more
 tests than necessary to find the result. Evaluation order MUST be
 left to right. If a test has two or more list arguments, the
 implementation is free to choose which to iterate over first.

 An extension describing a new match type (e.g., [REGEX]) MAY specify
 that match variables are set as a side effect when the match type is
 used in a script that has enabled the "variables" extension.

 Example:

 require ["fileinto", "variables"];

 if header :matches "List-ID" "*<*@*" {
 fileinto "INBOX.lists.${2}"; stop;
 }

Homme Standards Track [Page 4]

RFC 5229 Sieve: Variables Extension January 2008

 # Imagine the header
 # Subject: [acme-users] [fwd] version 1.0 is out
 if header :matches "Subject" "[*] *" {
 # ${1} will hold "acme-users",
 # ${2} will hold "[fwd] version 1.0 is out"
 fileinfo "INBOX.lists.${1}"; stop;
 }

 # Imagine the header
 # To: coyote@ACME.Example.COM
 if address :matches ["To", "Cc"] ["coyote@**.com",
 "wile@**.com"] {
 # ${0} is the matching address
 # ${1} is always the empty string
 # ${2} is part of the domain name ("ACME.Example")
 fileinto "INBOX.business.${2}"; stop;
 } else {
 # Control wouldn’t reach this block if any match was
 # successful, so no match variables are set at this
 # point.
 }

 if anyof (true, address :domain :matches "To" "*.com") {
 # The second test is never evaluated, so there are
 # still no match variables set.
 stop;
 }

4. Action set

 Usage: set [MODIFIER] <name: string> <value: string>

 The "set" action stores the specified value in the variable
 identified by name. The name MUST be a constant string and conform
 to the syntax of variable-name. Match variables cannot be set. A
 namespace cannot be used unless an extension explicitly allows its
 use in "set". An invalid name MUST be detected as a syntax error.

 Modifiers are applied on a value before it is stored in the variable.
 See the next section for details.

 Variables are only visible to the currently running script. Note:
 Future extensions may provide different scoping rules for variables.

 Variable names are case insensitive.

Homme Standards Track [Page 5]

RFC 5229 Sieve: Variables Extension January 2008

 Example:
 set "honorific" "Mr";
 set "first_name" "Wile";
 set "last_name" "Coyote";
 set "vacation" text:
 Dear ${HONORIFIC} ${last_name},
 I’m out, please leave a message after the meep.
 .
 ;

 "set" does not affect the implicit keep. It is compatible with all
 actions defined in [SIEVE].

4.1. Modifiers

 Usage: ":lower" / ":upper" / ":lowerfirst" / ":upperfirst" /
 ":quotewildcard" / ":length"

 Modifier names are case insensitive. Unknown modifiers MUST yield a
 syntax error. More than one modifier can be specified, in which case
 they are applied according to this precedence list, largest value
 first:

 +--------------------------------+
 | Precedence Modifier |
 +--------------------------------+
 | 40 :lower |
 | :upper |
 +--------------------------------+
 | 30 :lowerfirst |
 | :upperfirst |
 +--------------------------------+
 | 20 :quotewildcard |
 +--------------------------------+
 | 10 :length |
 +--------------------------------+

 It is an error to use two or more modifiers of the same precedence in
 a single "set" action.

 Examples:
 # The value assigned to the variable is printed after the arrow
 set "a" "juMBlEd lETteRS"; => "juMBlEd lETteRS"
 set :length "b" "${a}"; => "15"
 set :lower "b" "${a}"; => "jumbled letters"
 set :upperfirst "b" "${a}"; => "JuMBlEd lETteRS"
 set :upperfirst :lower "b" "${a}"; => "Jumbled letters"
 set :quotewildcard "b" "Rock*"; => "Rock*"

Homme Standards Track [Page 6]

RFC 5229 Sieve: Variables Extension January 2008

4.1.1. Modifier ":length"

 The value is the decimal number of characters in the expansion,
 converted to a string.

4.1.2. Modifier ":quotewildcard"

 This modifier adds the necessary quoting to ensure that the expanded
 text will only match a literal occurrence if used as a parameter to
 :matches. Every character with special meaning ("*", "?", and "\")
 is prefixed with "\" in the expansion.

4.1.3. Case Modifiers

 These modifiers change the letters of the text from upper to lower
 case or vice versa. Characters other than "A"-"Z" and "a"-"z" from
 US-ASCII are left unchanged.

4.1.3.1. Modifier ":upper"

 All lower case letters are converted to their upper case
 counterparts.

4.1.3.2. Modifier ":lower"

 All upper case letters are converted to their lower case
 counterparts.

4.1.3.3. Modifier ":upperfirst"

 The first character of the string is converted to upper case if it is
 a letter and set in lower case. The rest of the string is left
 unchanged.

4.1.3.4. Modifier ":lowerfirst"

 The first character of the string is converted to lower case if it is
 a letter and set in upper case. The rest of the string is left
 unchanged.

5. Test string

 Usage: string [MATCH-TYPE] [COMPARATOR]
 <source: string-list> <key-list: string-list>

 The "string" test evaluates to true if any of the source strings
 matches any key. The type of match defaults to ":is".

Homme Standards Track [Page 7]

RFC 5229 Sieve: Variables Extension January 2008

 In the "string" test, both source and key-list are taken from the
 script, not the message, and whitespace stripping MUST NOT be done
 unless the script explicitly requests this through some future
 mechanism.

 Example:
 set "state" "${state} pending";
 if string :matches " ${state} " "* pending *" {
 # the above test always succeeds
 }

 The "relational" extension [RELATIONAL] adds a match type called
 ":count". The count of a single string is 0 if it is the empty
 string, or 1 otherwise. The count of a string list is the sum of the
 counts of the member strings.

6. Implementation Limits

 An implementation of this document MUST support at least 128 distinct
 variables. The supported length of variable names MUST be at least
 32 characters. Each variable MUST be able to hold at least 4000
 characters. Attempts to set the variable to a value larger than what
 the implementation supports SHOULD be reported as an error at
 compile-time if possible. If the attempt is discovered during run-
 time, the value SHOULD be truncated, and it MUST NOT be treated as an
 error.

 Match variables ${1} through ${9} MUST be supported. References to
 higher indices than those the implementation supports MUST be treated
 as a syntax error, which SHOULD be discovered at compile-time.

7. Security Considerations

 When match variables are used, and the author of the script isn’t
 careful, strings can contain arbitrary values controlled by the
 sender of the mail.

 Since values stored by "set" that exceed implementation limits are
 silently truncated, it’s not appropriate to store large structures
 with security implications in variables.

 The introduction of variables makes advanced decision making easier
 to write, but since no looping construct is provided, all Sieve
 scripts will terminate in an orderly manner.

 Sieve filtering should not be relied on as a security measure against
 hostile mail messages. Sieve is designed to do simple, mostly static
 tests, and is not suitable for use as a spam or virus checker, where

Homme Standards Track [Page 8]

RFC 5229 Sieve: Variables Extension January 2008

 the perpetrator has a motivation to vary the format of the mail in
 order to avoid filtering rules. See also [SPAMTEST].

8. IANA Considerations

 The following template specifies the IANA registration of the
 variables Sieve extension specified in this document:

 To: iana@iana.org
 Subject: Registration of new Sieve extension

 Capability name: variables
 Description: Adds support for variables to the Sieve filtering
 language.
 RFC number: RFC 5229
 Contact address: The Sieve discussion list <ietf-mta-filters@imc.org>

9. Acknowledgments

 Thanks to Cyrus Daboo, Jutta Degener, Ned Freed, Lawrence Greenfield,
 Jeffrey Hutzelman, Mark E. Mallett, Alexey Melnikov, Peder Stray, and
 Nigel Swinson for valuable feedback.

10. References

10.1. Normative References

 [ABNF] Crocker, D., Ed., and Overell, P., "Augmented BNF for
 Syntax Specifications: ABNF", RFC 4234, October 2005.

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RELATIONAL] Segmuller, W. and B. Leiba, "Sieve Email Filtering:
 Relational Extension", RFC 5231, January 2008.

 [SIEVE] Guenther, P., Ed., and T. Showalter, Ed., "Sieve: An
 Email Filtering Language", RFC 5228, January 2008.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of Unicode
 and ISO 10646", RFC 3629, November 2003.

10.2. Informative References

 [ISO10646] ISO/IEC, "Information Technology - Universal Multiple-
 Octet Coded Character Set (UCS) - Part 1: Architecture
 and Basic Multilingual Plane", May 1993, with
 amendments.

Homme Standards Track [Page 9]

RFC 5229 Sieve: Variables Extension January 2008

 [REGEX] Murchison, K., "Sieve Email Filtering -- Regular
 Expression Extension", Work in Progress, February 2006.

 [SPAMTEST] Daboo, C., "Sieve Email Filtering: Spamtest and
 Virustest Extensions", RFC 5235, January 2008.

Author’s Address

 Kjetil T. Homme
 University of Oslo
 PO Box 1080
 0316 Oslo, Norway

 Phone: +47 9366 0091
 EMail: kjetilho@ifi.uio.no

Homme Standards Track [Page 10]

RFC 5229 Sieve: Variables Extension January 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Homme Standards Track [Page 11]

