
Network Working Group M. Eisler
Request for Comments: 5403 NetApp
Updates: 2203 February 2009
Category: Standards Track

 RPCSEC_GSS Version 2

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (http://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 This document describes version 2 of the RPCSEC_GSS protocol.
 Version 2 is the same as version 1 (specified in RFC 2203) except
 that support for channel bindings has been added. RPCSEC_GSS allows
 remote procedure call (RPC) protocols to access the Generic Security
 Services Application Programming Interface (GSS-API).

Eisler Standards Track [Page 1]

RFC 5403 RPCSEC_GSSv2 February 2009

Table of Contents

 1. Introduction and Motivation2
 1.1. Requirements Language3
 2. Channel Bindings Explained3
 3. The RPCSEC_GSSv2 Protocol4
 3.1. Compatibility with RPCSEC_GSSv14
 3.2. New Version Number ...5
 3.3. New Procedure - RPCSEC_GSS_BIND_CHANNEL7
 3.4. New Security Service - rpc_gss_svc_channel_prot10
 4. Version Negotiation ..11
 5. Native GSS Channel Bindings11
 6. Operational Recommendation for Deployment11
 7. Implementation Notes ...11
 8. Acknowledgments ..11
 9. Security Considerations ..11
 10. References ..13
 10.1. Normative References13
 10.2. Informative References14

1. Introduction and Motivation

 This document describes RPCSEC_GSS version 2 (RPCSEC_GSSv2).
 RPCSEC_GSSv2 is the same as RPCSEC_GSS version 1 (RPCSEC_GSSv1) [1]
 except that support for channel bindings [2] has been added. The
 primary motivation for channel bindings is to securely take advantage
 of hardware-assisted encryption that might exist at lower levels of
 the networking protocol stack, such as at the Internet Protocol (IP)
 layer in the form of IPsec (see [7] and [8] for information on IPsec
 channel bindings). The secondary motivation is that even if lower
 levels are not any more efficient at encryption than the RPCSEC_GSS
 layer, if encryption is occurring at the lower level, it can be
 redundant at the RPCSEC_GSS level.

 RPCSEC_GSSv2 and RPCSEC_GSSv1 are protocols that exchange tokens
 emitted by the Generic Security Services (GSS) framework, which is
 defined in [3], and differ only in the support for GSS channel
 bindings in RPCSEC_GSSv2. GSS itself supports channel bindings, and
 in theory RPCSEC_GSSv2 could use native GSS channel bindings to
 achieve the effects described in this section. However, as Section
 1.1.6 of [3] states, not all implementations of all GSS mechanisms
 support channel bindings. This is sufficient justification for the
 approach taken in this document: modify the RPCSEC_GSS protocol to
 support channel bindings independent of the capabilities of the GSS
 mechanism being used.

Eisler Standards Track [Page 2]

RFC 5403 RPCSEC_GSSv2 February 2009

 Once an RPCSEC_GSS target and initiator are mutually assured that
 they are each using the same secure, end-to-end channel, the overhead
 of computing message integrity codes (MICs) for authenticating and
 integrity-protecting RPC requests and replies can be eliminated
 because the channel is performing the same function. Similarly, if
 the channel also provides confidentiality, the overhead of RPCSEC_GSS
 privacy protection can also be eliminated.

 The External Data Representation (XDR) [4] description is provided in
 this document in a way that makes it simple for the reader to extract
 into a ready-to-compile form. The reader can feed this document into
 the following shell script to produce the machine-readable XDR
 description of RPCSEC_GSSv2:

 <CODE BEGINS>

 #!/bin/sh
 grep "^ *///" | sed ’s?^ *///??’

 <CODE ENDS>

 That is, if the above script is stored in a file called "extract.sh",
 and this document is in a file called "spec.txt", then the reader can
 do:

 <CODE BEGINS>

 sh extract.sh < spec.txt > rpcsec_gss_v2.x

 <CODE ENDS>

 The effect of the script is to remove leading white space from each
 line of the specification, plus a sentinel sequence of "///".

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [5].

2. Channel Bindings Explained

 If a channel between two parties is secure, there must be shared
 information between the two parties. This information might be
 secret or not. The requirement for secrecy depends on the specifics
 of the channel.

Eisler Standards Track [Page 3]

RFC 5403 RPCSEC_GSSv2 February 2009

 For example, the shared information could be the concatenation of the
 public key of the source and destination of the channel (where each
 public key has a corresponding private key). Suppose the channel is
 not end-to-end, i.e., a man-in-the-middle (MITM) exists, and there
 are two channels, one from the initiator to the MITM, and one from
 the MITM to the target. The MITM cannot simply force each channel to
 use the same public keys, because a public key derives from a private
 key, and the key management system for each node will surely assign
 unique or random private keys. At most, the MITM can force one end
 of each channel to use the same public key. The MIC of the public
 keys from the initiator will not be verified by the target, because
 at least one of the public keys will be different. Similarly, the
 MIC of the public keys from the target will not be verified by the
 initiator because at least one of the public keys will be different.

 A higher-layer protocol using the secure channel can safely exploit
 the channel to the mutual benefit of the higher-level parties if each
 higher-level party can prove:

 o They each know the channel’s shared information.

 o The proof of the knowledge of the shared information is in fact
 being conveyed by each of the higher-level parties, and not some
 other entities.

 RPCSEC_GSSv2 simply adds an optional round-trip that has the
 initiator compute a GSS MIC on the channel binding’s shared
 information, and sends the MIC to the target. The target verifies
 the MIC, and in turn sends its own MIC of the shared information to
 the initiator that then verifies the target’s MIC. This accomplishes
 three things. First, the initiator and target are mutually
 authenticated. Second, the initiator and target prove they know the
 channel’s shared information, and thus are using the same channel.
 Third, the first and second things are done simultaneously.

3. The RPCSEC_GSSv2 Protocol

 The RPCSEC_GSSv2 protocol will now be explained. The entire protocol
 is not presented. Instead the differences between RPCSEC_GSSv2 and
 RPCSEC_GSSv1 are shown.

3.1. Compatibility with RPCSEC_GSSv1

 The functionality of RPCSEC_GSSv1 is fully supported by RPCSEC_GSSv2.

Eisler Standards Track [Page 4]

RFC 5403 RPCSEC_GSSv2 February 2009

3.2. New Version Number

 <CODE BEGINS>

 /// /*
 /// * Copyright (c) 2009 IETF Trust and the persons identified
 /// * as the document authors. All rights reserved.
 /// *
 /// * The document authors are identified in [RFC2203] and
 /// * [RFC5403].
 /// *
 /// * Redistribution and use in source and binary forms, with
 /// * or without modification, are permitted provided that the
 /// * following conditions are met:
 /// *
 /// * o Redistributions of source code must retain the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer.
 /// *
 /// * o Redistributions in binary form must reproduce the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer in the documentation and/or other
 /// * materials provided with the distribution.
 /// *
 /// * o Neither the name of Internet Society, IETF or IETF
 /// * Trust, nor the names of specific contributors, may be
 /// * used to endorse or promote products derived from this
 /// * software without specific prior written permission.
 /// *
 /// * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
 /// * AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
 /// * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 /// * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 /// * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 /// * EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 /// * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 /// * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 /// * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 /// * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 /// * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 /// * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 /// * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 /// * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 /// * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 /// */
 /// /*
 /// * This code was derived from [RFC2203]. Please
 /// * reproduce this note if possible.

Eisler Standards Track [Page 5]

RFC 5403 RPCSEC_GSSv2 February 2009

 /// */
 ///
 /// enum rpc_gss_service_t {
 /// /* Note: the enumerated value for 0 is reserved. */
 /// rpc_gss_svc_none = 1,
 /// rpc_gss_svc_integrity = 2,
 /// rpc_gss_svc_privacy = 3,
 /// rpc_gss_svc_channel_prot = 4 /* new */
 /// };
 ///
 /// enum rpc_gss_proc_t {
 /// RPCSEC_GSS_DATA = 0,
 /// RPCSEC_GSS_INIT = 1,
 /// RPCSEC_GSS_CONTINUE_INIT = 2,
 /// RPCSEC_GSS_DESTROY = 3,
 /// RPCSEC_GSS_BIND_CHANNEL = 4 /* new */
 /// };
 ///
 /// struct rpc_gss_cred_vers_1_t {
 /// rpc_gss_proc_t gss_proc; /* control procedure */
 /// unsigned int seq_num; /* sequence number */
 /// rpc_gss_service_t service; /* service used */
 /// opaque handle<>; /* context handle */
 /// };
 ///
 /// const RPCSEC_GSS_VERS_1 = 1;
 /// const RPCSEC_GSS_VERS_2 = 2; /* new */
 ///
 /// union rpc_gss_cred_t switch (unsigned int rgc_version) {
 /// case RPCSEC_GSS_VERS_1:
 /// case RPCSEC_GSS_VERS_2: /* new */
 /// rpc_gss_cred_vers_1_t rgc_cred_v1;
 /// };
 ///

 <CODE ENDS>

 Figure 1

 As is apparent from the above, the RPCSEC_GSSv2 credential has the
 same format as the RPCSEC_GSSv1 credential (albeit corrected so that
 the definition is in legal XDR description language that is also
 compatible with [9]; hence, the field "version", a keyword in RFC
 1831, is replaced with "rgc_version"). Setting the rgc_version field
 to 2 indicates that the initiator and target support channel
 bindings.

Eisler Standards Track [Page 6]

RFC 5403 RPCSEC_GSSv2 February 2009

3.3. New Procedure - RPCSEC_GSS_BIND_CHANNEL

 <CODE BEGINS>

 /// struct rgss2_bind_chan_MIC_in_args {
 /// opaque rbcmia_bind_chan_hash<>;
 /// };
 ///
 /// typedef opaque rgss2_chan_pref<>;
 /// typedef opaque rgss2_oid<>;
 ///
 /// struct rgss2_bind_chan_verf_args {
 /// rgss2_chan_pref rbcva_chan_bind_prefix;
 /// rgss2_oid rbcva_chan_bind_oid_hash;
 /// opaque rbcva_chan_mic<>;
 /// };
 ///

 <CODE ENDS>

 Figure 2

 Once an RPCSEC_GSSv2 handle has been established over a secure
 channel, the initiator MAY issue RPCSEC_GSS_BIND_CHANNEL (Figure 1).
 Targets MUST support RPCSEC_GSS_BIND_CHANNEL. Like RPCSEC_GSS_INIT
 and RPCSEC_GSS_CONTINUE_INIT requests, the NULL RPC procedure MUST be
 used. Unlike those two requests, the arguments of the NULL procedure
 are not overloaded, because the verifier is of sufficient size for
 the purpose of RPCSEC_GSS_BIND_CHANNEL. The gss_proc field is set to
 RPCSEC_GSS_BIND_CHANNEL. The seq_num field is set as if gss_proc
 were set to RPCSEC_GSS_DATA. The service field is set to
 rpc_gss_svc_none. The handle field is set to that of an RPCSEC_GSS
 handle as returned by RPCSEC_GSS_INIT or RPCSEC_GSS_CONTINUE_INIT.

 The RPCSEC_GSS_BIND_CHANNEL request is similar to the RPCSEC_GSS_DATA
 request in that the verifiers of both contain MICs. As described in
 Section 5.3.1 of [1], when gss_proc is RPCSEC_GSS_DATA, the verifier
 of an RPC request is set to the output of GSS_GetMIC() on the RPC
 header. When gss_proc is RPCSEC_GSS_BIND_CHANNEL the verifier of an
 RPC request is set to the XDR encoding on a value of data type
 rgss2_bind_chan_verf_args, which includes a MIC as described below.
 The rgss2_bind_chan_verf_args data type consists of three fields:

 o rbcva_chan_bind_prefix. This is the channel binding prefix as
 described in [2] up to, but excluding, the colon (ASCII 0x3A) that
 separates the prefix from the suffix.

Eisler Standards Track [Page 7]

RFC 5403 RPCSEC_GSSv2 February 2009

 o rbcva_chan_bind_hash_oid. This is the object identifier (OID) of
 the hash algorithm used to compute rbcmia_bind_chan_hash. This
 field contains an OID encoded in ASN.1 as used by GSS-API in the
 mech_type argument to GSS_Init_sec_context ([3]). See [6] for the
 OIDs of the SHA one-way hash algorithms.

 o rbcva_chan_mic. This is the output of GSS_GetMIC() on the
 concatenation of the XDR-encoded RPC header ("up to and including
 the credential" as per [1]) and the XDR encoding of an instance of
 type data rgss2_bind_chan_MIC_in_args. The data type
 rgss2_bind_chan_MIC_in_args consists of one field,
 rbcmia_bind_chan_hash, which is a hash of the channel bindings as
 defined in [2]. The channel bindings are a "canonical octet
 string encoding of the channel bindings", starting "with the
 channel bindings prefix followed by a colon (ASCII 0x3A)". The
 reason a hash of the channel bindings and not the actual channel
 bindings are used to compute rbcva_chan_mic is that some channel
 bindings, such as those composed of public keys, can be relatively
 large, and thus place a higher space burden on the implementations
 to manage. One way hashes consume less space.

 <CODE BEGINS>

 /// enum rgss2_bind_chan_status {
 /// RGSS2_BIND_CHAN_OK = 0,
 /// RGSS2_BIND_CHAN_PREF_NOTSUPP = 1,
 /// RGSS2_BIND_CHAN_HASH_NOTSUPP = 2
 /// };
 ///
 /// union rgss2_bind_chan_res switch
 /// (rgss2_bind_chan_status rbcr_stat) {
 ///
 /// case RGSS2_BIND_CHAN_OK:
 /// void;
 ///
 /// case RGSS2_BIND_CHAN_PREF_NOTSUPP:
 /// rgss2_chan_pref rbcr_pref_list<>;
 ///
 /// case RGSS2_BIND_CHAN_HASH_NOTSUPP:
 /// rgss2_oid rbcr_oid_list<>;
 /// };
 ///
 /// struct rgss2_bind_chan_MIC_in_res {
 /// unsigned int rbcmr_seq_num;
 /// opaque rbcmr_bind_chan_hash<>;
 /// rgss2_bind_chan_res rbcmr_res;
 /// };
 ///

Eisler Standards Track [Page 8]

RFC 5403 RPCSEC_GSSv2 February 2009

 /// struct rgss2_bind_chan_verf_res {
 /// rgss2_bind_chan_res rbcvr_res;
 /// opaque rbcvr_mic<>;
 /// };
 ///

 <CODE ENDS>

 Figure 3

 The RPCSEC_GSS_BIND_CHANNEL reply is similar to the RPCSEC_GSS_DATA
 reply in that the verifiers of both contain MICs. When gss_proc is
 RPCSEC_GSS_DATA, the verifier of an RPC reply is set to the output of
 GSS_GetMIC() on the seq_num of the credential of the corresponding
 request (as described in Section 5.3.3.2 of [1]). When gss_proc is
 RPCSEC_GSS_BIND_CHANNEL, the verifier of an RPC reply is set to the
 XDR encoding of an instance of data type rgss2_bind_chan_verf_res,
 which includes a MIC as described below. The data type
 rgss2_bind_chan_verf_res consists of two fields.

 o rbcvr_res. The data type of this field is rgss2_bind_chan_res.
 The rgss2_bind_chan_res data type is a switched union consisting
 of three cases switched on the status contained in the rbcr_stat
 field.

 * RGSS2_BIND_CHAN_OK. If this status is returned, the target
 accepted the channel bindings, and successfully verified
 rbcva_chan_mic in the request. No additional results will be
 in rbcvr_res.

 * RGSS2_BIND_CHAN_PREF_NOTSUPP. If this status is returned, the
 target did not support the prefix in the rbcva_chan_bind_prefix
 field of the arguments, and thus the RPCSEC_GSS_BIND_CHANNEL
 request was rejected. The target returned a list of prefixes
 it does support in the field rbcr_pref_list. Note that a
 channel can have multiple channel bindings each with different
 prefixes. The initiator is free to pick its preferred prefix.
 If the target does not support the prefix, the status
 RGSS2_BIND_CHAN_PREF_NOTSUPP will be returned, and the
 initiator can select its next most preferred prefix among the
 prefixes the target does support.

 * RGSS2_BIND_CHAN_HASH_NOTSUPP. If this status is returned, the
 target did not support the hash algorithm identified in the
 rbcva_chan_bind_hash_oid field of the arguments, and thus the
 RPCSEC_GSS_BIND_CHANNEL request was rejected. The target

Eisler Standards Track [Page 9]

RFC 5403 RPCSEC_GSSv2 February 2009

 returned a list of OIDs of hash algorithms it does support in
 the field rbcr_oid_list. The array rbcr_oid_list MUST have one
 or more elements.

 o rbcvr_mic. The value of this field is equal to the output of
 GSS_GetMIC() on the XDR encoding of an instance of data type
 rgss2_bind_chan_MIC_in_res. The data type
 rgss2_bind_chan_MIC_in_res consists of three fields.

 * rbcmr_seq_num. The value of this field is equal to the field
 seq_num in the RPCSEC_GSS credential (data type
 rpc_gss_cred_vers_1_t).

 * rbcmr_bind_chan_hash. This is the result of the one way hash
 of the channel bindings (including the prefix). If rbcr_stat
 is not RGSS2_BIND_CHAN_HASH_NOTSUPP, then the hash algorithm
 that is used to compute rbcmr_bind_chan_hash is that identified
 by the rbcva_chan_bind_oid_hash field in the arguments to
 RPCSEC_GSS_BIND_CHANNEL. If rbcr_stat is
 RGSS2_BIND_CHAN_HASH_NOTSUPP, then the hash algorithm used to
 compute rbcmr_bind_chan_hash is that identified by
 rbcr_oid_list[0] in the results.

 * rbcmr_res. The value of this field is equal to the value of
 the rbcvr_res field.

3.4. New Security Service - rpc_gss_svc_channel_prot

 RPCSEC_GSSv2 targets MUST support rpc_gss_svc_channel_prot.

 The rpc_gss_svc_channel_prot service (Figure 1) is valid only if
 RPCSEC_GSSv2 is being used, an RPCSEC_GSS_BIND_CHANNEL procedure has
 been executed successfully, and the secure channel still exists.
 When rpc_gss_svc_channel_prot is used, the RPC requests and replies
 are similar to those of rpc_gss_svc_none except that the verifiers on
 the request and reply always have the flavor set to AUTH_NONE, and
 the contents are zero length.

 Note that even though NULL verifiers are used when
 rpc_gss_svc_channel_prot is used, non-NULL RPCSEC_GSS credentials are
 used. In order to identify the principal sending the request, the
 same credential is used as before, except that service field is set
 to rpc_gss_svc_channel_prot.

Eisler Standards Track [Page 10]

RFC 5403 RPCSEC_GSSv2 February 2009

4. Version Negotiation

 An initiator that supports version 2 of RPCSEC_GSS simply issues an
 RPCSEC_GSS request with the rgc_version field set to
 RPCSEC_GSS_VERS_2. If the target does not recognize
 RPCSEC_GSS_VERS_2, the target will return an RPC error per Section
 5.1 of [1].

 The initiator MUST NOT attempt to use an RPCSEC_GSS handle returned
 by version 2 of a target with version 1 of the same target. The
 initiator MUST NOT attempt to use an RPCSEC_GSS handle returned by
 version 1 of a target with version 2 of the same target.

5. Native GSS Channel Bindings

 To ensure interoperability, implementations of RPCSEC_GSSv2 SHOULD
 NOT transfer tokens between the initiator and target that use native
 GSS channel bindings (as defined in Section 1.1.6 of [3]).

6. Operational Recommendation for Deployment

 RPCSEC_GSSv2 is a superset of RPCSEC_GSSv1, and so can be used in all
 situations where RPCSEC_GSSv1 is used. RPCSEC_GSSv2 should be used
 when the new functionality, channel bindings, is desired or needed.

7. Implementation Notes

 Once a successful RPCSEC_GSS_BIND_CHANNEL procedure has been
 performed on an RPCSEC_GSSv2 context handle, the initiator’s
 implementation may map application requests for rpc_gss_svc_none and
 rpc_gss_svc_integrity to rpc_gss_svc_channel_prot credentials. And
 if the secure channel has privacy enabled, requests for
 rpc_gss_svc_privacy can also be mapped to rpc_gss_svc_channel_prot.

8. Acknowledgments

 Nicolas Williams had the idea for extending RPCSEC_GSS to support
 channel bindings. Alex Burlyga, Lars Eggert, Pasi Eronen, and Dan
 Romascanu reviewed the document and gave valuable feedback for
 improving its readability.

9. Security Considerations

 The base security considerations consist of:

 o All security considerations from [1].

 o All security considerations from [2].

Eisler Standards Track [Page 11]

RFC 5403 RPCSEC_GSSv2 February 2009

 o All security considerations from the actual secure channel being
 used.

 Even though RPCSEC_GSS_DATA requests that use
 rpc_gss_svc_channel_prot protection do not involve construction of
 more GSS tokens, the target SHOULD stop allowing RPCSEC_GSS_DATA
 requests with rpc_gss_svc_channel_prot protection once the GSS
 context expires.

 With the use of channel bindings, it becomes extremely critical that
 the message integrity code (MIC) used by the GSS mechanism that
 RPCSEC_GSS is using be difficult to forge. While this requirement is
 true for RPCSEC_GSSv1, and indeed any protocol that uses GSS MICs,
 the distinction in the seriousness is that for RPCSEC_GSSv1, forging
 a single MIC at most allows the attacker to succeed in injecting one
 bogus request. Whereas, with RPCSEC_GSSv2 combined with channel
 bindings, by forging a single MIC the attacker will succeed in
 injecting bogus requests as long as the channel exists. An example
 illustrates. Suppose we have an RPCSEC_GSSv1 initiator, a man-in-
 the-middle (MITM), an RPCSEC_GSSv1 target, and an RPCSEC_GSSv2
 target. The attack is as follows.

 o The MITM intercepts the initiator’s RPCSEC_GSSv1 RPCSEC_GSS_INIT
 message and changes the version number from 1 to 2 before
 forwarding to the RPCSEC_GSSv2 target, and changes the reply’s
 version number from 2 to 1 before forwarding to the RPCSEC_GSSv1
 initiator. Neither the client nor the server notice.

 o Once the RPCSEC_GSS handle is in an established state, the
 initiator sends its first RPCSEC_GSS_DATA request. The MITM
 constructs an RPCSEC_GSS_BIND_CHANNEL request, using the message
 integrity code (MIC) of the RPCSEC_GSS_DATA request. It is likely
 the RPCSEC_GSSv2 target will reject the request. The MITM
 continues to reiterate each time the initiator sends another
 RPCSEC_GSS_DATA request. With enough iterations, the probability
 of a MIC from an RPCSEC_GSS_DATA being successfully verified in
 the forged RPCSEC_GSS_BIND_CHANNEL increases. Once the MITM
 succeeds, it can send RPCSEC_GSS_DATA requests with a security
 service of rpc_gss_svc_channel_prot, which does not have MICs in
 the RPC request’s verifier.

 The implementation of RPCSEC_GSSv2 can use at least two methods to
 thwart these attacks.

 o The target SHOULD require a stronger MIC when sending an
 RPCSEC_GSS_BIND_CHANNEL request instead of an RPCSEC_GSS_DATA
 request -- e.g., if HMACs are used for the MICs, require the
 widest possible HMAC (in terms of bit length) that the GSS

Eisler Standards Track [Page 12]

RFC 5403 RPCSEC_GSSv2 February 2009

 mechanism supports. If HMACs are being used, and the target
 expects N RPCSEC_GSS_DATA requests to be sent on the context
 before it expires, then the target SHOULD require an HMAC for
 RPCSEC_GSS_BIND_CHANNEL that is log base 2 N bits longer than what
 it normally requires for RPCSEC_GSS_DATA requests. If a long
 enough MIC is not available, then the target could artificially
 limit the number of RPCSEC_GSS_DATA requests it will allow on the
 context before deleting the context.

 o Each time an RPCSEC_GSSv2 target experiences a failure to verify
 the MIC of an RPCSEC_GSS_BIND_CHANNEL request, it SHOULD reduce
 the lifetime of the underlying GSS context, by a significant
 fraction, thereby preventing the MITM from using the established
 context for its attack. A possible heuristic is that if the
 target believes the possibility that failure to verify the MIC was
 because of an attack is X percent, then the context’s lifetime
 would be reduced by X percent. For simplicity, an implementer
 might set X to be 50 percent, so that the context lifetime is
 halved on each failed verification of an RPCSEC_GSS_BIND_CHANNEL
 request and thus rapidly reduced to zero on subsequent requests.
 For example, with a context lifetime of 8 hours (or 28800
 seconds), 15 failed attempts by the MITM would cause the context
 to be destroyed.

 A method of mitigation that was considered was to protect the
 RPCSEC_GSS version number with RPCSEC_GSSv2’s RPCSEC_GSS_INIT and
 RPCSEC_GSS_CONTINUE_INIT tokens. Thus, the version number of
 RPCSEC_GSS would be in the tokens. This method does not completely
 mitigate the attack; it just moves the MIC guessing to the
 RPCSEC_GSS_INIT message. In addition, without changing GSS, or the
 GSS mechanism, there is no way to include the RPCSEC_GSS version
 number in the tokens. So for these reasons this method was not
 selected.

10. References

10.1. Normative References

 [1] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol
 Specification", RFC 2203, September 1997.

 [2] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [3] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

Eisler Standards Track [Page 13]

RFC 5403 RPCSEC_GSSv2 February 2009

 [4] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

 [5] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [6] Schaad, J., Kaliski, B., and R. Housley, "Additional Algorithms
 and Identifiers for RSA Cryptography for use in the Internet
 X.509 Public Key Infrastructure Certificate and Certificate
 Revocation List (CRL) Profile", RFC 4055, June 2005.

10.2. Informative References

 [7] Williams, N., "IPsec Channels: Connection Latching", Work
 in Progress, November 2008.

 [8] Williams, N., "End-Point Channel Bindings for IPsec Using IKEv2
 and Public Keys", Work in Progress, April 2008.

 [9] Srinivasan, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 1831, August 1995.

Author’s Address

 Mike Eisler
 NetApp
 5765 Chase Point Circle
 Colorado Springs, CO 80919
 US

 Phone: +1-719-599-9026
 EMail: mike@eisler.com

Eisler Standards Track [Page 14]

