
Network Working Group T. Clancy
Request for Comments: 5433 LTS
Category: Standards Track H. Tschofenig
 Nokia Siemens Networks
 February 2009

 Extensible Authentication Protocol -
 Generalized Pre-Shared Key (EAP-GPSK) Method

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 This memo defines an Extensible Authentication Protocol (EAP) method
 called EAP Generalized Pre-Shared Key (EAP-GPSK). This method is a
 lightweight shared-key authentication protocol supporting mutual
 authentication and key derivation.

Clancy & Tschofenig Standards Track [Page 1]

RFC 5433 EAP-GPSK February 2009

Table of Contents

 1. Introduction ..3
 2. Terminology ...4
 3. Overview ..6
 4. Key Derivation ..8
 5. Key Management ...11
 6. Ciphersuites ...11
 7. Generalized Key Derivation Function (GKDF)12
 8. Ciphersuites Processing Rules13
 8.1. Ciphersuite #1 ..13
 8.1.1. Encryption ...13
 8.1.2. Integrity ..13
 8.2. Ciphersuite #2 ..14
 8.2.1. Encryption ...14
 8.2.2. Integrity ..14
 9. Packet Formats ...15
 9.1. Header Format ...15
 9.2. Ciphersuite Formatting16
 9.3. Payload Formatting ..16
 9.4. Protected Data ..21
 10. Packet Processing Rules24
 11. Example Message Exchanges25
 12. Security Considerations28
 12.1. Security Claims ..28
 12.2. Mutual Authentication29
 12.3. Protected Result Indications29
 12.4. Integrity Protection29
 12.5. Replay Protection ..30
 12.6. Reflection Attacks30
 12.7. Dictionary Attacks30
 12.8. Key Derivation and Key Strength31
 12.9. Denial-of-Service Resistance31
 12.10. Session Independence32
 12.11. Compromise of the PSK32
 12.12. Fragmentation ...32
 12.13. Channel Binding ...32
 12.14. Fast Reconnect ..33
 12.15. Identity Protection33
 12.16. Protected Ciphersuite Negotiation33
 12.17. Confidentiality ...34
 12.18. Cryptographic Binding34
 13. IANA Considerations ...34
 14. Contributors ..35
 15. Acknowledgments ...36
 16. References ..37
 16.1. Normative References37
 16.2. Informative References38

Clancy & Tschofenig Standards Track [Page 2]

RFC 5433 EAP-GPSK February 2009

1. Introduction

 EAP Generalized Pre-Shared Key (EAP-GPSK) is an EAP method defining a
 generalized pre-shared key authentication technique. Mutual
 authentication is achieved through a nonce-based exchange that is
 secured by a pre-shared key.

 EAP-GPSK addresses a large number of design goals with the intention
 of being applicable in a broad range of usage scenarios.

 The main design goals of EAP-GPSK are:

 Simplicity:

 EAP-GPSK should be easy to implement.

 Security Model:

 EAP-GPSK has been designed in a threat model where the attacker
 has full control over the communication channel. This EAP threat
 model is presented in Section 7.1 of [RFC3748].

 Efficiency:

 EAP-GPSK does not make use of public key cryptography and fully
 relies of symmetric cryptography. The restriction of symmetric
 cryptographic computations allows for low computational overhead.
 Hence, EAP-GPSK is lightweight and well suited for any type of
 device, especially those with processing power, memory, and
 battery constraints. Additionally, it seeks to minimize the
 number of round trips.

 Flexibility:

 EAP-GPSK offers cryptographic flexibility. At the beginning, the
 EAP server proposes a list of ciphersuites. The client then
 selects one. The current version of EAP-GPSK includes two
 ciphersuites, but additional ones can be easily added.

 Extensibility:

 The design of EAP-GPSK allows to securely exchange information
 between the EAP peer and the EAP server using protected data
 fields. These fields might, for example, be used to exchange
 channel binding information or to provide support for identity
 confidentiality.

Clancy & Tschofenig Standards Track [Page 3]

RFC 5433 EAP-GPSK February 2009

2. Terminology

 In this document, several words are used to signify the requirements
 of the specification. These words are often capitalized. The key
 words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
 "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document
 are to be interpreted as described in [RFC2119].

 This section describes the various variables and functions used in
 the EAP-GPSK method.

 Variables:

 CSuite_List: An octet array listing available ciphersuites (variable
 length).

 CSuite_Sel: Ciphersuite selected by the peer (6 octets).

 ID_Peer: Peer Network Access Identifier (NAI) [RFC4282].

 ID_Server: Server identity as an opaque blob.

 KS: Integer representing the input key size, in octets, of the
 selected ciphersuite CSuite_Sel. The key size is one of the
 ciphersuite parameters.

 ML: Integer representing the length of the Message Authentication
 Code (MAC) output, in octets, of the selected ciphersuite
 CSuite_Sel.

 PD_Payload: Data carried within the protected data payload.

 PD_Payload_Block: Block of possibly multiple PD_Payloads carried by
 a GPSK packet.

 PL: Integer representing the length of the PSK in octets (2 octets).
 PL MUST be larger than or equal to KS.

 RAND_Peer: Random integer generated by the peer (32 octets).

 RAND_Server: Random integer generated by the server (32 octets).

Clancy & Tschofenig Standards Track [Page 4]

RFC 5433 EAP-GPSK February 2009

 Operations:

 A || B: Concatenation of octet strings A and B.

 A**B: Integer exponentiation.

 truncate(A,B): Returns the first B octets of A.

 ENC_X(Y): Encryption of message Y with a symmetric key X, using a
 defined block cipher.

 KDF-X(Y): Key Derivation Function that generates an arbitrary number
 of octets of output using secret X and seed Y.

 length(X): Function that returns the length of input X in octets,
 encoded as a 2-octet integer in network byte order.

 MAC_X(Y): Keyed message authentication code computed over Y with
 symmetric key X.

 SEC_X(Y): SEC is a function that provides integrity protection based
 on the chosen ciphersuite. The function SEC uses the algorithm
 defined by the selected ciphersuite and applies it to the message
 content Y with key X. In short, SEC_X(Y) = Y || MAC_X(Y).

 X[A..B]: Notation representing octets A through B of octet array X
 where the first octet of the array has index zero.

 The following abbreviations are used for the keying material:

 EMSK: Extended Master Session Key is exported by the EAP method (64
 octets).

 MK: A session-specific Master Key between the peer and EAP server
 from which all other EAP method session keys are derived (KS
 octets).

 MSK: Master Session Key exported by the EAP method (64 octets).

 PK: Session key generated from the MK and used during protocol
 exchange to encrypt protected data (KS octets).

 PSK: Long-term key shared between the peer and the server (PL
 octets).

 SK: Session key generated from the MK and used during protocol
 exchange to demonstrate knowledge of the PSK (KS octets).

Clancy & Tschofenig Standards Track [Page 5]

RFC 5433 EAP-GPSK February 2009

3. Overview

 The EAP framework (see Section 1.3 of [RFC3748]) defines three basic
 steps that occur during the execution of an EAP conversation between
 the EAP peer, the Authenticator, and the EAP server.

 1. The first phase, discovery, is handled by the underlying
 protocol, e.g., IEEE 802.1X as utilized by IEEE 802.11 [80211].

 2. The EAP authentication phase with EAP-GPSK is defined in this
 document.

 3. The secure association distribution and secure association phases
 are handled differently depending on the underlying protocol.

 EAP-GPSK performs mutual authentication between the EAP peer ("Peer")
 and EAP server ("Server") based on a pre-shared key (PSK). The
 protocol consists of the message exchanges (GPSK-1, ..., GPSK-4) in
 which both sides exchange nonces and their identities, and compute
 and exchange a Message Authentication Code (MAC) over the previously
 exchanged values, keyed with the pre-shared key. This MAC is
 considered as proof of possession of the pre-shared key. Two further
 messages, namely GPSK-Fail and GPSK-Protected-Fail, are used to deal
 with error situations.

 A successful protocol exchange is shown in Figure 1.

Clancy & Tschofenig Standards Track [Page 6]

RFC 5433 EAP-GPSK February 2009

 +--------+ +--------+
	EAP-Request/Identity	
EAP	<------------------------------------	EAP
peer		server
	EAP-Response/Identity	
	------------------------------------>	
	EAP-Request/GPSK-1	
	<------------------------------------	
	EAP-Response/GPSK-2	
	------------------------------------>	
	EAP-Request/GPSK-3	
	<------------------------------------	
	EAP-Response/GPSK-4	
	------------------------------------>	
	EAP-Success	
	<------------------------------------	
 +--------+ +--------+

 Figure 1: EAP-GPSK: Successful Exchange

 The full EAP-GPSK protocol is as follows:

 GPSK-1:

 ID_Server, RAND_Server, CSuite_List

 GPSK-2:

 SEC_SK(ID_Peer, ID_Server, RAND_Peer, RAND_Server, CSuite_List,
 CSuite_Sel, [ENC_PK(PD_Payload_Block)])

 GPSK-3:

 SEC_SK(RAND_Peer, RAND_Server, ID_Server, CSuite_Sel, [
 ENC_PK(PD_Payload_Block)])

 GPSK-4:

 SEC_SK([ENC_PK(PD_Payload_Block)])

Clancy & Tschofenig Standards Track [Page 7]

RFC 5433 EAP-GPSK February 2009

 The EAP server begins EAP-GPSK by selecting a random number
 RAND_Server and encoding the supported ciphersuites into CSuite_List.
 A ciphersuite consists of an encryption algorithm, a key derivation
 function, and a message authentication code.

 In GPSK-1, the EAP server sends its identity ID_Server, a random
 number RAND_Server, and a list of supported ciphersuites CSuite_List.
 The decision of which ciphersuite to offer and which ciphersuite to
 pick is policy- and implementation-dependent and, therefore, outside
 the scope of this document.

 In GPSK-2, the peer sends its identity ID_Peer and a random number
 RAND_Peer. Furthermore, it repeats the received parameters of the
 GPSK-1 message (ID_Server, RAND_Server, CSuite_List) and the selected
 ciphersuite. It computes a Message Authentication Code over all the
 transmitted parameters.

 The EAP server verifies the received Message Authentication Code and
 the consistency of the identities, nonces, and ciphersuite parameters
 transmitted in GPSK-1. In case of successful verification, the EAP
 server computes a Message Authentication Code over the session
 parameter and returns it to the peer (within GPSK-3). Within GPSK-2
 and GPSK-3, the EAP peer and EAP server have the possibility to
 exchange encrypted protected data parameters.

 The peer verifies the received Message Authentication Code and the
 consistency of the identities, nonces, and ciphersuite parameters
 transmitted in GPSK-2. If the verification is successful, GPSK-4 is
 prepared. This message can optionally contain the peer’s protected
 data parameters.

 Upon receipt of GPSK-4, the server processes any included
 PD_Payload_Block. Then, the EAP server sends an EAP Success message
 to indicate the successful outcome of the authentication.

4. Key Derivation

 EAP-GPSK provides key derivation in compliance to the requirements of
 [RFC3748] and [RFC5247]. Note that this section provides an abstract
 description for the key derivation procedure that needs to be
 instantiated with a specific ciphersuite.

 The long-term credential shared between EAP peer and EAP server
 SHOULD be a strong pre-shared key PSK of at least 16 octets, though
 its length and entropy are variable. While it is possible to use a
 password or passphrase, doing so is NOT RECOMMENDED as EAP-GPSK is
 vulnerable to dictionary attacks.

Clancy & Tschofenig Standards Track [Page 8]

RFC 5433 EAP-GPSK February 2009

 During an EAP-GPSK authentication, a Master Key MK, a Session Key SK,
 and a Protected Data Encryption Key PK (if using an encrypting
 ciphersuite) are derived using the ciphersuite-specified KDF and data
 exchanged during the execution of the protocol, namely ’RAND_Peer ||
 ID_Peer || RAND_Server || ID_Server’, referred to as inputString in
 its short-hand form.

 In case of successful completion, EAP-GPSK derives and exports an MSK
 and an EMSK, each 64 octets in length.

 The following notation is used: KDF-X(Y, Z)[A..B], whereby

 X is the length, in octets, of the desired output,

 Y is a secret key,

 Z is the inputString,

 [A..B] extracts the string of octets starting with octet A and
 finishing with octet B from the output of the KDF function.

 This keying material is derived using the ciphersuite-specified KDF
 as follows:

 o inputString = RAND_Peer || ID_Peer || RAND_Server || ID_Server

 o MK = KDF-KS(PSK[0..KS-1], PL || PSK || CSuite_Sel ||
 inputString)[0..KS-1]

 o MSK = KDF-{128+2*KS}(MK, inputString)[0..63]

 o EMSK = KDF-{128+2*KS}(MK, inputString)[64..127]

 o SK = KDF-{128+2*KS}(MK, inputString)[128..127+KS]

 o PK = KDF-{128+2*KS}(MK, inputString)[128+KS..127+2*KS] (if using
 an encrypting ciphersuite)

 The value for PL (the length of the PSK in octets) is encoded as a
 2-octet integer in network byte order. Recall that KS is the length
 of the ciphersuite input key size in octets.

 Additionally, the EAP keying framework [RFC5247] requires the
 definition of a Method-ID, Session-ID, Peer-ID, and Server-ID. These
 values are defined as:

 o Method-ID = KDF-16(PSK[0..KS-1], "Method ID" || EAP_Method_Type ||
 CSuite_Sel || inputString)[0..15]

Clancy & Tschofenig Standards Track [Page 9]

RFC 5433 EAP-GPSK February 2009

 o Session-ID = EAP_Method_Type || Method_ID

 o Peer-ID = ID_Peer

 o Server-ID = ID_Server

 EAP_Method_Type refers to the 1-octet, IANA-allocated EAP Type code
 value.

 Figure 2 depicts the key derivation procedure of EAP-GPSK.

 +-------------+ +-------------------------------+
 | PL-octet | | RAND_Peer || ID_Peer || |
 | PSK | | RAND_Server || ID_Server |
 +-------------+ +-------------------------------+
 | | | | |
 | +------------+ | |
 | | CSuite_Sel | | |
 | +------------+ | |
 | | | |
 v v v |
 +--+ |
 | KDF | |
 +--+ |
 | |
 v |
 +-------------+ |
 | KS-octet | |
 | MK | |
 +-------------+ |
 | |
 v v
 +---+
 | KDF |
 +---+
 | | | |
 v v v v
 +---------+ +---------+ +----------+ +----------+
 | 64-octet| | 64-octet| | KS-octet | | KS-octet |
 | MSK | | EMSK | | SK | | PK |
 +---------+ +---------+ +----------+ +----------+

 Figure 2: EAP-GPSK Key Derivation

Clancy & Tschofenig Standards Track [Page 10]

RFC 5433 EAP-GPSK February 2009

5. Key Management

 In order to be interoperable, PSKs must be entered in the same way on
 both the peer and server. The management interface for entering PSKs
 MUST support entering PSKs up to 64 octets in length as ASCII strings
 and in hexadecimal encoding.

 Additionally, the ID_Peer and ID_Server MUST be provisioned with the
 PSK. Validation of these values is by an octet-wise comparison. The
 management interface SHOULD support entering non-ASCII octets for the
 ID_Peer and ID_Server up to 254 octets in length. For more
 information, the reader is advised to read Section 2.4 of RFC 4282
 [RFC4282].

6. Ciphersuites

 The design of EAP-GPSK allows cryptographic algorithms and key sizes,
 called ciphersuites, to be negotiated during the protocol run. The
 ability to specify block-based and hash-based ciphersuites is
 offered. Extensibility is provided with the introduction of new
 ciphersuites; this document specifies an initial set. The CSuite/
 Specifier column in Figure 3 uniquely identifies a ciphersuite.

 For a vendor-specific ciphersuite, the first four octets are the
 vendor-specific enterprise number that contains the IANA-assigned
 "SMI Network Management Private Enterprise Codes" value (see
 [ENTNUM]), encoded in network byte order. The last two octets are
 vendor assigned for the specific ciphersuite. A vendor code of
 0x00000000 indicates ciphersuites standardized by the IETF in an
 IANA-maintained registry.

 The following ciphersuites are specified in this document (recall
 that KS is the length of the ciphersuite input key length in octets,
 and ML is the length of the MAC output in octets):

 +-----------+----+-------------+----+--------------+----------------+
 | CSuite/ | KS | Encryption | ML | Integrity / | Key Derivation |
 | Specifier | | | | KDF MAC | Function |
 +-----------+----+-------------+----+--------------+----------------+
 | 0x0001 | 16 | AES-CBC-128 | 16 | AES-CMAC-128 | GKDF |
 +-----------+----+-------------+----+--------------+----------------+
 | 0x0002 | 32 | NULL | 32 | HMAC-SHA256 | GKDF |
 +-----------+----+-------------+----+--------------+----------------+

 Figure 3: Ciphersuites

Clancy & Tschofenig Standards Track [Page 11]

RFC 5433 EAP-GPSK February 2009

 Ciphersuite 1, which is based on the Advanced Encryption Standard
 (AES) as a cryptographic primitive, MUST be implemented. This
 document specifies also a second ciphersuite, which MAY be
 implemented. Both ciphersuites defined in this document make use of
 the Generalized Key Derivation Function (GKDF), as defined in
 Section 7. The following aspects need to be considered to ensure
 that the PSK that is used as input to the GKDF is sufficiently long:

 1. The PSK used with ciphersuite 1 MUST be 128 bits in length. Keys
 longer than 128 bits will be truncated.

 2. The PSK used with ciphersuite 2 MUST be 256 bits in length. Keys
 longer than 256 bits will be truncated.

 3. It is RECOMMENDED that 256 bit keys be provisioned in all cases
 to provide enough entropy for all current and many possible
 future ciphersuites.

 Ciphersuites defined in the future that make use of the GKDF need to
 specify a minimum PSK size (as is done with the ciphersuites listed
 in this document).

7. Generalized Key Derivation Function (GKDF)

 Each ciphersuite needs to specify a key derivation function. The
 ciphersuites defined in this document make use of the Generalized Key
 Derivation Function (GKDF) that utilizes the MAC function defined in
 the ciphersuite. Future ciphersuites can use any other formally
 specified KDF that takes as arguments a key and a seed value, and
 produces at least 128+2*KS octets of output.

 GKDF has the following structure:

 GKDF-X(Y, Z)

 X length, in octets, of the desired output

 Y secret key

 Z inputString

 GKDF-X (Y, Z)
 {
 n = ceiling integer of (X / ML);
 /* determine number of output blocks */

Clancy & Tschofenig Standards Track [Page 12]

RFC 5433 EAP-GPSK February 2009

 result = "";

 for i = 1 to n {
 result = result || MAC_Y (i || Z);
 }

 return truncate(result, X)
 }

 Note that the variable ’i’ in M_i is represented as a 2-octet value
 in network byte order.

8. Ciphersuites Processing Rules

8.1. Ciphersuite #1

8.1.1. Encryption

 With this ciphersuite, all cryptography is built around a single
 cryptographic primitive, AES-128 ([AES]). Within the protected data
 frames, AES-128 is used in the Cipher Block Chaining (CBC) mode of
 operation (see [CBC]). This EAP method uses encryption in a single
 payload, in the protected data payload (see Section 9.4).

 In a nutshell, the CBC mode proceeds as follows. The IV is XORed
 with the first plaintext block before it is encrypted. Then for
 successive blocks, the previous ciphertext block is XORed with the
 current plaintext, before it is encrypted.

8.1.2. Integrity

 Ciphersuite 1 uses CMAC as Message Authentication Code. CMAC is
 recommended by NIST. Among its advantages, CMAC is capable to work
 with messages of arbitrary length. A detailed description of CMAC
 can be found in [CMAC].

 The following instantiation is used: AES-CMAC-128(SK, Input) denotes
 the MAC of Input under the key SK where Input refers to the following
 content:

 o Parameter within SEC_SK(Parameter) in message GPSK-2

 o Parameter within SEC_SK(Parameter) in message GPSK-3

 o Parameter within SEC_SK(Parameter) in message GPSK-4

Clancy & Tschofenig Standards Track [Page 13]

RFC 5433 EAP-GPSK February 2009

8.2. Ciphersuite #2

8.2.1. Encryption

 Ciphersuite 2 does not include an algorithm for encryption. With a
 NULL encryption algorithm, encryption is defined as:

 E_X(Y) = Y

 When using this ciphersuite, the data exchanged inside the protected
 data block is not encrypted. Therefore, this mode MUST NOT be used
 if confidential information appears inside the protected data block.

8.2.2. Integrity

 Ciphersuite 2 uses the keyed MAC function HMAC, with the SHA256 hash
 algorithm (see [RFC4634]).

 For integrity protection, the following instantiation is used:

 HMAC-SHA256(SK, Input) denotes the MAC of Input under the key SK
 where Input refers to the following content:

 o Parameter within SEC_SK(Parameter) in message GPSK-2

 o Parameter within SEC_SK(Parameter) in message GPSK-3

 o Parameter within SEC_SK(Parameter) in message GPSK-4

Clancy & Tschofenig Standards Track [Page 14]

RFC 5433 EAP-GPSK February 2009

9. Packet Formats

 This section defines the packet format of the EAP-GPSK messages.

9.1. Header Format

 The EAP-GPSK header has the following structure:

 --- bit offset --->
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Type | OP-Code | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 ... Payload ...
 | |
 +-+

 Figure 4: EAP-GPSK Header

 The Code, Identifier, Length, and Type fields are all part of the EAP
 header and are defined in [RFC3748]. The Type field in the EAP
 header MUST be the value allocated by IANA for EAP-GPSK.

 The OP-Code field is one of 6 values:

 o 0x00 : Reserved

 o 0x01 : GPSK-1

 o 0x02 : GPSK-2

 o 0x03 : GPSK-3

 o 0x04 : GPSK-4

 o 0x05 : GPSK-Fail

 o 0x06 : GPSK-Protected-Fail

 All other values of this OP-Code field are available via IANA
 registration.

Clancy & Tschofenig Standards Track [Page 15]

RFC 5433 EAP-GPSK February 2009

9.2. Ciphersuite Formatting

 Ciphersuites are encoded as 6-octet arrays. The first four octets
 indicate the CSuite/Vendor field. For vendor-specific ciphersuites,
 this represents the vendor enterprise number and contains the IANA-
 assigned "SMI Network Management Private Enterprise Codes" value (see
 [ENTNUM]), encoded in network byte order. The last two octets
 indicate the CSuite/Specifier field, which identifies the particular
 ciphersuite. The 4-octet CSuite/Vendor value 0x00000000 indicates
 ciphersuites allocated by the IETF.

 Graphically, they are represented as:

 --- bit offset --->
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | CSuite/Vendor = 0x00000000 or enterprise number |
 +-+
 | CSuite/Specifier |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 5: Ciphersuite Formatting

 CSuite_Sel is encoded as a 6-octet ciphersuite CSuite/Vendor and
 CSuite/Specifier pair.

 CSuite_List is a variable-length octet array of ciphersuites. It is
 encoded by concatenating encoded ciphersuite values. Its length in
 octets MUST be a multiple of 6.

9.3. Payload Formatting

 Payload formatting is based on the protocol exchange description in
 Section 3.

Clancy & Tschofenig Standards Track [Page 16]

RFC 5433 EAP-GPSK February 2009

 The GPSK-1 payload format is defined as follows:

 --- bit offset --->
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | length(ID_Server) | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 ... ID_Server ...
 | |
 +-+
 | |
 ... 32-octet RAND_Server ...
 | |
 +-+
 | length(CSuite_List) | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 ... CSuite_List ...
 | |
 +-+

 Figure 6: GPSK-1 Payload

Clancy & Tschofenig Standards Track [Page 17]

RFC 5433 EAP-GPSK February 2009

 The GPSK-2 payload format is defined as follows:

 --- bit offset --->
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | length(ID_Peer) | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 ... ID_Peer ...
 | |
 +-+
 | length(ID_Server) | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 ... ID_Server ...
 | |
 +-+
 | |
 ... 32-octet RAND_Peer ...
 | |
 +-+
 | |
 ... 32-octet RAND_Server ...
 | |
 +-+
 | length(CSuite_List) | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 ... CSuite_List ...
 | |
 +-+
 | CSuite_Sel |
 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | length(PD_Payload_Block) |
 +-+
 | |
 ... optional PD_Payload_Block ...
 | |
 +-+
 | |
 ... ML-octet payload MAC ...
 | |
 +-+

 Figure 7: GPSK-2 Payload

Clancy & Tschofenig Standards Track [Page 18]

RFC 5433 EAP-GPSK February 2009

 If the optional protected data payload is not included, then
 length(PD_Payload_Block)=0 and the PD payload is excluded. The
 payload MAC covers the entire packet, from the ID_Peer length through
 the optional PD_Payload_Block.

 The GPSK-3 payload is defined as follows:

 --- bit offset --->
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 ... 32-octet RAND_Peer ...
 | |
 +-+
 | |
 ... 32-octet RAND_Server ...
 | |
 +-+
 | length(ID_Server) | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 ... ID_Server ...
 | |
 +-+
 | CSuite_Sel |
 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | length(PD_Payload_Block) |
 +-+
 | |
 ... optional PD_Payload_Block ...
 | |
 +-+
 | |
 ... ML-octet payload MAC ...
 | |
 +-+

 Figure 8: GPSK-3 Payload

 If the optional protected data payload is not included, then
 length(PD_Payload_Block)=0 and the PD payload is excluded. The
 payload MAC covers the entire packet, from the RAND_Peer through the
 optional PD_Payload_Block.

Clancy & Tschofenig Standards Track [Page 19]

RFC 5433 EAP-GPSK February 2009

 The GPSK-4 payload format is defined as follows:

 --- bit offset --->
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | length(PD_Payload_Block) | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 ... optional PD_Payload_Block ...
 | |
 +-+
 | |
 ... ML-octet payload MAC ...
 | |
 +-+

 Figure 9: GPSK-4 Payload

 If the optional protected data payload is not included, then
 length(PD_Payload_Block)=0 and the PD payload is excluded. The MAC
 MUST always be included, regardless of the presence of
 PD_Payload_Block. The payload MAC covers the entire packet, from the
 PD_Payload_Block length through the optional PD_Payload_Block.

 The GPSK-Fail payload format is defined as follows:

 --- bit offset --->
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Failure-Code |
 +-+

 Figure 10: GPSK-Fail Payload

Clancy & Tschofenig Standards Track [Page 20]

RFC 5433 EAP-GPSK February 2009

 The GPSK-Protected-Fail payload format is defined as follows:

 --- bit offset --->
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Failure-Code |
 +-+
 | |
 ... ML-octet payload MAC ...
 | |
 +-+

 Figure 11: GPSK-Protected-Fail Payload

 The Failure-Code field is one of three values, but can be extended:

 o 0x00000000 : Reserved

 o 0x00000001 : PSK Not Found

 o 0x00000002 : Authentication Failure

 o 0x00000003 : Authorization Failure

 All other values of this field are available via IANA registration.

 "PSK Not Found" indicates a key for a particular user could not be
 located, making authentication impossible. "Authentication Failure"
 indicates a MAC failure due to a PSK mismatch. "Authorization
 Failure" indicates that while the PSK being used is correct, the user
 is not authorized to connect.

9.4. Protected Data

 The protected data blocks are a generic mechanism for the peer and
 server to securely exchange data. If the specified ciphersuite has a
 NULL encryption primitive, then this channel only offers
 authenticity, not confidentiality.

 These payloads are encoded as the concatenation of type-length-value
 (TLV) triples called PD_Payloads.

 Type values are encoded as a 6-octet string and represented by a
 4-octet vendor and a 2-octet specifier field. The vendor field
 indicates the type as either standards-specified or vendor-specific.

Clancy & Tschofenig Standards Track [Page 21]

RFC 5433 EAP-GPSK February 2009

 If these four octets are 0x00000000, then the value is standards-
 specified, and any other value represents a vendor-specific
 enterprise number.

 The specifier field indicates the actual type. For vendor field
 0x00000000, the specifier field is maintained by IANA. For any other
 vendor field, the specifier field is maintained by the vendor.

 Length fields are specified as 2-octet integers in network byte
 order, reflect only the length of the value, and do not include the
 length of the type and length fields.

 Graphically, this can be depicted as follows:

 --- bit offset --->
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PData/Vendor |
 +-+
 PData/Specifier | PData/Length |
 +-+
 | |
 ... PData/Value ...
 | |
 +-+

 Figure 12: Protected Data Payload (PD_Payload) Formatting

 These PD_Payloads are concatenated together to form a
 PD_Payload_Block. If the CSuite_Sel includes support for encryption,
 then the PD_Payload_Block includes fields specifying an
 Initialization Vector (IV) and the necessary padding. This can be
 depicted as follows:

Clancy & Tschofenig Standards Track [Page 22]

RFC 5433 EAP-GPSK February 2009

 --- bit offset --->
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | IV Length | |
 +-+-+-+-+-+-+-+-+ Initialization Vector +
 | |
 +-+
 | |
 ... PD_Payload ...
 | |
 +-+
 | |
 ... optional PD_Payload, etc ...
 | |
 + +-+
 | | Padding (0-255 octets) |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 | | Pad Length |
 +-+

 Figure 13: Protected Data Block (PD_Payload_Block)
 Formatting if Encryption is Supported

 The Initialization Vector is a randomly chosen value whose length is
 equal to the specified IV Length. The required length is defined by
 the ciphersuite. Recipients MUST accept any value. Senders SHOULD
 either pick this value pseudo-randomly and independently for each
 message or use the final ciphertext block of the previous message
 sent. Senders MUST NOT use the same value for each message, use a
 sequence of values with low hamming distance (e.g., a sequence
 number), or use ciphertext from a received message. IVs should be
 selected per the security requirements of the underlying cipher. If
 the data is not being encrypted, then the IV Length MUST be 0. If
 the ciphersuite does not require an IV, or has a self-contained way
 of communicating the IV, then the IV Length field MUST be 0. In
 these cases, the ciphersuite definition defines how the IV is
 encapsulated in the PD_Payload.

 The concatenation of PD_Payloads along with the padding and padding
 length are all encrypted using the negotiated block cipher. If no
 block cipher is specified, then these fields are not encrypted.

 The Padding field MAY contain any value chosen by the sender. For
 block-based cipher modes, the padding MUST have a length that makes
 the combination of the concatenation of PD_Payloads, the Padding, and
 the Pad Length to be a multiple of the encryption block size. If the

Clancy & Tschofenig Standards Track [Page 23]

RFC 5433 EAP-GPSK February 2009

 underlying ciphersuite does not require padding (e.g., a stream-based
 cipher mode) or no encryption is being used, then the padding length
 MUST still be present and be 0.

 The Pad Length field is the length of the Padding field. The sender
 SHOULD set the Pad Length to the minimum value that makes the
 combination of the PD_Payloads, the Padding, and the Pad Length a
 multiple of the block size (in the case of block-based cipher modes),
 but the recipient MUST accept any length that results in proper
 alignment. This field is encrypted with the negotiated cipher.

 If the negotiated ciphersuite does not support encryption, then the
 IV field MUST be of length 0 and the padding field MUST be of length
 0. The IV length and padding length fields MUST still be present,
 and contain the value 0. The rationale for still requiring the
 length fields is to allow for modular implementations where the
 crypto processing is independent of the payload processing. This is
 depicted in the following figure.

 --- bit offset --->
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0x00 | |
 +-+-+-+-+-+-+-+-+ PD_Payload ...
 | |
 +-+
 | |
 ... optional PD_Payload, etc +-+-+-+-+-+-+-+-+
 | | 0x00 |
 +-+

 Figure 14: Protected Data Block (PD_Payload_Block)
 Formatting Without Encryption

 For PData/Vendor field 0x00000000, the following PData/Specifier
 fields are defined:

 o 0x0000 : Reserved

 All other values of this field are available via IANA registration.

10. Packet Processing Rules

 This section defines how the EAP peer and EAP server MUST behave when
 a received packet is deemed invalid.

Clancy & Tschofenig Standards Track [Page 24]

RFC 5433 EAP-GPSK February 2009

 Any EAP-GPSK packet that cannot be parsed by the EAP peer or the EAP
 server MUST be silently discarded. An EAP peer or EAP server
 receiving any unexpected packet (e.g., an EAP peer receiving GPSK-3
 before receiving GPSK-1 or before transmitting GPSK-2) MUST silently
 discard the packet.

 GPSK-1 contains no MAC protection, so provided it properly parses, it
 MUST be accepted by the peer. If the EAP peer has no ciphersuites in
 common with the server or decides the ID_Server is that of an
 Authentication, Authorization, and Accounting (AAA) server to which
 it does not wish to authenticate, the EAP peer MUST respond with an
 EAP-NAK.

 For GPSK-2, if the ID_Peer is for an unknown user, the EAP server
 MUST send either a "PSK Not Found" GPSK-Fail message or an
 "Authentication Failure" GPSK-Fail, depending on its policy. If the
 MAC validation fails, the server MUST transmit a GPSK-Fail message
 specifying "Authentication Failure". If the RAND_Server or
 CSuite_List field in GPSK-2 does not match the values in GPSK-1, the
 server MUST silently discard the packet. If server policy determines
 the peer is not authorized and the MAC is correct, the server MUST
 transmit a GPSK-Protected-Fail message indicating "Authorization
 Failure", and discard the received packet.

 A peer receiving a GPSK-Fail / GPSK-Protected-Fail message in
 response to a GPSK-2 message MUST replay the received GPSK-Fail /
 GPSK-Protected-Fail message. Then, the EAP server returns an EAP-
 Failure after receiving the GPSK-Fail / GPSK-Protected-Fail message
 to correctly finish the EAP conversation. If MAC validation on a
 GPSK-Protected-Fail packet fails, then the received packet MUST be
 silently discarded.

 For GPSK-3, a peer MUST silently discard messages where the
 RAND_Peer, ID_Server, or the CSuite_Sel fields do not match those
 transmitted in GPSK-2. An EAP peer MUST silently discard any packet
 whose MAC fails.

 For GPSK-4, a server MUST silently discard any packet whose MAC fails
 validation.

 If a decryption failure of a protected payload is detected, the
 recipient MUST silently discard the GPSK packet.

11. Example Message Exchanges

 This section shows a couple of example message flows.

 A successful EAP-GPSK message exchange is shown in Figure 1.

Clancy & Tschofenig Standards Track [Page 25]

RFC 5433 EAP-GPSK February 2009

 +--------+ +--------+
	EAP-Request/Identity	
EAP	<------------------------------------	EAP
peer		server
	EAP-Response/Identity	
	------------------------------------>	
	EAP-Request/GPSK-1	
	<------------------------------------	
	EAP-Response/EAP-NAK	
	------------------------------------>	
	EAP-Failure	
	<------------------------------------	
 +--------+ +--------+

 Figure 15: EAP-GPSK: Unsuccessful Exchange
 (Unacceptable AAA Server Identity; ID_Server)

 +--------+ +--------+
	EAP-Request/Identity	
EAP	<------------------------------------	EAP
peer		server
	EAP-Response/Identity	
	------------------------------------>	
	EAP-Request/GPSK-1	
	<------------------------------------	
	EAP-Response/GPSK-2	
	------------------------------------>	
	EAP-Request/GPSK-Fail	
	(PSK Not Found or Authentication	
	Failure)	
	<------------------------------------	
	EAP-Response/GPSK-Fail	
	(PSK Not Found or Authentication	
	Failure)	
	------------------------------------>	
	EAP-Failure	
	<------------------------------------	
 +--------+ +--------+

 Figure 16: EAP-GPSK: Unsuccessful Exchange (Unknown User)

Clancy & Tschofenig Standards Track [Page 26]

RFC 5433 EAP-GPSK February 2009

 +--------+ +--------+
	EAP-Request/Identity	
EAP	<------------------------------------	EAP
peer		server
	EAP-Response/Identity	
	------------------------------------>	
	EAP-Request/GPSK-1	
	<------------------------------------	
	EAP-Response/GPSK-2	
	------------------------------------>	
	EAP-Request/GPSK-Fail	
	(Authentication Failure)	
	<------------------------------------	
	EAP-Response/GPSK-Fail	
	(Authentication Failure)	
	------------------------------------>	
	EAP-Failure	
	<------------------------------------	
 +--------+ +--------+

 Figure 17: EAP-GPSK: Unsuccessful Exchange (Invalid MAC in GPSK-2)

Clancy & Tschofenig Standards Track [Page 27]

RFC 5433 EAP-GPSK February 2009

 +--------+ +--------+
	EAP-Request/Identity	
EAP	<------------------------------------	EAP
peer		server
	EAP-Response/Identity	
	------------------------------------>	
	EAP-Request/GPSK-1	
	<------------------------------------	
	EAP-Response/GPSK-2	
	------------------------------------>	
	EAP-Request/	
	GPSK-Protected-Fail	
	(Authorization Failure)	
	<------------------------------------	
	EAP-Request/	
	GPSK-Protected-Fail	
	(Authorization Failure)	
	------------------------------------>	
	EAP-Failure	
	<------------------------------------	
 +--------+ +--------+

 Figure 18: EAP-GPSK: Unsuccessful Exchange (Authorization Failure)

12. Security Considerations

 [RFC3748] highlights several attacks that are possible against EAP
 since EAP itself does not provide any security.

 This section discusses the claimed security properties of EAP-GPSK as
 well as vulnerabilities and security recommendations in the threat
 model of [RFC3748].

12.1. Security Claims

 Authentication mechanism: Shared Keys
 Ciphersuite negotiation: Yes (Section 12.16)
 Mutual authentication: Yes (Section 12.2)
 Integrity protection: Yes (Section 12.4)
 Replay protection: Yes (Section 12.5)
 Confidentiality: No (Section 12.17, Section 12.15)
 Key derivation: Yes (Section 12.8)
 Key strength: Varies (Section 12.8)

Clancy & Tschofenig Standards Track [Page 28]

RFC 5433 EAP-GPSK February 2009

 Dictionary attack protection: No (Section 12.7)
 Fast reconnect: No (Section 12.14)
 Cryptographic binding: N/A (Section 12.18)
 Session independence: Yes (Section 12.10)
 Fragmentation: No (Section 12.12)
 Channel binding: Extensible (Section 12.13)

12.2. Mutual Authentication

 EAP-GPSK provides mutual authentication.

 The server believes that the peer is authentic when it successfully
 verifies the MAC in the GPSK-2 message; the peer believes that the
 server is authentic when it successfully verifies the MAC it receives
 with the GPSK-3 message.

 The key used for mutual authentication is derived based on the long-
 term secret PSK, nonces contributed by both parties, and other
 parameters. The long-term secret PSK has to provide sufficient
 entropy and, therefore, sufficient strength. The nonces (RAND_Peer
 and RAND_Server) need to be fresh and unique for every session. In
 this way, EAP-GPSK is not different than other authentication
 protocols based on pre-shared keys.

12.3. Protected Result Indications

 EAP-GPSK supports protected result indications via the GPSK-
 Protected-Fail message. This allows a server to provide additional
 information to the peer as to why the session failed, and to do so in
 an authenticated way (if possible). In particular, the server can
 indicate the lack of PSK (account not present), failed authentication
 (PSK incorrect), or authorization failure (account disabled or
 unauthorized). Only the third message could be integrity protected.

 It should be noted that these options make debugging network and
 account errors easier, but they also leak information about accounts
 to attackers. An attacker can determine if a particular ID_Peer is a
 valid user on the network or not. Thus, implementers should use care
 in enabling this particular option on their servers. If they are in
 an environment where such attacks are of concern, then protected
 result indication capabilities should be disabled.

12.4. Integrity Protection

 EAP-GPSK provides integrity protection based on the ciphersuites
 suggested in this document. Integrity protection is a minimum
 feature every ciphersuite must provide.

Clancy & Tschofenig Standards Track [Page 29]

RFC 5433 EAP-GPSK February 2009

12.5. Replay Protection

 EAP-GPSK provides replay protection of its mutual authentication part
 thanks to the use of random numbers RAND_Server and RAND_Peer. Since
 RAND_Server is 32 octets long, one expects to have to record 2**64
 (i.e., approximately 1.84*10**19) EAP-GPSK successful authentications
 before a protocol run can be replayed. Hence, EAP-GPSK provides
 replay protection of its mutual authentication part as long as
 RAND_Server and RAND_Peer are chosen at random; randomness is
 critical for replay protection. RFC 4086 [RFC4086] describes
 techniques for producing random quantities.

12.6. Reflection Attacks

 Reflection attacks occur in bi-directional, challenge-response,
 mutual authentication protocols where an attacker, upon being issued
 a challenge by an authenticator, responds by issuing the same
 challenge back to the authenticator, obtaining the response, and then
 "reflecting" that same response to the original challenge.

 EAP-GPSK provides protection against reflection attacks because the
 message formats for the challenges differ. The protocol does not
 consist of two independent authentications, but rather the
 authentications are tightly coupled.

 Also note that EAP-GPSK does not provide MAC protection of the OP-
 Code field, but again since each message is constructed differently,
 it would not be possible to change the OP-Code of a valid message and
 still have it be parseable and accepted by the recipient.

12.7. Dictionary Attacks

 EAP-GPSK relies on a long-term shared secret (PSK) that SHOULD be
 based on at least 16 octets of entropy to be fully secure. The EAP-
 GPSK protocol makes no special provisions to ensure keys based on
 passwords are used securely. Users who use passwords as the basis of
 their PSK are not protected against dictionary attacks. Derivation
 of the long-term shared secret from a password is strongly
 discouraged.

 The success of a dictionary attack against EAP-GPSK depends on the
 strength of the long-term shared secret (PSK) it uses. The PSK used
 by EAP-GPSK SHOULD be drawn from a pool of secrets that is at least
 2^128 bits large and whose distribution is uniformly random. Note
 that this does not imply resistance to dictionary attacks -- only
 that the probability of success in such an attack is acceptably
 remote.

Clancy & Tschofenig Standards Track [Page 30]

RFC 5433 EAP-GPSK February 2009

12.8. Key Derivation and Key Strength

 EAP-GPSK supports key derivation as shown in Section 4.

 Keys used within EAP-GPSK are all based on the security of the
 originating PSK. PSKs SHOULD have at least 16 octets of entropy.
 Independent of the protocol exchange (i.e., without knowing RAND_Peer
 and RAND_Server), the keys have been derived with sufficient input
 entropy to make them as secure as the underlying KDF output key
 length.

12.9. Denial-of-Service Resistance

 There are three forms of denial-of-service (DoS) attacks relevant for
 this document, namely (1) attacks that lead to a vast amount of state
 being allocated, (2) attacks that attempt to prevent communication
 between the peer and server, and (3) attacks against computational
 resources.

 In an EAP-GPSK conversation the server has to maintain state, namely
 the 32-octet RAND_Server, when transmitting the GPSK-1 message to the
 peer. An adversary could therefore flood a server with a large
 number of EAP-GPSK communication attempts. An EAP server may
 therefore ensure that an established state times out after a
 relatively short period of time when no further messages are
 received. This enables a sort of garbage collection.

 The client has to keep state information after receiving the GPSK-1
 message. To prevent a replay attack, all the client needs to do is
 ensure that the value of RAND_Peer is consistent between GPSK-2 and
 GPSK-3. Message GPSK-3 contains all the material required to
 re-compute the keying material. Thus, if a client chooses to
 implement this client-side DoS protection mechanism, it may manage
 RAND_Peer and CSuite_Sel on a per-server basis for servers it knows,
 instead of on a per-message basis.

 Attacks that disrupt communication between the peer and server are
 mitigated by silently discarding messages with invalid MACs. Attacks
 against computational resources are mitigated by having very light-
 weight cryptographic operations required during each protocol round.

 The security considerations of EAP itself, see Sections 5.2 and 7 of
 RFC 3748 [RFC3748], are also applicable to this specification (e.g.,
 for example concerning EAP-based notifications).

Clancy & Tschofenig Standards Track [Page 31]

RFC 5433 EAP-GPSK February 2009

12.10. Session Independence

 Thanks to its key derivation mechanisms, EAP-GPSK provides session
 independence: passive attacks (such as capture of the EAP
 conversation) or active attacks (including compromise of the MSK or
 EMSK) do not enable compromise of subsequent or prior MSKs or EMSKs.
 The assumption that RAND_Peer and RAND_Server are random is central
 for the security of EAP-GPSK in general and session independence in
 particular.

12.11. Compromise of the PSK

 EAP-GPSK does not provide perfect forward secrecy. Compromise of the
 PSK leads to compromise of recorded past sessions.

 Compromise of the PSK enables the attacker to impersonate the peer
 and the server, and it allows the adversary to compromise future
 sessions.

 EAP-GPSK provides no protection against a legitimate peer sharing its
 PSK with a third party. Such protection may be provided by
 appropriate repositories for the PSK, the choice of which is outside
 the scope of this document. The PSK used by EAP-GPSK must only be
 shared between two parties: the peer and the server. In particular,
 this PSK must not be shared by a group of peers (e.g., those with
 different ID_Peer values) communicating with the same server.

 The PSK used by EAP-GPSK must be cryptographically separated from
 keys used by other protocols, otherwise the security of EAP-GPSK may
 be compromised.

12.12. Fragmentation

 EAP-GPSK does not support fragmentation and reassembly since the
 message size is relatively small. However, it should be noted that
 this impacts the length of protected data payloads that can be
 attached to messages. Also, if the EAP frame is larger than the MTU
 of the underlying transport, and that transport does not support
 fragmentation, the frame will most likely not be transported.
 Consequently, implementers and deployers should take care to ensure
 EAP-GPSK frames are short enough to work properly on the target
 underlying transport mechanism.

12.13. Channel Binding

 This document enables the ability to exchange channel binding
 information. It does not, however, define the encoding of channel
 binding information in the document.

Clancy & Tschofenig Standards Track [Page 32]

RFC 5433 EAP-GPSK February 2009

12.14. Fast Reconnect

 EAP-GPSK does not provide fast reconnect capability since this method
 is already at (or close to) the lower limit of the number of
 roundtrips and the cryptographic operations.

12.15. Identity Protection

 Identity protection is not specified in this document. Extensions
 can be defined that enhance this protocol to provide this feature.

12.16. Protected Ciphersuite Negotiation

 EAP-GPSK provides protected ciphersuite negotiation via the
 indication of available ciphersuites by the server in the first
 message, and a confirmation by the peer in the subsequent message.

 Note, however, that the GPSK-2 message may optionally contain a
 payload, ENC_PK(PD_Payload_Block), protected with an algorithm based
 on a selected ciphersuite before the ciphersuite list has actually
 been authenticated. In the classical downgrading attack, an
 adversary would choose a ciphersuite that is so weak that it can be
 broken in real time or would attempt to disable cryptographic
 protection altogether. The latter is not possible since any
 ciphersuite defined for EAP-GPSK must at least provide authentication
 and integrity protection. Confidentiality protection is optional.
 When, at some time in the future, a ciphersuite contains algorithms
 that can be broken in real-time, then a policy on peers and the
 server needs to indicate that such a ciphersuite must not be selected
 by any of parties.

 Furthermore, an adversary may modify the selection of the ciphersuite
 for the client to select a ciphersuite that does not provide
 confidentiality protection. As a result, this would cause the
 content of PD_Payload_Block to be transmitted in cleartext. When
 protocol designers extend EAP-GPSK to carry information in the
 PD_Payload_Block of the GPSK-2 message, then it must be indicated
 whether confidentiality protection is mandatory. In case such an
 extension requires a ciphersuite with confidentiality protection,
 then the policy at the peer must be to not transmit information of
 that extension in the PD_Payload_Block of the GPSK-2 message. The
 peer may, if possible, delay the transmission of this information
 element to the GPSK-4 message where the ciphersuite negotiation has
 been confirmed already. In general, when a ciphersuite is selected
 that does not provide confidentiality protection, then information
 that demands confidentiality protection must not be included in any
 of the PD_Payload_Block objects.

Clancy & Tschofenig Standards Track [Page 33]

RFC 5433 EAP-GPSK February 2009

12.17. Confidentiality

 Although EAP-GPSK provides confidentiality in its protected data
 payloads, it cannot claim to do so, per Section 7.2.1 of [RFC3748],
 since it does not support identity protection.

12.18. Cryptographic Binding

 Since EAP-GPSK does not tunnel another EAP method, it does not
 implement cryptographic binding.

13. IANA Considerations

 IANA has allocated a new EAP Type for EAP-GPSK (51).

 IANA has created a new registry for ciphersuites, protected data
 types, failure codes, and op-codes. IANA has added the specified
 ciphersuites, protected data types, failure codes, and op-codes to
 these registries as defined below. Values defining ciphersuites
 (block-based or hash-based), protected data payloads, failure codes,
 and op-codes can be added or modified per IETF Review [RFC5226].

 Figure 3 represents the initial contents of the "EAP-GPSK
 Ciphersuites" registry. The CSuite/Specifier field is 16 bits long.
 All other values are available via IANA registration. Each
 ciphersuite needs to provide processing rules and needs to specify
 how the following algorithms are instantiated: encryption, integrity,
 key derivation, and key length.

 The following are the initial contents of the "EAP-GPSK Protected
 Data Payloads" registry:

 o 0x0000 : Reserved

 The PData/Specifier field is 16 bits long, and all other values are
 available via IANA registration. Each extension needs to indicate
 whether confidentiality protection for transmission between the EAP
 peer and the EAP server is mandatory.

 The following are the initial contents of the "EAP-GPSK Failure
 Codes" registry:

 o 0x00000000 : Reserved

 o 0x00000001 : PSK Not Found

 o 0x00000002 : Authentication Failure

Clancy & Tschofenig Standards Track [Page 34]

RFC 5433 EAP-GPSK February 2009

 o 0x00000003 : Authorization Failure

 The Failure-Code field is 32 bits long, and all other values are
 available via IANA registration.

 The following are the initial contents of the "EAP-GPSK OP Codes"
 registry:

 o 0x00 : Reserved

 o 0x01 : GPSK-1

 o 0x02 : GPSK-2

 o 0x03 : GPSK-3

 o 0x04 : GPSK-4

 o 0x05 : GPSK-Fail

 o 0x06 : GPSK-Protected-Fail

 The OP-Code field is 8 bits long, and all other values are available
 via IANA registration.

14. Contributors

 This work is a joint effort of the EAP Method Update (EMU) design
 team of the EMU Working Group that was created to develop a mechanism
 based on strong shared secrets that meets RFC 3748 [RFC3748] and RFC
 4017 [RFC4017] requirements. The design team members (in
 alphabetical order) were:

 o Jari Arkko

 o Mohamad Badra

 o Uri Blumenthal

 o Charles Clancy

 o Lakshminath Dondeti

 o David McGrew

 o Joe Salowey

 o Sharma Suman

Clancy & Tschofenig Standards Track [Page 35]

RFC 5433 EAP-GPSK February 2009

 o Hannes Tschofenig

 o Jesse Walker

 Finally, we would like to thank Thomas Otto for his reviews,
 feedback, and text contributions.

15. Acknowledgments

 We would like to thank:

 o Jouni Malinen and Bernard Aboba for their early comments on the
 document in June 2006. Jouni Malinen developed the first
 prototype implementation.

 o Lakshminath Dondeti, David McGrew, Bernard Aboba, Michaela
 Vanderveen, and Ray Bell for their input to the ciphersuite
 discussions between July and August 2006.

 o Lakshminath Dondeti for his detailed review (sent to the EMU
 mailing list on 12 July 2006).

 o Based on a review requested from NIST, Quynh Dang suggested
 changes to the GKDF function (December 2006).

 o Jouni Malinen and Victor Fajardo for their review in January 2007.

 o Jouni Malinen for his suggestions regarding the examples and the
 key derivation function in February 2007.

 o Bernard Aboba and Jouni Malinen for their review in February 2007.

 o Vidya Narayanan for her review in March 2007.

 o Pasi Eronen for his IESG review in March and July 2008.

 o Dan Harkins for his review in June 2008.

 o Joe Salowey, the EMU working group chair, provided a document
 review in April 2007. Jouni Malinen also reviewed the document
 during the same month.

 o We would like to thank Paul Rowe, Arnab Roy, Prof. Andre Scedrov,
 and Prof. John C. Mitchell for their analysis of EAP-GPSK, for
 their input to the key derivation function, and for pointing us to
 a client-side DoS attack and to a downgrading attack. Based on
 their input, the key derivation function has been modified and the
 text in the security considerations section has been updated.

Clancy & Tschofenig Standards Track [Page 36]

RFC 5433 EAP-GPSK February 2009

 o Finally, we would like to thank our working group chair, Joe
 Salowey, for his support and for the time he spent discussing open
 issues with us.

16. References

16.1. Normative References

 [AES] National Institute of Standards and Technology,
 "Specification for the Advanced Encryption Standard
 (AES)", Federal Information Processing Standards
 (FIPS) 197, November 2001.

 [CBC] National Institute of Standards and Technology,
 "Recommendation for Block Cipher Modes of Encryption --
 Methods and Techniques", Special Publication (SP) 800-38A,
 December 2001.

 [CMAC] National Institute of Standards and Technology,
 "Recommendation for Block Cipher Modes of Operation: The
 CMAC Mode for Authentication", Special Publication
 (SP) 800-38B, May 2005.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)",
 RFC 3748, June 2004.

 [RFC4282] Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282, December 2005.

 [RFC4634] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and HMAC-SHA)", RFC 4634, July 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",
 RFC 5247, August 2008.

Clancy & Tschofenig Standards Track [Page 37]

RFC 5433 EAP-GPSK February 2009

16.2. Informative References

 [80211] "Information technology - Telecommunications and
 Information Exchange Between Systems - Local and
 Metropolitan Area Networks - Specific Requirements - Part
 11: Wireless LAN Medium Access Control (MAC) and Physical
 Layer (PHY) Specifications", IEEE Standard 802.11-2007,
 March 2007.

 [ENTNUM] IANA, "SMI Network Management Private Enterprise Codes",
 Private Enterprise Numbers, <http://www.iana.org>.

 [RFC4017] Stanley, D., Walker, J., and B. Aboba, "Extensible
 Authentication Protocol (EAP) Method Requirements for
 Wireless LANs", RFC 4017, March 2005.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

Authors’ Addresses

 T. Charles Clancy
 DoD Laboratory for Telecommunications Sciences
 8080 Greenmead Drive
 College Park, MD 20740
 USA

 EMail: clancy@ltsnet.net

 Hannes Tschofenig
 Nokia Siemens Networks
 Linnoitustie 6
 Espoo 02600
 Finland

 EMail: Hannes.Tschofenig@gmx.net

Clancy & Tschofenig Standards Track [Page 38]

