
Network Working Group J. Newkirk
Request for Comments: 55 M. Kraley
 Harvard
 J. Postel
 S. Crocker
 UCLA
 19 June 1970

 A Prototypical Implementation of the NCP

 While involved in attempting to specify the formal protocol, we also
 attempted to formulate a prototypical NCP in an Algol-like language.
 After some weeks of concentrated effort, the project was abandoned as
 we realized that the code was becoming unreadable. We still,
 however, felt the need to demonstrate our conception of how an NCP
 might be implemented; we felt that this would help suggest solutions
 for problems that might arise in trying to mold the formal
 specifications into an existing system. This document is that
 attempt to specify in a prose format what an NCP could look like.

 There are obvious limitations on a project of this nature. We do
 not, and cannot, know all of the quirks of the various systems that
 must write an NCP. We are forced to make some assumptions about the
 environment, system calls, and the like. We have tried to be as
 general as possible, but no doubt many sites will have completely
 different ways of conceptualizing the NCP. There is great difficulty
 involved in conveying our concepts and the mechanisms that deal with
 these concepts to people who have wholly different ways of looking at
 things. We have, however, benefited greatly by trying to actually
 code this program for our fictitious machine. Many unforeseen
 problems surfaced during the coding, and we hope that by issuing this
 document we can help to alleviate similar problems which may arise in
 individual cases.

 There is, of course, absolutely no requirement to implement anything
 which is contained in this document. The only rigid rules which an
 NCP _must_ conform to are stated in NWG/RFC#54. This description is
 intended only as an example, _not_ as a model.

 In the discussion which follows we first describe the environment to
 be assumed and postulate a set of system calls. We discuss the
 overall architecture of the NCP and the tables that will be used to
 hold relevant information. Narratives of network operations follow.
 A state diagram is then presented as a convenient method for
 conceptualizing the cause-effect sequencing of events. The detailed
 processing of each type of network event (system calls or incoming
 network messages) is then discussed.

Newkirk, et al. [Page 1]

RFC 55 Prototypical Implementation of NCP June 1970

II. Environment

 We assume that the host will have a time-sharing operating system in
 which the CPU is shared by processes.

 We envision that each process is tagged with a user number. There
 may be more than one process with the same user number; if so, they
 should all be cooperating with respect to using the network.

 We envision that each process contains a set of ports which are
 unique to the process. These ports are used for input to or output
 from the process, from or to files, devices, or other processes.

 We also envision that a process is not put to sleep (i.e., blocked or
 dismissed) when it attempts to LISTEN or CONNECT. Instead it is
 informed when some action is complete. Of course, a process may
 dismiss itself so that it wakes up only on some external event.

 To engage in network activity, a process attaches a local socket to
 one of its ports. Sockets are identified by user number, host and
 AEN; a socket is local to a process if the user numbers of the two
 match and they are in the same host. Thus, a process need only
 specify an AEN when it is referring to a local socket.

 Each port has a status which is modified by system calls and
 concurrent events outside the process (e.g., a ’close connection’
 command from a foreign host). The process may look at a port’s
 status as any time (via the STATUS system call).

 We assume a one-to-one correspondence between ports and sockets.

III. System Calls

 These are typical system calls which a user process might execute.

 We use the notation

 SYSCALL (ARG1, ARG2....)

 where
 SYSCALL is the name of the system call
 and
 ARGk, etc. are the parameters of the system call.

Newkirk, et al. [Page 2]

RFC 55 Prototypical Implementation of NCP June 1970

 CONNECT (P, AEN, FS, CR)

 P specifies a port of the process
 AEN specifies a local socket; the user number and host are
 implicit
 FS specifies a socket with any user number in any hose,
 and with any AEN
 CR the condition code returned

 CONNECT attempts to attach the local socket specified by AEN to
 the port P and to initiate a connection with a specific foreign
 socket, FS. Possible values of CR are:

 CR=OK The CONNECT was legal and the socket FS is being
 contacted. When the connection is established
 or refused the status will be updated.

 CR = BUSY The local socket is in use (illegal command
 sequence).

 CR = BADSKT The socket specification was illegal.

 CR = NOROOM Local host’s resources are exhausted.

 CR = HOMOSEX Incorrect send/receive pair

 CR = IMP DEAD Our imp has died

 CR = LINK DEAD The link to the foreign host is dead because:
 1. the foreign Imp is dead,
 2. the foreign host is dead, or
 3. the foreign NCP does not respond.

 LISTEN (P, AEN, CR)

 P specifies a port of the process
 AEN specifies a local socket
 CR the condition code returned

 The local socket specified by AEN is attached to port P. If there
 is a pending call, it is processed; otherwise, no action is taken.
 When a call comes in, the user will be notified. After examining
 the call, he may either accept or refuse it. Possible values of
 CR are:

 CR = OK Connection begun, listening

 CR = BUSY

Newkirk, et al. [Page 3]

RFC 55 Prototypical Implementation of NCP June 1970

 CR = NOROOM

 CR = IMP DEAD

 CR = LINK DEAD

 ACCEPT (P, CR)

 P specifies a port of the process
 CR the condition code returned

 Accept implies that the user process has inspected the foreign
 socket to determine who is calling and will accept the call.
 (Note: an interesting alternative defines ACCEPT as the implicit
 default condition. Thus any incoming RFC automatically satisfies
 a LISTEN.) Possible values of CR are:

 CR = BADSKT

 CR = NOROOM

 CR = IMP DEAD

 CR = LINK DEAD

 CR = BADCOMM Illegal command sequence. (E.g., Accept issued
 before a LISTEN.

 CR = PREMCLS Foreign user aborted connection after RFC was
 locally received but before Accept was executed.

 TRANSMIT (P, BUFF, BITSRQST, BITSACC, CR)

 P specifies a port of the process
 BUFF specifies the text buffer for transmission
 BITSRQST specifies the length to be transmitted in bits
 BITSACC returns the number of bits actually transmitted
 CR the condition code returned

 Transmission takes place. Possible values for CR are:

 CR = OK

 CR = IMP DEAD

 CR = LINK DEAD

Newkirk, et al. [Page 4]

RFC 55 Prototypical Implementation of NCP June 1970

 CR = NOT OPEN Connection is not open (illegal command
 sequence).

 CR = BAD BOUND BITSRQST out of bounds (e.g., for a receive
 socket BUFF was shorter than BITSRQST
 indicated).

 INT (P, CR)

 P specifies the local socket of this process
 CR the condition code returned

 The process on the other (foreign) side of this port is to be
 interrupted. Possible values of CR are:

 CR = OK

 CR = BADSKT

 CR = BADCOMM

 CR = IMP DEAD

 CR = LINK DEAD

 STATUS (P, RTAB, CR)

 P specifies a port of this process
 RTAB the returned rendezvous table entry
 CR the condition code returned

 The relevant fields of the rendezvous table entry associated with
 this port are returned in RTAB. This is the mechanism a user
 process employs for monitoring the state of a connection.
 Possible values of CR are:

 CR = OK

 CR = BADSKT

Newkirk, et al. [Page 5]

RFC 55 Prototypical Implementation of NCP June 1970

 CLOSE (P, CR)

 P specifies a port of this process
 CR the condition code returned

 Activity on the connection attached to this port stops, the
 connection is broken and the port becomes free for other use.
 Possible values of CR are:

 CR = OK

 CR = BADSKT

 CR = BADCOMM

 CR = IMP DEAD

 CR = LINK DEAD

IV. The NCP - Gross Structure

 We view the NCP as having five component programs, several
 associative tables, and some queues and buffers.

 The Component Programs (see Fig. 4.1)

 1. The Input Handler

 This is an interrupt-driven routine. It initiates Imp-to-Host
 transmission into a resident buffer and wakes up the input
 interpreter when transmission is complete.

 2. The Output Handler

 This is an interrupt-driven output routine. It initiates Host-
 to-Imp transmission out of a resident buffer and wakes up the
 output scheduler when transmission is complete.

 3. The Input Interpreter

 This program decides whether the input is a regular message
 intended for a user, a network control message, an Imp-to Host
 message, or an error. For each class of message this program
 invokes a subroutine to take the appropriate action.

Newkirk, et al. [Page 6]

RFC 55 Prototypical Implementation of NCP June 1970

 4. The Output Scheduler

 Three classes of messages are sent to the Imp

 (a) Host-to-Imp messages
 (b) Control messages
 (c) Regular messages

 We believe that a priority should be imposed among these
 classes. The priority we suggest is the ordering above. The
 output scheduler selects the highest priority message and
 passes it to the output handler.

 Host-to-Imp messages are processed first come first served.
 Control messages are processed individually by host, each host
 being taken in turn. A control message queue for each foreign
 host is provided. When any particular host is scheduled for
 output, as many control commands for that host as will fit are
 concatenated into a single message. Regular messages are
 processed in groups by host and link, each unique combination
 being taken in turn.

 5. The System Call Interpreter

 This program interprets requests from the user. Each system
 call has a corresponding routine which takes the appropriate
 action.

 The two interesting components are the input interpreter and the
 system call interpreter. These are similar in that the input
 interpreter services foreign requests and the system call
 interpreter services local requests.

 The diagram in Figure 4.1 is our conception of the Network
 Control Program. Squishy amoeba-like objects represent component
 programs, cylinders represent queues, and the arrows represent
 data paths. In this simplified diagram tables are not shown.
 ["Amoeba-like" objects in original hand drawing are now firm
 rectangular boxes: Ed.]

 The abbreviated labels in the figure have the following meanings:

 HIQ - Host-to-Imp Queue
 OCCQ - Output Control Command Queue
 DQ - Data Queue
 IHBUF - Input Handler Buffer
 OHBUF - Output Handler Buffer

Newkirk, et al. [Page 7]

RFC 55 Prototypical Implementation of NCP June 1970

 | USER | STRUCTURE OF THE NETWORK CONTROL PROGRAM
 |____________|
 ^ | Fig. 4.1
 _____|______V____
 | |
 | System |
 | Call |
 | Interpreter |
 |_________________| _____________
 ^ | | | |
 | | | +---------------| Input | | |
 | | | | +-----| Interpreter |
 | | | | | | |
 | V V V V -------------
 |======| |=========| |=======| | ^
 | D Q | | O C C Q | | H I Q | | |
 |======| |=========| |=======| | |
 | ^ | | | |
 | | | | | |
 | +--------)----------)---------+ |
 | | | |
 +-------+ | +------+ |
 __V___V___V__ |
 | | |
 | Output | |
 | Scheduler | |
 |_____________| |
 | |
 V |
 (===========) (===========)
 (O H B U F) (I H B U F)
 (===========) (===========)
 | ^
 ______V______ ______|______
 | | | |
 | Output | | Input |
 | Handler | | Handler |
 | | | |
 ------------- -------------
 | ^
 | |
 +----------+ +-----------+
 | |
 ____V____|____
 | |
 | I M P |
 |______________|

Newkirk, et al. [Page 8]

RFC 55 Prototypical Implementation of NCP June 1970

V. Tables in the NCP

 We envision that the bulk of the NCP’s data base is in associative
 tables. By "associative" we mean that there is some lookup routine
 which is presented with a key and either returns successfully with a
 pointer to the corresponding entry, or fails if no entry corresponds
 to the key. The major tables are as follows:

 1. The Rendezvous Table

 This table holds the attributes of a connection. The table is
 accessed by the local socket, but other tables may have
 pointers to existing entries.

 The components of an entry are:

 (a) Local Socket
 (b) Foreign Socket
 (c) Link
 (d) Connection State
 (e) Flow State
 (f) Data Queue
 (g) Call Queue
 (h) Port Pointer
 (i) Their Buffer Size (only needed on the send side)
 (j) Error State

 An entry is created when either a CONNECT or a LISTEN system
 call is executed or when a request for connection is received.
 Various fields remain unused until after the connection is
 established.

 2. The Input Link Table

 The input interpreter uses the concatenation of the foreign
 host and link as a key into the input table. The table is used
 in processing a user-destined message on an incoming link by
 providing a pointer into the rendezvous table.

 3. The Output Link Table

 The input interpreter uses the output link table to access the
 flow state as RFNM’s return from transmitted messages. The
 output link table is keyed by host and link and provides a
 pointer into the rendezvous table.

Newkirk, et al. [Page 9]

RFC 55 Prototypical Implementation of NCP June 1970

 4. The Port Table

 The system call interpreter uses the concatenation of the
 process identification and the port identification as a key to
 obtain a pointer into the rendezvous table.

 5. The Output Control Command Table

 The system call interpreter and the input interpreter use this
 table to make entries in the appropriate output control command
 queues. Commands are queued in separate table entries
 corresponding to foreign hosts. Before output the contents of
 the queue are concatenated into a large control message. The
 components of an entry are:

 (a) Host
 (b) Output Control Command Queue

 6. The Output Request Queue

 This queue contains an entry for each connection which has data
 requiring transmission to the net. There is only one entry per
 connection, which is deleted when the last packet of data is
 transmitted and is entered whenever a user makes a system
 request for data transmission.

 The entry is re-inserted if transmission is not completed
 (message too long) or is prevented by the flow control
 mechanism. The only component of an entry is a local socket.

 7. The Host Live Table

 This is a simple table listing the hosts which are alive. This
 table is checked before establishing a connection and before
 sending any data to ensure that the destination host actually
 exists. At present the protocol does not define the procedure
 to be followed for the Host up/Host down conditions. See
 NWG/RFC#57.

 8. The Link Assignment Table

 Link numbers are assigned by the receiver. This table records
 which links are free and can, therefore, be assigned.

Newkirk, et al. [Page 10]

RFC 55 Prototypical Implementation of NCP June 1970

VI. Informal Description of Network Operations

 We present here narratives describing the operation conducted during
 the three major phases of network usage: opening, flow control, and
 closing.

 A. Opening

 In order to establish a connection for data transmission, a pair
 of RFC’s must be exchanged. An RTS must go from the receive-side
 to the send-side, and an STR must be issued by the send-side to
 the receive-side. In addition, the receive-side, in its RTS, must
 specify a link number. These RFC’s (RFC is a generic term
 encompassing RTS and STR) may be issued in any time sequence. A
 provision must also be made for queuing pending calls (i.e., RFC’s
 which have not been dealt with by the user program). Thus, when a
 user is finished with a connection, he may choose to examine the
 next pending call from another process and decide to either accept
 or refuse the request for connection. A problem develops because
 the user may not choose to examine his pending calls; thus they
 will merely serve to occupy queue space in the NCP. Several
 alternative solutions to this problem will be mentioned later.

 Utilizing the framework of the prototype system calls described
 above, we envision at least four temporal sequences for obtaining
 a successfully opened connection:

 1. The user may issue a LISTEN, indicating he is willing to
 consider connecting to anyone who sends him an RFC. When an
 RFC comes in the user is notified. The user then decides
 whether he wishes to connect to this socket and issues an
 ACCEPT or a CLOSE on the basis of that decision. A CLOSE ’
 refuses’ the connection, as discussed under "Closing." An
 ACCEPT indicates he is willing to connect; an RFC is issued,
 and the connection becomes fully opened.

 2. Upon processing a user request for a LISTEN, the NCP
 discovers that a pending call exists for that local socket.
 The user is immediately notified, and he may ACCEPT or
 CLOSE, as above.

 3. The user issues a CONNECT, specifying a particular foreign
 socket that he would like to connect to. An RFC is issued.
 If the foreign process accepts the request, it answers by
 returning an RFC. When this acknowledging RFC is received,
 the connection is opened.

Newkirk, et al. [Page 11]

RFC 55 Prototypical Implementation of NCP June 1970

 4. When presented with a CONNECT, the NCP may discover that a
 pending call exists from the specified foreign socket to the
 local socket in question. An acknowledging RFC is issued
 and the connection is opened.

 In all of the above cases the user is notified when the connection
 is opened, but data flow cannot begin until buffer space is
 allocated and an ALL command is transmitted.

 Any of these connection scenarios will be interrupted if a CLS
 comes in, as discussed under "Closing."

 1. Pending Call Queues

 It is essential that some form of queuing for pending RFC’s
 be implemented. A simple way to see this is to examine a
 typical LISTEN-CONNECT sequence. One side issues a LISTEN,
 the other a CONNECT. If the LISTEN is issued before the RFC
 coming from the remote CONNECT arrives, all is fine.
 However, due to the asynchronous nature of the net, we can
 never guarantee that this sequence of events will occur. If
 calls are not queued, and the RFC comes in before the LISTEN
 is issued, it will be refused; if it arrives later, it will
 be accepted. Thus we have an extremely ambiguous situation.

 Unless one has infinite queue space, it is desirable that
 some mechanism for purging the queues of old RFC’s which the
 user never bothered to examine. An obvious but informal
 method is to note the time when each RFC is entered into the
 queue, and then periodically refuse all RFC’s which have
 exceeded some arbitrary time limit. Another thought, which
 probably should be included within the context of any
 scheme, is for the NCP to send a CLS on all outstanding
 connections or pending calls when a user logs out or blows
 up.

 The scheme which is utilized in this description may seem at
 first blush to be non-intuitive; but we feel it is more
 realistic than other proposals. Basically, when a CONNECT
 is issued, the NCP assumes that this socket wishes to talk
 to the specified foreign socket and to that socket only. It
 therefore purges from the pending call queue all non-
 matching RFC’s by sending back CLS’s. Similarly, when the
 connection is in the RFC-SEND state (a CONNECT has been
 issued), all non-matching RFC’s are refused. If a LISTEN-
 ACCEPT or LISTEN- CLOSE sequence is executed, the remainder

Newkirk, et al. [Page 12]

RFC 55 Prototypical Implementation of NCP June 1970

 of the pending calls are not removed from the queue, in the
 expectation that the user may wish to accept these requests
 in the future.

 Although the latter method may seem to be arbitrary and/or
 unnecessarily restrictive, we have not yet concocted a
 scenario which would be prohibited by this method, assuming
 that we are dealing with a competent programmer (i.e., one
 who is wary of race conditions and the asynchronous nature
 of the net). Of course whatever scheme or schemes a
 particular site chooses is highly implementation dependent;
 we suggest that some provision for the queuing of RFC’s be
 provided for a period of time at least of the order of
 magnitude that they are retained in the CONNECT-clear scheme
 mentioned above.

 B. Flow Control

 Meaningful data can only flow on a connection when it is fully
 opened (i.e., two RFC’s have been exchanged and closing has not
 begun). We assume that the NCP’s have a buffer for receiving
 incoming data and that there is some meaningful quantity which
 they can advertise (on a per connection basis) indicating the size
 message they can handle. We further assume that the sending side
 regulates its transmission according to the advertisements of that
 size.

 When a connection is opened, a cell (called ’Their Size’) is set
 to zero. The receive-side will decide how much space it can
 allocate and send an ALL message specifying that space. The
 send-side will increment ’Their Size’ by the allocated space and
 will then be able to send messages of length less than or equal to
 ’Their Size’ When messages are transmitted, the length of the
 message is subtracted from ’Their Size’. When the receive-side
 allocates more buffer space (e.g. when a message is taken by the
 user, thus freeing some system buffer space), the number of bits
 released is sent to the send-side via an ALL message.

 Thus, ’Their Size’ is never allowed to become negative and no
 transmission can take place if ’Their Size’ equals zero.

 Notice that the lengths specified in ALL messages are increments
 not the absolute size of the receiving buffer. This is
 necessitated by the full duplex nature of the flow control
 protocol. The length field of the ALL message can be 32 bits long
 (note: this is an unsigned integer), thus providing the facility
 for essentially an infinite "bit sink", if that may ever be
 desired.

Newkirk, et al. [Page 13]

RFC 55 Prototypical Implementation of NCP June 1970

 C. Closing

 Just as two RFC’s are required to open a connection, two CLS’s are
 required to close a connection. Closing occurs under various
 circumstances and serves several purposes. To simplify the
 analysis of race conditions, we distinguish four cases: aborting,
 refusing, termination by receiver, termination by sender.

 A user "aborts" a connection when he issues a CONNECT and then a
 CLOSE before the CONNECT is acknowledged. Typically a user will
 abort following an extended wait for the acknowledgment; his
 system may also abort for him if he blows up.

 A user "refuses" a connection when he issues a LISTEN and, after
 being notified of a prospective caller, issues a CLOSE. Any
 requests for connection to a socket which is expecting a call from
 a particular socket are also refused.

 After a connection is established, either side may terminate. The
 required sequence of events suggests that attempts to CLOSE by the
 receive-side should be viewed as "requests" which are always
 honored as soon as possible by the send-side. Any data which has
 not yet been passed to the user, or which continues over the
 network, is discarded. Requests to CLOSE by the send-side are
 honored as soon as all data transmission is complete.

 1. Aborting

 We may distinguish three cases:

 a) In the simplest case, we send an RFC followed later by a
 CLS. The other side responds with a CLS and the attempt
 to connect ends.

 b) The foreign process may accept the connection
 concurrently with the local process aborting it. In this
 case, the foreign process will believe the local process
 is terminating an open connection.

 c) The foreign process may refuse the connection
 concurrently with the local process aborting it. In this
 case, the foreign process will believe the local process
 is acknowledging its refusal.

Newkirk, et al. [Page 14]

RFC 55 Prototypical Implementation of NCP June 1970

 2. Refusing

 After an RFC is received, the local host may respond with an
 RFC or a CLS, or it may fail to respond. (The local host
 may have already sent its own RFC, etc.) If the local host
 sends a CLS, the local host is said to be "refusing" the
 request for connection.

 We require that CLS commands be exchanged to close a
 connection, so it is necessary for the local host to
 maintain the rendezvous table entry until an acknowledging
 CLS is returned.

 3. Terminating by the Sender

 When the user on the send side issues a CLOSE system call,
 his NCP must accept it immediately, but may not send out a
 CLS command until all the data in the local buffers has been
 passed to the foreign host. It is thus necessary to test
 for both ’buffer-empty’ and
 ’RFNM-received’ before sending the CLS command. As usual,
 the CLS must be acknowledged before the entry may be
 deleted.

 4. Terminating by the Receiver

 When the user on the receive side issues a CLOSE system
 call, his NCP accepts and sends the CLS command immediately.
 Data may still arrive, however, and this data should be
 discarded. The send side, upon receiving the CLS, should
 immediately terminate the data flow.

VII. Connection Status

 An excellent mechanism for describing the sequence of events required
 to establish and terminate a connection involves a state diagram. We
 may assume that each socket can be associated with a state machine,
 and that this state machine may, at any time, be in one of ten
 possible states. In any state, certain network events cause the
 connection status to enter another state; other events are ignored;
 still others are error. A transition may also involve the local NCP
 performing some action. Figure 7.1 depicts the state machine.
 Circles [now boxes: Ed] represent states (described below); arrows
 show legal transitions between states. The labels on the arrows
 identify the event which caused them (note that CLOSE is a system
 call, CLS is a control command). Phrases after slashes denote the
 action which should be performed while traveling over that arrow.
 The arrow labeled ’[E]RFC’ (found between states 0 and 1) represents

Newkirk, et al. [Page 15]

RFC 55 Prototypical Implementation of NCP June 1970

 the condition that whenever a connection enters the CLOSED state, the
 pending call queue for that connection is checked [Original was
 backwards "E": Ed.]

 If any pending calls exist in the queue, the connection moves to the
 PENDING state. If an RFC is received for a socket in the CLOSED
 state, it is also moved along this path to the PENDING state. Events
 and the actions they cause are described in sections VIII and IX
 below. Descriptions of the ten states follow:

 (0) CLOSED

 The local socket is not attached to any port and no user has
 requested a connection with it. (The table entry is non-
 existent).

 (1) PENDING CALL

 The socket is not attached to any port but one or more
 requests for connection have been received. A LISTEN system
 call will be satisfied immediately by the first entry in the
 pending call queue for a matching request; all other pending
 calls are deleted.

 (2) LISTENING

 The socket is attached to a port. We are waiting for a user
 to request connection with this socket.

 (3) RFC-RCVD

 We are listening and an RFC was received. The local user has
 been informed of the pending call. He must respond with
 either a CLOSE or an ACCEPT.

 (4) ABORT

 We have notified the user that his LISTEN has been satisfied
 but he has not yet responded; if during this time the foreign
 user aborts the connection by sending a CLS, we send a CLS to
 acknowledge the abort and mark the fact with this state. When
 the user accepts or refuses the call, we can inform him the
 connection has been prematurely terminated.

Newkirk, et al. [Page 16]

RFC 55 Prototypical Implementation of NCP June 1970

 (5) RFC-SENT

 This state is entered when:

 a) The local user has attached this socket to a port by
 issuing a CONNECT.
 b) An RFC has been sent, and
 c) No reply has been received.

 When the user issues a CONNECT the pending call queue is
 searched.

 If a matching RFC is not found, the queue is deleted and this
 state is entered. As new RFC’s arrive they are compared with
 our user’s request. If they do not match, the RFC is
 immediately refused. If the RFC matches, it completes the
 initialization process and the connection enters the OPEN
 state.

 (6) OPEN

 RFC’s have been exchanged and the connection is securely
 established. Transmission may begin following receipt of an
 ALL command from the receive side, and will then proceed
 subject to flow control.

 (7) CLS-WAIT

 After the local user has executed a CLOSE, and we have issued
 a CLS, we must wait for an acknowledging CLS before the
 connection can be completely closed. If the appropriate CLS
 has not already been received, this state is entered.

 (8) DATA-WAIT

 If we are on the send side and the local user executes a CLOSE
 system call, a CLS cannot be issued if our data buffer is not
 empty or if a RFNM for the last data message is outstanding.
 The connection enters this state to wait for these conditions
 to be fulfilled. Upon completion and acknowledgement of
 output a CLS may be issued and the connection enters the CLS-
 WAIT state, waiting for the acknowledging CLS. If a CLS
 arrives while in the DATA-WAIT state we clear our buffer (the
 CLS came from a receive socket, indicating it is no longer
 interested in our data) and enter the RFNM-WAIT state to wait
 for the network to clear.

Newkirk, et al. [Page 17]

RFC 55 Prototypical Implementation of NCP June 1970

 (9) RFNM-WAIT

 If we are on the send side and a CLS command arrives, we
 cannot issue an acknowledging CLS if we have not received the
 RFNM for our last data message. We enter this state to await
 the RFNM, and cease all further data transmission. When the
 RFNM comes in, a CLS may then be issued, and the connection
 will be closed.

Newkirk, et al. [Page 18]

RFC 55 Prototypical Implementation of NCP June 1970

 | | CLOSE
 CONN/ | CLOSED |<---------------------------+
 send RFC | (0) | LISTEN |
 +----------------| |-----------------------+ |
 | |______________| | |
 | | ^ | |
 | [E]RFC | | CLS/send CLS | |
 | ___V____|____ ___V____|____
 | non-matching | | | | | | |
 | CONN/send RFC | PENDING | LISTEN RFC | LISTENING |
 | +-------------| (1) |----------+ +----| (2) |
 | | |_____________| | | |_____________|
 | | matching | | |
 ___V___V_____ CONN/send RFC| __V___V______
| | | ACCEPT/ | | CLS/
| RFC-SENT | RFC | send RFC | RFC-RECD | send CLS
| (5) |----------+ | +----------| (3) |---------+
_____________					_____________			
	___V___V___V___ SND&CLOSE	____________						
	RCV&CLS/		-----------)->					
	send CLS	OPEN	SND&CLS		DATA-WAIT			
	+---------	(6)	--------+		(8)			
			_______________				____________	
		RCV&CLOSE/						
		send CLS						
						CLS		
		______V______						
		CLOSE/		CLOSE/				
		send CLS	CLS-WAIT	send CLS				
+---)--------->	(8)	<--------)--+						

		___V______V_ ______V___						
			RFNM-WAIT		ABORT			
	CLS		(9)		(4)			
			____________		__________			
	______V_______ RFNM/							
			send CLS					
CLS/ +--------->	CLOSED	<----------+						
send CLS	(0)	ACCEPT	CLOSE					
 +----------------->| |<----------------------------+
 |______________|

 Figure 7.1
 Connection State Diagram

Newkirk, et al. [Page 19]

RFC 55 Prototypical Implementation of NCP June 1970

VIII. Algorithms for the Input Interpreter

 The following is a concise description of the NCP’s responses to
 incoming network commands. CS always indicates Connection State.
 Note, CLOSE is a system call executed by the local user process, and
 CLS is a network command.

 NOP

 Discard.

 RFC (RTS or STR)

 If no entry exists, create one with status = PENDING CALL, and
 queue the message.

 If CS = LISTENING, then queue the entry, enter the RFC-RCVD state,
 and inform the user of the request.

 If CS = RFC-SENT but the new RFC does not match the request,
 refuse the RFC.

 In all other cases, check the RFC for a match. If none exists,
 queue the RFC. If the RFC matches, then if:

 CS = RFC-SENT, we enter the OPEN state.

 CS = CLOSE-WAIT, the RFC is ignored.

 otherwise, the request is illegal in all states which indicate
 it has already been received (these states are 1,3,4,6,8,9).

 In any case, if processing the RFC causes an overflow condition
 (resources are exhausted), refuse the connection (send a CLS).

 CLS

 The pending call queue is searched. If the CLS doesn’t match the
 current request, but does match some other request, then delete
 that request and issue a CLS. If there is no match, the CLS is
 ignored.

 If the CLS matches the current request, and CS =

 PENDING, then delete the current request. If the request queue
 is empty, delete the entry; otherwise, leave the entry
 alone.

Newkirk, et al. [Page 20]

RFC 55 Prototypical Implementation of NCP June 1970

 RFC-RCVD, Issue a CLS and enter the ABORT state.
 ABORT, ignore.

 RFC-SENT, issue a CLS. If the pending call queue is empty
 delete the entry, else enter the PENDING state.

 OPEN, If we are on the receive side, response is identical to
 the response for RFC-SENT. If we are on the send side,
 clear the data queue, and if a RFNM is still pending enter
 the RFNM-WAIT state. Otherwise response is identical to the
 response for RFC-SENT.

 CLS-WAIT, Issue a CLS and if the pending call queue is empty,
 delete the entry, otherwise CS = PENDING.

 DATA-WAIT, clear the data queue and enter the RFNM-WAIT state.
 A matching CLS cannot occur in the CLOSED or LISTENING
 states.

 ERR

 Errors are queued for later attention by system programmers, and
 are considered to be a system error in the host that originated
 the exchange. (Not associated with any state).

 ECO

 The op code is changed to ERP and retransmitted (Not associated
 with any state).

 ERP

 Upon receipt of an ERP, the system passes the text of the command
 back to the process which issued the ECO.

 INR, INS

 These commands are enabled only in the OPEN state. Upon receiving
 an INTERRUPT, the system causes an event to be sent to the
 associated process. An INTERRUPT is ignored in the CLS-WAIT,
 DATA-WAIT, and RFNM-WAIT states. In any other state it is an
 error.

Newkirk, et al. [Page 21]

RFC 55 Prototypical Implementation of NCP June 1970

 ALL

 ALLOCATE is valid only in the OPEN state, and may be sent only to
 a send socket. The NCP increments the ’Their Size’ field in the
 associated rendezvous table entry by the size specified in the
 ALLOCATE command.

 In the CLS-WAIT and DATA-WAIT states this command is ignored; in
 any other state it is an error.

 Data-RFNM

 If in the OPEN state, mark the Flow Control Status field in the
 appropriate rendezvous table entry as RFNM-RECVD, and send more
 data if required.

 If in the DATA-WAIT state, maintenance the Flow Control Status.
 If the data queue is empty issue a CLS and enter the CLS-WAIT
 state; otherwise, transmit the next message.

 If in the RFNM-WAIT state, maintenance the Flow Control Status and
 issue a CLS. If the Pending Call queue is empty delete the
 rendezvous table entry, otherwise CS = PENDING.

 A Data-RFNM is an error in all other states.

IX. Algorithms for the System Call Interpreter

 Each System Call is discussed, giving the state changes it may
 effect:

 CONNECT

 If there is no entry, create one, issue an RFC, and enter the
 RFC-SENT state.

 If CS = PENDING, search the queue and reject all non-matching
 requests. If no match is found issue an RFC and enter the
 RFC-SENT state. If a match is found, issue an RFC and enter
 the OPEN state. Transmission can commence as soon as buffer
 space has been allocated.

 In any other state this command is illegal.

 LISTEN

 If an entry doesn’t exist, create one, and enter the LISTENING
 state.

Newkirk, et al. [Page 22]

RFC 55 Prototypical Implementation of NCP June 1970

 If CS = PENDING, inform the user and enter the RFC-RCVD state.

 In any other state this command is illegal.

 ACCEPT

 If CS = RFC-RCVD, then issue an RFC and enter the OPEN state.
 Data transmission can occur as soon as buffer space is
 allocated.

 If CS = ABORT, inform the user of the premature termination of the
 connection. If the pending call queue is empty, delete the
 entry; otherwise, enter the PENDING state.

 This command cannot be legally executed in any other state.

 CLOSE

 If CS =

 LISTENING, then delete the entry.

 RFC-RCVD, then issue a CLS and enter the CLS-WAIT state.

 ABORT, inform the user of the premature termination of the
 connection. If the pending call queue is empty, delete the
 entry; otherwise, enter the PENDING state.

 RFC-SENT, then issue a CLS and enter the CLS-WAIT state.

 OPEN, if we are on the send side, and the data queue is not empty,
 or if a Data-RFNM is still outstanding, enter the DATA-WAIT
 state; otherwise, issue a CLS and enter the CLS-WAIT state.

 CLS-WAIT, issuing a CLOSE in this state is a USER ERROR.

 DATA-WAIT, issuing a CLOSE in this state is also an illegal
 sequence.

 RFNM-WAIT, ignore the CLOSE.

 A valid CLOSE cannot be issued if an entry does not exist, or if a
 socket is in the PENDING state.

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Anthony Anderberg 5/00]

Newkirk, et al. [Page 23]

