
Network Working Group T. Talpey
Request for Comments: 5532 C. Juszczak
Category: Informational May 2009

 Network File System (NFS) Remote Direct Memory Access (RDMA)
 Problem Statement

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Abstract

 This document addresses enabling the use of Remote Direct Memory
 Access (RDMA) by the Network File System (NFS) protocols. NFS
 implementations historically incur significant overhead due to data
 copies on end-host systems, as well as other processing overhead.
 This document explores the potential benefits of RDMA to these
 implementations and evaluates the reasons why RDMA is especially
 well-suited to NFS and network file protocols in general.

Talpey & Juszczak Informational [Page 1]

RFC 5532 NFS RDMA Problem Statement May 2009

Table of Contents

 1. Introduction ..2
 1.1. Background ...3
 2. Problem Statement ...4
 3. File Protocol Architecture5
 4. Sources of Overhead ...7
 4.1. Savings from TOE ...8
 4.2. Savings from RDMA ..9
 5. Application of RDMA to NFS10
 6. Conclusions ..10
 7. Security Considerations ..11
 8. Acknowledgments ..12
 9. References ...12
 9.1. Normative References12
 9.2. Informative References13

1. Introduction

 The Network File System (NFS) protocol (as described in [RFC1094],
 [RFC1813], and [RFC3530]) is one of several remote file access
 protocols used in the class of processing architecture sometimes
 called Network-Attached Storage (NAS).

 Historically, remote file access has proven to be a convenient,
 cost-effective way to share information over a network, a concept
 proven over time by the popularity of the NFS protocol. However,
 there are issues in such a deployment.

 As compared to a local (direct-attached) file access architecture,
 NFS removes the overhead of managing the local on-disk file system
 state and its metadata, but interposes at least a transport network
 and two network endpoints between an application process and the
 files it is accessing. To date, this trade-off has usually resulted
 in a net performance loss as a result of reduced bandwidth, increased
 application server CPU utilization, and other overheads.

 Several classes of applications, including those directly supporting
 enterprise activities in high-performance domains such as database
 applications and shared clusters, have therefore encountered issues
 with moving to NFS architectures. While this has been due
 principally to the performance costs of NFS versus direct-attached
 files, other reasons are relevant, such as the lack of strong
 consistency guarantees being provided by NFS implementations.

 Replication of local file access performance on NAS using traditional
 network protocol stacks has proven difficult, not because of protocol
 processing overheads, but because of data copy costs in the network

Talpey & Juszczak Informational [Page 2]

RFC 5532 NFS RDMA Problem Statement May 2009

 endpoints. This is especially true since host buses are now often
 the main bottleneck in NAS architectures [MOG03] [CHA+01].

 The External Data Representation [RFC4506] employed beneath NFS and
 the Remote Procedure Call (RPC) [RFC5531] can add more data copies,
 exacerbating the problem.

 Data copy-avoidance designs have not been widely adopted for a
 variety of reasons. [BRU99] points out that "many copy avoidance
 techniques for network I/O are not applicable or may even backfire if
 applied to file I/O". Other designs that eliminate unnecessary
 copies, such as [PAI+00], are incompatible with existing APIs and
 therefore force application changes.

 In recent years, an effort to standardize a set of protocols for
 Remote Direct Memory Access (RDMA) over the standard Internet
 Protocol Suite has been chartered [RDDP]. A complete IP-based RDMA
 protocol suite is available in the published Standards Track
 specifications.

 RDMA is a general solution to the problem of CPU overhead incurred
 due to data copies, primarily at the receiver. Substantial research
 has addressed this and has borne out the efficacy of the approach.
 An overview of this is the "Remote Direct Memory Access (RDMA) over
 IP Problem Statement" [RFC4297].

 In addition to the per-byte savings of offloading data copies, RDMA-
 enabled NICs (RNICS) offload the underlying protocol layers as well
 (e.g., TCP), further reducing CPU overhead due to NAS processing.

1.1. Background

 The RDDP Problem Statement [RFC4297] asserts:

 High costs associated with copying are an issue primarily for
 large scale systems ... with high bandwidth feeds, usually
 multiprocessors and clusters, that are adversely affected by
 copying overhead. Examples of such machines include all varieties
 of servers: database servers, storage servers, application servers
 for transaction processing, for e-commerce, and web serving,
 content distribution, video distribution, backups, data mining and
 decision support, and scientific computing.

 Note that such servers almost exclusively service many concurrent
 sessions (transport connections), which, in aggregate, are
 responsible for > 1 Gbits/s of communication. Nonetheless, the
 cost of copying overhead for a particular load is the same whether
 from few or many sessions.

Talpey & Juszczak Informational [Page 3]

RFC 5532 NFS RDMA Problem Statement May 2009

 Note that each of the servers listed above could be accessing their
 file data as an NFS client, or as NFS serving the data to such
 clients, or acting as both.

 The CPU overhead of the NFS and TCP/IP protocol stacks (including
 data copies or reduced copy workarounds) becomes a significant matter
 in these clients and servers. File access using locally attached
 disks imposes relatively low overhead due to the highly optimized I/O
 path and direct memory access afforded to the storage controller.
 This is not the case with NFS, which must pass data to, and
 especially from, the network and network processing stack to the NFS
 stack. Frequently, data copies are imposed on this transfer; in some
 cases, several such copies are imposed in each direction.

 Copies are potentially encountered in an NFS implementation
 exchanging data to and from user address spaces, within kernel buffer
 caches, in eXternal Data Representation (XDR) marshalling and
 unmarshalling, and within network stacks and network drivers. Other
 overheads such as serialization among multiple threads of execution
 sharing a single NFS mount point and transport connection are
 additionally encountered.

 Numerous upper-layer protocols achieve extremely high bandwidth and
 low overhead through the use of RDMA. [MAF+02] shows that the RDMA-
 based Direct Access File System (with a user-level implementation of
 the file system client) can outperform even a zero-copy
 implementation of NFS [CHA+01] [CHA+99] [GAL+99] [KM02]. Also, file
 data access implies the use of large Unequal Loss Protection (ULP)
 messages. These large messages tend to amortize any increase in
 per-message costs due to the offload of protocol processing incurred
 when using RNICs while gaining the benefits of reduced per-byte
 costs. Finally, the direct memory addressing afforded by RDMA avoids
 many sources of contention on network resources.

2. Problem Statement

 The principal performance problem encountered by NFS implementations
 is the CPU overhead required to implement the protocol. Primary
 among the sources of this overhead is the movement of data from NFS
 protocol messages to its eventual destination in user buffers or
 aligned kernel buffers. Due to the nature of the RPC and XDR
 protocols, the NFS data payload arrives at arbitrary alignment,
 necessitating a copy at the receiver, and the NFS requests are
 completed in an arbitrary sequence.

 The data copies consume system bus bandwidth and CPU time, reducing
 the available system capacity for applications [RFC4297]. To date,
 achieving zero-copy with NFS has required sophisticated, version-

Talpey & Juszczak Informational [Page 4]

RFC 5532 NFS RDMA Problem Statement May 2009

 specific "header cracking" hardware and/or extensive platform-
 specific virtual memory mapping tricks. Such approaches become even
 more difficult for NFS version 4 due to the existence of the COMPOUND
 operation and presence of Kerberos and other security information,
 which further reduce alignment and greatly complicate ULP offload.

 Furthermore, NFS is challenged by high-speed network fabrics such as
 10 Gbits/s Ethernet. Performing even raw network I/O such as TCP is
 an issue at such speeds with today’s hardware. The problem is
 fundamental in nature and has led the IETF to explore RDMA [RFC4297].

 Zero-copy techniques benefit file protocols extensively, as they
 enable direct user I/O, reduce the overhead of protocol stacks,
 provide perfect alignment into caches, etc. Many studies have
 already shown the performance benefits of such techniques [SKE+01]
 [DCK+03] [FJNFS] [FJDAFS] [KM02] [MAF+02].

 RDMA is compelling here for another reason; hardware-offloaded
 networking support in itself does not avoid data copies, without
 resorting to implementing part of the NFS protocol in the Network
 Interface Card (NIC). Support of RDMA by NFS enables the highest
 performance at the architecture level rather than by implementation;
 this enables ubiquitous and interoperable solutions.

 By providing file access performance equivalent to that of local file
 systems, NFS over RDMA will enable applications running on a set of
 client machines to interact through an NFS file system, just as
 applications running on a single machine might interact through a
 local file system.

3. File Protocol Architecture

 NFS runs as an Open Network Computing (ONC) RPC [RFC5531]
 application. Being a file access protocol, NFS is very "rich" in
 data content (versus control information).

 NFS messages can range from very small (under 100 bytes) to very
 large (from many kilobytes to a megabyte or more). They are all
 contained within an RPC message and follow a variable-length RPC
 header. This layout provides an alignment challenge for the data
 items contained in an NFS call (request) or reply (response) message.

 In addition to the control information in each NFS call or reply
 message, sometimes there are large "chunks" of application file data,
 for example, read and write requests. With NFS version 4 (due to the
 existence of the COMPOUND operation), there can be several of these
 data chunks interspersed with control information.

Talpey & Juszczak Informational [Page 5]

RFC 5532 NFS RDMA Problem Statement May 2009

 ONC RPC is a remote procedure call protocol that has been run over a
 variety of transports. Most implementations today use UDP or TCP.
 RPC messages are defined in terms of an eXternal Data Representation
 (XDR) [RFC4506], which provides a canonical data representation
 across a variety of host architectures. An XDR data stream is
 conveyed differently on each type of transport. On UDP, RPC messages
 are encapsulated inside datagrams, while on a TCP byte stream, RPC
 messages are delineated by a record-marking protocol. An RDMA
 transport also conveys RPC messages in a unique fashion that must be
 fully described if client and server implementations are to
 interoperate.

 The RPC transport is responsible for conveying an RPC message from a
 sender to a receiver. An RPC message is either an RPC call from a
 client to a server, or an RPC reply from the server back to the
 client. An RPC message contains an RPC call header followed by
 arguments if the message is an RPC call, or an RPC reply header
 followed by results if the message is an RPC reply. The call header
 contains a transaction ID (XID) followed by the program and procedure
 number as well as a security credential. An RPC reply header begins
 with an XID that matches that of the RPC call message, followed by a
 security verifier and results. All data in an RPC message is XDR
 encoded.

 The encoding of XDR data into transport buffers is referred to as
 "marshalling", and the decoding of XDR data contained within
 transport buffers and into destination RPC procedure result buffers,
 is referred to as "unmarshalling". Therefore, the process of
 marshalling takes place at the sender of any particular message, be
 it an RPC request or an RPC response. Unmarshalling, of course,
 takes place at the receiver.

 Normally, any bulk data is moved (copied) as a result of the
 unmarshalling process, because the destination address is not known
 until the RPC code receives control and subsequently invokes the XDR
 unmarshalling routine. In other words, XDR-encoded data is not
 self-describing, and it carries no placement information. This
 results in a data copy in most NFS implementations.

 One mechanism by which the RPC layer may overcome this is for each
 request to include placement information, to be used for direct
 placement during XDR encode. This "write chunk" can avoid sending
 bulk data inline in an RPC message and generally results in one or
 more RDMA Write operations.

 Similarly, a "read chunk", where placement information referring to
 bulk data that may be directly fetched via one or more RDMA Read
 operations during XDR decode, may be conveyed. The "read chunk" will

Talpey & Juszczak Informational [Page 6]

RFC 5532 NFS RDMA Problem Statement May 2009

 therefore be useful in both RPC calls and replies, while the "write
 chunk" is used solely in replies.

 These "chunks" are the key concept in an existing proposal [RPCRDMA].
 They convey what are effectively pointers to remote memory across the
 network. They allow cooperating peers to exchange data outside of
 XDR encodings but still use XDR for describing the data to be
 transferred. And, finally, through use of XDR they maintain a large
 degree of on-the-wire compatibility.

 The central concept of the RDMA transport is to provide the
 additional encoding conventions to convey this placement information
 in transport-specific encoding, and to modify the XDR handling of
 bulk data.

 Block Diagram

 +------------------------+-----------------------------------+
 | NFS | NFS + RDMA |
 +------------------------+----------------------+------------+
 | Operations / Procedures | |
 +---+ |
 | RPC/XDR | |
 +--------------------------------+--------------+ |
 | Stream Transport | RDMA Transport |
 +--------------------------------+---------------------------+

4. Sources of Overhead

 Network and file protocol costs can be categorized as follows:

 o per-byte costs - data touching costs such as checksum or data
 copy. Today’s network interface hardware commonly offloads the
 checksum, which leaves the other major source of per-byte
 overhead, data copy.

 o per-packet costs - interrupts and lower-layer processing (LLP).
 Today’s network interface hardware also commonly coalesce
 interrupts to reduce per-packet costs.

 o per-message (request or response) costs - LLP and ULP processing.

 Improvement from optimization becomes more important if the overhead
 it targets is a larger share of the total cost. As other sources of
 overhead, such as the checksumming and interrupt handling above are
 eliminated, the remaining overheads (primarily data copy) loom
 larger.

Talpey & Juszczak Informational [Page 7]

RFC 5532 NFS RDMA Problem Statement May 2009

 With copies crossing the bus twice per copy, network processing
 overhead is high whenever network bandwidth is large in comparison to
 CPU and memory bandwidths. Generally, with today’s end-systems, the
 effects are observable at network speeds at or above 1 Gbit/s.

 A common question is whether an increase in CPU processing power
 alleviates the problem of high processing costs of network I/O. The
 answer is no, it is the memory bandwidth that is the issue. Faster
 CPUs do not help if the CPU spends most of its time waiting for
 memory [RFC4297].

 TCP offload engine (TOE) technology aims to offload the CPU by moving
 TCP/IP protocol processing to the NIC. However, TOE technology by
 itself does nothing to avoid necessary data copies within upper-layer
 protocols. [MOG03] provides a description of the role TOE can play
 in reducing per-packet and per-message costs. Beyond the offloads
 commonly provided by today’s network interface hardware, TOE alone
 (without RDMA) helps in protocol header processing, but this has been
 shown to be a minority component of the total protocol processing
 overhead. [CHA+01]

 Numerous software approaches to the optimization of network
 throughput have been made. Experience has shown that network I/O
 interacts with other aspects of system processing such as file I/O
 and disk I/O [BRU99] [CHU96]. Zero-copy optimizations based on page
 remapping [CHU96] can be dependent upon machine architecture, and are
 not scalable to multi-processor architectures. Correct buffer
 alignment and sizing together are needed to optimize the performance
 of zero-copy movement mechanisms [SKE+01]. The NFS message layout
 described above does not facilitate the splitting of headers from
 data nor does it facilitate providing correct data buffer alignment.

4.1. Savings from TOE

 The expected improvement of TOE specifically for NFS protocol
 processing can be quantified and shown to be fundamentally limited.
 [SHI+03] presents a set of "LAWS" parameters that serve to illustrate
 the issues. In the TOE case, the copy cost can be viewed as part of
 the application processing "a". Application processing increases the
 LAWS "gamma", which is shown by the paper to result in a diminished
 benefit for TOE.

 For example, if the overhead is 20% TCP/IP, 30% copy, and 50% real
 application work, then gamma is 80/20 or 4, which means the maximum
 benefit of TOE is 1/gamma, or only 25%.

 For RDMA (with embedded TOE) and the same example, the "overhead" (o)
 offloaded or eliminated is 50% (20% + 30%). Therefore, in the RDMA

Talpey & Juszczak Informational [Page 8]

RFC 5532 NFS RDMA Problem Statement May 2009

 case, gamma is 50/50 or 1, and the inverse gives the potential
 benefit of 1 (100%), a factor of two.

 CPU Overhead Reduction Factor

 No Offload TCP Offload RDMA Offload
 -----------+-------------+-------------
 1.00x 1.25x 2.00x

 The analysis in the paper shows that RDMA could improve throughput by
 the same factor of two, even when the host is (just) powerful enough
 to drive the full network bandwidth without RDMA. It can also be
 shown that the speedup may be higher if network bandwidth grows
 faster than Moore’s Law, although the higher benefits will apply to a
 narrow range of applications.

4.2. Savings from RDMA

 Performance measurements directly comparing an NFS-over-RDMA
 prototype with conventional network-based NFS processing are
 described in [CAL+03]. Comparisons of Read throughput and CPU
 overhead were performed on two types of Gigabit Ethernet adapters,
 one type being a conventional adapter, and another type with RDMA
 capability. The prototype RDMA protocol performed all transfers via
 RDMA Read. The NFS layer in the study was measured while performing
 read transfers, varying the transfer size and readahead depth across
 ranges used by typical NFS deployments.

 In these results, conventional network-based throughput was severely
 limited by the client’s CPU being saturated at 100% for all
 transfers. Read throughput reached no more than 60 MBytes/s.

 I/O Type Size Read Throughput CPU Utilization
 Conventional 2 KB 20 MB/s 100%
 Conventional 16 KB 40 MB/s 100%
 Conventional 256 KB 60 MB/s 100%

 However, over RDMA, throughput rose to the theoretical maximum
 throughput of the platform, while saturating the single-CPU system
 only at maximum throughput.

 I/O Type Size Read Throughput CPU Utilization
 RDMA 2 KB 10 MB/s 45%
 RDMA 16 KB 40 MB/s 70%
 RDMA 256 KB 100 MB/s 100%

 The lower relative throughput of the RDMA prototype at the small
 blocksize may be attributable to the RDMA Read imposed by the

Talpey & Juszczak Informational [Page 9]

RFC 5532 NFS RDMA Problem Statement May 2009

 prototype protocol, which reduced the operation rate since it
 introduces additional latency. As well, it may reflect the relative
 increase of per-packet setup costs within the DMA portion of the
 transfer.

5. Application of RDMA to NFS

 Efficient file protocols require efficient data positioning and
 movement. The client system knows the client memory address where
 the application has data to be written or wants read data deposited.
 The server system knows the server memory address where the local
 file system will accept write data or has data to be read. Neither
 peer however is aware of the others’ data destination in the current
 NFS, RPC, or XDR protocols. Existing NFS implementations have
 struggled with the performance costs of data copies when using
 traditional Ethernet transports.

 With the onset of faster networks, the network I/O bottleneck will
 worsen. Fortunately, new transports that support RDMA have emerged.
 RDMA excels at bulk transfer efficiency; it is an efficient way to
 deliver direct data placement and remove a major part of the problem:
 data copies. RDMA also addresses other overheads, e.g., underlying
 protocol offload, and offers separation of control information from
 data.

 The current NFS message layout provides the performance-enhancing
 opportunity for an NFS-over-RDMA protocol that separates the control
 information from data chunks while meeting the alignment needs of
 both. The data chunks can be copied "directly" between the client
 and server memory addresses above (with a single occurrence on each
 memory bus) while the control information can be passed "inline".
 [RPCRDMA] describes such a protocol.

6. Conclusions

 NFS version 4 [RFC3530] has been granted "Proposed Standard" status.
 The NFSv4 protocol was developed along several design points,
 important among them: effective operation over wide-area networks,
 including the Internet itself; strong security integrated into the
 protocol; extensive cross-platform interoperability including
 integrated locking semantics compatible with multiple operating
 systems; and (this is key), protocol extension.

 NFS version 4 is an excellent base on which to add the needed
 performance enhancements and improved semantics described above. The
 minor versioning support defined in NFS version 4 was designed to
 support protocol improvements without disruption to the installed
 base [NFSv4.1]. Evolutionary improvement of the protocol via minor

Talpey & Juszczak Informational [Page 10]

RFC 5532 NFS RDMA Problem Statement May 2009

 versioning is a conservative and cautious approach to current and
 future problems and shortcomings.

 Many arguments can be made as to the efficacy of the file abstraction
 in meeting the future needs of enterprise data service and the
 Internet. Fine grained Quality of Service (QoS) policies (e.g., data
 delivery, retention, availability, security, etc.) are high among
 them.

 It is vital that the NFS protocol continue to provide these benefits
 to a wide range of applications, without its usefulness being
 compromised by concerns about performance and semantic inadequacies.
 This can reasonably be addressed in the existing NFS protocol
 framework. A cautious evolutionary improvement of performance and
 semantics allows building on the value already present in the NFS
 protocol, while addressing new requirements that have arisen from the
 application of networking technology.

7. Security Considerations

 The NFS protocol, in conjunction with its layering on RPC, provides a
 rich and widely interoperable security model to applications and
 systems. Any layering of NFS-over-RDMA transports must address the
 NFS security requirements, and additionally must ensure that no new
 vulnerabilities are introduced. For RDMA, the integrity, and any
 privacy, of the data stream are of particular importance.

 The core goals of an NFS-to-RDMA binding are to reduce overhead and
 to enable high performance. To support these goals while maintaining
 required NFS security protection presents a special challenge.
 Historically, the provision of integrity and privacy have been
 implemented within the RPC layer, and their operation requires local
 processing of messages exchanged with the RPC peer. This processing
 imposes memory and processing overhead on a per-message basis,
 exactly the overhead that RDMA is designed to avoid.

 Therefore, it is a requirement that the RDMA transport binding
 provide a means to delegate the integrity and privacy processing to
 the RDMA hardware, in order to maintain the high level of performance
 desired from the approach, while simultaneously providing the
 existing highest levels of security required by the NFS protocol.
 This in turn requires a means by which the RPC layer may invoke these
 services from the RDMA provider, and for the NFS layer to negotiate
 their use end-to-end.

 The "Channel Binding" concept [RFC5056] together with "IPsec Channel
 Connection Latching" [BTNSLATCH] provide a means by which the RPC and
 NFS layers may delegate their session protection to the lower RDMA

Talpey & Juszczak Informational [Page 11]

RFC 5532 NFS RDMA Problem Statement May 2009

 layers. An extension to the RPCSEC_GSS protocol [RFC5403] may be
 employed to negotiate the use of these bindings, and to establish the
 shared secrets necessary to protect the sessions.

 The protocol described in [RPCRDMA] specifies the use of these
 mechanisms, and they are required to implement the protocol.

 An additional consideration is protection of the integrity and
 privacy of local memory by the RDMA transport itself. The use of
 RDMA by NFS must not introduce any vulnerabilities to system memory
 contents, or to memory owned by user processes. These protections
 are provided by the RDMA layer specifications, and specifically their
 security models. It is required that any RDMA provider used for NFS
 transport be conformant to the requirements of [RFC5042] in order to
 satisfy these protections.

8. Acknowledgments

 The authors wish to thank Jeff Chase who provided many useful
 suggestions.

9. References

9.1. Normative References

 [RFC3530] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "Network File
 System (NFS) version 4 Protocol", RFC 3530, April 2003.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, May 2009.

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, May 2006.

 [RFC1813] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS
 Version 3 Protocol Specification", RFC 1813, June 1995.

 [RFC5403] Eisler, M., "RPCSEC_GSS Version 2", RFC 5403, February
 2009.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC5042] Pinkerton, J. and E. Deleganes, "Direct Data Placement
 Protocol (DDP) / Remote Direct Memory Access Protocol
 (RDMAP) Security", RFC 5042, October 2007.

Talpey & Juszczak Informational [Page 12]

RFC 5532 NFS RDMA Problem Statement May 2009

9.2. Informative References

 [BRU99] J. Brustoloni, "Interoperation of copy avoidance in
 network and file I/O", in Proc. INFOCOM ’99, pages 534-
 542, New York, NY, Mar. 1999., IEEE. Also available from
 http://www.cs.pitt.edu/˜jcb/publs.html.

 [BTNSLATCH] Williams, N., "IPsec Channels: Connection Latching", Work
 in Progress, November 2008.

 [CAL+03] B. Callaghan, T. Lingutla-Raj, A. Chiu, P. Staubach, O.
 Asad, "NFS over RDMA", in Proceedings of ACM SIGCOMM
 Summer 2003 NICELI Workshop.

 [CHA+01] J. S. Chase, A. J. Gallatin, K. G. Yocum, "Endsystem
 optimizations for high-speed TCP", IEEE Communications,
 39(4):68-74, April 2001.

 [CHA+99] J. S. Chase, D. C. Anderson, A. J. Gallatin, A. R.
 Lebeck, K. G. Yocum, "Network I/O with Trapeze", in 1999
 Hot Interconnects Symposium, August 1999.

 [CHU96] H.K. Chu, "Zero-copy TCP in Solaris", Proc. of the USENIX
 1996 Annual Technical Conference, San Diego, CA, January
 1996.

 [DCK+03] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent, D.
 Noveck, T. Talpey, M. Wittle, "The Direct Access File
 System", in Proceedings of 2nd USENIX Conference on File
 and Storage Technologies (FAST ’03), San Francisco, CA,
 March 31 - April 2, 2003.

 [FJDAFS] Fujitsu Prime Software Technologies, "Meet the DAFS
 Performance with DAFS/VI Kernel Implementation using
 cLAN", available from
 http://www.pst.fujitsu.com/english/dafsdemo/index.html,
 2001.

 [FJNFS] Fujitsu Prime Software Technologies, "An Adaptation of
 VIA to NFS on Linux", available from
 http://www.pst.fujitsu.com/english/nfs/index.html, 2000.

 [GAL+99] A. Gallatin, J. Chase, K. Yocum, "Trapeze/IP: TCP/IP at
 Near-Gigabit Speeds", 1999 USENIX Technical Conference
 (Freenix Track), June 1999.

Talpey & Juszczak Informational [Page 13]

RFC 5532 NFS RDMA Problem Statement May 2009

 [KM02] K. Magoutis, "Design and Implementation of a Direct
 Access File System (DAFS) Kernel Server for FreeBSD", in
 Proceedings of USENIX BSDCon 2002 Conference, San
 Francisco, CA, February 11-14, 2002.

 [MAF+02] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J.
 Chase, D. Gallatin, R. Kisley, R. Wickremesinghe, E.
 Gabber, "Structure and Performance of the Direct Access
 File System (DAFS)", in Proceedings of 2002 USENIX Annual
 Technical Conference, Monterey, CA, June 9-14, 2002.

 [MOG03] J. Mogul, "TCP offload is a dumb idea whose time has
 come", 9th Workshop on Hot Topics in Operating Systems
 (HotOS IX), Lihue, HI, May 2003. USENIX.

 [NFSv4.1] Shepler, S., Eisler, M., and D. Noveck, "NFSv4 Minor
 Version 1", Work in Progress, September 2008.

 [PAI+00] V. S. Pai, P. Druschel, W. Zwaenepoel, "IO-Lite: a
 unified I/O buffering and caching system", ACM Trans.
 Computer Systems, 18(1):37-66, Feb. 2000.

 [RDDP] RDDP Working Group charter,
 http://www.ietf.org/html.charters/rddpcharter.html.

 [RFC4297] Romanow, A., Mogul, J., Talpey, T., and S. Bailey,
 "Remote Direct Memory Access (RDMA) over IP Problem
 Statement", RFC 4297, December 2005.

 [RFC1094] Sun Microsystems, "NFS: Network File System Protocol
 specification", RFC 1094, March 1989.

 [RPCRDMA] Talpey, T. and B. Callaghan, "Remote Direct Memory Access
 Transport for Remote Procedure Call", Work in Progress,
 April 2008.

 [SHI+03] P. Shivam, J. Chase, "On the Elusive Benefits of Protocol
 Offload", Proceedings of ACM SIGCOMM Summer 2003 NICELI
 Workshop, also available from
 http://issg.cs.duke.edu/publications/niceli03.pdf.

 [SKE+01] K.-A. Skevik, T. Plagemann, V. Goebel, P. Halvorsen,
 "Evaluation of a Zero-Copy Protocol Implementation", in
 Proceedings of the 27th Euromicro Conference - Multimedia
 and Telecommunications Track (MTT’2001), Warsaw, Poland,
 September 2001.

Talpey & Juszczak Informational [Page 14]

RFC 5532 NFS RDMA Problem Statement May 2009

Authors’ Addresses

 Tom Talpey
 170 Whitman St.
 Stow, MA 01775 USA

 Phone: +1 978 821-8577
 EMail: tmtalpey@gmail.com

 Chet Juszczak
 P.O. Box 1467
 Merrimack, NH 03054

 Phone: +1 603 253-6602
 EMail: chetnh@earthlink.net

Talpey & Juszczak Informational [Page 15]

