
Network Working Group M. Garcia-Martin
Request for Comments: 5547 Ericsson
Category: Standards Track M. Isomaki
 Nokia
 G. Camarillo
 S. Loreto
 Ericsson
 P. Kyzivat
 Cisco Systems
 May 2009

 A Session Description Protocol (SDP) Offer/Answer Mechanism
 to Enable File Transfer

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 This document provides a mechanism to negotiate the transfer of one
 or more files between two endpoints by using the Session Description
 Protocol (SDP) offer/answer model specified in RFC 3264. SDP is
 extended to describe the attributes of the files to be transferred.
 The offerer can describe either the files it wants to send or the
 files it would like to receive. The answerer can either accept or
 reject the offer separately for each individual file. The transfer
 of one or more files is initiated after a successful negotiation.
 The Message Session Relay Protocol (MSRP) is defined as the default
 mechanism to actually carry the files between the endpoints. The
 conventions on how to use MSRP for file transfer are also provided in
 this document.

Garcia-Martin, et al. Standards Track [Page 1]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

Table of Contents

 1. Introduction ..3
 2. Terminology ...4
 3. Definitions ...4
 4. Overview of Operation ...5
 5. File Selector ...6
 6. Extensions to SDP ...7
 7. File Disposition Types ...13
 8. Protocol Operation ...13
 8.1. The ’file-transfer-id’ Attribute14
 8.2. Offerer’s Behavior ..17
 8.2.1. The Offerer Is a File Sender17
 8.2.2. The Offerer Is a File Receiver18
 8.2.3. SDP Offer for Several Files18
 8.3. Answerer’s Behavior19
 8.3.1. The Answerer Is a File Receiver19
 8.3.2. The Answerer Is a File Sender20
 8.4. Aborting an Ongoing File Transfer Operation22
 8.5. Indicating File Transfer Offer/Answer Capability25
 8.6. Reusage of Existing "m=" Lines in SDP26
 8.7. MSRP Usage ..26
 8.8. Considerations about the ’file-icon’ Attribute28
 9. Examples ...28
 9.1. Offerer Sends a File to the Answerer28
 9.2. Offerer Requests a File from the Answerer and
 Second File Transfer33
 9.3. Example of a Capability Indication40
 10. Security Considerations41
 11. IANA Considerations ...42
 11.1. Registration of New SDP Attributes42
 11.1.1. Registration of the file-selector Attribute43
 11.1.2. Registration of the file-transfer-id Attribute43
 11.1.3. Registration of the file-disposition Attribute43
 11.1.4. Registration of the file-date Attribute44
 11.1.5. Registration of the file-icon Attribute44
 11.1.6. Registration of the file-range Attribute45
 12. Acknowledgments ...45
 13. References ..45
 13.1. Normative References45
 13.2. Informative References46
 Appendix A. Alternatives Considered48

Garcia-Martin, et al. Standards Track [Page 2]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

1. Introduction

 The Session Description Protocol (SDP) offer/answer [RFC3264]
 provides a mechanism for two endpoints to arrive at a common view of
 a multimedia session between them. These sessions often contain
 real-time media streams such as voice and video, but are not limited
 to that. Basically, any media component type can be supported, as
 long as there is a specification how to negotiate it within the SDP
 offer/answer exchange.

 The Message Session Relay Protocol (MSRP) [RFC4975] is a protocol for
 transmitting instant messages (IMs) in the context of a session. The
 protocol specification describes the usage of SDP for establishing an
 MSRP session. In addition to plain text messages, MSRP is able to
 carry arbitrary (binary) Multipurpose Internet Mail Extensions (MIME)
 [RFC2045] compliant content, such as images or video clips.

 There are many cases where the endpoints involved in a multimedia
 session would like to exchange files within the context of that
 session. With MSRP, it is possible to embed files as MIME objects
 inside the stream of instant messages. MSRP also has other features
 that are useful for file transfer. Message chunking enables the
 sharing of the same transport connection between the transfer of a
 large file and interactive IM exchange without blocking the IM. MSRP
 relays [RFC4976] provide a mechanism for Network Address Translator
 (NAT) traversal. Finally, Secure MIME (S/MIME) [RFC3851] can be used
 for ensuring the integrity and confidentiality of the transferred
 content.

 However, the baseline MSRP does not readily meet all the requirements
 for file transfer services within multimedia sessions. There are
 four main missing features:

 o The recipient must be able to distinguish "file transfer" from
 "file attached to IM", allowing the recipient to treat the cases
 differently.

 o It must be possible for the sender to send the request for a file
 transfer. It must be possible for the recipient to accept or
 decline it, using the meta information in the request. The actual
 transfer must take place only after acceptance by the recipient.

 o It must be possible for the sender to pass some meta information
 on the file before the actual transfer. This must be able to
 include at least content type, size, hash, and name of the file,
 as well as a short (human readable) description.

Garcia-Martin, et al. Standards Track [Page 3]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 o It must be possible for the recipient to request a file from the
 sender, providing meta information about the file. The sender
 must be able to decide whether to send a file matching the
 request.

 The rest of this document is organized as follows. Section 3 defines
 a few terms used in this document. Section 4 provides the overview
 of operation. Section 5 introduces the concept of the file selector.
 The detailed syntax and semantics of the new SDP attributes and
 conventions on how the existing ones are used are defined in
 Section 6. Section 7 discusses the file disposition types.
 Section 8 describes the protocol operation involving SDP and MSRP.
 Finally, some examples are given in Section 9.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

3. Definitions

 For the purpose of this document, the following definitions specified
 in RFC 3264 [RFC3264] apply:

 o Answer

 o Answerer

 o Offer

 o Offerer

 Additionally, we define the following terms:

 File sender: The endpoint that is willing to send a file to the file
 receiver.

 File receiver: The endpoint that is willing to receive a file from
 the file sender.

 File selector: A tuple of file attributes that the SDP offerer
 includes in the SDP in order to select a file at the SDP answerer.
 This is described in more detail in Section 5.

Garcia-Martin, et al. Standards Track [Page 4]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 Push operation: A file transfer operation where the SDP offerer
 takes the role of the file sender and the SDP answerer takes the
 role of the file receiver.

 Pull operation: A file transfer operation where the SDP offerer
 takes the role of the file receiver and the SDP answerer takes the
 role of the file sender.

4. Overview of Operation

 An SDP offerer creates an SDP body that contains the description of
 one or more files that the offerer wants to send or receive. The
 offerer sends the SDP offer to the remote endpoint. The SDP answerer
 can accept or reject the transfer of each of those files separately.

 The actual file transfer is carried out using the Message Session
 Relay Protocol (MSRP) [RFC4975]. Each SDP "m=" line describes an
 MSRP media stream used to transfer a single file at a time. That is,
 the transfer of multiple simultaneous files requires multiple "m="
 lines and corresponding MSRP media streams. It should be noted that
 multiple MSRP media streams can share a single transport layer
 connection, so this mechanism will not lead to excessive use of
 transport resources.

 Each "m=" line for an MSRP media stream is accompanied with a few
 attributes describing the file to be transferred. If the file sender
 generates the SDP offer, the attributes describe a local file to be
 sent (push), and the file receiver can use this information to either
 accept or reject the transfer. However, if the SDP offer is
 generated by the file receiver, the attributes are intended to
 characterize a particular file that the file receiver is willing to
 get (pull) from the file sender. It is possible that the file sender
 does not have a matching file or does not want to send the file, in
 which case the offer is rejected.

 The attributes describing each file are provided in SDP by a set of
 new SDP attributes, most of which have been directly borrowed from
 MIME. This way, user agents can decide whether or not to accept a
 given file transfer based on the file’s name, size, description,
 hash, icon (e.g., if the file is a picture), etc.

 SDP direction attributes (e.g., ’sendonly’, ’recvonly’) are used to
 indicate the direction of the transfer, i.e., whether the SDP offerer
 is willing to send or receive the file. Assuming that the answerer
 accepts the file transfer, the actual transfer of the files takes

Garcia-Martin, et al. Standards Track [Page 5]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 place with ordinary MSRP. Note that the ’sendonly’ and ’recvonly’
 attributes refer to the direction of MSRP SEND requests and do not
 preclude other protocol elements (such as 200 responses, REPORT
 requests, etc.).

 In principle the file transfer can work even with an endpoint
 supporting only regular MSRP without understanding the extensions
 defined herein, in a particular case where that endpoint is both
 the SDP answerer and the file receiver. The regular MSRP endpoint
 answers the offer as it would answer any ordinary MSRP offer
 without paying attention to the extension attributes. In such a
 scenario, the user experience would, however, be reduced, since
 the recipient would not know (by any protocol means) the reason
 for the session and would not be able to accept/reject it based on
 the file attributes.

5. File Selector

 When the file receiver generates the SDP offer, this SDP offer needs
 to unambiguously identify the requested file at the file sender. For
 this purpose, we introduce the notion of a file selector, which is a
 tuple composed of one or more of the following individual selectors:
 the name, size, type, and hash of the file. The file selector can
 include any number of selectors, so all four of them do not always
 need to be present.

 The purpose of the file selector is to provide enough information
 about the file to the remote entity, so that both the local and the
 remote entity can refer to the same file. The file selector is
 encoded in a ’file-selector’ media attribute in SDP. The formal
 syntax of the ’file-selector’ media attribute is described in
 Figure 1.

 The file selection process is applied to all the available files at
 the host. The process selects those files that match each of the
 selectors present in the ’file-selector’ attribute. The result can
 be zero, one, or more files, depending on the presence of the
 mentioned selectors in the SDP and depending on the available files
 in a host. The file transfer mechanism specified in this document
 requires that a file selector eventually results at most in a single
 file to be chosen. Typically, if the hash selector is known, it is
 enough to produce a file selector that points to exactly zero or one
 file. However, a file selector that selects a unique file is not
 always known by the offerer. Sometimes only the name, size, or type
 of file is known, so the file selector may result in selecting more
 than one file, which is an undesired case. The opposite is also
 true: if the file selector contains a hash selector and a name
 selector, there is a risk that the remote host has renamed the file,

Garcia-Martin, et al. Standards Track [Page 6]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 in which case, although a file whose computed hash equals the hash
 selector exists, the file name does not match that of the name
 selector. Thus, in this case, the file selection process will result
 in the selection of zero files.

 This specification uses the Secure Hash Algorithm 1, SHA-1 [RFC3174].
 If future needs require adding support for different hashing
 algorithms, they will be specified as extensions to this document.

 Implementations according to this specification MUST implement the
 ’file-selector’ attribute and MAY implement any of the other
 attributes specified in this specification. SDP offers and answers
 for file transfer MUST contain a ’file-selector’ media attribute that
 selects the file to be transferred and MAY contain any of the other
 attributes specified in this specification.

 The ’file-selector’ media attribute is also useful when learning the
 support of the file transfer offer/answer capability that this
 document specifies. This is further explained in Section 8.5.

6. Extensions to SDP

 We define a number of new SDP [RFC4566] attributes that provide the
 required information to describe the transfer of a file with MSRP.
 These are all media-level-only attributes in SDP. The following is
 the formal ABNF syntax [RFC5234] of these new attributes. It is
 built above the SDP [RFC4566] grammar, RFC 2045 [RFC2045], RFC 2183
 [RFC2183], RFC 2392 [RFC2392], and RFC 5322 [RFC5322].

 attribute =/ file-selector-attr / file-disp-attr /
 file-tr-id-attr / file-date-attr /
 file-icon-attr / file-range-attr
 ; attribute is defined in RFC 4566

 file-selector-attr = "file-selector" [":" selector *(SP selector)]
 selector = filename-selector / filesize-selector /
 filetype-selector / hash-selector

 filename-selector = "name:" DQUOTE filename-string DQUOTE
 ; DQUOTE defined in RFC 5234
 filename-string = 1*(filename-char/percent-encoded)
 filename-char = %x01-09/%x0B-0C/%x0E-21/%x23-24/%x26-FF
 ; any byte except NUL, CR, LF,
 ; double quotes, or percent
 percent-encoded = "%" HEXDIG HEXDIG
 ; HEXDIG defined in RFC 5234

 filesize-selector = "size:" filesize-value

Garcia-Martin, et al. Standards Track [Page 7]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 filesize-value = integer ;integer defined in RFC 4566

 filetype-selector = "type:" type "/" subtype *(";" ft-parameter)
 ft-parameter = attribute "=" DQUOTE value-string DQUOTE
 ; attribute is defined in RFC 2045
 ; free insertion of linear-white-space is not
 ; permitted in this context.
 ; note: value-string has to be re-encoded
 ; when translating between this and a
 ; Content-Type header.
 value-string = filename-string

 hash-selector = "hash:" hash-algorithm ":" hash-value
 hash-algorithm = token ; see IANA Hash Function
 ; Textual Names registry
 ; only "sha-1" currently supported
 hash-value = 2HEXDIG *(":" 2HEXDIG)
 ; Each byte in upper-case hex, separated
 ; by colons.
 ; HEXDIG defined in RFC 5234

 file-tr-id-attr = "file-transfer-id:" file-tr-id-value
 file-tr-id-value = token

 file-disp-attr = "file-disposition:" file-disp-value
 file-disp-value = token

 file-date-attr = "file-date:" date-param *(SP date-param)

 date-param = c-date-param / m-date-param / r-date-param
 c-date-param = "creation:" DQUOTE date-time DQUOTE
 m-date-param = "modification:" DQUOTE date-time DQUOTE
 r-date-param = "read:" DQUOTE date-time DQUOTE
 ; date-time is defined in RFC 5322
 ; numeric timezones (+HHMM or -HHMM)
 ; must be used
 ; DQUOTE defined in RFC 5234 files.

 file-icon-attr = "file-icon:" file-icon-value
 file-icon-value = cid-url ; cid-url defined in RFC 2392

 file-range-attr = "file-range:" start-offset "-" stop-offset
 start-offset = integer ; integer defined in RFC 4566
 stop-offset = integer / "*"

 Figure 1: Syntax of the SDP extension

Garcia-Martin, et al. Standards Track [Page 8]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 When used for capability query (see Section 8.5), the ’file-selector’
 attribute MUST NOT contain any selector, because its presence merely
 indicates compliance to this specification.

 When used in an SDP offer or answer, the ’file-selector’ attribute
 MUST contain at least one selector. Selectors characterize the file
 to be transferred. There are four selectors in this attribute:
 ’name’, ’size’, ’type’, and ’hash’.

 The ’name’ selector in the ’file-selector’ attribute contains the
 filename of the content enclosed in double quotes. The filename is
 encoded in UTF-8 [RFC3629]. Its value SHOULD be the same as the
 ’filename’ parameter of the Content-Disposition header field
 [RFC2183] that would be signaled by the actual file transfer. If a
 file name contains double quotes or any other character that the
 syntax does not allow in the ’name’ selector, they MUST be percent-
 encoded. The ’name’ selector MUST NOT contain characters that can be
 interpreted as directory structure by the local operating system. If
 such characters are present in the file name, they MUST be percent-
 encoded.

 Note that the ’name’ selector might still contain characters that,
 although not meaningful for the local operating system, might
 still be meaningful to the remote operating system (e.g., ’\’,
 ’/’, ’:’). Therefore, implementations are responsible for
 sanitizing the input received from the remote endpoint before
 doing a local operation in the local file system, such as the
 creation of a local file. Among other things, implementations can
 percent-encode characters that are meaningful to the local
 operating system before doing file system local calls.

 The ’size’ selector in the ’file-selector’ attribute indicates the
 size of the file in octets. The value of this attribute SHOULD be
 the same as the ’size’ parameter of the Content-Disposition header
 field [RFC2183] that would be signaled by the actual file transfer.
 Note that the ’size’ selector merely includes the file size, and does
 not include any potential overhead added by a wrapper, such as
 message/cpim [RFC3862].

 The ’type’ selector in the ’file-selector’ attribute contains the
 MIME media and submedia types of the content. In general, anything
 that can be expressed in a Content-Type header field (see RFC 2045
 [RFC2045]) can also be expressed with the ’type’ selectors. Possible
 MIME Media Type values are the ones listed in the IANA registry for
 MIME Media Types [IANA]. Zero or more parameters can follow. When

Garcia-Martin, et al. Standards Track [Page 9]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 translating parameters from a Content-Type header and a ’type’
 selector, the parameter has to be re-encoded prior to its
 accommodation as a parameter of the ’type’ selector (see the ABNF
 syntax of ’ft-parameter’).

 The ’hash’ selector in the ’file-selector’ attribute provides a hash
 computation of the file to be transferred. This is commonly used by
 file transfer protocols. For example, FLUTE [FLUTE-REV] uses hashes
 (called message digests) to verify the contents of the transfer. The
 purpose of the ’hash’ selector is two-fold: On one side, in pull
 operations, it allows the file receiver to identify a remote file by
 its hash rather than by its file name, providing that the file
 receiver has learned the hash of the remote file by some out-of-band
 mechanism. On the other side, in either push or pull operations, it
 allows the file receiver to verify the contents of the received file,
 or even avoid unnecessary transmission of an existing file.

 The address space of the SHA-1 algorithm is big enough to avoid
 any collision in hash computations in between two endpoints. When
 transferring files, the actual file transfer protocol should
 provide reliable transmission of data, so verifications of
 received files should always succeed. However, if endpoints need
 to protect the integrity of a file, they should use some other
 mechanism than the ’hash’ selector specified in this memo.

 The ’hash’ selector includes the hash algorithm and its value.
 Possible hash algorithms are those defined in the IANA registry of
 Hash Function Textual Names [IANA]. Implementations according to
 this specification MUST add a 160-bit string resulting from the
 computation of US Secure Hash Algorithm 1 (SHA1) [RFC3174] if the
 ’hash’ selector is present. If need arises, extensions can be
 drafted to support several hashing algorithms. Therefore,
 implementations according to this specification MUST be prepared to
 receive SDP containing more than a single ’hash’ selector in the
 ’file-selector’ attribute.

 The value of the ’hash’ selector is the byte string resulting from
 applying the hash algorithm to the content of the whole file, even
 when the file transfer is limited to a number of octets (i.e., the
 ’file-range’ attribute is indicated).

 The ’file-transfer-id’ attribute provides a randomly chosen globally
 unique identification to the actual file transfer. It is used to
 distinguish a new file transfer request from a repetition of the SDP
 (or the fraction of the SDP that deals with the file description).
 This attribute is described in much greater detail in Section 8.1.

Garcia-Martin, et al. Standards Track [Page 10]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 The ’file-disposition’ attribute provides a suggestion to the other
 endpoint about the intended disposition of the file. Section 7
 provides further discussion of the possible values. The value of
 this attribute SHOULD be the same as the disposition type parameter
 of the Content-Disposition header field [RFC2183] that would be
 signaled by the actual file transfer protocol.

 The ’file-date’ attribute indicates the dates on which the file was
 created, modified, or last read. This attribute MAY contain a
 combination of the ’creation’, ’modification’, and ’read’ parameters,
 but MUST NOT contain more than one of each type .

 The ’creation’ parameter indicates the date on which the file was
 created. The value MUST be a quoted string that contains a
 representation of the creation date of the file in RFC 5322 [RFC5322]
 ’date-time’ format. Numeric timezones (+HHMM or -HHMM) MUST be used.
 The value of this parameter SHOULD be the same as the ’creation-date’
 parameter of the Content-Disposition header field [RFC2183] that
 would be signaled by the actual file transfer protocol.

 The ’modification’ parameter indicates the date on which the file was
 last modified. The value MUST be a quoted string that contains a
 representation of the last modification date to the file in RFC 5322
 [RFC5322] ’date-time’ format. Numeric timezones (+HHMM or -HHMM)
 MUST be used. The value of this parameter SHOULD be the same as the
 ’modification-date’ parameter of the Content-Disposition header field
 [RFC2183] that would be signaled by the actual file transfer
 protocol.

 The ’read’ parameter indicates the date on which the file was last
 read. The value MUST be a quoted string that contains a
 representation of the last date the file was read in RFC 5322
 [RFC5322] ’date-time’ format. Numeric timezones (+HHMM or -HHMM)
 MUST be used. The value of this parameter SHOULD be the same as the
 ’read-date’ parameter of the Content-Disposition header field
 [RFC2183] that would be signaled by the actual file transfer
 protocol.

 The ’file-icon’ attribute can be useful with certain file types such
 as images. It allows the file sender to include a pointer to a body
 that includes a small preview icon representing the contents of the
 file to be transferred, which the file receiver can use to determine
 whether it wants to receive such file. The ’file-icon’ attribute
 contains a Content-ID URL, which is specified in RFC 2392 [RFC2392].
 Section 8.8 contains further considerations about the ’file-icon’
 attribute.

Garcia-Martin, et al. Standards Track [Page 11]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 The ’file-range’ attribute provides a mechanism to signal a chunk of
 a file rather than the complete file. This enables use cases where a
 file transfer can be interrupted and resumed, even perhaps changing
 one of the endpoints. The ’file-range’ attribute contains the "start
 offset" and "stop offset" of the file, separated by a dash "-". The
 "start offset" value refers to the octet position of the file where
 the file transfer should start. The first octet of a file is denoted
 by the ordinal number "1". The "stop offset" value refers to the
 octet position of the file where the file transfer should stop,
 inclusive of this octet. The "stop offset" value MAY contain a "*"
 if the total size of the file is not known in advance. The absence
 of this attribute indicates a complete file, i.e., as if the ’file-
 range’ attribute would have been present with a value "1-*". The
 ’file-range’ attribute must not be confused with the Byte-Range
 header in MSRP. The former indicates the portion of a file that the
 application would read and pass onto the MSRP stack for
 transportation. From the point of view of MSRP, the portion of the
 file is viewed as a whole message. The latter indicates the number
 of bytes of that message that are carried in a chunk and the total
 size of the message. Therefore, MSRP starts counting the delivered
 message at octet number 1, independently of the position of that
 octet in the file.

 The following is an example of an SDP body that contains the
 extensions defined in this memo:

 v=0
 o=alice 2890844526 2890844526 IN IP4 host.atlanta.example.com
 s=
 c=IN IP4 host.atlanta.example.com
 t=0 0
 m=message 7654 TCP/MSRP *
 i=This is my latest picture
 a=sendonly
 a=accept-types:message/cpim
 a=accept-wrapped-types:*
 a=path:msrp://atlanta.example.com:7654/jshA7we;tcp
 a=file-selector:name:"My cool picture.jpg" type:image/jpeg
 size:32349 hash:sha-1:
 72:24:5F:E8:65:3D:DA:F3:71:36:2F:86:D4:71:91:3E:E4:A2:CE:2E
 a=file-transfer-id:vBnG916bdberum2fFEABR1FR3ExZMUrd
 a=file-disposition:attachment
 a=file-date:creation:"Mon, 15 May 2006 15:01:31 +0300"
 a=file-icon:cid:id2@alicepc.example.com
 a=file-range:1-32349

 Figure 2: Example of SDP describing a file transfer

Garcia-Martin, et al. Standards Track [Page 12]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 NOTE: The ’file-selector’ attribute in the above figure is split
 in three lines for formatting purposes. Real implementations will
 encode it in a single line.

7. File Disposition Types

 The SDP offer/answer for file transfer allows the file sender to
 indicate a preferred disposition of the file to be transferred in a
 new ’file-disposition’ attribute. In principle, any value listed in
 the IANA registry for Mail Content Disposition Values [IANA] is
 acceptable; however, most of them may not be applicable.

 There are two content dispositions of interest for file transfer
 operations. On one hand, the file sender may just want the file to
 be rendered immediately in the file receiver’s device. On the other
 hand, the file sender may just want to indicate to the file receiver
 that the file should not be rendered at the reception of the file.
 The recipient’s user agent may want to interact with the user
 regarding the file disposition or it may save the file until the user
 takes an action. In any case, the exact actions are implementation
 dependent.

 To indicate that a file should be automatically rendered, this memo
 uses the existing ’render’ value of the Content Disposition type in
 the new ’file-disposition’ attribute in SDP. To indicate that a file
 should not be automatically rendered, this memo uses the existing
 ’attachment’ value of the Content-Disposition type in the new ’file-
 disposition’ attribute in SDP. The default value is ’render’, i.e.,
 the absence of a ’file-disposition’ attribute in the SDP has the same
 semantics as ’render’.

 The disposition value ’attachment’ is specified in RFC 2183
 [RFC2183] with the following definition:

 "Body parts can be designated ’attachment’ to indicate that
 they are separate from the main body of the mail message, and
 that their display should not be automatic, but contingent upon
 some further action of the user."

 In the case of this specification, the ’attachment’ disposition
 type is used to indicate that the display of the file should not
 be automatic, but contingent upon some further action of the user.

8. Protocol Operation

 This section discusses how to use the parameters defined in Section 6
 in the context of an offer/answer [RFC3264] exchange. Additionally,
 this section also discusses the behavior of the endpoints using MSRP.

Garcia-Martin, et al. Standards Track [Page 13]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 A file transfer session is initiated by the offerer sending an SDP
 offer to the answerer. The answerer either accepts or rejects the
 file transfer session and sends an SDP answer to the offerer.

 We can differentiate two use cases, depending on whether the offerer
 is the file sender or file receiver:

 1. The offerer is the file sender, i.e., the offerer wants to
 transmit a file to the answerer. Consequently, the answerer is
 the file receiver. In this case, the SDP offer contains a
 ’sendonly’ attribute, and accordingly the SDP answer contains a
 ’recvonly’ attribute.

 2. The offerer is the file receiver, i.e., the offerer wants to
 fetch a file from the answerer. Consequently, the answerer is
 the file sender. In this case, the SDP offer contains a session
 or media ’recvonly’ attribute, and accordingly the SDP answer
 contains a session or media ’sendonly’ attribute.

8.1. The ’file-transfer-id’ Attribute

 This specification creates an extension to the SDP offer/answer model
 [RFC3264], and because of that, it is assumed that the existing SDP
 behavior is kept intact. The SDP behavior requires, for example,
 that SDP is sent again to the remote party in situations where the
 media description or perhaps other SDP parameters have not changed
 with respect to a previous offer/answer exchange. Let’s consider the
 SIP Session Timer (RFC 4028) [RFC4028], which uses re-INVITE requests
 to refresh sessions. RFC 4028 recommends to send unmodified SDP in a
 re-INVITE to refresh the session. Should this re-INVITE contain SDP
 describing a file transfer operation and occur while the file
 transfer was still going on, there would be no means to detect
 whether the SDP creator wanted to abort the current file transfer
 operation and initiate a new one or the SDP file description was
 included in the SDP due to other reasons (e.g., session timer
 refresh).

 A similar scenario occurs when two endpoints have successfully agreed
 on a file transfer, which is currently taking place when one of the
 endpoints wants to add additional media streams to the existing
 session. In this case, the endpoint sends a re-INVITE request that
 contains the SDP. The SDP needs to maintain the media descriptions
 for the current ongoing file transfer and add the new media
 descriptions. The problem is that the other endpoint is not able to
 determine whether or not a new file transfer is requested.

Garcia-Martin, et al. Standards Track [Page 14]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 In other cases, a file transfer was successfully completed. Then, if
 an endpoint resends the SDP offer with the media stream for the file
 transfer, then the other endpoint wouldn’t be able to determine
 whether or not a new file transfer should start.

 To address these scenarios, this specification defines the ’file-
 transfer-id’ attribute, which contains a globally unique random
 identifier allocated to the file transfer operation. The file
 transfer identifier helps both endpoints to determine whether the SDP
 offer is requesting a new file transfer or it is a repetition of the
 SDP. A new file transfer is one that, in case of acceptance, will
 provoke the actual transfer of a file. This is typically the case of
 new offer/answer exchanges, or in cases where an endpoint wants to
 abort the existing file transfer and restart the file transfer once
 more. On the other hand, the repetition of the SDP does not lead to
 any actual file to be transferred, potentially because the file
 transfer is still going on or because it has already finished. This
 is the case of repeated offer/answer exchanges, which can be due to a
 number of reasons (session timer, addition/removal of other media
 types in the SDP, update in SDP due to changes in other session
 parameters, etc.).

 Implementations according to this specification MUST include a ’file-
 transfer-id’ attribute in SDP offers and answers. The SDP offerer
 MUST select a file transfer identifier according to the syntax and
 add it to the ’file-transfer-id’ attribute. The SDP answerer MUST
 copy the value of the ’file-transfer-id’ attribute in the SDP answer.

 The file transfer identifier MUST be unique within the current
 session (never used before in this session), and it is RECOMMENDED to
 be unique across different sessions. It is RECOMMENDED to select a
 relatively big random identifier (e.g., 32 characters) to avoid
 duplications. The SDP answerer MUST keep track of the proposed file
 transfer identifiers in each session and copy the value of the
 received file transfer identifier in the SDP answer.

 If a file transfer is suspended and resumed at a later time, the
 resumption is considered a new file transfer (even when the file to
 be transferred is the same); therefore, the SDP offerer MUST choose a
 new file transfer identifier.

 If an endpoint sets the port number to zero in the media description
 of a file transfer, for example, because it wants to reject the file
 transfer operation, then the SDP answer MUST mirror the value of the
 ’file-transfer-id’ attribute included in the SDP offer. This
 effectively means that setting a media stream to zero has higher
 precedence than any value that the ’file-transfer-id’ attribute can
 take.

Garcia-Martin, et al. Standards Track [Page 15]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 As a side effect, the ’file-transfer-id’ attribute can be used for
 aborting and restarting again an ongoing file transfer. Assume that
 two endpoints agree on a file transfer and the actual transfer of the
 file is taking place. At some point in time in the middle of the
 file transfer, one endpoint sends a new SDP offer, equal to the
 initial one except for the value of the ’file-transfer-id’ attribute,
 which is a new globally unique random value. This indicates that the
 offerer wants to abort the existing transfer and start a new one,
 according to the SDP parameters. The SDP answerer SHOULD abort the
 ongoing file transfer, according to the procedures of the file
 transfer protocol (e.g., MSRP), and start sending file once more from
 the initial requested octet. Section 8.4 further discusses aborting
 a file transfer.

 If an endpoint creates an SDP offer where the ’file-transfer-id’
 attribute value does not change with respect to a previously sent
 one, but the file selector changes so that a new file is selected,
 then this is considered an error, and the SDP answerer MUST abort the
 file transfer operation (e.g., by setting the port number to zero in
 the SDP answer). Note that endpoints MAY change the ’file-selector’
 attribute as long as the selected file does not change (e.g., by
 adding a hash selector); however, it is RECOMMENDED that endpoints do
 not change the value of the ’file-selector’ attribute if it is
 requested to transfer the same file described in a previous SDP
 offer/answer exchange.

 Figure 3 summarizes the relation of the ’file-transfer-id’ attribute
 with the file selector in subsequent SDP exchanges.

 \ | | |
 \ file selector | different | same |
 ’file-transfer-id’ \ | file | file |
 ==================================+=============+===============+
 | new file | new file |
 changed | transfer | transfer |
 | operation | operation |
 ----------------------------------+-------------+---------------+
 | | existing file |
 unchanged | error | transfer |
 | | operation |
 ----------------------------------+-------------+---------------+

 Figure 3: Relation of the ’file-transfer-id’ attribute with the
 selector of the file in a subsequent SDP exchange

 In another scenario, an endpoint that has successfully transferred a
 file wants to send an SDP due to other reasons than the transfer of a
 file. The SDP offerer creates an SDP file description that maintains

Garcia-Martin, et al. Standards Track [Page 16]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 the media description line corresponding to the file transfer. The
 SDP offerer MUST then set the port number to zero and MUST keep the
 same value of the ’file-transfer-id’ attribute that the initial file
 transfer got.

8.2. Offerer’s Behavior

 An offerer who wishes to send or receive one or more files to or from
 an answerer MUST build an SDP [RFC4566] description of a session
 containing one "m=" line per file. When MSRP is used as the transfer
 mechanism, each "m=" line also describes a single MSRP session,
 according to the MSRP [RFC4975] procedures. Any "m=" lines that may
 have already been present in a previous SDP exchange are normally
 kept unmodified; the new "m=" lines are added afterwards (Section 8.6
 describes cases when "m=" lines are reused). All the media line
 attributes specified and required by MSRP [RFC4975] (e.g., "a=path",
 "a=accept-types", etc.) MUST be included as well.

8.2.1. The Offerer Is a File Sender

 In a push operation, the file sender creates an SDP offer describing
 the file to be sent. The file sender MUST add a ’file-selector’
 attribute media line containing at least one of the ’type’, ’size’,
 or ’hash’ selectors in indicating the type, size, or hash of the
 file, respectively. If the file sender wishes to start a new file
 transfer, the file sender MUST add a ’file-transfer-id’ attribute
 containing a new globally unique random identifier value.
 Additionally, the file sender MUST add a session or media ’sendonly’
 attribute to the SDP offer. Then the file sender sends the SDP offer
 to the file receiver.

 Not all the selectors in the ’file-selector’ attribute might be
 known when the file sender creates the SDP offer, for example,
 because the host is still processing the file.

 The ’hash’ selector in the ’file-selector’ attribute contains
 valuable information for the file receiver to identify whether the
 file is already available and need not be transmitted.

 The file sender MAY also add a ’name’ selector in the ’file-selector’
 attribute, and ’file-icon’, ’file-disposition’, and ’file-date’
 attributes further describing the file to be transferred. The ’file-
 disposition’ attribute provides a presentation suggestion (for
 example: the file sender would like the file receiver to render the
 file or not). The three date attributes provide the answerer with an
 indication of the age of the file. The file sender MAY also add a
 ’file-range’ attribute indicating the start and stop offsets of the
 file.

Garcia-Martin, et al. Standards Track [Page 17]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 When the file sender receives the SDP answer, if the port number of
 the answer for a file request is non-zero, the file sender starts the
 transfer of the file according to the negotiated parameters in SDP.

8.2.2. The Offerer Is a File Receiver

 In a pull operation, the file receiver creates the SDP offer and
 sends it to the file sender. The file receiver MUST include a ’file-
 selector’ attribute and MUST include, at least, one of the selectors
 defined for such attribute (i.e., ’name’, ’type’, ’size’, or ’hash’).
 In many cases, if the hash of the file is known, that is enough to
 identify the file; therefore, the offerer can include only a ’hash’
 selector. However, particularly in cases where the hash of the file
 is unknown, the file name, size, and type can provide a description
 of the file to be fetched. If the file receiver wishes to start a
 new file transfer, it MUST add a ’file-transfer-id’ attribute
 containing a new globally unique random value. The file receiver MAY
 also add a ’file-range’ attribute indicating the start and stop
 offsets of the file. There is no need for the file receiver to
 include further file attributes in the SDP offer; thus, it is
 RECOMMENDED that SDP offerers do not include any other file attribute
 defined by this specification (other than the mandatory ones).
 Additionally, the file receiver MUST add a session or media
 ’recvonly’ attribute in the SDP offer. Then, the file receiver sends
 the SDP offer to the file sender.

 When the file receiver receives the SDP answer, if the port number of
 the answer for a file request is non-zero, then the file receiver
 should receive the file using the protocol indicated in the "m="
 line. If the SDP answer contains a supported hashing algorithm in
 the ’hash’ selectors of the ’file-selector’ attribute, then the file
 receiver SHOULD compute the hash of the file after its reception and
 check it against the hash received in the answer. In case the
 computed hash does not match the one contained in the SDP answer, the
 file receiver SHOULD consider that the file transfer failed and
 SHOULD inform the user. Similarly, the file receiver SHOULD also
 verify that the other selectors declared in the SDP match the file
 properties, otherwise, the file receiver SHOULD consider that the
 file transfer failed and SHOULD inform the user.

8.2.3. SDP Offer for Several Files

 An offerer that wishes to send or receive more than one file
 generates an "m=" line per file along with the file attributes
 described in this specification. This way, the answerer can reject
 individual files by setting the port number of their associated "m="
 lines to zero, as per regular SDP [RFC4566] procedures. Similarly,
 the answerer can accept each individual file separately by setting

Garcia-Martin, et al. Standards Track [Page 18]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 the port number of their associated "m=" lines to non-zero value.
 Each file has its own file transfer identifier, which uniquely
 identifies each file transfer.

 Using an "m=" line per file implies that different files are
 transferred using different MSRP sessions. However, all those MSRP
 sessions can be set up to run over a single TCP connection, as
 described in Section 8.1 of RFC 4975 [RFC4975]. The same TCP
 connection can also be reused for sequential file transfers.

8.3. Answerer’s Behavior

 If the answerer wishes to reject a file offered by the offerer, it
 sets the port number of the "m=" line associated with the file to
 zero, as per regular SDP [RFC4566] procedures. The rejected answer
 MUST contained a ’file-selector’ and ’file-transfer-id’ attributes
 whose values mirror the corresponding values of the SDP offer.

 If the answerer decides to accept the file, it proceeds as per
 regular MSRP [RFC4975] and SDP [RFC4566] procedures.

8.3.1. The Answerer Is a File Receiver

 In a push operation, the SDP answerer is the file receiver. When the
 file receiver gets the SDP offer, it first examines the port number.
 If the port number is set to zero, the file transfer operation is
 closed, and no more data is expected over the media stream. Then, if
 the port number is different than zero, the file receiver inspects
 the ’file-transfer-id’ attribute. If the value of the ’file-
 transfer-id’ attribute has been previously used, then the existing
 session remains without changes; perhaps the file transfer is still
 in progress, or perhaps it has concluded, but there are no changes
 with respect to the current status. In any case, independently of
 the port number, the SDP answerer creates a regular SDP answer and
 sends it to the offerer.

 If the port number is different than zero and the SDP offer contains
 a new ’file-transfer-id’ attribute, then it is signaling a request
 for a new file transfer. The SDP answerer extracts the attributes
 and parameters that describe the file and typically requests
 permission from the user to accept or reject the reception of the
 file. If the file transfer operation is accepted, the file receiver
 MUST create an SDP answer according to the procedures specified in
 RFC 3264 [RFC3264]. If the offer contains ’name’, ’type’, or ’size’
 selectors in the ’file-selector’ attribute, the answerer MUST copy
 them into the answer. The file receiver copies the value of the
 ’file-transfer-id’ attribute to the SDP answer. Then the file
 receiver MUST add a session or media ’recvonly’ attribute according

Garcia-Martin, et al. Standards Track [Page 19]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 to the procedures specified in RFC 3264 [RFC3264]. The file receiver
 MUST NOT include ’file-icon’, ’file-disposition’, or ’file-date’
 attributes in the SDP answer.

 The file receiver can use the hash to find out if a local file with
 the same hash is already available, in which case, this could imply
 the reception of a duplicated file. It is up to the answerer to
 determine whether or not the file transfer is accepted in case of a
 duplicated file.

 If the SDP offer contains a ’file-range’ attribute and the file
 receiver accepts to receive the range of octets declared in there,
 the file receiver MUST include a ’file-range’ attribute in the SDP
 answer with the same range of values. If the file receiver does not
 accept the reception of that range of octets, it SHOULD reject the
 transfer of the file.

 When the file transfer operation is complete, the file receiver
 computes the hash of the file and SHOULD verify that it matches the
 hash declared in the SDP. If they do not match, the file receiver
 SHOULD consider that the file transfer failed and SHOULD inform the
 user. Similarly, the file receiver SHOULD also verify that the other
 selectors declared in the SDP match the file properties; otherwise,
 the file receiver SHOULD consider that the file transfer failed and
 SHOULD inform the user.

8.3.2. The Answerer Is a File Sender

 In a pull operation the answerer is the file sender. In this case,
 the SDP answerer MUST first inspect the value of the
 ’file-transfer-id’ attribute. If it has not been previously used
 throughout the session, then acceptance of the file MUST provoke the
 transfer of the file over the negotiated protocol. However, if the
 value has been previously used by another file transfer operation
 within the session, then the file sender MUST NOT alert the user and
 MUST NOT start a new transfer of the file. No matter whether or not
 an actual file transfer is initiated, the file sender MUST create a
 proper SDP answer that contains the ’file-transfer-id’ attribute with
 the same value received in the SDP offer, and then it MUST continue
 processing the SDP answer.

 The file sender MUST always create an SDP answer according to the SDP
 offer/answer procedures specified in RFC 3264 [RFC3264]. The file
 sender inspects the file selector of the received SDP offer, which is
 encoded in the ’file-selector’ media attribute line. Then the file
 sender applies the file selector, which implies selecting those files
 that match one by one with the ’name’, ’type’, ’size’, and ’hash’
 selectors of the ’file-selector’ attribute line (if they are

Garcia-Martin, et al. Standards Track [Page 20]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 present). The file selector identifies zero or more candidate files
 to be sent. If the file selector is unable to identify any file,
 then the answerer MUST reject the MSRP stream for file transfer by
 setting the port number to zero, and then the answerer SHOULD also
 reject the SDP as per procedures in RFC 3264 [RFC3264], if this is
 the only stream described in the SDP offer.

 If the file selector points to a single file and the file sender
 decides to accept the file transfer, the file sender MUST create an
 SDP answer that contains a ’sendonly’ attribute, according to the
 procedures described in RFC 3264 [RFC3264]. The file sender SHOULD
 add a ’hash’ selector in the answer with the locally computed SHA-1
 hash over the complete file. If a hash value computed by the file
 sender differs from that specified by the file receiver, the file
 sender can either send the file without that hash value or reject the
 request by setting the port in the media stream to zero. The file
 sender MAY also include a ’type’ selector in the ’file-selector’
 attribute line of the SDP answer. The answerer MAY also include
 ’file-icon’ and ’file-disposition’ attributes to further describe the
 file. Although the answerer MAY also include a ’name’ and ’size’
 selectors in the ’file-selector’ attribute, and a ’file-date’
 attribute, it is RECOMMENDED not to include them in the SDP answer if
 the actual file transfer protocol (e.g., MSRP [RFC4975]) can
 accommodate a Content-Disposition header field [RFC2183] with the
 equivalent parameters.

 The whole idea of adding file descriptors to SDP is to provide a
 mechanism where a file transfer can be accepted prior to its
 start. Adding any SDP attributes that are otherwise signaled
 later in the file transfer protocol would just duplicate the
 information, but will not provide any information to the offerer
 to accept or reject the file transfer (note that the offerer is
 requesting a file).

 Last, if the file selector points to multiple candidate files, the
 answerer MAY use some local policy, e.g., consulting the user, to
 choose one of them to be defined in the SDP answer. If that choice
 cannot be done, the answerer SHOULD reject the MSRP media stream for
 file transfer (by setting the port number to zero).

 If the need arises, future specifications can provide a suitable
 mechanism that allows to either select multiple files or, e.g.,
 resolve ambiguities by returning a list of files that match the
 file selector.

 If the SDP offer contains a ’file-range’ attribute and the file
 sender accepts to send the range of octets declared in there, the
 file sender MUST include a ’file-range’ attribute in the SDP answer

Garcia-Martin, et al. Standards Track [Page 21]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 with the same range of values. If the file sender does not accept
 sending that range of octets, it SHOULD reject the transfer of the
 file.

8.4. Aborting an Ongoing File Transfer Operation

 Either the file sender or the file receiver can abort an ongoing file
 transfer at any time. Unless otherwise noted, the entity that aborts
 an ongoing file transfer operation MUST follow the procedures at the
 media level (e.g., MSRP) and at the signaling level (SDP offer/
 answer), as described below.

 Assume the scenario depicted in Figure 4 where a file sender wishes
 to abort an ongoing file transfer without initiating an alternative
 file transfer. Assume that an ongoing MSRP SEND request is being
 transmitted. The file sender aborts the MSRP message by including
 the ’#’ character in the continuation field of the end-line of a SEND
 request, according to the MSRP procedures (see Section 7.1 of RFC
 4975 [RFC4975]). Since a file is transmitted as one MSRP message,
 aborting the MSRP message effectively aborts the file transfer. The
 file receiver acknowledges the MSRP SEND request with a 200 response.
 Then the file sender SHOULD close the MSRP session by creating a new
 SDP offer that sets the port number to zero in the related "m=" line
 that describes the file transfer (see Section 8.2 of RFC 3264
 [RFC3264]). This SDP offer MUST conform with the requirements of
 Section 8.2.1. The ’file-transfer-id’ attribute MUST be the same
 attribute that identifies the ongoing transfer. Then the file sender
 sends this SDP offer to the file receiver.

 Rather than close the MSRP session by setting the port number to
 zero in the related "m=" line, the file sender could also tear
 down the whole session, e.g., by sending a SIP BYE request.

 Note that it is the responsibility of the file sender to tear down
 the MSRP session. Implementations should be prepared for
 misbehaviors and implement measures to avoid hang states. For
 example, upon expiration of a timer the file receiver can close the
 aborted MSRP session by using regular MSRP procedures.

 A file receiver that receives the above SDP offer creates an SDP
 answer according to the procedures of the SDP offer/answer (RFC 3264
 [RFC3264]). This SDP answer MUST conform with the requirements of
 Section 8.3.1. Then the file receiver sends this SDP answer to the
 file sender.

Garcia-Martin, et al. Standards Track [Page 22]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 File sender File receiver
 | |
 |\ |
 | \ |
 | \ |
 | \ |
 | \ |
 | \ |
 abort->| \ MSRP SEND (#) |
 | +--------------->|
 | MSRP 200 |
 |<-----------------------|
 | re-INVITE (SDP offer) |
 |----------------------->|
 | SIP 200 OK (SDP answer)|
 |<-----------------------|
 | SIP ACK |
 |----------------------->|
 | |

 Figure 4: File sender aborts an ongoing file transfer

 When the file receiver wants to abort the file transfer, there are
 two possible scenarios, depending on the value of the Failure-Report
 header in the ongoing MSRP SEND request. Assume now the scenario
 depicted in Figure 5 where the MSRP SEND request includes a Failure-
 Report header set to a value different than "no". When the file
 receiver wishes to abort the ongoing file transfer, the file receiver
 generates an MSRP 413 response to the current MSRP SEND request (see
 Section 10.5 of RFC 4975 [RFC4975]). Then the file receiver MUST
 close the MSRP session by generating a new SDP offer that sets the
 port number to zero in the related "m=" line that describes the file
 transfer (see Section 8.2 of RFC 3264 [RFC3264]). This SDP offer
 MUST conform with the requirements expressed in Section 8.2.2. The
 ’file-transfer-id’ attribute MUST be the same attribute that
 identifies the ongoing transfer. Then the file receiver sends this
 SDP offer to the file sender.

Garcia-Martin, et al. Standards Track [Page 23]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 File sender File receiver
 | |
 |\ |
 | \ MSRP SEND |
 | \ Failure-Report: yes |
 | \ |
 | \ |
 | \ |
 | \ |
 | \ |
 | \ |
 | MSRP 413 |<-abort
 |<-----------------------|
 | \ (#) |
 | +----------->|
 | re-INVITE (SDP offer) |
 |<-----------------------|
 | SIP 200 OK (SDP answer)|
 |----------------------->|
 | SIP ACK |
 |<-----------------------|
 | |

 Figure 5: File receiver aborts an ongoing file transfer. Failure-
 Report set to a value different than "no" in MSRP

 In another scenario, depicted in Figure 6, an ongoing file transfer
 is taking place, where the MSRP SEND request contains a Failure-
 Report header set to the value "no". When the file receiver wants to
 abort the ongoing transfer, it MUST close the MSRP session by
 generating a new SDP offer that sets the port number to zero in the
 related "m=" line that describes the file transfer (see Section 8.2
 of RFC 3264 [RFC3264]). This SDP offer MUST conform with the
 requirements expressed in Section 8.2.2. The ’file-transfer-id’
 attribute MUST be the same attribute that identifies the ongoing
 transfer. Then the file receiver sends this SDP offer to the file
 sender.

Garcia-Martin, et al. Standards Track [Page 24]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 File sender File receiver
 | |
 |\ |
 | \ MSRP SEND |
 | \ Failure-Report: no |
 | \ |
 | \ |
 | \ |
 | \ |
 | \ |
 | \ |
 | re-INVITE (SDP offer) |<-abort
 |<-----------------------|
 | \ (#) |
 | +----------->|
 | MSRP 200 |
 |<-----------------------|
 | SIP 200 OK (SDP answer)|
 |----------------------->|
 | SIP ACK |
 |<-----------------------|
 | |

 Figure 6: File receiver aborts an ongoing file transfer. Failure-
 Report set to "no" in MSRP

 A file sender that receives an SDP offer setting the port number to
 zero in the related "m=" line for file transfer, first, if an ongoing
 MSRP SEND request is being transmitted, aborts the MSRP message by
 including the ’#’ character in the continuation field of the end-line
 of a SEND request, according to the MSRP procedures (see Section 7.1
 of RFC 4975 [RFC4975]). Since a file is transmitted as one MSRP
 message, aborting the MSRP message effectively aborts the file
 transfer. Then the file sender creates an SDP answer according to
 the procedures of the SDP offer/answer (RFC 3264 [RFC3264]). This
 SDP answer MUST conform with the requirements of Section 8.3.2. Then
 the file sender sends this SDP answer to the file receiver.

8.5. Indicating File Transfer Offer/Answer Capability

 The SDP offer/answer model [RFC3264] provides provisions for
 indicating a capability to another endpoint (see Section 9 of RFC
 3264 [RFC3264]). The mechanism assumes a high-level protocol, such
 as SIP [RFC3261], that provides a capability query (such as a SIP
 OPTIONS request). RFC 3264 [RFC3264] indicates how to build the SDP
 that is included in the response to such capability query. As such,
 RFC 3264 indicates that an endpoint builds an SDP body that contains

Garcia-Martin, et al. Standards Track [Page 25]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 an "m=" line containing the media type (message, for MSRP). An
 endpoint that implements the procedures specified in this document
 SHOULD also add a ’file-selector’ media attribute for the "m=message"
 line. The ’file-selector’ media attribute MUST be empty, i.e., it
 MUST NOT contain any selector. The endpoint MUST NOT add any of the
 other file attributes defined in this specification.

8.6. Reusage of Existing "m=" Lines in SDP

 The SDP offer/answer model [RFC3264] provides rules that allow SDP
 offerers and answerers to modify an existing media line, i.e., reuse
 an existing media line with different attributes. The same is also
 possible when SDP signals a file transfer operation according to the
 rules of this memo. Therefore, the procedures defined in RFC 3264
 [RFC3264], in particular those defined in Section 8.3, MUST apply for
 file transfer operations. An endpoint that wants to reuse an
 existing "m=" line to start the file transfer of another file creates
 a different ’file-selector’ attribute and selects a new globally
 unique random value of the ’file-transfer-id’ attribute.

 If the file offerer resends an SDP offer with a port different than
 zero, then the ’file-transfer-id’ attribute determines whether a new
 file transfer will start or whether the file transfer does not need
 to start. If the SDP answerer accepts the SDP, then file transfer
 starts from the indicated octet (if a ’file-range’ attribute is
 present).

8.7. MSRP Usage

 The file transfer service specified in this document uses "m=" lines
 in SDP to describe the unidirectional transfer of a file.
 Consequently, each MSRP session established following the procedures
 in Section 8.2 and Section 8.3 is only used to transfer a single
 file. So, senders MUST only use the dedicated MSRP session to send
 the file described in the SDP offer or answer. That is, senders MUST
 NOT send additional files over the same MSRP session.

 File transfer may be accomplished using a new multimedia session
 established for the purpose. Alternatively, a file transfer may be
 conducted within an existing multimedia session, without regard for
 the media in use within that session. Of particular note, file
 transfer may be done within a multimedia session containing an MSRP
 session used for regular instant messaging. If file transfer is
 initiated within an existing multimedia session, the SDP offerer MUST
 NOT reuse an existing "m=" line that is still being used by MSRP
 (either regular MSRP for instant messaging or an ongoing file
 transfer). Rather, it MUST add an additional "m=" line or else reuse
 an "m=" line that is no longer being used.

Garcia-Martin, et al. Standards Track [Page 26]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 Additionally, implementations according to this specification MUST
 include a single file in a single MSRP message. Notice that the MSRP
 specification defines "MSRP message" as a complete unit of MIME or
 text content, which can be split and delivered in more than one MSRP
 request; each of these portions of the complete message is called a
 "chunk". So, it is still valid to send a file in several chunks, but
 from the MSRP point of view, all the chunks together form an MSRP
 message: the Common Presence and Instant Messaging (CPIM) message
 that wraps the file. When chunking is used, it should be noticed
 that MSRP does not require to wait for a 200-class response for a
 chunk before sending the following one. Therefore, it is valid to
 send pipelined MSRP SEND requests containing chunks of the same MSRP
 message (the file). Section 9.1 contains an example of a file
 transfer using pipelined MSRP requests.

 The MSRP specification [RFC4975] defines a ’max-size’ SDP attribute.
 This attribute specifies the maximum number of octets of an MSRP
 message that the creator of the SDP is willing to receive (notice
 once more the definition of "MSRP message"). File receivers MAY add
 a ’max-size’ attribute to the MSRP "m=" line that specifies the file,
 indicating the maximum number of octets of an MSRP message. File
 senders MUST NOT exceed the ’max-size’ limit for any message sent in
 the resulting session.

 In the absence of a ’file-range’ attribute in the SDP, the MSRP file
 transfer MUST start with the first octet of the file and end with the
 last octet (i.e., the whole file is transferred). If a ’file-range’
 attribute is present in SDP, the file sender application MUST extract
 the indicated range of octets from the file (start and stop offset
 octets, both inclusive). Then the file sender application MAY wrap
 those octets in an appropriate wrapper. MSRP mandates
 implementations to implement the message/cpim wrapper [RFC3862].
 Usage of a wrapper is negotiated in the SDP (see Section 8.6 in RFC
 4975 [RFC4975]). Last, the file sender application delivers the
 content (e.g., the message/cpim body) to MSRP for transportation.
 MSRP will consider the delivered content as a whole message, and will
 start numbering bytes with the number 1.

 Note that the default content disposition of MSRP bodies is ’render’.
 When MSRP is used to transfer files, the MSRP Content-Disposition
 header can also take the value ’attachment’ as indicated in
 Section 7.

 Once the file transfer is completed, the file sender SHOULD close the
 MSRP session and MUST behave according to the MSRP [RFC4975]
 procedures with respect to closing MSRP sessions. Note that MSRP

Garcia-Martin, et al. Standards Track [Page 27]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 session management is not related to TCP connection management. As a
 matter of fact, MSRP allows multiple MSRP sessions to share the same
 TCP connection.

8.8. Considerations about the ’file-icon’ Attribute

 This specification allows a file sender to include a small preview of
 an image file: an icon. A ’file-icon’ attribute contains a
 Content-ID (CID) URL [RFC2392] pointing to an additional body that
 contains the actual icon. Since the icon is sent as a separate body
 along the SDP body, the file sender MUST wrap the SDP body and the
 icon bodies in a MIME multipart/related body. Therefore,
 implementations according to this specification MUST implement the
 multipart/related MIME type [RFC2387]. When creating a multipart/
 related MIME wrapper, the SDP body MUST be the root body, which
 according to RFC 2387 [RFC2387] is identified as the first body in
 the multipart/related MIME wrapper or explicitly identified by the
 ’start’ parameter. According to RFC 2387 [RFC2387], the ’type’
 parameter MUST be present and point to the root body, i.e., the SDP
 body.

 Assume that an endpoint behaving according to this specification
 tries to send a file to a remote endpoint that neither implements
 this specification nor implements multipart MIME bodies. The file
 sender sends an SDP offer that contains a multipart/related MIME body
 that includes an SDP body part and an icon body part. The file
 receiver, not supporting multipart MIME types, will reject the SDP
 offer via a higher protocol mechanism (e.g., SIP). In this case, it
 is RECOMMENDED that the file sender removes the icon body part,
 creates a single SDP body (i.e., without multipart MIME), and resends
 the SDP offer. This provides some backwards compatibility with file
 receives that do not implement this specification and increases the
 chances of getting the SDP accepted at the file receiver.

 Since the icon is sent as part of the signaling, it is RECOMMENDED to
 keep the size of icons restricted to the minimum number of octets
 that provide significance.

9. Examples

9.1. Offerer Sends a File to the Answerer

 This section shows an example flow for a file transfer scenario. The
 example assumes that SIP [RFC3261] is used to transport the SDP
 offer/answer exchange, although the SIP details are briefly shown for
 the sake of brevity.

Garcia-Martin, et al. Standards Track [Page 28]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 Alice, the SDP offerer, wishes to send an image file to Bob (the
 answerer). Alice’s User Agent Client (UAC) creates a unidirectional
 SDP offer that contains the description of the file that she wants to
 send to Bob’s User Agent Server (UAS). The description also includes
 an icon representing the contents of the file to be transferred. The
 sequence flow is shown in Figure 7.

 Alice’s UAC Bob’s UAS
 | |
 |(1) (SIP) INVITE |
 |----------------------->|
 |(2) (SIP) 200 OK |
 |<-----------------------|
 |(3) (SIP) ACK |
 |----------------------->|
 | |
 |(4) (MSRP) SEND (chunk) |
 |----------------------->|
 |(5) (MSRP) SEND (chunk) |
 |----------------------->|
 |(6) (MSRP) 200 OK |
 |<-----------------------|
 |(7) (MSRP) 200 OK |
 |<-----------------------|
 | |
 |(8) (SIP) BYE |
 |----------------------->|
 |(9) (SIP) 200 OK |
 |<-----------------------|
 | |
 | |

 Figure 7: Flow diagram of an offerer sending a file to an answerer

 F1: Alice constructs an SDP description of the file to be sent and
 attaches it to a SIP INVITE request addressed to Bob.

Garcia-Martin, et al. Standards Track [Page 29]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 INVITE sip:bob@example.com SIP/2.0
 To: Bob <sip:bob@example.com>
 From: Alice <sip:alice@example.com>;tag=1928301774
 Call-ID: a84b4c76e66710
 CSeq: 1 INVITE
 Max-Forwards: 70
 Date: Sun, 21 May 2006 13:02:03 GMT
 Contact: <sip:alice@alicepc.example.com>
 Content-Type: multipart/related; type="application/sdp";
 boundary="boundary71"
 Content-Length: [length]

 --boundary71
 Content-Type: application/sdp
 Content-Length: [length of SDP]

 v=0
 o=alice 2890844526 2890844526 IN IP4 alicepc.example.com
 s=
 c=IN IP4 alicepc.example.com
 t=0 0
 m=message 7654 TCP/MSRP *
 i=This is my latest picture
 a=sendonly
 a=accept-types:message/cpim
 a=accept-wrapped-types:*
 a=path:msrp://alicepc.example.com:7654/jshA7we;tcp
 a=file-selector:name:"My cool picture.jpg" type:image/jpeg
 size:4092 hash:sha-1:
 72:24:5F:E8:65:3D:DA:F3:71:36:2F:86:D4:71:91:3E:E4:A2:CE:2E
 a=file-transfer-id:Q6LMoGymJdh0IKIgD6wD0jkcfgva4xvE
 a=file-disposition:render
 a=file-date:creation:"Mon, 15 May 2006 15:01:31 +0300"
 a=file-icon:cid:id2@alicepc.example.com

 --boundary71
 Content-Type: image/jpeg
 Content-Transfer-Encoding: binary
 Content-ID: <id2@alicepc.example.com>
 Content-Length: [length of image]
 Content-Disposition: icon

 [...small preview icon of the file...]

 --boundary71--

 Figure 8: INVITE request containing an SDP offer for file transfer

Garcia-Martin, et al. Standards Track [Page 30]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 NOTE: The Content-Type header field and the ’file-selector’
 attribute in the above figure are split in several lines for
 formatting purposes. Real implementations will encode it in a
 single line.

 From now on we omit the SIP details for the sake of brevity.

 F2: Bob receives the INVITE request, inspects the SDP offer and
 extracts the icon body, checks the creation date and file size, and
 decides to accept the file transfer. So Bob creates the following
 SDP answer:

 v=0
 o=bob 2890844656 2890844656 IN IP4 bobpc.example.com
 s=
 c=IN IP4 bobpc.example.com
 t=0 0
 m=message 8888 TCP/MSRP *
 a=recvonly
 a=accept-types:message/cpim
 a=accept-wrapped-types:*
 a=path:msrp://bobpc.example.com:8888/9di4ea;tcp
 a=file-selector:name:"My cool picture.jpg" type:image/jpeg
 size:4092 hash:sha-1:
 72:24:5F:E8:65:3D:DA:F3:71:36:2F:86:D4:71:91:3E:E4:A2:CE:2E
 a=file-transfer-id:Q6LMoGymJdh0IKIgD6wD0jkcfgva4xvE

 Figure 9: SDP answer accepting the SDP offer for file transfer

 NOTE: The ’file-selector’ attribute in the above figure is split
 in three lines for formatting purposes. Real implementations will
 encode it in a single line.

 F4: Alice opens a TCP connection to Bob and creates an MSRP SEND
 request. This SEND request contains the first chunk of the file.

Garcia-Martin, et al. Standards Track [Page 31]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 MSRP d93kswow SEND
 To-Path: msrp://bobpc.example.com:8888/9di4ea;tcp
 From-Path: msrp://alicepc.example.com:7654/iau39;tcp
 Message-ID: 12339sdqwer
 Byte-Range: 1-2048/4385
 Content-Type: message/cpim

 To: Bob <sip:bob@example.com>
 From: Alice <sip:alice@example.com>
 DateTime: 2006-05-15T15:02:31-03:00
 Content-Disposition: render; filename="My cool picture.jpg";
 creation-date="Mon, 15 May 2006 15:01:31 +0300";
 size=4092
 Content-Type: image/jpeg

 ... first set of bytes of the JPEG image ...
 -------d93kswow+

 Figure 10: MSRP SEND request containing the first chunk of actual
 file

 F5: Alice sends the second and last chunk. Note that MSRP allows to
 send pipelined chunks, so there is no need to wait for the 200 (OK)
 response from the previous chunk.

 MSRP op2nc9a SEND
 To-Path: msrp://bobpc.example.com:8888/9di4ea;tcp
 From-Path: msrp://alicepc.example.com:7654/iau39;tcp
 Message-ID: 12339sdqwer
 Byte-Range: 2049-4385/4385
 Content-Type: message/cpim

 ... second set of bytes of the JPEG image ...
 -------op2nc9a$

 Figure 11: MSRP SEND request containing the second chunk of actual
 file

 F6: Bob acknowledges the reception of the first chunk.

 MSRP d93kswow 200 OK
 To-Path: msrp://alicepc.example.com:7654/iau39;tcp
 From-Path: msrp://bobpc.example.com:8888/9di4ea;tcp
 Byte-Range: 1-2048/4385
 -------d93kswow$

 Figure 12: MSRP 200 OK response

Garcia-Martin, et al. Standards Track [Page 32]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 F7: Bob acknowledges the reception of the second chunk.

 MSRP op2nc9a 200 OK
 To-Path: msrp://alicepc.example.com:7654/iau39;tcp
 From-Path: msrp://bobpc.example.com:8888/9di4ea;tcp
 Byte-Range: 2049-4385/4385
 -------op2nc9a$

 Figure 13: MSRP 200 OK response

 F8: Alice terminates the SIP session by sending a SIP BYE request.

 F9: Bob acknowledges the reception of the BYE request and sends a 200
 (OK) response.

9.2. Offerer Requests a File from the Answerer and Second File Transfer

 In this example, Alice, the SDP offerer, first wishes to fetch a file
 from Bob, the SDP answerer. Alice knows that Bob has a specific file
 she wants to download. She has learned the hash of the file by some
 out-of-band mechanism. The hash selector is enough to produce a file
 selector that points to the specific file. So, Alice creates an SDP
 offer that contains the file descriptor. Bob accepts the file
 transfer and sends the file to Alice. When Alice has completely
 received Bob’s file, she intends to send a new image file to Bob.
 Therefore, Alice reuses the existing SDP media line with different
 attributes and updates the description of the new file she wants to
 send to Bob’s User Agent Server (UAS). In particular, Alice creates
 a new file transfer identifier since this is a new file transfer
 operation. Figure 14 shows the sequence flow.

Garcia-Martin, et al. Standards Track [Page 33]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 Alice’s UAC Bob’s UAS
 | |
 |(1) (SIP) INVITE |
 |----------------------->|
 |(2) (SIP) 200 OK |
 |<-----------------------|
 |(3) (SIP) ACK |
 |----------------------->|
 | |
 |(4) (MSRP) SEND (file) |
 |<-----------------------|
 |(5) (MSRP) 200 OK |
 |----------------------->|
 | |
 |(6) (SIP) INVITE |
 |----------------------->|
 |(7) (SIP) 200 OK |
 |<-----------------------|
 |(8) (SIP) ACK |
 |----------------------->|
 | |
 |(9) (MSRP) SEND (file) |
 |----------------------->|
 |(10) (MSRP) 200 OK |
 |<-----------------------|
 | |
 |(11) (SIP) BYE |
 |<-----------------------|
 |(12) (SIP) 200 OK |
 |----------------------->|
 | |
 | |

 Figure 14: Flow diagram of an offerer requesting a file from the
 answerer and then sending a file to the answer

 F1: Alice constructs an SDP description of the file she wants to
 receive and attaches the SDP offer to a SIP INVITE request addressed
 to Bob.

Garcia-Martin, et al. Standards Track [Page 34]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 INVITE sip:bob@example.com SIP/2.0
 To: Bob <sip:bob@example.com>
 From: Alice <sip:alice@example.com>;tag=1928301774
 Call-ID: a84b4c76e66710
 CSeq: 1 INVITE
 Max-Forwards: 70
 Date: Sun, 21 May 2006 13:02:03 GMT
 Contact: <sip:alice@alicepc.example.com>
 Content-Type: application/sdp
 Content-Length: [length of SDP]

 v=0
 o=alice 2890844526 2890844526 IN IP4 alicepc.example.com
 s=
 c=IN IP4 alicepc.example.com
 t=0 0
 m=message 7654 TCP/MSRP *
 a=recvonly
 a=accept-types:message/cpim
 a=accept-wrapped-types:*
 a=path:msrp://alicepc.example.com:7654/jshA7we;tcp
 a=file-selector:hash:sha-1:
 72:24:5F:E8:65:3D:DA:F3:71:36:2F:86:D4:71:91:3E:E4:A2:CE:2E
 a=file-transfer-id:aCQYuBRVoUPGVsFZkCK98vzcX2FXDIk2

 Figure 15: INVITE request containing an SDP offer for file transfer

 NOTE: The ’file-selector’ attribute in the above figure is split
 in two lines for formatting purposes. Real implementations will
 encode it in a single line.

 From now on we omit the SIP details for the sake of brevity.

 F2: Bob receives the INVITE request, inspects the SDP offer, computes
 the file descriptor, and finds a local file whose hash equals the one
 indicated in the SDP. Bob accepts the file transfer and creates an
 SDP answer as follows:

Garcia-Martin, et al. Standards Track [Page 35]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 v=0
 o=bob 2890844656 2890855439 IN IP4 bobpc.example.com
 s=
 c=IN IP4 bobpc.example.com
 t=0 0
 m=message 8888 TCP/MSRP *
 a=sendonly
 a=accept-types:message/cpim
 a=accept-wrapped-types:*
 a=path:msrp://bobpc.example.com:8888/9di4ea;tcp
 a=file-selector:type:image/jpeg hash:sha-1:
 72:24:5F:E8:65:3D:DA:F3:71:36:2F:86:D4:71:91:3E:E4:A2:CE:2E
 a=file-transfer-id:aCQYuBRVoUPGVsFZkCK98vzcX2FXDIk2

 Figure 16: SDP answer accepting the SDP offer for file transfer

 NOTE: The ’file-selector’ attribute in the above figure is split
 in two lines for formatting purposes. Real implementations will
 encode it in a single line.

 F4: Alice opens a TCP connection to Bob. Bob then creates an MSRP
 SEND request that contains the file.

 MSRP d93kswow SEND
 To-Path: msrp://alicepc.example.com:7654/jshA7we;tcp
 From-Path: msrp://bobpc.example.com:8888/9di4ea;tcp
 Message-ID: 12339sdqwer
 Byte-Range: 1-2027/2027
 Content-Type: message/cpim

 To: Bob <sip:bob@example.com>
 From: Alice <sip:alice@example.com>
 DateTime: 2006-05-15T15:02:31-03:00
 Content-Disposition: render; filename="My cool photo.jpg";
 creation-date="Mon, 15 May 2006 15:01:31 +0300";
 modification-date="Mon, 15 May 2006 16:04:53 +0300";
 read-date="Mon, 16 May 2006 09:12:27 +0300";
 size=1931
 Content-Type: image/jpeg

 ...binary JPEG image...
 -------d93kswow$

 Figure 17: MSRP SEND request containing the actual file

 F5: Alice acknowledges the reception of the SEND request.

Garcia-Martin, et al. Standards Track [Page 36]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 MSRP d93kswow 200 OK
 To-Path: msrp://bobpc.example.com:8888/9di4ea;tcp
 From-Path: msrp://alicepc.example.com:7654/jshA7we;tcp
 Byte-Range: 1-2027/2027
 -------d93kswow$

 Figure 18: MSRP 200 OK response

 F6: Alice reuses the existing SDP media line inserting the
 description of the file to be sent and attaches it to a SIP re-INVITE
 request addressed to Bob. Alice reuses the TCP port number for the
 MSRP stream, but changes the MSRP session and the ’file-transfer-id’
 value according to this specification.

Garcia-Martin, et al. Standards Track [Page 37]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 INVITE sip:bob@example.com SIP/2.0
 To: Bob <sip:bob@example.com>;tag=1928323431
 From: Alice <sip:alice@example.com>;tag=1928301774
 Call-ID: a84b4c76e66710
 CSeq: 2 INVITE
 Max-Forwards: 70
 Date: Sun, 21 May 2006 13:02:33 GMT
 Contact: <sip:alice@alicepc.example.com>
 Content-Type: multipart/related; type="application/sdp";
 boundary="boundary71"
 Content-Length: [length of multipart]

 --boundary71
 Content-Type: application/sdp
 Content-Length: [length of SDP]

 v=0
 o=alice 2890844526 2890844527 IN IP4 alicepc.example.com
 s=
 c=IN IP4 alicepc.example.com
 t=0 0
 m=message 7654 TCP/MSRP *
 i=This is my latest picture
 a=sendonly
 a=accept-types:message/cpim
 a=accept-wrapped-types:*
 a=path:msrp://alicepc.example.com:7654/iau39;tcp
 a=file-selector:name:"sunset.jpg" type:image/jpeg
 size:4096 hash:sha-1:
 58:23:1F:E8:65:3B:BC:F3:71:36:2F:86:D4:71:91:3E:E4:B1:DF:2F
 a=file-transfer-id:ZVE8MfI9mhAdZ8GyiNMzNN5dpqgzQlCO
 a=file-disposition:render
 a=file-date:creation:"Sun, 21 May 2006 13:02:15 +0300"
 a=file-icon:cid:id3@alicepc.example.com

 --boundary71
 Content-Type: image/jpeg
 Content-Transfer-Encoding: binary
 Content-ID: <id3@alicepc.example.com>
 Content-Length: [length of image]
 Content-Disposition: icon

 [..small preview icon...]

 --boundary71--

 Figure 19: Reuse of the SDP in a second file transfer

Garcia-Martin, et al. Standards Track [Page 38]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 NOTE: The Content-Type header field and the ’file-selector’
 attribute in the above figure are split in several lines for
 formatting purposes. Real implementations will encode it in a
 single line.

 F7: Bob receives the re-INVITE request, inspects the SDP offer and
 extracts the icon body, checks the creation date and the file size,
 and decides to accept the file transfer. So Bob creates an SDP
 answer where he reuses the same TCP port number, but changes his MSRP
 session, according to the procedures of this specification.

 v=0
 o=bob 2890844656 2890855440 IN IP4 bobpc.example.com
 s=
 c=IN IP4 bobpc.example.com
 t=0 0
 m=message 8888 TCP/MSRP *
 a=recvonly
 a=accept-types:message/cpim
 a=accept-wrapped-types:*
 a=path:msrp://bobpc.example.com:8888/eh10dsk;tcp
 a=file-selector:name:"sunset.jpg" type:image/jpeg
 size:4096 hash:sha-1:
 58:23:1F:E8:65:3B:BC:F3:71:36:2F:86:D4:71:91:3E:E4:B1:DF:2F
 a=file-transfer-id:ZVE8MfI9mhAdZ8GyiNMzNN5dpqgzQlCO
 a=file-disposition:render

 Figure 20: SDP answer accepting the SDP offer for file transfer

 NOTE: The ’file-selector’ attribute in the above figure is split
 in three lines for formatting purposes. Real implementations will
 encode it in a single line.

 F9: If a TCP connection towards Bob is already open, Alice reuses
 that TCP connection to send an MSRP SEND request that contains the
 file.

Garcia-Martin, et al. Standards Track [Page 39]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 MSRP d95ksxox SEND
 To-Path: msrp://bobpc.example.com:8888/eh10dsk;tcp
 From-Path: msrp://alicepc.example.com:7654/iau39;tcp
 Message-ID: 13449sdqwer
 Byte-Range: 1-2027/2027
 Content-Type: message/cpim

 To: Bob <sip:bob@example.com>
 From: Alice <sip:alice@example.com>
 DateTime: 2006-05-21T13:02:15-03:00
 Content-Disposition: render; filename="Sunset.jpg";
 creation-date="Sun, 21 May 2006 13:02:15 -0300";
 size=1931
 Content-Type: image/jpeg

 ...binary JPEG image...
 -------d95ksxox+

 Figure 21: MSRP SEND request containing the actual file

 F10: Bob acknowledges the reception of the SEND request.

 MSRP d95ksxox 200 OK
 To-Path: msrp://alicepc.example.com:7654/iau39;tcp
 From-Path: msrp://bobpc.example.com:8888/eh10dsk;tcp
 Byte-Range: 1-2027/2027
 -------d95ksxox$

 Figure 22: MSRP 200 OK response

 F11: Then Bob terminates the SIP session by sending a SIP BYE
 request.

 F12: Alice acknowledges the reception of the BYE request and sends a
 200 (OK) response.

9.3. Example of a Capability Indication

 Alice sends an OPTIONS request to Bob (this request does not contain
 SDP). Bob answers with a 200 (OK) response that contain the SDP
 shown in Figure 24. The SDP indicates support for CPIM messages that
 can contain other MIME types. The maximum MSRP message size that the
 endpoint can receive is 20000 octets. The presence of the ’file-
 selector’ attribute indicates support for the file transfer offer/
 answer mechanism.

Garcia-Martin, et al. Standards Track [Page 40]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 Alice’s UAC Bob’s UAS
 | |
 |(1) (SIP) OPTIONS |
 |----------------------->|
 |(2) (SIP) 200 OK |
 | with SDP |
 |<-----------------------|
 | |
 | |

 Figure 23: Flow diagram of a capability request

 v=0
 o=bob 2890844656 2890855439 IN IP4 bobpc.example.com
 s=-
 c=IN IP4 bobpc.example.com
 t=0 0
 m=message 0 TCP/MSRP *
 a=accept-types:message/cpim
 a=accept-wrapped-types:*
 a=max-size:20000
 a=file-selector

 Figure 24: SDP of the 200 (OK) response to an OPTIONS request

10. Security Considerations

 The SDP attributes defined in this specification identify a file to
 be transferred between two endpoints. An endpoint can offer to send
 the file to the other endpoint or request to receive the file from
 the other endpoint. In the former case, an attacker modifying those
 SDP attributes could cheat the receiver making it think that the file
 to be transferred was a different one. In the latter case, the
 attacker could make the sender send a different file than the one
 requested by the receiver. Consequently, it is RECOMMENDED that
 integrity protection be applied to the SDP session descriptions
 carrying the attributes specified in this specification.
 Additionally, it is RECOMMENDED that senders verify the properties of
 the file against the selectors that describe it.

 The descriptions of the files being transferred between endpoints may
 reveal information the endpoints may consider confidential.
 Therefore, it is RECOMMENDED that SDP session descriptions carrying
 the attributes specified in this specification are encrypted.

 TLS and S/MIME are the natural choices to provide offer/answer
 exchanges with integrity protection and confidentiality.

Garcia-Martin, et al. Standards Track [Page 41]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 When an SDP offer contains the description of a file to be sent or
 received, the SDP answerer MUST first authenticate the SDP offerer
 and then it MUST authorize the file transfer operation, typically
 according to a local policy. Typically, these functions are
 integrated in the high-level protocol that carries SDP (e.g., SIP),
 and in the file transfer protocol (e.g., MSRP). If SIP [RFC3261] and
 MSRP [RFC4975] are used, the standard mechanisms for user
 authentication and authorization are sufficient.

 It is possible that a malicious or misbehaving implementation tries
 to exhaust the resources of the remote endpoint, e.g., the internal
 memory or the file system, by sending very large files. To protect
 from this attack, an SDP answer SHOULD first verify the identity of
 the SDP offerer, and perhaps only accept file transfers from trusted
 sources. Mechanisms to verify the identity of the file sender depend
 on the high-level protocol that carries the SDP, for example, SIP
 [RFC3261] and MSRP [RFC4975].

 It is also RECOMMENDED that implementations take measures to avoid
 attacks on resource exhaustion, for example, by limiting the size of
 received files, verifying that there is enough space in the file
 system to store the file prior to its reception, or limiting the
 number of simultaneous file transfers.

 File receivers MUST also sanitize all input, such as the local file
 name, prior to making calls to the local file system to store a file.
 This is to prevent the existence of meaningful characters to the
 local operating system that could damage it.

 Once a file has been transferred, the file receiver must take care of
 it. Typically, file transfer is a commonly used mechanism for
 transmitting computer virus, spyware, and other types of malware.
 File receivers should apply all possible security technologies (e.g.,
 anti-virus, anti-spyware) to mitigate the risk of damage at their
 host.

11. IANA Considerations

 IANA has registered a number of SDP attributes according to the
 following.

11.1. Registration of New SDP Attributes

 IANA has registered a number of media-level-only attributes in the
 Session Description Protocol Parameters registry [IANA]. The
 registration data, according to RFC 4566 [RFC4566], follows.

Garcia-Martin, et al. Standards Track [Page 42]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

11.1.1. Registration of the file-selector Attribute

 Contact: Miguel Garcia <miguel.a.garcia@ericsson.com>

 Phone: +34 91 339 1000

 Attribute name: file-selector

 Long-form attribute name: File Selector

 Type of attribute: media level only
 This attribute is subject to the charset attribute

 Description: This attribute unambiguously identifies a file by
 indicating a combination of the 4-tuple composed of the name,
 size, type, and hash of the file.

 Specification: RFC 5547

11.1.2. Registration of the file-transfer-id Attribute

 Contact: Miguel Garcia <miguel.a.garcia@ericsson.com>

 Phone: +34 91 339 1000

 Attribute name: file-transfer-id

 Long-form attribute name: File Transfer Identifier

 Type of attribute: media level only
 This attribute is subject to the charset attribute

 Description: This attribute contains a unique identifier of the file
 transfer operation within the session.

 Specification: RFC 5547

11.1.3. Registration of the file-disposition Attribute

 Contact: Miguel Garcia <miguel.a.garcia@ericsson.com>

 Phone: +34 91 339 1000

 Attribute name: file-disposition

 Long-form attribute name: File Disposition

 Type of attribute: media level only

Garcia-Martin, et al. Standards Track [Page 43]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 This attribute is not subject to the charset attribute

 Description: This attribute provides a suggestion to the other
 endpoint about the intended disposition of the file.

 Specification: RFC 5547

11.1.4. Registration of the file-date Attribute

 Contact: Miguel Garcia <miguel.a.garcia@ericsson.com>

 Phone: +34 91 339 1000

 Attribute name: file-date

 Long-form attribute name:

 Type of attribute: media level only
 This attribute is not subject to the charset attribute

 Description: This attribute indicates the dates on which the file
 was created, modified, or last read.

 Specification: RFC 5547

11.1.5. Registration of the file-icon Attribute

 Contact: Miguel Garcia <miguel.a.garcia@ericsson.com>

 Phone: +34 91 339 1000

 Attribute name: file-icon

 Long-form attribute name: File Icon

 Type of attribute: media level only
 This attribute is not subject to the charset attribute

 Description: For image files, this attribute contains a pointer to a
 body that includes a small preview icon representing the contents
 of the file to be transferred.

 Specification: RFC 5547

Garcia-Martin, et al. Standards Track [Page 44]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

11.1.6. Registration of the file-range Attribute

 Contact: Miguel Garcia <miguel.a.garcia@ericsson.com>

 Phone: +34 91 339 1000

 Attribute name: file-range

 Long-form attribute name: File Range

 Type of attribute: media level only
 This attribute is not subject to the charset attribute

 Description: This attribute contains the range of transferred octets
 of the file.

 Specification: RFC 5547

12. Acknowledgments

 The authors would like to thank Mats Stille, Nancy Greene, Adamu
 Haruna, and Arto Leppisaari for discussing initial concepts described
 in this memo. Thanks to Pekka Kuure for reviewing initial versions
 of this document and providing helpful comments. Joerg Ott, Jiwey
 Wang, Amitkumar Goel, Sudha Vs, Dan Wing, Juuso Lehtinen, Remi Denis-
 Courmont, Colin Perkins, Sudhakar An, Peter Saint-Andre, Jonathan
 Rosenberg, Eric Rescorla, Vikram Chhibber, Ben Campbell, Richard
 Barnes, and Chris Newman discussed and provided comments and
 improvements to this document.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2183] Troost, R., Dorner, S., and K. Moore, "Communicating
 Presentation Information in Internet Messages: The
 Content-Disposition Header Field", RFC 2183,
 August 1997.

Garcia-Martin, et al. Standards Track [Page 45]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 [RFC2387] Levinson, E., "The MIME Multipart/Related Content-type",
 RFC 2387, August 1998.

 [RFC2392] Levinson, E., "Content-ID and Message-ID Uniform
 Resource Locators", RFC 2392, August 1998.

 [RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, September 2001.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3851] Ramsdell, B., "Secure/Multipurpose Internet Mail
 Extensions (S/MIME) Version 3.1 Message Specification",
 RFC 3851, July 2004.

 [RFC3862] Klyne, G. and D. Atkins, "Common Presence and Instant
 Messaging (CPIM): Message Format", RFC 3862,
 August 2004.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC4975] Campbell, B., Mahy, R., and C. Jennings, "The Message
 Session Relay Protocol (MSRP)", RFC 4975,
 September 2007.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 October 2008.

13.2. Informative References

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC4028] Donovan, S. and J. Rosenberg, "Session Timers in the
 Session Initiation Protocol (SIP)", RFC 4028,
 April 2005.

Garcia-Martin, et al. Standards Track [Page 46]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 [RFC4483] Burger, E., "A Mechanism for Content Indirection in
 Session Initiation Protocol (SIP) Messages", RFC 4483,
 May 2006.

 [RFC4976] Jennings, C., Mahy, R., and A. Roach, "Relay Extensions
 for the Message Sessions Relay Protocol (MSRP)",
 RFC 4976, September 2007.

 [IANA] IANA, "Internet Assigned Numbers Authority",
 <http://www.iana.org>.

 [FLUTE-REV] Luby, M., Lehtonen, R., Roca, V., and T. Paila, "FLUTE -
 File Delivery over Unidirectional Transport", Work
 in Progress, September 2008.

Garcia-Martin, et al. Standards Track [Page 47]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

Appendix A. Alternatives Considered

 The requirements are related to the description and negotiation of
 the session, not to the actual file transfer mechanism. Thus, it is
 natural that in order to meet them it is enough to define attribute
 extensions and usage conventions to SDP, while MSRP itself needs no
 extensions and can be used as it is. This is effectively the
 approach taken in this specification. Another goal has been to
 specify the SDP extensions in such a way that a regular MSRP endpoint
 that does not support them could still in some cases act as an
 endpoint in a file transfer session, albeit with a somewhat reduced
 functionality.

 In some ways, the aim of this specification is similar to the aim of
 content indirection mechanism in the Session Initiation Protocol
 (SIP) [RFC4483]. Both mechanisms allow a user agent to decide
 whether or not to download a file based on information about the
 file. However, there are some differences. With content
 indirection, it is not possible for the other endpoint to explicitly
 accept or reject the file transfer. Also, it is not possible for an
 endpoint to request a file from another endpoint. Furthermore,
 content indirection is not tied to the context of a media session,
 which is sometimes a desirable property. Finally, content
 indirection typically requires some server infrastructure, which may
 not always be available. It is possible to use content indirection
 directly between the endpoints too, but in that case there is no
 definition for how it works for endpoints behind NATs. The level of
 requirements in implementations decides which solution meets the
 requirements.

 Based on the argumentation above, this document defines the SDP
 attribute extensions and usage conventions needed for meeting the
 requirements on file transfer services with the SDP offer/answer
 model, using MSRP as the transfer protocol within the session.

 In principle, it is possible to use the SDP extensions defined
 here and replace MSRP with any other similar protocol that can
 carry MIME objects. This kind of specification can be written as
 a separate document if the need arises. Essentially, such a
 protocol should be able to be negotiated on an SDP offer/answer
 exchange (RFC 3264 [RFC3264]), be able to describe the file to be
 transferred in SDP offer/answer exchange, be able to carry MIME
 objects between two endpoints, and use a reliable transport
 protocol (e.g., TCP).

 This specification defines a set of SDP attributes that describe a
 file to be transferred between two endpoints. The information needed
 to describe a file could be potentially encoded in a few different

Garcia-Martin, et al. Standards Track [Page 48]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

 ways. The MMUSIC working group considered a few alternative
 approaches before deciding to use the encoding described in
 Section 6. In particular, the working group looked at the MIME
 ’external-body’ type and the use of a single SDP attribute or
 parameter.

 A MIME ’external-body’ could potentially be used to describe the file
 to be transferred. In fact, many of the SDP parameters this
 specification defines are also supported by ’external-body’ body
 parts. The MMUSIC working group decided not to use ’external-body’
 body parts because a number of existing offer/answer implementations
 do not support multipart bodies.

 The information carried in the SDP attributes defined in Section 6
 could potentially be encoded in a single SDP attribute. The MMUSIC
 working group decided not to follow this approach because it is
 expected that implementations support only a subset of the parameters
 defined in Section 6. Those implementations will be able to use
 regular SDP rules in order to ignore non-supported SDP parameters.
 If all the information was encoded in a single SDP attribute, those
 rules, which relate to backwards compatibility, would need to be
 redefined specifically for that parameter.

Garcia-Martin, et al. Standards Track [Page 49]

RFC 5547 SDP Offer/Answer for File Transfer May 2009

Authors’ Addresses

 Miguel A. Garcia-Martin
 Ericsson
 Calle Via de los Poblados 13
 Madrid, ES 28033
 Spain

 EMail: miguel.a.garcia@ericsson.com

 Markus Isomaki
 Nokia
 Keilalahdentie 2-4
 Espoo 02150
 Finland

 EMail: markus.isomaki@nokia.com

 Gonzalo Camarillo
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Gonzalo.Camarillo@ericsson.com

 Salvatore Loreto
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Salvatore.Loreto@ericsson.com

 Paul H. Kyzivat
 Cisco Systems
 1414 Massachusetts Avenue
 Boxborough, MA 01719
 USA

 EMail: pkyzivat@cisco.com

Garcia-Martin, et al. Standards Track [Page 50]

