
Network Working Group V. Fajardo, Ed.
Request for Comments: 5609 Telcordia Technologies
Category: Informational Y. Ohba
 Toshiba
 R. Marin-Lopez
 Univ. of Murcia
 August 2009

 State Machines for
 the Protocol for Carrying Authentication for Network Access (PANA)

Abstract

 This document defines the conceptual state machines for the Protocol
 for Carrying Authentication for Network Access (PANA). The state
 machines consist of the PANA Client (PaC) state machine and the PANA
 Authentication Agent (PAA) state machine. The two state machines
 show how PANA can interface with the Extensible Authentication
 Protocol (EAP) state machines. The state machines and associated
 models are informative only. Implementations may achieve the same
 results using different methods.

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Fajardo, et al. Informational [Page 1]

RFC 5609 PANA State Machines August 2009

Table of Contents

 1. Introduction ..3
 2. Terminology ...3
 3. Interface between PANA and EAP3
 4. Document Authority ..5
 5. Notations ...5
 6. Common Rules ..6
 6.1. Common Procedures ..6
 6.2. Common Variables ...9
 6.3. Configurable Values10
 6.4. Common Message Initialization Rules10
 6.5. Common Retransmission Rules10
 6.6. Common State Transitions11
 7. PaC State Machine ..12
 7.1. Interface between PaC and EAP Peer12
 7.1.1. Delivering EAP Messages from PaC to EAP Peer12
 7.1.2. Delivering EAP Messages from EAP Peer to PaC12
 7.1.3. EAP Restart Notification from PaC to EAP Peer13
 7.1.4. EAP Authentication Result Notification from
 EAP Peer to PaC13
 7.1.5. Alternate Failure Notification from PaC to
 EAP Peer ...13
 7.2. Configurable Values13
 7.3. Variables ...14
 7.4. Procedures ..15
 7.5. PaC State Transition Table15
 8. PAA State Machine ..21
 8.1. Interface between PAA and EAP Authenticator21
 8.1.1. EAP Restart Notification from PAA to EAP
 Authenticator21
 8.1.2. Delivering EAP Responses from PAA to EAP
 Authenticator22
 8.1.3. Delivering EAP Messages from EAP
 Authenticator to PAA22
 8.1.4. EAP Authentication Result Notification from
 EAP Authenticator to PAA22
 8.2. Variables ...23
 8.3. Procedures ..24
 8.4. PAA State Transition Table24
 9. Implementation Considerations29
 9.1. PAA and PaC Interface to Service Management Entity29
 10. Security Considerations29
 11. Acknowledgments ...29
 12. References ..29
 12.1. Normative References29
 12.2. Informative References30

Fajardo, et al. Informational [Page 2]

RFC 5609 PANA State Machines August 2009

1. Introduction

 This document defines the state machines for the Protocol for
 Carrying Authentication for Network Access (PANA) [RFC5191]. There
 are state machines for the PANA Client (PaC) and for the PANA
 Authentication Agent (PAA). Each state machine is specified through
 a set of variables, procedures, and a state transition table. The
 state machines and associated models described in this document are
 informative only. Implementations may achieve similar results using
 different models and/or methods.

 A PANA protocol execution consists of several exchanges to carry
 authentication information. Specifically, EAP PDUs are transported
 inside PANA PDUs between PaC and PAA; that is, PANA represents a
 lower layer for EAP. Thus, a PANA state machine bases its execution
 on an EAP state machine execution and vice versa. Thus, this
 document also shows for each of PaC and PAA an interface between an
 EAP state machine and a PANA state machine and how this interface
 allows to exchange information between them. Thanks to this
 interface, a PANA state machine can be informed about several events
 generated in an EAP state machine and make its execution conditional
 to its events.

 The details of EAP state machines are out of the scope of this
 document. Additional information can be found in [RFC4137].
 Nevertheless, PANA state machines presented here have been
 coordinated with state machines shown by [RFC4137].

 This document, apart from defining PaC and PAA state machines and
 their interfaces to EAP state machines (running on top of PANA),
 provides some implementation considerations, taking into account that
 it is not a specification but an implementation guideline.

2. Terminology

 This document reuses the terminology used in [RFC5191].

3. Interface between PANA and EAP

 PANA carries EAP messages exchanged between an EAP peer and an EAP
 authenticator (see Figure 1). Thus, a PANA state machine interacts
 with an EAP state machine.

 Two state machines are defined in this document: the PaC state
 machine (see Section 7) and the PAA state machine (see Section 8).
 The definition of each state machine consists of a set of variables,
 procedures, and a state transition table. A subset of these
 variables and procedures defines the interface between a PANA state

Fajardo, et al. Informational [Page 3]

RFC 5609 PANA State Machines August 2009

 machine and an EAP state machine, and the state transition table
 defines the PANA state machine behavior based on results obtained
 through them.

 On the one hand, the PaC state machine interacts with an EAP peer
 state machine in order to carry out the PANA protocol on the PaC
 side. On the other hand, the PAA state machine interacts with an EAP
 authenticator state machine to run the PANA protocol on the PAA side.

 Peer |EAP Auth
 EAP <---------|------------> EAP
 ^ | | ^ |
 | | | EAP-Message | | EAP-Message
 EAP-Message | |EAP-Message | | |
 | v |PANA | v
 PaC <---------|------------> PAA

 Figure 1: Interface between PANA and EAP

 Thus, two interfaces are needed between PANA state machines and EAP
 state machines, namely:

 o Interface between the PaC state machine and the EAP peer state
 machine

 o Interface between the PAA state machine and the EAP authenticator
 state machine

 In general, the PaC and PAA state machines present EAP messages to
 the EAP peer and authenticator state machines through the interface,
 respectively. The EAP peer and authenticator state machines process
 these messages and send EAP messages through the PaC and PAA state
 machines that are responsible for actually transmitting this message,
 respectively.

 For example, [RFC4137] specifies four interfaces to lower layers: (i)
 an interface between the EAP peer state machine and a lower layer,
 (ii) an interface between the EAP standalone authenticator state
 machine and a lower layer, (iii) an interface between the EAP full
 authenticator state machine and a lower layer, and (iv) an interface
 between the EAP backend authenticator state machine and a lower
 layer. In this document, the PANA protocol is the lower layer of EAP
 and only the first three interfaces are of interest to PANA. The
 second and third interfaces are the same. In this regard, the EAP
 standalone authenticator or the EAP full authenticator and its state
 machine in [RFC4137] are referred to as the EAP authenticator and the
 EAP authenticator state machine, respectively, in this document. If
 an EAP peer and an EAP authenticator follow the state machines

Fajardo, et al. Informational [Page 4]

RFC 5609 PANA State Machines August 2009

 defined in [RFC4137], the interfaces between PANA and EAP could be
 based on that document. Detailed definition of interfaces between
 PANA and EAP are described in the subsequent sections.

4. Document Authority

 This document is intended to comply with the technical contents of
 any of the related documents ([RFC5191] and [RFC4137]). When there
 is a discrepancy, the related documents are considered authoritative
 and they take precedence over this document.

5. Notations

 The following state transition tables are completed mostly based on
 the conventions specified in [RFC4137]. The complete text is
 described below.

 State transition tables are used to represent the operation of the
 protocol by a number of cooperating state machines each comprising a
 group of connected, mutually exclusive states. Only one state of
 each machine can be active at any given time.

 All permissible transitions from a given state to other states and
 associated actions performed when the transitions occur are
 represented by using triplets of (exit condition, exit action, exit
 state). All conditions are expressions that evaluate to TRUE or
 FALSE; if a condition evaluates to TRUE, then the condition is met.
 A state "ANY" is a wildcard state that matches any state in each
 state machine except those explicitly enumerated as exception states.
 The exit conditions of a wildcard state are evaluated after all other
 exit conditions specific to the current state are met.

 On exit from a state, the exit actions defined for the state and the
 exit condition are executed exactly once, in the order that they
 appear. (Note that the procedures defined in [RFC4137] are executed
 on entry to a state, which is one major difference from this
 document.) Each exit action is deemed to be atomic; i.e., execution
 of an exit action completes before the next sequential exit action
 starts to execute. No exit action executes outside of a state block.
 The exit actions in only one state block execute at a time even if
 the conditions for execution of state blocks in different state
 machines are satisfied. All exit actions in an executing state block
 complete execution before the transition to and execution of any
 other state blocks. The execution of any state block appears to be
 atomic with respect to the execution of any other state block, and
 the transition condition to that state from the previous state is
 TRUE when execution commences. The order of execution of state
 blocks in different state machines is undefined except as constrained

Fajardo, et al. Informational [Page 5]

RFC 5609 PANA State Machines August 2009

 by their transition conditions. A variable that is set to a
 particular value in a state block retains this value until a
 subsequent state block executes an exit action that modifies the
 value.

 On completion of the transition from the previous state to the
 current state, all exit conditions occurring during the current state
 (including exit conditions defined for the wildcard state) are
 evaluated until an exit condition for that state is met.

 Any event variable is set to TRUE when the corresponding event occurs
 and set to FALSE immediately after completion of the action
 associated with the current state and the event.

 The interpretation of the special symbols and operators used is
 defined in [RFC4137].

6. Common Rules

 There are following procedures, variables, message initializing
 rules, and state transitions that are common to both the PaC and PAA
 state machines.

 Throughout this document, the character string "PANA_MESSAGE_NAME"
 matches any one of the abbreviated PANA message names, i.e., "PCI",
 "PAR", "PAN", "PTR", "PTA", "PNR", "PNA".

6.1. Common Procedures

 void None()

 A null procedure, i.e., nothing is done.

 void Disconnect()

 A procedure to delete the PANA session as well as the
 corresponding EAP session and authorization state.

 boolean Authorize()

 A procedure to create or modify authorization state. It returns
 TRUE if authorization is successful. Otherwise, it returns FALSE.
 It is assumed that Authorize() procedure of PaC state machine
 always returns TRUE. In the case that a non-key-generating EAP
 method is used but a PANA SA is required after successful
 authentication (generate_pana_sa() returns TRUE), Authorize()
 procedure must return FALSE.

Fajardo, et al. Informational [Page 6]

RFC 5609 PANA State Machines August 2009

 void Tx:PANA_MESSAGE_NAME[flag](AVPs)

 A procedure to send a PANA message to its peering PANA entity.
 The "flag" argument contains one or more flags (e.g., Tx:PAR[C])
 to be set to the message, except for ’R’ (Request) flag. The
 "AVPs" contains a list of names of optional AVPs to be inserted in
 the message, except for AUTH AVP.

 This procedure includes the following action before actual
 transmission:

 if (flag==S)
 PANA_MESSAGE_NAME.S_flag=Set;
 if (flag==C)
 PANA_MESSAGE_NAME.C_flag=Set;
 if (flag==A)
 PANA_MESSAGE_NAME.A_flag=Set;
 if (flag==P)
 PANA_MESSAGE_NAME.P_flag=Set;
 PANA_MESSAGE_NAME.insert_avp(AVPs);
 if (key_available())
 PANA_MESSAGE_NANE.insert_avp("AUTH");

 void TxEAP()

 A procedure to send an EAP message to the EAP state machine to
 which it interfaces.

 void RtxTimerStart()

 A procedure to start the retransmission timer, reset RTX_COUNTER
 variable to zero, and set an appropriate value to RTX_MAX_NUM
 variable. Note that RTX_MAX_NUM is assumed to be set to the same
 default value for all messages. However, implementations may also
 reset RTX_MAX_NUM in this procedure and its value may vary
 depending on the message that was sent.

 void RtxTimerStop()

 A procedure to stop the retransmission timer.

 void SessionTimerReStart(TIMEOUT)

 A procedure to (re)start the PANA session timer. TIMEOUT
 specifies the expiration time associated with the session timer.
 Expiration of TIMEOUT will trigger a SESS_TIMEOUT event.

Fajardo, et al. Informational [Page 7]

RFC 5609 PANA State Machines August 2009

 void SessionTimerStop()

 A procedure to stop the current PANA session timer.

 void Retransmit()

 A procedure to retransmit a PANA message and increment RTX_COUNTER
 by one(1).

 void EAP_Restart()

 A procedure to (re)start an EAP conversation resulting in the re-
 initialization of an existing EAP session.

 void PANA_MESSAGE_NAME.insert_avp("AVP_NAME1", "AVP_NAME2",...)

 A procedure to insert AVPs for each specified AVP name in the list
 of AVP names in the PANA message. When an AVP name ends with "*",
 zero, one, or more AVPs are inserted; otherwise, one AVP is
 inserted.

 boolean PANA_MESSAGE_NAME.exist_avp("AVP_NAME")

 A procedure that checks whether an AVP of the specified AVP name
 exists in the specified PANA message and returns TRUE if the
 specified AVP is found, otherwise returns FALSE.

 boolean generate_pana_sa()

 A procedure to check whether the EAP method being used generates
 keys and that a PANA SA will be established on successful
 authentication. For the PaC, the procedure is also used to check
 and match the PRF and Integrity algorithm AVPs advertised by the
 PAA in PAR[S] message. For the PAA, it is used to indicate
 whether a PRF and Integrity algorithm AVPs will be sent in the
 PAR[S]. This procedure will return TRUE if a PANA SA will be
 generated. Otherwise, it returns FALSE.

 boolean key_available()

 A procedure to check whether the PANA session has a PANA_AUTH_KEY.
 If the state machine already has a PANA_AUTH_KEY, it returns TRUE.
 If the state machine does not have a PANA_AUTH_KEY, it tries to
 retrieve a Master Session Key (MSK) from the EAP entity. If an
 MSK is retrieved, it computes a PANA_AUTH_KEY from the MSK and
 returns TRUE. Otherwise, it returns FALSE.

Fajardo, et al. Informational [Page 8]

RFC 5609 PANA State Machines August 2009

6.2. Common Variables

 PAR.RESULT_CODE

 This variable contains the Result-Code AVP value in the PANA-Auth-
 Request message in process. When this variable carries
 PANA_SUCCESS, it is assumed that the PAR message always contains
 an EAP-Payload AVP that carries an EAP-Success message.

 NONCE_SENT

 This variable is set to TRUE to indicate that a Nonce-AVP has
 already been sent. Otherwise, it is set to FALSE.

 RTX_COUNTER

 This variable contains the current number of retransmissions of
 the outstanding PANA message.

 Rx:PANA_MESSAGE_NAME[flag]

 This event variable is set to TRUE when the specified PANA message
 is received from its peering PANA entity. The "flag" contains a
 flag (e.g., Rx:PAR[C]), except for ’R’ (Request) flag.

 RTX_TIMEOUT

 This event variable is set to TRUE when the retransmission timer
 is expired.

 REAUTH

 This event variable is set to TRUE when an initiation of re-
 authentication phase is triggered. This event variable can only
 be set while in the OPEN state.

 TERMINATE

 This event variable is set to TRUE when initiation of PANA session
 termination is triggered. This event variable can only be set
 while in the OPEN state.

 PANA_PING

 This event variable is set to TRUE when initiation of liveness
 test based on PANA-Notification exchange is triggered. This event
 variable can only be set while in the OPEN state.

Fajardo, et al. Informational [Page 9]

RFC 5609 PANA State Machines August 2009

 SESS_TIMEOUT

 This event is variable is set to TRUE when the session timer has
 expired.

 LIFETIME_SESS_TIMEOUT

 Configurable value used by the PaC and PAA to close or disconnect
 an established session in the access phase. This variable
 indicates the expiration of the session and is set to the value of
 Session-Lifetime AVP if present in the last PANA-Auth-Request
 message in the case of the PaC. Otherwise, it is assumed that the
 value is infinite and therefore has no expiration. Expiration of
 LIFETIME_SESS_TIMEOUT will cause the event variable SESS_TIMEOUT
 to be set.

 ANY

 This event variable is set to TRUE when any event occurs.

6.3. Configurable Values

 RTX_MAX_NUM

 Configurable maximum for how many retransmissions should be
 attempted before aborting.

6.4. Common Message Initialization Rules

 When a message is prepared for sending, it is initialized as follows:

 o For a request message, R-flag of the header is set. Otherwise,
 R-flag is not set.

 o Other message header flags are not set. They are set explicitly
 by specific state machine actions.

 o AVPs that are mandatory to be included in a message are inserted
 with appropriate values set.

6.5. Common Retransmission Rules

 The state machines defined in this document assume that the PaC and
 the PAA cache the last transmitted answer message. This scheme is
 described in Section 5.2 of [RFC5191]. When the PaC or PAA receives
 a retransmitted or duplicate request, it would be able to resend the
 corresponding answer without any aid from the EAP layer. However, to
 simplify the state machine description, this caching scheme is

Fajardo, et al. Informational [Page 10]

RFC 5609 PANA State Machines August 2009

 omitted in the state machines below. In the case that there is not a
 corresponding answer to a retransmitted request, the request will be
 handled by the corresponding state machine.

6.6. Common State Transitions

 The following transitions can occur at any state with exemptions
 explicitly noted.

 State: ANY

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - (Re-transmissions)- - - - - - - - - -
 RTX_TIMEOUT && Retransmit(); (no change)
 RTX_COUNTER<
 RTX_MAX_NUM
 -
 - - - - - - - (Reach maximum number of transmissions)- - - - - -
 (RTX_TIMEOUT && Disconnect(); CLOSED
 RTX_COUNTER>=
 RTX_MAX_NUM) ||
 SESS_TIMEOUT
 -

 State: ANY except INITIAL

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - (liveness test initiated by peer)- - - - - -
 Rx:PNR[P] Tx:PNA[P](); (no change)

 State: ANY except WAIT_PNA_PING

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - (liveness test response) - - - - - - - -
 Rx:PNA[P] None(); (no change)

 The following transitions can occur on any exit condition within the
 specified state.

Fajardo, et al. Informational [Page 11]

RFC 5609 PANA State Machines August 2009

 State: CLOSED

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - -(Catch all event on closed state) - - - - - - - -
 ANY None(); CLOSED
 -

7. PaC State Machine

7.1. Interface between PaC and EAP Peer

 This interface defines the interactions between a PaC and an EAP
 peer. The interface serves as a mechanism to deliver EAP messages
 for the EAP peer. It allows the EAP peer to receive EAP requests and
 send EAP responses via the PaC. It also provides a mechanism to
 notify the EAP peer of PaC events and a mechanism to receive
 notification of EAP peer events. The EAP message delivery mechanism
 as well as the event notification mechanism in this interface have
 direct correlation with the PaC state transition table entries.
 These message delivery and event notifications mechanisms occur only
 within the context of their associated states or exit actions.

7.1.1. Delivering EAP Messages from PaC to EAP Peer

 TxEAP() procedure in the PaC state machine serves as the mechanism to
 deliver EAP messages contained in PANA-Auth-Request messages to the
 EAP peer. This procedure is enabled only after an EAP restart event
 is notified to the EAP peer and before any event resulting in a
 termination of the EAP peer session. In the case where the EAP peer
 follows the EAP peer state machine defined in [RFC4137], TxEAP()
 procedure sets eapReq variable of the EAP peer state machine and puts
 the EAP request in eapReqData variable of the EAP peer state machine.

7.1.2. Delivering EAP Messages from EAP Peer to PaC

 An EAP message is delivered from the EAP peer to the PaC via
 EAP_RESPONSE event variable. The event variable is set when the EAP
 peer passes the EAP message to its lower layer. In the case where
 the EAP peer follows the EAP peer state machine defined in [RFC4137],
 EAP_RESPONSE event variable refers to eapResp variable of the EAP
 peer state machine and the EAP message is contained in eapRespData
 variable of the EAP peer state machine.

Fajardo, et al. Informational [Page 12]

RFC 5609 PANA State Machines August 2009

7.1.3. EAP Restart Notification from PaC to EAP Peer

 The EAP peer state machine defined in [RFC4137] has an initialization
 procedure before receiving an EAP message. To initialize the EAP
 state machine, the PaC state machine defines an event notification
 mechanism to send an EAP (re)start event to the EAP peer. The event
 notification is done via EAP_Restart() procedure in the
 initialization action of the PaC state machine.

7.1.4. EAP Authentication Result Notification from EAP Peer to PaC

 In order for the EAP peer to notify the PaC of an EAP authentication
 result, EAP_SUCCESS and EAP_FAILURE event variables are defined. In
 the case where the EAP peer follows the EAP peer state machine
 defined in [RFC4137], EAP_SUCCESS and EAP_FAILURE event variables
 refer to eapSuccess and eapFail variables of the EAP peer state
 machine, respectively. In this case, if EAP_SUCCESS event variable
 is set to TRUE and an MSK is generated by the EAP authentication
 method in use, eapKeyAvailable variable is set to TRUE and eapKeyData
 variable contains the MSK. Note that EAP_SUCCESS and EAP_FAILURE
 event variables may be set to TRUE even before the PaC receives a PAR
 with a ’Complete’ flag set from the PAA.

7.1.5. Alternate Failure Notification from PaC to EAP Peer

 alt_reject() procedure in the PaC state machine serves as the
 mechanism to deliver an authentication failure event to the EAP peer
 without accompanying an EAP message. In the case where the EAP peer
 follows the EAP peer state machine defined in [RFC4137], alt_reject()
 procedure sets altReject variable of the EAP peer state machine.
 Note that the EAP peer state machine in [RFC4137] also defines
 altAccept variable; however, it is never used in PANA in which EAP-
 Success messages are reliably delivered by the last PANA-Auth
 exchange.

7.2. Configurable Values

 FAILED_SESS_TIMEOUT

 This is a configurable value that allows the PaC to determine
 whether a PaC authentication and authorization phase has stalled
 without an explicit EAP success or failure notification.

Fajardo, et al. Informational [Page 13]

RFC 5609 PANA State Machines August 2009

7.3. Variables

 AUTH_USER

 This event variable is set to TRUE when initiation of EAP-based
 (re-)authentication is triggered by the application.

 EAP_SUCCESS

 This event variable is set to TRUE when the EAP peer determines
 that an EAP conversation completes with success.

 EAP_FAILURE

 This event variable is set to TRUE when the EAP peer determines
 that an EAP conversation completes with failure.

 EAP_RESPONSE

 This event variable is set to TRUE when the EAP peer delivers an
 EAP message to the PaC. This event accompanies an EAP message
 received from the EAP peer.

 EAP_RESP_TIMEOUT

 This event variable is set to TRUE when the PaC that has passed an
 EAP message to the EAP layer does not receive a subsequent EAP
 message from the EAP layer in a given period. This provides a
 time limit for certain EAP methods where user interaction may be
 required.

 EAP_DISCARD

 This event variable is set to TRUE when the EAP peer indicates
 that it has silently discarded the last received EAP-Request.
 This event does not accompany any EAP message. In the case where
 the EAP peer follows the EAP peer state machine defined in
 [RFC4137], this event variable refers to eapNoResp. Note that
 this specification does not support silently discarding EAP
 messages. They are treated as fatal errors instead. This may
 have an impact on denial-of-service resistance.

Fajardo, et al. Informational [Page 14]

RFC 5609 PANA State Machines August 2009

7.4. Procedures

 boolean eap_piggyback()

 This procedure returns TRUE to indicate whether the next EAP
 response will be carried in the pending PAN message for
 optimization.

 void alt_reject()

 This procedure informs the EAP peer of an authentication failure
 event without accompanying an EAP message.

 void EAP_RespTimerStart()

 This is a procedure to start a timer to receive an EAP-Response
 from the EAP peer.

 void EAP_RespTimerStop()

 This is a procedure to stop a timer to receive an EAP-Response
 from the EAP peer.

7.5. PaC State Transition Table

 State: INITIAL (Initial State)

 Initialization Action:

 NONCE_SENT=Unset;
 RTX_COUNTER=0;
 RtxTimerStop();

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+-----------
 - - - - - - - - - - (PaC-initiated Handshake) - - - - - - - - -
 AUTH_USER Tx:PCI[](); INITIAL
 RtxTimerStart();
 SessionTimerReStart
 (FAILED_SESS_TIMEOUT);
 -

Fajardo, et al. Informational [Page 15]

RFC 5609 PANA State Machines August 2009

 - - - - - - -(PAA-initiated Handshake, not optimized) - - - - -
 Rx:PAR[S] && EAP_Restart(); WAIT_PAA
 !PAR.exist_avp SessionTimerReStart
 ("EAP-Payload") (FAILED_SESS_TIMEOUT);
 if (generate_pana_sa())
 Tx:PAN[S]("PRF-Algorithm",
 "Integrity-Algorithm");
 else
 Tx:PAN[S]();
 -

 - - - - - - - -(PAA-initiated Handshake, optimized) - - - - - -
 Rx:PAR[S] && EAP_Restart(); INITIAL
 PAR.exist_avp TxEAP();
 ("EAP-Payload") && SessionTimerReStart
 eap_piggyback() (FAILED_SESS_TIMEOUT);

 Rx:PAR[S] && EAP_Restart(); WAIT_EAP_MSG
 PAR.exist_avp TxEAP();
 ("EAP-Payload") && SessionTimerReStart
 !eap_piggyback() (FAILED_SESS_TIMEOUT);
 if (generate_pana_sa())
 Tx:PAN[S]("PRF-Algorithm",
 "Integrity-Algorithm");
 else
 Tx:PAN[S]();

 EAP_RESPONSE if (generate_pana_sa()) WAIT_PAA
 Tx:PAN[S]("EAP-Payload",
 "PRF-Algorithm",
 "Integrity-Algorithm");
 else
 Tx:PAN[S]("EAP-Payload");
 -

Fajardo, et al. Informational [Page 16]

RFC 5609 PANA State Machines August 2009

 State: WAIT_PAA

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - - -(PAR-PAN exchange) - - - - - - - -
 Rx:PAR[] && RtxTimerStop(); WAIT_EAP_MSG
 !eap_piggyback() TxEAP();
 EAP_RespTimerStart();
 if (NONCE_SENT==Unset) {
 NONCE_SENT=Set;
 Tx:PAN[]("Nonce");
 }
 else
 Tx:PAN[]();

 Rx:PAR[] && RtxTimerStop(); WAIT_EAP_MSG
 eap_piggyback() TxEAP();
 EAP_RespTimerStart();

 Rx:PAN[] RtxTimerStop(); WAIT_PAA

 -

 - - - - - - - - - - - - - - -(PANA result) - - - - - - - - - -
 Rx:PAR[C] && TxEAP(); WAIT_EAP_RESULT
 PAR.RESULT_CODE==
 PANA_SUCCESS

 Rx:PAR[C] && if (PAR.exist_avp WAIT_EAP_RESULT_
 PAR.RESULT_CODE!= ("EAP-Payload")) CLOSE
 PANA_SUCCESS TxEAP();
 else
 alt_reject();
 -

Fajardo, et al. Informational [Page 17]

RFC 5609 PANA State Machines August 2009

 State: WAIT_EAP_MSG

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - (Return PAN/PAR from EAP) - - - - - - - - -
 EAP_RESPONSE && EAP_RespTimerStop() WAIT_PAA
 eap_piggyback() if (NONCE_SENT==Unset) {
 Tx:PAN[]("EAP-Payload",
 "Nonce");
 NONCE_SENT=Set;
 }
 else
 Tx:PAN[]("EAP-Payload");

 EAP_RESPONSE && EAP_RespTimerStop() WAIT_PAA
 !eap_piggyback() Tx:PAR[]("EAP-Payload");
 RtxTimerStart();

 EAP_RESP_TIMEOUT && Tx:PAN[](); WAIT_PAA
 eap_piggyback()

 EAP_DISCARD && Tx:PAN[](); CLOSED
 eap_piggyback() SessionTimerStop();
 Disconnect();

 EAP_FAILURE || SessionTimerStop(); CLOSED
 (EAP_DISCARD && Disconnect();
 !eap_piggyback())
 -

 State: WAIT_EAP_RESULT

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - (EAP Result) - - - - - - - - - - - - -
 EAP_SUCCESS if (PAR.exist_avp OPEN
 ("Key-Id"))
 Tx:PAN[C]("Key-Id");
 else
 Tx:PAN[C]();
 Authorize();
 SessionTimerReStart
 (LIFETIME_SESS_TIMEOUT);

Fajardo, et al. Informational [Page 18]

RFC 5609 PANA State Machines August 2009

 EAP_FAILURE Tx:PAN[C](); CLOSED
 SessionTimerStop();
 Disconnect();
 -

 State: WAIT_EAP_RESULT_CLOSE

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - (EAP Result) - - - - - - - - - - - - -
 EAP_SUCCESS || if (EAP_SUCCESS && CLOSED
 EAP_FAILURE PAR.exist_avp("Key-Id"))
 Tx:PAN[C]("Key-Id");
 else
 Tx:PAN[C]();
 SessionTimerStop();
 Disconnect();
 -

 State: OPEN

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - (liveness test initiated by PaC)- - - - - -
 PANA_PING Tx:PNR[P](); WAIT_PNA_PING
 RtxTimerStart();
 -
 - - - - - - - - - (re-authentication initiated by PaC)- - - - - -
 REAUTH NONCE_SENT=Unset; WAIT_PNA_REAUTH
 Tx:PNR[A]();
 RtxTimerStart();
 -

Fajardo, et al. Informational [Page 19]

RFC 5609 PANA State Machines August 2009

 - - - - - - - - - (re-authentication initiated by PAA)- - - - - -
 Rx:PAR[] EAP_RespTimerStart(); WAIT_EAP_MSG
 TxEAP();
 if (!eap_piggyback())
 Tx:PAN[]("Nonce");
 else
 NONCE_SENT=Unset;
 SessionTimerReStart
 (FAILED_SESS_TIMEOUT);
 -
 - - - - - - - -(Session termination initiated by PAA) - - - - - -
 Rx:PTR[] Tx:PTA[](); CLOSED
 SessionTimerStop();
 Disconnect();
 -
 - - - - - - - -(Session termination initiated by PaC) - - - - - -
 TERMINATE Tx:PTR[](); SESS_TERM
 RtxTimerStart();
 SessionTimerStop();
 -

 State: WAIT_PNA_REAUTH

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - -(re-authentication initiated by PaC) - - - - -
 Rx:PNA[A] RtxTimerStop(); WAIT_PAA
 SessionTimerReStart
 (FAILED_SESS_TIMEOUT);
 -
 - - - - - - - -(Session termination initiated by PAA) - - - - - -
 Rx:PTR[] RtxTimerStop(); CLOSED
 Tx:PTA[]();
 SessionTimerStop();
 Disconnect();
 -

 State: WAIT_PNA_PING

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - -(liveness test initiated by PaC) - - - - - - -
 Rx:PNA[P] RtxTimerStop(); OPEN
 -

Fajardo, et al. Informational [Page 20]

RFC 5609 PANA State Machines August 2009

 - - - - - - - - - (re-authentication initiated by PAA)- - - - -
 Rx:PAR[] RtxTimerStop(); WAIT_EAP_MSG
 EAP_RespTimerStart();
 TxEAP();
 if (!eap_piggyback())
 Tx:PAN[]("Nonce");
 else
 NONCE_SENT=Unset;
 SessionTimerReStart
 (FAILED_SESS_TIMEOUT);
 -
 - - - - - - - -(Session termination initiated by PAA) - - - - - -
 Rx:PTR[] RtxTimerStop(); CLOSED
 Tx:PTA[]();
 SessionTimerStop();
 Disconnect();
 -

 State: SESS_TERM

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - -(Session termination initiated by PaC) - - - - -
 Rx:PTA[] Disconnect(); CLOSED
 -

8. PAA State Machine

8.1. Interface between PAA and EAP Authenticator

 The interface between a PAA and an EAP authenticator provides a
 mechanism to deliver EAP messages for the EAP authenticator as well
 as a mechanism to notify the EAP authenticator of PAA events and to
 receive notification of EAP authenticator events. These message
 delivery and event notification mechanisms occur only within context
 of their associated states or exit actions.

8.1.1. EAP Restart Notification from PAA to EAP Authenticator

 An EAP authenticator state machine defined in [RFC4137] has an
 initialization procedure before sending the first EAP request. To
 initialize the EAP state machine, the PAA state machine defines an
 event notification mechanism to send an EAP (re)start event to the
 EAP authenticator. The event notification is done via EAP_Restart()
 procedure in the initialization action of the PAA state machine.

Fajardo, et al. Informational [Page 21]

RFC 5609 PANA State Machines August 2009

8.1.2. Delivering EAP Responses from PAA to EAP Authenticator

 TxEAP() procedure in the PAA state machine serves as the mechanism to
 deliver EAP-Responses contained in PANA-Auth-Answer messages to the
 EAP authenticator. This procedure is enabled only after an EAP
 restart event is notified to the EAP authenticator and before any
 event resulting in a termination of the EAP authenticator session.
 In the case where the EAP authenticator follows the EAP authenticator
 state machines defined in [RFC4137], TxEAP() procedure sets eapResp
 variable of the EAP authenticator state machine and puts the EAP
 response in eapRespData variable of the EAP authenticator state
 machine.

8.1.3. Delivering EAP Messages from EAP Authenticator to PAA

 An EAP request is delivered from the EAP authenticator to the PAA via
 EAP_REQUEST event variable. The event variable is set when the EAP
 authenticator passes the EAP request to its lower layer. In the case
 where the EAP authenticator follows the EAP authenticator state
 machines defined in [RFC4137], EAP_REQUEST event variable refers to
 eapReq variable of the EAP authenticator state machine and the EAP
 request is contained in eapReqData variable of the EAP authenticator
 state machine.

8.1.4. EAP Authentication Result Notification from EAP Authenticator to
 PAA

 In order for the EAP authenticator to notify the PAA of the EAP
 authentication result, EAP_SUCCESS, EAP_FAILURE, and EAP_TIMEOUT
 event variables are defined. In the case where the EAP authenticator
 follows the EAP authenticator state machines defined in [RFC4137],
 EAP_SUCCESS, EAP_FAILURE, and EAP_TIMEOUT event variables refer to
 eapSuccess, eapFail, and eapTimeout variables of the EAP
 authenticator state machine, respectively. In this case, if
 EAP_SUCCESS event variable is set to TRUE, an EAP-Success message is
 contained in eapReqData variable of the EAP authenticator state
 machine, and additionally, eapKeyAvailable variable is set to TRUE
 and eapKeyData variable contains an MSK if the MSK is generated as a
 result of successful authentication by the EAP authentication method
 in use. Similarly, if EAP_FAILURE event variable is set to TRUE, an
 EAP-Failure message is contained in eapReqData variable of the EAP
 authenticator state machine. The PAA uses EAP_SUCCESS and
 EAP_FAILURE event variables as a trigger to send a PAR message to the
 PaC.

Fajardo, et al. Informational [Page 22]

RFC 5609 PANA State Machines August 2009

8.2. Variables

 OPTIMIZED_INIT

 This variable indicates whether the PAA is able to piggyback an
 EAP-Request in the initial PANA-Auth-Request. Otherwise, it is
 set to FALSE.

 PAC_FOUND

 This variable is set to TRUE as a result of a PAA-initiated
 handshake.

 REAUTH_TIMEOUT

 This event variable is set to TRUE to indicate that the PAA
 initiates a re-authentication with the PaC. The re-authentication
 timeout should be set to a value less than the session timeout
 carried in the Session-Lifetime AVP if present.

 EAP_SUCCESS

 This event variable is set to TRUE when an EAP conversation
 completes with success. This event accompanies an EAP-Success
 message passed from the EAP authenticator.

 EAP_FAILURE

 This event variable is set to TRUE when an EAP conversation
 completes with failure. This event accompanies an EAP-Failure
 message passed from the EAP authenticator.

 EAP_REQUEST

 This event variable is set to TRUE when the EAP authenticator
 delivers an EAP Request to the PAA. This event accompanies an
 EAP-Request message received from the EAP authenticator.

 EAP_TIMEOUT

 This event variable is set to TRUE when an EAP conversation times
 out without generating an EAP-Success or an EAP-Failure message.
 This event does not accompany any EAP message.

Fajardo, et al. Informational [Page 23]

RFC 5609 PANA State Machines August 2009

 EAP_DISCARD

 This event variable is set to TRUE when the EAP authenticator
 indicates that it has silently discarded the last received EAP-
 Response message. This event does not accompany any EAP message.
 In the case where the EAP authenticator follows the EAP
 authenticator state machines defined in [RFC4137], this event
 variable refers to eapNoReq.

8.3. Procedures

 boolean new_key_available()

 This is a procedure to check whether the PANA session has a new
 PANA_AUTH_KEY. If the state machine already has a PANA_AUTH_KEY,
 it returns FALSE. If the state machine does not have a
 PANA_AUTH_KEY, it tries to retrieve an MSK from the EAP entity.
 If an MSK has been retrieved, it computes a PANA_AUTH_KEY from the
 MSK and returns TRUE. Otherwise, it returns FALSE.

8.4. PAA State Transition Table

 State: INITIAL (Initial State)

 Initialization Action:

 OPTIMIZED_INIT=Set|Unset;
 NONCE_SENT=Unset;
 RTX_COUNTER=0;
 RtxTimerStop();

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - (PCI and PAA initiated PANA) - - - - - - - - -
 (Rx:PCI[] || if (OPTIMIZED_INIT == INITIAL
 PAC_FOUND) Set) {
 EAP_Restart();
 SessionTimerReStart
 (FAILED_SESS_TIMEOUT);
 }
 else {
 if (generate_pana_sa())
 Tx:PAR[S]("PRF-Algorithm",
 "Integrity-Algorithm");
 else
 Tx:PAR[S]();

Fajardo, et al. Informational [Page 24]

RFC 5609 PANA State Machines August 2009

 }

 EAP_REQUEST if (generate_pana_sa()) INITIAL
 Tx:PAR[S]("EAP-Payload",
 "PRF-Algorithm",
 "Integrity-Algorithm");
 else
 Tx:PAR[S]("EAP-Payload");
 RtxTimerStart();
 -

 - - - - - - - - - - - - - - (PAN Handling) - - - - - - - - - -
 Rx:PAN[S] && if (PAN.exist_avp WAIT_EAP_MSG
 ((OPTIMIZED_INIT == ("EAP-Payload"))
 Unset) || TxEAP();
 PAN.exist_avp else {
 ("EAP-Payload")) EAP_Restart();
 SessionTimerReStart
 (FAILED_SESS_TIMEOUT);
 }

 Rx:PAN[S] && None(); WAIT_PAN_OR_PAR
 (OPTIMIZED_INIT ==
 Set) &&
 ! PAN.exist_avp
 ("EAP-Payload")

 -

 State: WAIT_EAP_MSG

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - -(Receiving EAP-Request)- - - - - - - - -
 EAP_REQUEST if (NONCE_SENT==Unset) { WAIT_PAN_OR_PAR
 Tx:PAR[]("Nonce",
 "EAP-Payload");
 NONCE_SENT=Set;
 }
 else
 Tx:PAR[]("EAP-Payload");
 RtxTimerStart();
 -
 - - - - - - - - - - -(Receiving EAP-Success/Failure) - - - - -
 EAP_FAILURE PAR.RESULT_CODE = WAIT_FAIL_PAN
 PANA_AUTHENTICATION_

Fajardo, et al. Informational [Page 25]

RFC 5609 PANA State Machines August 2009

 REJECTED;
 Tx:PAR[C]("EAP-Payload");
 RtxTimerStart();
 SessionTimerStop();

 EAP_SUCCESS && PAR.RESULT_CODE = WAIT_SUCC_PAN
 Authorize() PANA_SUCCESS;
 if (new_key_available())
 Tx:PAR[C]("EAP-Payload",
 "Key-Id");
 else
 Tx:PAR[C]("EAP-Payload");
 RtxTimerStart();

 EAP_SUCCESS && PAR.RESULT_CODE = WAIT_FAIL_PAN
 !Authorize() PANA_AUTHORIZATION_
 REJECTED;
 if (new_key_available())
 Tx:PAR[C]("EAP-Payload",
 "Key-Id");
 else
 Tx:PAR[C]("EAP-Payload");
 RtxTimerStart();
 -
 - - - - - (Receiving EAP-Timeout or invalid message) - - - - -
 EAP_TIMEOUT || SessionTimerStop(); CLOSED
 EAP_DISCARD Disconnect();
 -

 State: WAIT_SUCC_PAN

 Event/Condition Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - (PAN Processing)- - - - - - - - - - -
 Rx:PAN[C] RtxTimerStop(); OPEN
 SessionTimerReStart
 (LIFETIME_SESS_TIMEOUT);
 -

 State: WAIT_FAIL_PAN

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - - (PAN Processing)- - - - - - - - - -

Fajardo, et al. Informational [Page 26]

RFC 5609 PANA State Machines August 2009

 Rx:PAN[C] RtxTimerStop(); CLOSED
 Disconnect();
 -

 State: OPEN

 Event/Condition Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - (re-authentication initiated by PaC) - - - - - -
 Rx:PNR[A] NONCE_SENT=Unset; WAIT_EAP_MSG
 EAP_Restart();
 Tx:PNA[A]();
 -
 - - - - - - - - (re-authentication initiated by PAA)- - - - - -
 REAUTH || NONCE_SENT=Unset; WAIT_EAP_MSG
 REAUTH_TIMEOUT EAP_Restart();

 -
 - - (liveness test based on PNR-PNA exchange initiated by PAA)-
 PANA_PING Tx:PNR[P](); WAIT_PNA_PING
 RtxTimerStart();
 -
 - - - - - - - - (Session termination initiated from PAA)- - - -
 TERMINATE Tx:PTR[](); SESS_TERM
 SessionTimerStop();
 RtxTimerStart();
 -
 - - - - - - - - (Session termination initiated from PaC)- - - -
 Rx:PTR[] Tx:PTA[](); CLOSED
 SessionTimerStop();
 Disconnect();
 -

 State: WAIT_PNA_PING

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - -(PNA processing) - - - - - - - - - -
 Rx:PNA[P] RtxTimerStop(); OPEN
 -
 - - - - - - - - (re-authentication initiated by PaC) - - - - - -
 Rx:PNR[A] RtxTimerStop(); WAIT_EAP_MSG
 NONCE_SENT=Unset;

Fajardo, et al. Informational [Page 27]

RFC 5609 PANA State Machines August 2009

 EAP_Restart();
 Tx:PNA[A]();
 -
 - - - - - - - - (Session termination initiated from PaC)- - - -
 Rx:PTR[] RtxTimerStop(); CLOSED
 Tx:PTA[]();
 SessionTimerStop();
 Disconnect();
 -

 State: WAIT_PAN_OR_PAR

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------
 - - - - - - - - - - - - - (PAR Processing)- - - - - - - - - - -
 Rx:PAR[] TxEAP(); WAIT_EAP_MSG
 RtxTimerStop();
 Tx:PAN[]();
 -
 - - - - - - (Pass EAP Response to the EAP authenticator)- - - -
 Rx:PAN[] && TxEAP(); WAIT_EAP_MSG
 PAN.exist_avp RtxTimerStop();
 ("EAP-Payload")
 -
 - - - - - - - - - - (PAN without an EAP response) - - - - - - -
 Rx:PAN[] && RtxTimerStop(); WAIT_PAN_OR_PAR
 !PAN.exist_avp
 ("EAP-Payload")
 -
 - - - - - - - - - - - -(EAP retransmission) - - - - - - - - - -
 EAP_REQUEST RtxTimerStop(); WAIT_PAN_OR_PAR
 Tx:PAR[]("EAP-Payload");
 RtxTimerStart();
 -
 - - - - - - - (EAP authentication timeout or failure)- - - - -
 EAP_FAILURE || RtxTimerStop(); CLOSED
 EAP_TIMEOUT || SessionTimerStop();
 EAP_DISCARD Disconnect();
 -

 State: SESS_TERM

 Exit Condition Exit Action Exit State
 ------------------------+--------------------------+------------

Fajardo, et al. Informational [Page 28]

RFC 5609 PANA State Machines August 2009

 - - - - - - - - - - - - - -(PTA processing) - - - - - - - - - -
 Rx:PTA[] RtxTimerStop(); CLOSED
 Disconnect();
 -

9. Implementation Considerations

9.1. PAA and PaC Interface to Service Management Entity

 In general, it is assumed that each device or network equipment has a
 PANA protocol stack available for use by other modules within the
 device or network equipment. One such module is the Service
 Management Entity (SME). The SME is a generic term for modules that
 manage different services (including network protocols) that are
 installed on a device or equipment. To integrate the PANA protocol
 with the SME, it is recommended that a generic interface (i.e., the
 SME-PANA interface) between the SME and the PANA protocol stack be
 provided by the implementation. This interface should include common
 procedures such as startup, shutdown, and re-authenticate signals.
 It should also provide for extracting keying material. For the PAA,
 the SME-PANA interface should also provide a method for communicating
 filtering parameters to the Enforcement Point(s) when cryptographic
 filtering is used. The filtering parameters include keying material
 used for bootstrapping secured transport such as IPsec. When a PAA
 device interacts with the backend authentication server using a AAA
 protocol, its SME may also provide an interface to the AAA protocol
 to obtain authorization parameters such as the authorization lifetime
 and additional filtering parameters.

10. Security Considerations

 This document’s intent is to describe the PANA state machines fully.
 To this end, any security concerns with this document are likely a
 reflection of security concerns with PANA itself.

11. Acknowledgments

 This work was started from state machines originally made by Dan
 Forsberg.

12. References

12.1. Normative References

 [RFC5191] Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., and A.
 Yegin, "Protocol for Carrying Authentication for Network
 Access (PANA)", RFC 5191, May 2008.

Fajardo, et al. Informational [Page 29]

RFC 5609 PANA State Machines August 2009

12.2. Informative References

 [RFC4137] Vollbrecht, J., Eronen, P., Petroni, N., and Y. Ohba,
 "State Machines for Extensible Authentication Protocol
 (EAP) Peer and Authenticator", RFC 4137, August 2005.

Authors’ Addresses

 Victor Fajardo (editor)
 Telcordia Technologies
 1 Telcordia Drive
 Piscataway, NJ 08854
 USA

 Phone: +1 732 699 5368
 EMail: vfajardo@research.telcordia.com

 Yoshihiro Ohba
 Toshiba Corporate Research and Development Center
 1 Komukai-Toshiba-cho, Saiwai-ku
 Kawasaki, Kanagawa 212-8582
 Japan

 Phone: +81 44 549 2230
 EMail: yoshihiro.ohba@toshiba.co.jp

 Rafa Marin-Lopez
 University of Murcia
 Campus de Espinardo S/N, Facultad de Informatica
 Murcia 30100
 Spain

 Phone: +34 868 888 501
 EMail: rafa@um.es

Fajardo, et al. Informational [Page 30]

