Net wor k Wor ki ng Group J. Rosenberg
Request for Comments: 5629 Ci sco Systens
Cat egory: Standards Track Cct ober 2009

A Franework for Application Interaction
in the Session Initiation Protocol (SIP)

Abstract

Thi s document describes a framework for the interaction between users
and Session Initiation Protocol (SIP) based applications. By
interacting with applications, users can guide the way in which they
operate. The focus of this framework is stimulus signaling, which
all ows a user agent (UA) to interact with an application w thout
know edge of the semantics of that application. Stinulus signaling
can occur to a user interface running locally with the client, or to
a renote user interface, through media streans. Stinulus signaling
enconpasses a w de range of mnechanisns, ranging fromclicking on
hyperlinks, to pressing buttons, to traditional Dual-Tone Milti-
Frequency (DTMF) input. 1In all cases, stinulus signaling is
supported through the use of markup | anguages, which play a key role
in this framework.

Status of This Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice

Copyright (c) 2009 | ETF Trust and the persons identified as the
document authors. All rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wthout warranty as
descri bed in the BSD License.

Rosenber g St andards Track [Page 1]

RFC 5629 App Interaction Franework Cct ober 2009

This docunent nay contain material from | ETF Docunents or |ETF
Contributions published or nmade publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in some of this
materi al may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate license fromthe person(s) controlling
the copyright in such materials, this docunment may not be nodified
outside the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to format
it for publication as an RFC or to translate it into |anguages other
than Engli sh.

Rosenberg St andards Track [Page 2]

RFC 5629 App Interaction Franework

Tabl e of Contents

PP

NNNN SR o ok

©

10.
10.1. dient-Local U
10.2. dient-Renpte Ul
11.
12.
13.
14.
15.
16. . .
16.1. Normative Ref erences .

16.2. Informati ve References .

Loooo
SOrwWNE

I ntroduction . .

Conventions Used in Th| s Docurrent

Definitions .

A Model for Appli catl on I nt eractl on

1. Functional vs. Stinmulus

2. Real-Tinme vs. Non-Real -Tine

3. dient-Local vs. dient-Renote . .
4. Presentation-Capable vs. Presentation- Fr ee .
Interaction Scenarios on Tel ephones

1. dient Renote

2. dient Local

3. Flip-Flop

Framewor k Overvi ew .

Depl oynment Topol ogi es

.1. Third-Party Appllcatlon
.2. Co-Resident Application Ce e
.3. Third- Party Application and User Devi ce Proxy

.4. Proxy Application
Appl i cati on Behavi or
1. dient-Local Interfaces -
8.1.1. Discovering Capabl lities . .
8.1.2 Pushing an Initial Interface Corrponent
8.1.3 Updating an I nterface Conponent
8.1.4. Terninating an Interface Conponent
2. dient-Renote Interfaces
8.2.1 Originating and Term natlng Appllcatlons .
8.2.2 Internediary Applications
User Agent Behavi or .

Advertising Capabili t| es .
Recei ving User Interface Corrponents

Term nating a User Interface Conponent
nter-Application Feature Interaction

Intra Application Feature | nteractl on
Exanpl e Call Fl ow

Security Considerations

Contributors .

Acknowl edgenents .

Ref erences .

Rosenberg St andards Track

Mappi ng User Input to User Interface Oonponents
Recei ving Updates to User Interface Conponents .

Cct ober 2009

WWWWWWRNRNNNNNNNNNNNNNNNNNRPRRPRRERRRRRRRERR
OO OWOWANNNOUARNRWWNNOOOOOWONOOWWNNRROOONMADDN

[Page 3]

RFC 5629 App Interaction Franework Cct ober 2009

1

I ntroduction

The Session Initiation Protocol (SIP) [2] provides the ability for
users to initiate, nmanage, and termni nate comuni cations sessions.
Frequently, these sessions will involve a SIP application. A SIP
application is defined as a programrunning on a Sl P-based el enent
(such as a proxy or user agent) that provides sonme val ue- added
function to a user or system administrator. Exanples of SIP
applications include prepaid calling card calls, conferencing, and
presence-based [12] call routing.

In order for nobst applications to properly function, they need input
fromthe user to guide their operation. As an exanple, a prepaid
calling card application requires the user to input their calling
card nunber, their PIN code, and the destination nunber they w sh to
reach. The process by which a user provides input to an application
is called "application interaction”

Application interaction can be either functional or stinmulus.
Functional interaction requires the user device to understand the
semantics of the application, whereas stimulus interaction does not.
Stimulus signaling allows for applications to be built wthout
requiring nodifications to the user device. Stinmulus interaction is
the subject of this framework. The franmework provides a nodel for
how users interact with applications through user interfaces, and how
user interfaces and applications can be distributed throughout a
network. This nodel is then used to describe how applications can
instanti ate and manage user interfaces.

Conventions Used in This Docunent

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [1]

Definitions

SIP Application: A SIP application is defined as a program running
on a Sl P-based el ement (such as a proxy or user agent) that
provi des sone val ue-added function to a user or system
adm nistrator. Exanples of SIP applications include prepaid
calling card calls, conferencing, and presence-based [12] cal
routing.

Application Interaction: The process by which a user provides input
to an application.

Rosenberg St andards Track [Page 4]

RFC 5629 App Interaction Franework Cct ober 2009

Real -Time Application Interaction: Application interaction that
takes place while an application instance is executing. For
exanpl e, when a user enters their PIN nunber into a prepaid
calling card application, this is real-tinme application
i nteraction.

Non- Real - Time Application Interaction: Application interaction that
t akes place asynchronously with the execution of the application
Generally, non-real-tine application interaction is acconplished
t hr ough provi si oni ng.

Functional Application Interaction: Application interaction is
functional when the user device has an understandi ng of the
semantics of the interaction with the application

Stirmulus Application Interaction: Application interaction is
stimul us when the user device has no understandi ng of the
semantics of the interaction with the application

User Interface (U): The user interface provides the user with
context to make deci sions about what they want. The user
interacts with the device, which conveys the user input to the
user interface. The user interface interprets the informtion and
passes it to the application.

User Interface Conponent: A piece of user interface that operates
i ndependent!ly of other pieces of the user interface. For exanple,
a user nmight have two separate web interfaces to a prepaid calling
card application: one for hanging up and maki ng another call, and
anot her for entering the username and PIN

User Device: The software or hardware systemthat the user directly
interacts with to conmmunicate with the application. An exanple of
a user device is a telephone. Another exanple is a PCwith a web
br owser.

User Device Proxy: A software or hardware systemthat a user
indirectly interacts through to conmunicate with the application
This indirection can be through a network. An exanple is a
gateway fromIP to the Public Sw tched Tel ephone Network (PSTN)
It acts as a user device proxy, acting on behalf of the user on
the circuit network

User Input: The "raw' information passed froma user to a user

interface. Exanples of user input include a spoken word or a
click on a hyperlink

Rosenberg St andards Track [Page 5]

RFC 5629 App Interaction Franework Cct ober 2009

Client-Local User Interface: A user interface that is co-resident
with the user device

Client-Renpte User Interface: A user interface that executes
renotely fromthe user device. |In this case, a standardized
interface i s needed between the user device and the user
interface. Typically, this is done through nedi a sessions: audio,
vi deo, or application sharing.

Mar kup Language: A markup | anguage describes a | ogical flow of
presentation of information to the user, collection of information
fromthe user, and transm ssion of that information to an
application.

Media Interaction: A nmeans of separating a user and a user interface
by connecting themw th nmedia streans.

Interactive Voice Response (IVR): An IVRis a type of user interface
that allows users to speak commands to the application, and hear
responses to those commands pronpting for nore information.

Pronpt-and-Col l ect: The basic prinmtive of an I VR user interface.
The user is presented with a voice option, and the user speaks
their choice

Barge-In: The act of entering information into an | VR user interface
prior to the conpletion of a pronpt requesting that infornmation

Focus: A user interface conmponent has focus when user input is
provided to it, as opposed to any other user interface conponents.
This is not to be confused with the term"focus" within the SIP
conferencing framework, which refers to the center user agent in a
conference [14].

Focus Determi nation: The process by which the user device determ nes
whi ch user interface conponent will receive the user input.

Focusl ess Device: A user device that has no ability to perform focus
determination. An exanple of a focusless device is a tel ephone
with a keypad.

Presentation-Capable U: A user interface that can pronpt the user

with input, collect results, and then pronpt the user with new
i nformati on based on those results.

Rosenberg St andards Track [Page 6]

RFC 5629 App Interaction Franework Cct ober 2009

4.

Presentation-Free U: A user interface that cannot pronpt the user
with information.

Feature Interaction: A class of problens that result when multiple
applications or application conponents are trying to provide
services to a user at the sanme tinme.

Inter-Application Feature Interaction: Feature interactions that
occur between applications.

DTMF: Dual - Tone Mul ti-Frequency. DITM- refers to a class of tones
generated by circuit-swi tched tel ephony devices when the user
presses a key on the keypad. As a result, DITMF and keypad i nput
are often used synonynously, when in fact one of them (DTMF) is
nmerely a means of conveying the other (the keypad input) to a
client-renote user interface (the switch, for exanple).

Application Instance: A single execution path of a SIP application.

Oiginating Application: A SIP application that acts as a User Agent
Cient (UAC), nmaking a call on behalf of the user

Term nating Application: A SIP application that acts as a User Agent
Server (UAS), answering a call generated by a user. [|VR
applications are terninating applications.

Intermediary Application: A SIP application that is neither the
caller or callee, but rather a third party involved in a call.

A Model for Application Interaction

+---+ +---+ +---+ +---+
| | | | | | | |
| | | U| | U| | A
| | I nput | s | I nput | s | Results | p
| | --------- >| e| --------- > e | ---------- > | p|
| U| | r | | r | | 1
| s | | | | | | i
| e | | D | I | ¢ |
| r | CQut put | e | CQut put |] Updat e | a
| | <--------- | v | <--------- | a| <......... | p
| | | i | c | | i
		¢		e		o
		e				n
+---+ +---+ +---+ +---+

Figure 1: Mbdel for Real -Tinme Interactions

Rosenberg St andards Track [Page 7]

RFC 5629 App Interaction Franework Cct ober 2009

Figure 1 presents a general nodel for how users interact with
applications. Generally, users interact with a user interface
through a user device. A user device can be a telephone, or it can
be a PCwith a web browser. Its role is to pass the user input from
the user to the user interface. The user interface provides the user
with context in order to make deci sions about what they want. The
user interacts with the device, causing information to be passed from
the device to the user interface. The user interface interprets the
information, and passes it as a user interface event to the
application. The application nay be able to nodify the user
interface based on this event. Wether or not this is possible
depends on the type of user interface.

User interfaces are fundanentally about rendering and interpretation
Rendering refers to the way in which the user is provided context.
This can be through hyperlinks, imges, sounds, videos, text, and so
on. Interpretation refers to the way in which the user interface
takes the "raw' data provided by the user, and returns the result to
the application as a neani ngful event, abstracted fromthe
particulars of the user interface. As an exanple, consider a prepaid
calling card application. The user interface worries about details
such as what pronpt the user is provided, whether the voice is male
or female, and so on. It is concerned with recognizing the speech
that the user provides, in order to obtain the desired i nformation

In this case, the desired information is the calling card nunber, the
PIN code, and the destination nunber. The application needs that
data, and it doesn't matter to the application whether it was
collected using a male pronpt or a feral e one.

User interfaces generally have real -tine requirenments towards the
user. That is, when a user interacts with the user interface, the
user interface needs to react quickly, and that change needs to be
propagated to the user right away. However, the interface between
the user interface and the application need not be that fast. Faster
is better, but the user interface itself can frequently conmpensate
for long | atencies between the user interface and the application

In the case of a prepaid calling card application, when the user is
pronpted to enter their PIN, the pronpt should generally stop

i mediately once the first digit of the PINis entered. This is
referred to as "barge-in". After the user interface collects the
rest of the PIN, it can tell the user to "please wait while
processing”. The PIN can then be gradually transnitted to the
application. In this exanple, the user interface has conpensated for
a slow U to application interface by asking the user to wait.

The separation between user interface and application is absolutely

fundanmental to the entire franework provided in this docunment. |Its
i mportance cannot be overstat ed.

Rosenberg St andards Track [Page 8]

RFC 5629 App Interaction Franework Cct ober 2009

Wth this basic nodel, we can begin to taxononize the types of
systens that can be built.

4. 1. Functional vs. Stinulus

The first way to taxonom ze the systemis to consider the interface
between the U and the application. There are two fundanentally
different nodels for this interface. In a functional interface, the
user interface has detail ed know edge about the application and is,
in fact, specific to the application. The interface between the two
components is through a functional protocol, capable of representing
the senantics that can be exposed through the user interface.
Because the user interface has knowl edge of the application, it can
be optinmally designed for that application. As a result, functiona
user interfaces are alnost always the nost user friendly, the
fastest, and the npbst responsive. However, in order to allow
interoperability between user devices and applications, the details
of the functional protocols need to be specified in standards. This
sl ows down innovation and limts the scope of applications that can
be built.

An alternative is a stimulus interface. In a stimulus interface, the
user interface is generic -- that is, totally ignorant of the details
of the application. |Indeed, the application may pass instructions to

the user interface describing howit should operate. The user
interface translates user input into "stinulus", which are data
understood only by the application, and not by the user interface.
Because they are generic, and because they require comrunications
with the application in order to change the way in which they render
information to the user, stinulus user interfaces are usually sl ower,
| ess user friendly, and | ess responsive than a functiona

counterpart. However, they allow for substantial innovation in
applications, since no standardization activity is needed to build a
new application, as long as it can interact with the user within the
confines of the user interface mechanism The web is an exanple of a
stimulus user interface to applications.

In SIP systens, functional interfaces are provided by extending the
SI P protocol to provide the needed functionality. For exanple, the
SIP caller preferences specification [15] provides a functiona
interface that allows a user to request applications to route the
call to specific types of user agents. Functional interfaces are

i mportant, but are not the subject of this franework. The prinary
goal of this framework is to address the role of stinmulus interfaces
to SIP applications.

Rosenberg St andards Track [Page 9]

RFC 5629 App Interaction Franework Cct ober 2009

4.2. Real-Time vs. Non-Real -Ti ne

Application interaction systens can also be real-tinme or non-real -
time. Non-real-tine interaction allows the user to enter information
about application operation asynchronously with its invocation.
Frequently, this is done through provisioning systens. As an
exanpl e, a user can set up the forwardi ng nunber for a call-forward
on no-answer application using a web page. Real-tine interaction
requires the user to interact with the application at the tinme of its
i nvocati on.

4.3. Client-Local vs. dient-Renpte

Anot her axis in the taxonom zation is whether the user interface is
co-resident with the user device (which we refer to as a client-loca
user interface), or the user interface runs in a host separated from
the client (which we refer to as a client-renote user interface). In
a client-renote user interface, there exists sone kind of protocol
between the client device and the U that allows the client to
interact with the user interface over a network.

The npst inportant way to separate the U and the client device is
through nedia interaction. |In nedia interaction, the interface

bet ween the user and the user interface is through nedia: audio,

vi deo, nessaging, and so on. This is the classic node of operation
for VoiceXM. [5], where the user interface (also referred to as the
voi ce browser) runs on a platformin the network. Users communicate
with the voice browser through the tel ephone network (or using a SIP
session). The voice browser interacts with the application using
HTTP to convey the information collected fromthe user

In the case of a client-local user interface, the user interface runs
co-located with the user device. The interface between themis
through the software that interprets the user’s input and passes it
to the user interface. The classic exanple of this is the Web. In
the Wb, the user interface is a web browser, and the interface is
defined by the HTM. docunent that it's rendering. The user interacts
directly with the user interface running in the browser. The results
of that user interface are sent to the application (running on the
web server) using HITP.

It is inportant to note that whether or not the user interface is
local or renote (in the case of nedia interaction) is not a property
of the nodality of the interface, but rather a property of the
system As an exanple, it is possible for a Wb-based user interface
to be provided with a client-renote user interface. 1In such a
scenari o, video- and application-sharing nmedia sessions can be used
bet ween the user and the user interface. The user interface, stil

Rosenberg St andards Track [Page 10]

RFC 5629 App Interaction Franework Cct ober 2009

gui ded by HTM., now runs "in the network", renote fromthe client.
Simlarly, a VoiceXM. docunent can be interpreted locally by a client
device, with no nedia streans at all. Indeed, the VoiceXM. docunent
can be rendered using text, rather than nmedia, with no inpact on the
interface between the user interface and the application

It is also inportant to note that systens can be hybrid. 1In a hybrid
user interface, sone aspects of it (usually those associated with a
particular nodality) run locally, and others run renotely.

4.4. Presentation-Capable vs. Presentation-Free

A user interface can be capable of presenting information to the user
(a presentation-capable U), or it can be capable only of collecting
user input (a presentation-free U). These are very different types
of user interfaces. A presentation-capable U can provide the user
wi th feedback after every input, providing the context for collecting
the next input. As a result, presentation-capable user interfaces
require an update to the information provided to the user after each
input. The Wb is a classic exanple of this. After every input
(i.e., aclick), the browser provides the input to the application
and fetches the next page to render. 1In a presentation-free user
interface, this is not the case. Since the user is not provided with
f eedback, these user interfaces tend to nerely collect information as
it’s entered, and pass it to the application

Anot her difference is that a presentation-free user interface cannot
easily support the concept of a focus. Selection of a focus usually
requires a nmeans for informng the user of the available
applications, allowing the user to choose, and then inforning them
about which one they have chosen. Wthout the first and third steps
(which a presentation-free U cannot provide), focus selection is
very difficult. Wthout a selected focus, the input provided to
applications through presentation-free user interfaces is nore of a
broadcast or notification operation

5. Interaction Scenarios on Tel ephones
In this section, we apply the nodel of Section 4 to tel ephones.

In a traditional tel ephone, the user interface consists of a 12-key
keypad, a speaker, and a m crophone. Indeed, fromhere forward, the
term"tel ephone"” is used to represent any device that neets, at a

m nimum the characteristics described in the previous sentence.
Circuit-switched tel ephony applications are al nost universally
client-renote user interfaces. In the Public Switched Tel ephone
Network (PSTN), there is usually a circuit interface between the user
and the user interface. The user input fromthe keypad is conveyed

Rosenberg St andards Track [Page 11]

RFC 5629 App Interaction Franework Cct ober 2009

usi ng Dual - Tone Mul ti-Frequency (DTMF), and the m crophone input as
Pul se Code Modul ated (PCM encoded voi ce.

In an | P-based system there is nore variability in how the system
can be instantiated. Both client-renote and client-Iocal user
interfaces to a tel ephone can be provided.

In this framework, a PSTN gateway can be considered a User Device
Proxy. It is a proxy for the user because it can provide, to a user
interface on an I P network, input taken froma user on a circuit-
swi tched tel ephone. The gateway may be able to run a client-Iloca
user interface, just as an | P tel ephone m ght.

5.1. dient Renpte

The npbst obvious instantiation is the "classic" circuit-swtched
tel ephony nodel. |In that nodel, the user interface runs renotely
fromthe client. The interface between the user and the user
interface is through nedia, which is set up by SIP and carried over
the Real Tine Transport Protocol (RTP) [18]. The mi crophone input
can be carried using any suitable voice-encoding algorithm The
keypad i nput can be conveyed in one of two ways. The first is to
convert the keypad input to DTMF, and then convey that DTMF using a
sui tabl e encodi ng al gorithm (such as PCMJ). An alternative, and
generally the preferred approach, is to transmt the keypad i nput
usi ng RFC 4733 [19], which provides an encodi ng nmechani sm for
carrying keypad input within RTP

In this classic nodel, the user interface would run on a server in
the IP network. It would perform speech recognition and DTMF
recognition to derive the user intent, feed themthrough the user
interface, and provide the result to an application

5.2. dient Loca

An alternative nodel is for the entire user interface to reside on
the tel ephone. The user interface can be a Voi ceXM. browser, running
speech recognition on the nicrophone input, and feeding the keypad
input directly into the script. As discussed above, the Voi ceXM
script could be rendered using text instead of voice, if the

t el ephone has a textual display.

For sinpler phones wthout a display, the user interface can be
descri bed by a Keypad Markup Language request docunent [8]. As the
user enters digits in the keypad, they are passed to the user
interface, which generates user interface events that can be
transported to the application

Rosenberg St andards Track [Page 12]

RFC 5629 App Interaction Franework Cct ober 2009

5.3. Fip-Flop

A i ddl e-ground approach is to flip back and forth between a client-
|l ocal and client-renote user interface. Many voice applications are
of the type that listen to the media streamand wait for sone
specific trigger that kicks off a nore conplex user interaction. The
long pound in a prepaid calling card application is one exanple.

Anot her exanple is a conference recording application, where the user
can press a key at sonme point in the call to begin recording. When
the key is pressed, the user hears a whisper to informthemthat
recordi ng has started.

The ideal way to support such an application is to install a client-
| ocal user interface conponent that waits for the trigger to kick off
the real interaction. Once the trigger is received, the application
connects the user to a client-renote user interface that can play
announcenents, collect nmore information, and so on

The benefit of flip-flopping between a client-local and client-renote
user interface is cost. The client-local user interface wll
elimnate the need to send nedia streans into the network just to
wait for the user to press the pound key on the keypad.

The Keypad Markup Language (KPM.) was designed to support exactly
this kind of need [8]. It nodels the keypad on a phone and allows an
application to be informed when any sequence of keys has been
pressed. However, KPM. has no presentation conponent. Since user
interfaces generally require a response to user input, the
presentation will need to be done using a client-renote user
interface that gets instantiated as a result of the trigger

It is tenpting to use a hybrid nodel, where a pronpt-and-coll ect
application is inplenented by using a client-renote user interface
that plays the pronpts, and a client-local user interface, described
by KPM., that collects digits. However, this only conplicates the
application. Firstly, the keypad input will be sent to both the
medi a stream and the KPM. user interface. This requires the
application to sort out which user inputs are duplicates, a process
that is very conplicated. Secondly, the primary benefit of KPM is
to avoid having a nmedia streamtowards a user interface. However,
there is already a nedia streamfor the pronpting, so there is no
real savings

6. Framework Overview
In this framework, we use the term"SIP application" to refer to a

broad set of functionality. A SIP application is a programrunning
on a Sl P-based el enent (such as a proxy or user agent) that provides

Rosenberg St andards Track [Page 13]

RFC 5629 App Interaction Franework Cct ober 2009

sonme val ue-added function to a user or systemadm nistrator. SIP
applications can execute on behalf of a caller, a called party, or a
mul titude of users at once.

Each application has a nunber of instances that are executing at any
given tine. An instance represents a single execution path for an
application. It is established as a result of sone event. That
event can be a SIP event, such as the reception of a SIP INVITE
request, or it can be a non-SIP event, such as a web form post or
even a tiner. Application instances also have an end tine. Sone

i nstances have a lifetine that is coupled with a SIP transaction or
di al og. For exanple, a proxy application night begin when an I NVITE
arrives, and termnate when the call is answered. Qher applications
have a lifetime that spans multiple dialogs or transactions. For
exanpl e, a conferencing application instance may exi st so long as
there are dial ogs connected to it. Wen the |ast dialog term nates,
the application instance ternm nates. Oher applications have a
lifetine that is conpletely decoupled fromSIP events.

It is fundanental to the framework described here that nultiple
application instances may interact with a user during a single SIP
transaction or dialog. Each instance may be for the sane
application, or different applications. Each of the applications may
be conpl etely independent, in that each may be owned by a different
provi der, and may not be aware of each other’'s existence. Sinilarly,
there nay be application instances interacting with the caller, and

i nstances interacting with the callee, both within the sane
transacti on or dial og.

The first step in the interaction with the user is to instantiate one
or nore user interface conponents for the application instance. A
user interface conponent is a single piece of the user interface that
is defined by a logical flowthat is not synchronously coupled wth
any other conponent. In other words, each conmponent runs

i ndependent | y.

A user interface conponent can be instantiated in one of the user
agents in a dialog (for a client-local user interface), or within a
network elenent (for a client-renote user interface). |If a client-

| ocal user interface is to be used, the application needs to
determ ne whether or not the user agent is capable of supporting a
client-local user interface, and in what format. In this framework
all client-local user interface conponents are described by a narkup
| anguage. A markup | anguage describes a logical flow of presentation
of information to the user, a collection of information fromthe
user, and a transm ssion of that information to an application
Exanpl es of markup | anguages include HTM., Wrel ess Markup Language
(WWL), VoiceXM., and the Keypad Markup Language (KPM.) [8].

Rosenberg St andards Track [Page 14]

RFC 5629 App Interaction Franework Cct ober 2009

Unl i ke an application instance, which has a very flexible lifetinme, a
user interface conponent has a very fixed lifetime. A user interface
component is always associated with a dialog. The user interface
conmponent can be created at any point after the dialog (or early
dialog) is created. However, the user interface conponent termn nates
when the dialog term nates. The user interface conponent can be
term nated earlier by the user agent, and possibly by the
application, but its lifetine never exceeds that of its associated

di al og.

There are two ways to create a client-local interface conponent. For
interface conponents that are presentation capable, the application
sends a REFER [7] request to the user agent. The Refer-To header
field contains an HTTP URI that points to the markup for the user
interface, and the REFER contains a Target-Di al og header field [10]
which identifies the dialog associated with the user interface
component. For user interface conponents that are presentation free
(such as those defined by KPM.), the application sends a SUBSCRI BE
request to the user agent. The body of the SUBSCRI BE request
contains a filter, which, in this case, is the markup that defines
when information is to be sent to the application in a NOTIFY. The
SUBSCRI BE does not contain the Target-Di al og header field, since
equi valent information is conveyed in the Event header field.

If a user interface conponent is to be instantiated in the network,
there is no need to deternine the capabilities of the device on which
the user interface is instantiated. Presunably, it is on a device on
whi ch the application knows a U can be created. However, the
application does need to connect the user device to the user
interface. This will require manipulation of nedia streans in order
to establish that connection

The interface between the user interface conmponent and the
application depends on the type of user interface. For presentation-
capabl e user interfaces, such as those described by HTM. and

Voi ceXM., HTTP form POST operations are used. For presentation-free
user interfaces, a SIP NOTIFY is used. The differing needs and
capabilities of these two user interfaces, as described in

Section 4.4, are what drives the different choices for the
interactions. Since presentation-capable user interfaces require an
update to the presentation every tinme user data is entered, they are
a good match for HITP. Since presentation-free user interfaces
merely transmit user input to the application, a NOTIFY is nore
appropri ate.

I ndeed, for presentation-free user interfaces, there are two

different nodalities of operation. The first is called "one shot".
In the one-shot role, the markup waits for a user to enter sone

Rosenberg St andards Track [Page 15]

RFC 5629 App Interaction Franework Cct ober 2009

i nformati on and, when they do, reports this event to the application
The application then does sonething, and the markup is no | onger
used. In the other nodality, called "nonitor", the markup stays
permanently resident, and reports information back to an application
until termnation of the associated dial og.

7. Depl oynment Topol ogi es

This section presents sone of the network topol ogies in which this
framework can be instantiated.

7.1. Third-Party Application

S +
/---] Application |
/ R +
/
SUB/ / REFER/
NOT /[HITP
/
AR + SIP (INVITE) S +
| ul Armmmm e |
[t | | SIP |
| User | RTP | UA |
| Device B------------m-unom-- Y |
E R + +-- o - +

Figure 2: Third-Party Topol ogy

In this topology, the application that is interested in interacting
with the users exists outside of the SIP dialog between the user
agents. In that case, the application | earns about the initiation
and ternmination of the dialog, along with the dialog identifiers,

t hrough sone out-of - band nmeans. One such possibility is the dialog
event package [16]. Dialog information is only revealed to trusted
parties, so the application would need to be trusted by one of the
users in order to obtain this information.

At any point during the dialog, the application can instantiate user
i nterface conponents on the user device of the caller or callee. It
can do this using either SUBSCRI BE or REFER, depending on the type of
user interface (presentation capable or presentation free).

Rosenberg St andards Track [Page 16]

RFC 5629 App Interaction Franework Cct ober 2009

7.2. Co-Resident Application

e + SIP (I NVITE) e +
| User A----------mmmnnono-- X SIP |
| Device | RTP | UA |
[B---------eeee oo - Y |
| | SuB/ NOT | App) |
| U A omm X

I + REFER/ HTTP - - +

Fi gure 3: Co- Resident Topol ogy

In this deploynent topology, the application is co-resident with one
of the user agents (the one on the right in the picture above). This
application can install client-1ocal user interface conponents on the
ot her user agent, which is acting as the user device. These
components can be installed using either SUBSCRIBE, for presentation-
free user interfaces, or REFER, for presentation-capable ones. This
situation typically arises when the application wishes to install U
conponents on a presentation-capable user interface. If the only
user input is via keypad input, the framework i s not needed per se,
because the UA/application will receive the input via RFC 4733 in the
RTP stream

If the application resides in the called party, it is called a
"termi nating application'. |If it resides in the calling party, it is
called an "originating application".

This kind of topology is conmon in protocol converter and gateway
applications.

Rosenberg St andards Track [Page 17]

RFC 5629 App Interaction Franework Cct ober 2009
7.3. Third-Party Application and User Device Proxy

/---] Application
/

/
SUB/ / REFER/
NOT / HTTP

/

+----- + S|P +---M---+ S|P +----- +
| A C Armmm e - X |
| SIP | | ul | | SIP

| UAa | RTP | | RTP | UAb

| R D R Y
oo - + Fommmme o + Fo-o - +

User User

Devi ce Devi ce

Pr oxy

Fi gure 4: User Device Proxy Topol ogy

In this deploynment topology, there is a third-party application as in
Section 7.1. However, instead of installing a user interface
conponent on the end user device, the conponent is installed in an

i nternedi ate device, known as a User Device Proxy. Fromthe
perspective of the actual user device (on the left), the User Device
Proxy is a client renote user interface. As such, nedia, typically
transported using RTP (including RFC 4733 for carrying user input),
is sent fromthe user device to the client renote user interface on
the User Device Proxy. As far as the application is concerned, it is
installing what it thinks is a client-local user interface on the
user device, but it happens to be on a user device proxy that |ooks
like the user device to the application

The user device proxy will need to term nate and re-originate both
signaling (SIP) and nedia traffic towards the actual peer in the
conversation. The User Device Proxy is a nedia relay in the
term nol ogy of RFC 3550 [18]. The User Device Proxy will need to
nonitor the nmedia streans associated with each dialog, in order to
convert user input received in the nedia streamto events reported to
the user interface. This can pose a challenge in nulti-nmedia
systens, where it nmay be unclear on which nedia streamthe user input
is being sent. As discussed in RFC 3264 [20], if a user agent has a
single nmedia source and is supporting nultiple streans, it is
supposed to send that source to all streanms. |In cases where there
are nultiple sources, the mapping is a matter of local policy. In

Rosenberg St andards Track [Page 18]

RFC 5629 App Interaction Franework Cct ober 2009

the absence of a way to explicitly identify or request which sources
map to which streans, the user device proxy will need to do the best
job it can. This specification RECOWENDS that the User Device Proxy
monitor the first stream (defined in terns of ordering of media
sessions within a session description). As such, user agents SHOULD
send their user input on the first stream absent a policy to direct
it otherw se.

7.4. Proxy Application

Fommme e - +
SUB/ NOT | App | SUB/ NOT

S >| S +

| REFER/ HTTP [| REFER/ HTTP |

| | SI P | |

| | Proxy | |

| oo + |

\Y A | \Y
S SRR + | S SRR +
| ul | I NVI TE | | I NVI TE | ul
[EEEEEEEEEERE + R RRRREE >		
	[oot	
SI P [SI P	
UA		UA
S + RTP S +

User Device User Device

Figure 5: Proxy Application Topol ogy

In this topology, the application is co-resident with a transaction
stateful, record-routing proxy server on the call path between two
user devices. The application uses SUBSCRI BE or REFER to instal
user interface conponents on one or both user devices.

This topology is conmon in routing applications, such as a web-
assisted call-routing application.

8. Application Behavior
The behavior of an application within this framework depends on

whether it seeks to use a client-local or client-renpte user
interface.

Rosenberg St andards Track [Page 19]

RFC 5629 App Interaction Franework Cct ober 2009

8.1. dient-Local Interfaces

One key conponent of this framework is support for client-local user
i nterfaces.

8.1.1. Discovering Capabilities

A client-local user interface can only be instantiated on a user
agent if the user agent supports that type of user interface
component. Support for client-local user interface conponents is
decl ared by both the UAC and UAS in their Allow, Accept, Supported,
and Al |l ow Event header fields of dialog-initiating requests and
responses. |If the Al ow header field indicates support for the SIP
SUBSCRI BE net hod, and the All ow Event header field indicates support
for the KPML package [8], and the Supported header field indicates
support for the Gobally Routable UA URI (CGRUU) [9] specification
(which, in turn, nmeans that the Contact header field contains a
GRW), it neans that the UA can instantiate presentation-free user

i nterface conponents. In this case, the application can push
presentation-free user interface conponents according to the rul es of
Section 8.1.2. The specific markup | anguages that can be supported
are indicated in the Accept header field.

If the All ow header field indicates support for the SIP REFER net hod,
and the Supported header field indicates support for the Target-

Di al og header field [10], and the Contact header field contains UA
capabilities [6] that indicate support for the HITP URl schene, it
means that the UA supports presentation-capable user interface
components. In this case, the application can push presentation-
capabl e user interface conponents to the client according to the
rules of Section 8.1.2. The specific markups that are supported are
indicated in the Accept header field.

A third-party application that is not present on the call path wll
not be privy to these header fields in the dialog-initiating requests
that pass by. As such, it will need to obtain this capability
information in other ways. One way is through the registration event
package [21], which can contain user agent capability information
provided in REA STER requests [6].

8.1.2. Pushing an Initial Interface Conmponent

Cenerally, we anticipate that interface conponents will need to be
created at various different points in a SIP session. Cearly, they
will need to be pushed during session setup, or after the session is
established. A user interface conponent is always associated with a
speci fic dial og, however.

Rosenberg St andards Track [Page 20]

RFC 5629 App Interaction Franework Cct ober 2009

An application MJUST NOT attenpt to push a user interface conponent to
a user agent until it has deternined that the user agent has the
necessary capabilities and a dialog has been created. |In the case of
a UAC, this neans that an application MJUST NOT push a user interface
component for an INVITE-initiated dialog until the application has
seen a request confirmng the recei pt of a dial og-creating response.
This could be an ACK for a 200 OK, or a PRACK for a provisiona
response [3]. For SUBSCRIBE-initiated dialogs, the application MJST
NOT push a user interface conmponent until the application has seen a
200 OK to the NOTIFY request. For a user interface conmponent on a
UAS, the application MIUST NOT push a user interface conponent for an

INVITE-initiated dialog until it has seen a dial og-creating response
fromthe UAS. For a SUBSCRIBE-initiated dialog, it MJST NOT push a
user interface conponent until it has seen a NOTIFY request fromthe
notifier.

To create a presentation-capable U conmponent on the UA the
application sends a REFER request to the UA. This REFER MJST be sent
to the GRUU [9] advertised by that UA in the Contact header field of
the dialog-initiating request or response sent by that UA. Note that
this REFER request creates a separate dial og between the application
and the UA. The Refer-To header field of the REFER request MJST
contain an HTTP URI that references the markup docunent to be

f et ched.

Furthernmore, it is essential for the REFER request to be correl ated
with the dialog to which the user interface conponent wll be
associated. This is necessary for authorization and for term nating
the user interface conponents when the dialog term nates. To provide
this context, the REFER request MJST contain a Target-Di al og header
field identifying the dialog with which the user interface conponent
is associated. As discussed in [10], this request will also contain
a Require header field with the tdialog option tag.

To create a presentation-free user interface conponent, the
application sends a SUBSCRI BE request to the UA. The SUBSCRI BE MJST
be sent to the GRUU advertised by the UA. This SUBSCRI BE request
creates a separate dialog. The SUBSCRI BE request MJST use the KPM.
[8] event package. The body of the SUBSCRI BE request contains the
mar kup docunent that defines the conditions under which the
application wishes to be notified of user input.

In both cases, the REFER or SUBSCRI BE request SHOULD i nclude a

di splay nane in the From header field that identifies the name of the
application. For exanple, a prepaid calling card m ght include a
From header field that |ooks I|ike:

Rosenberg St andards Track [Page 21]

RFC 5629 App Interaction Franework Cct ober 2009

From "Prepaid Calling Card" <sip:prepai d@xanpl e. conr

Any of the SIP identity assertion mechani snms that have been defi ned,
such as [11] and [13], are applicable to these requests as well.

8.1.3. Updating an Interface Conponent

Once a user interface conponent has been created on a client, it can
be updated. The neans for updating it depends on the type of U
conponent .

Present ati on-capabl e U conponents are updated using techni ques
already in place for those markups. |In particular, user input wll
cause an HTTP POST operation to push the user input to the
application. The result of the POST operation is a new narkup that
the U is supposed to use. This allows the U to be updated in
response to user action. Sone markups, such as HTM., provide the
ability to force a refresh after a certain period of tine, so that
the U can be updated wi thout user input. Those nechani snms can be
used here as well. However, there is no support for an asynchronous
push of an updated U conponent fromthe application to the user
agent. A new REFER request to the same GRUU woul d create a new Ul
component rather than update any conponents already in place.

For presentation-free U, the story is different. The application
MAY update the filter at any tine by generating a SUBSCRI BE refresh
with the new filter. The UA wll imediately begin using this new
filter.

8.1.4. Terminating an Interface Conponent

User interface conponents have a well-defined lifetine. They are
created when the conponent is first pushed to the client. User

i nterface conponents are always associated with the SIP dial og on
whi ch they were pushed. As such, their lifetinme is bound by the
lifetinme of the dialog. Wen the dialog ends, so does the interface
conponent .

However, there are sone cases where the application would like to
term nate the user interface conponent before its natural term nation
point. For presentation-capable user interfaces, this is not

possi ble. For presentation-free user interfaces, the application MAY
term nate the conponent by sending a SUBSCRIBE with Expires equal to
zero. This term nates the subscription, which renpoves the U
conmponent .

A client can renove a U conponent at any tinme. For presentation-
capable U, this is anal ogous to the user dismssing the web form

Rosenberg St andards Track [Page 22]

RFC 5629 App Interaction Franework Cct ober 2009

wi ndow. There is no nechanism provided for reporting this kind of
event to the application. The application MIST be prepared to tinme
out and never receive input froma user. The duration of this
timeout is application dependent. For presentation-free user
interfaces, the UA can explicitly term nate the subscription. This
will result in the generation of a NOTIFY with a Subscription-State
header field equal to "term nated"

8.2. dient-Renpte Interfaces

As an alternative to, or in conjunction with client-1ocal user
interfaces, an application can nake use of client-renbte user
interfaces. These user interfaces can execute co-resident with the
application itself (in which case no standardi zed interfaces between
the U and the application need to be used), or they can run
separately. This framework assumes that the user interface runs on a
host that has a sufficient trust relationship with the application

As such, the neans for instantiating the user interface is not

consi dered here.

The primary issue is to connect the user device to the renote user
interface. Doing so requires the manipulation of media streans
between the client and the user interface. Such nanipul ati on can
only be done by user agents. There are two types of user agent
applications within this framework: originating/termnating
applications, and internediary applications.

8.2.1. Oiginating and Term nating Applications

Oiginating and term nating applications are applications that are
thensel ves the originator or the final recipient of a SIP invitation
They are "pure" user agent applications, not back-to-back user

agents. The classic exanple of such an application is an interactive
voi ce response (IVR) application, which is typically a term nating
application. It is a term nating application because the user
explicitly calls it; i.e., it is the actual called party. An exanple
of an originating application is a wakeup call application, which
calls a user at a specified tine in order to wake them up

Because originating and term nating applications are a natura

term nation point of the dialog, manipulation of the nedia session by
the application is trivial. Traditional SIP techniques for adding
and renoving nedi a streans, nodifying codecs, and changi ng the
address of the recipient of the nedia streams can be appli ed.

Rosenberg St andards Track [Page 23]

RFC 5629 App Interaction Franework Cct ober 2009

8.2.2. Internediary Applications

9.

9.

Internmediary applications are, at the sane time, nore conmon than
originating/term nating applications and nore conplex. Internediary
applications are applications that are neither the actual caller nor
the called party. Rather, they represent a "third party" that w shes
to interact with the user. The classic exanple is the ubiquitous
prepaid calling card application

In order for the internmediary application to add a client-renote user
interface, it needs to manipul ate the nedia streans of the user agent
to termnate on that user interface. This also introduces a
fundanmental feature interaction issue. Since the internediary
application is not an actual participant in the call, the user wll
need to interact with both the internediary application and its peer
in the dialog. Doing both at the sane tine is conplicated and is

di scussed in nore detail in Section 10.

User Agent Behavi or
1. Advertising Capabilities

In order to participate in applications that make use of stinulus
interfaces, a user agent needs to advertise its interaction
capabilities.

If a user agent supports presentation-capable user interfaces, it
MUST support the REFER nmethod. It MJST include, in all dialog-
initiating requests and responses, an Allow header field that

i ncl udes the REFER nethod. The user agent MJUST support the target

di al og specification [10], and MJST include the "tdial og" option tag
in the Supported header field of dialog-formng requests and
responses. Furthernore, the UA MJST support the SIP user agent
capabilities specification [6]. The UA MIST be capabl e of being
REFERed to an HTTP URI. It MJST include, in the Contact header field
of its dialog-initiating requests and responses, a "schenes" Contact
header field paraneter that includes the HTTP URI schene. The UA
MUST include, in all dialog-initiating requests and responses, an
Accept header field listing all of those nmarkups supported by the UA
It is RECOWENDED that all user agents that support presentation-
capabl e user interfaces support HTM.

If a user agent supports presentation-free user interfaces, it MJST
support the SUBSCRIBE [4] nethod. It MJST support the KPM. [8] event
package. It MJST include, in all dialog-initiating requests and
responses, an All ow header field that includes the SUBSCRI BE net hod.
It MUST include, in all dialog-initiating requests and responses, an
Al'l ow- Events header field that lists the KPM. event package. The UA

Rosenberg St andards Track [Page 24]

RFC 5629 App Interaction Franework Cct ober 2009

MUST include, in all dialog-initiating requests and responses, an
Accept header field listing those event filters it supports. At a
m ni mum a UA MJUST support the "application/kpm -request+xm "™ M M

t ype.

For either presentation-free or presentation-capable user interfaces,
the user agent MJST support the GRUU [9] specification. The Contact
header field in all dialog-initiating requests and responses MJST
contain a GRUU. The UA MJST include a Supported header field that
contains the "gruu" option tag and the "tdial og" option tag.

Because t hese headers are exani ned by proxies that nmay be executing
applications, a UA that wi shes to support client-Iocal user
i nterfaces should not encrypt them

9.2. Receiving User Interface Conponents

Once the UA has created a dialog (in either the early or confirned
states), it MJST be prepared to receive a SUBSCRI BE or REFER request
against its GRUU. |If the UA receives such a request prior to the
est abli shnent of a dialog, the UA MIJST reject the request.

A user agent SHOULD attenpt to authenticate the sender of the
request. The sender will generally be an application; therefore, the
user agent is unlikely to ever have a shared secret with it, making
di gest authentication useless. However, authenticated identities can
be obtai ned t hrough other means, such as the ldentity mechanism][11].

A user agent MAY have pre-defined authorization policies that permt
appl i cations which have authenticated thenselves with a particul ar
identity to push user interface conmponents. |f such a set of
policies is present, it is checked first. |If the application is

aut hori zed, processing proceeds.

If the application has authenticated itself but is not explicitly

aut hori zed or bl ocked, this specification RECOWENDS that the
application be automatically authorized if it can prove that it was
either on the call path, or is trusted by one of the elements on the
call path. An application proves this to the user agent by
demonstrating that it knows the dialog identifiers. That occurs by
including themin a Target-Di al og header field for REFER requests, or
in the Event header field paraneters of the KPM. SUBSCRI BE request.

Because the dialog identifiers serve as a tool for authorization, a
user agent conpliant to this framework SHOULD use dialog identifiers
that are cryptographically random wth at |east 128 bits of
randommess. It is reconmended that this randommess be split between
the Call-1D and From header field tags in the case of a UAC

Rosenberg St andards Track [Page 25]

RFC 5629 App Interaction Franework Cct ober 2009

Furthernmore, to ensure that only applications resident in or trusted
by on-path elenments can instantiate a user interface conponent, a
user agent conpliant to this specification SHOULD use the Session
Initiation Protocol Secure (SIPS) URI schene for all dialogs it
initiates. This will guarantee secure |links between all the elenents
on the signaling path.

If the dialog was not established with a SIPS URI, or the user agent
did not choose cryptographically random dialog identifiers, then the
application MUST NOT automatically be authorized, even if it
presented valid dialog identifiers. A user agent MAY apply any ot her
policies in addition to (but not instead of) the ones specified here
in order to authorize the creation of the user interface conponent.
One such nechani smwould be to pronpt the user, inform ng them of the
identity of the application and the dialog it is associated with. |If
an aut horization policy requires user interaction, the user agent
SHOULD respond to the SUBSCRI BE or REFER request with a 202. 1In the
case of SUBSCRIBE, if authorization is not granted, the user agent
SHOULD generate a NOTIFY to term nate the subscription. 1In the case
of REFER, the user agent MJST NOT act upon the URI in the Refer-To
header field until user authorization is obtained.

If an application does not present a valid dialog identifier inits
REFER or SUBSCRI BE request, the user agent MJST reject the request
with a 403 response.

If a REFER request to an HTTP URI is authorized, the UA executes the
URI and fetches the content to be rendered to the user. This
instanti ates a presentation-capabl e user interface conponent. If a
SUBSCRI BE was aut horized, a presentation-free user interface
conponent is instantiated.

9.3. Mapping User Input to User Interface Conponents

Once the user interface conponents are instantiated, the user agent
nmust direct user input to the appropriate conponent. In the case of
presentation-capabl e user interfaces, this process is known as focus
selection. It is done by neans that are specific to the user
interface on the device. 1In the case of a PC, for exanple, the

wi ndow manager woul d allow the user to select the appropriate user

i nterface conponent to which their input is directed.

For presentation-free user interfaces, the situation is nore
complicated. In sone cases, the device may support a nmechani smt hat
allows the user to select a "line", and thus the associ ated dial og.
Any user input on the keypad while this Iine is selected are fed to
the user interface conponents associated with that dial og.

Rosenberg St andards Track [Page 26]

RFC 5629 App Interaction Franework Cct ober 2009

9.

9.

10.

Ro

O herwi se, for client-local user interfaces, the user input is
assumed to be associated with all user interface conponents. For
client-renote user interfaces, the user device converts the user
input to nmedia, typically conveyed using RFC 4733, and sends this to
the client-renote user interface. This user interface then needs to
map user input frompotentially nmany nedia streans into user
interface events. The process for doing this is described in
Section 7. 3.

4. Receiving Updates to User Interface Conponents

For presentation-capable user interfaces, updates to the user
interface occur in ways specific to that user interface conponent.

In the case of HTM.,, for exanple, the docunent can tell the client to
fetch a new docunment periodically. However, this franework does not
provi de any additional nachinery to asynchronously push a new user

i nterface conponent to the client.

For presentation-free user interfaces, an application can push an
update to a conmponent by sending a SUBSCRIBE refresh with a new
filter. The user agent will process these according to the rules of
t he event package.

5. Terminating a User Interface Conponent

Term nation of a presentation-capable user interface conponent is a
trivial procedure. The user agent nerely disnisses the wi ndow (or
its equivalent). The fact that the conponent is dismssed is not
communi cated to the application. As such, it is purely a |loca
mat t er.

In the case of a presentation-free user interface, the user m ght

Wi sh to cease interacting with the application. However, nost
presentation-free user interfaces will not have a way for the user to
signal this through the device. |If such a nechanismdid exist, the
UA SHOULD generate a NOTIFY request with a Subscription-State header
field equal to "terninated" and a reason of "rejected". This tells
the application that the conponent has been renoved and that it
shoul d not attenpt to re-subscribe.

Inter-Application Feature Interaction

The inter-application feature interaction problemis inherent to
stimulus signaling. Wenever there are nmultiple applications, there
are nultiple user interfaces. The systemhas to determ ne to which
user interface any particular input is destined. That question is
the essence of the inter-application feature interaction problem

senberg St andards Track [Page 27]

RFC 5629 App Interaction Franework Cct ober 2009

10.

Inter-application feature interaction is not an easy problemto
resolve. For now, we consider separately the issues for client-loca
and client-renote user interface conponents.

1. dient-Local U

When the user interface itself resides locally on the client device,
the feature interaction problemis actually much sinpler. The end
devi ce knows explicitly about each application, and therefore can
present the user with each one separately. Wen the user provides

i nput, the client device can deternm ne to which user interface the
input is destined. The user interface to which input is destined is
referred to as the "application in focus", and the neans by which the
focused application is selected is called "focus deternination".

Ceneral |y speaking, focus determination is purely a |local operation
In the PC universe, focus determ nation is provided by w ndow
managers. Each application does not know about focus; it nerely
recei ves the user input that has been targeted to it when it's in
focus. This basic concept applies to SlIP-based applications as well.

Focus deternmination will frequently be trivial, depending on the user
interface type. Consider a user that makes a call froma PC. The
call passes through a prepaid calling card application and a call -
recording application. Both of these wish to interact with the user
Bot h push an HTM.- based user interface to the user. On the PC, each
user interface would appear as a separate wi ndow. The user interacts
with the call-recording application by selecting its window, and with
the prepaid calling card application by selecting its wi ndow. Focus
determnation is literally provided by the PC wi ndow nanager. It is
clear to which application the user input is targeted.

As anot her exanpl e, consider the sane two applications, but on a
"smart phone" that has a set of buttons, and next to each button
there is an LCD display that can provide the user with an option
This user interface can be represented using the Wrel ess Markup
Language (WW), for exanple.

The phone woul d all ocate sonme nunber of buttons to each application
The prepaid calling card woul d get one button for its "hangup"
command, and the recording application would get one for its "start/
stop" command. The user can easily deternm ne which application to
interact with by pressing the appropriate button. Pressing a button
determ nes focus and provides user input, both at the sane tine.

Unfortunately, not all devices will have these advanced di splays. A
PSTN gat eway, or a basic IP tel ephone, may only have a 12-key keypad.
The user interfaces for these devices are provided through the Keypad

Rosenberg St andards Track [Page 28]

RFC 5629 App Interaction Franework Cct ober 2009

10.

11.

Mar kup Language (KPM.). Considering once again the feature

i nteracti on case above, the prepaid calling card application and the
call -recording application wuld both pass a KPM. docunent to the
device. \Wen the user presses a button on the keypad, to which
docunent does the input apply? The device does not allow the user to
select. A device where the user cannot provide focus is called a
"focusless device". This is quite a hard problemto solve. This
framewor k does not nake any explicit nornmative recommendation, but it
concludes that the best option is to send the input to both user
interfaces unless the markup in one interface has indicated that it
shoul d be suppressed fromothers. This is a sensible choice by
analogy -- it's exactly what the existing circuit-swi tched tel ephone
network will do. It is an explicit non-goal to provide a better
nmechani smfor feature interaction resolution than the PSTN on devices
that have the sane user interface as they do on the PSTN. Devices
with better displays, such as PCs or screen phones, can benefit from
the capabilities of this framework, allow ng the user to determne
which application they are interacting wth.

I ndeed, when a user provides input on a focusless device, the input
must be passed to all client-1ocal user interfaces AND all client-
renote user interfaces, unless the markup tells the U to suppress
the media. 1In the case of KPM., key events are passed to renote user
interfaces by encoding themas described in RFC 4733 [19]. O

course, since a client cannot deternine whether or not a media stream
termnates in a renpote user interface, these key events are passed in
all audio nmedia streans unless the KPM. request document is used to
suppress them

2. dient-Renpte U

When the user interfaces run renmotely, the determ nation of focus can
be much, much harder. There are nmany architectures that can be

depl oyed to handle the interaction. None are ideal. However, all
are beyond the scope of this specification.

Intra Application Feature Interaction

An application can instantiate a nultiplicity of user interface
components. For exanple, a single application can instantiate two
separate HTM. conponents and one WML conponent. Furthernore, an
application can instantiate both client-local and client-renbte user
interfaces.

The feature interaction issues between these conponents within the

sanme application are less severe. |If an application has multiple
client user interface conponents, their interaction is resolved
identically to the inter-application case -- through focus

Rosenberg St andards Track [Page 29]

RFC 5629 App Interaction Franework Cct ober 2009

12.

determ nati on. However, the problens in focusless user devices (such
as a keypad on a tel ephone) generally won't exist, since the
application can generate user interfaces that do not overlap in their
usage of an input.

The real issue is that the optinmal user experience frequently
requires sone kind of coupling between the differing user interface
conmponents. This is a classic problemin multi-nodal user

i nterfaces, such as those described by Speech Application Language
Tags (SALT). As an exanple, consider a user interface where a user
can either press a |abeled button to make a selection, or listen to a
pronpt, and speak the desired selection. Ildeally, when the user
presses the button, the pronpt should cease i mediately, since both
of themwere targeted at collecting the sanme information in parallel
Such interactions are best handl ed by nmarkups that natively support
such interactions, such as SALT, and thus require no explicit support
fromthis framework.

Exanpl e Call Fl ow

This section shows the operation of a call-recording application
This application allows a user to record the nedia in their call by
clicking on a button in a web form The application uses a
present ati on-capabl e user interface conponent that is pushed to the
caller. The conventions of [17] are used to describe representation
of long message |ines.

Rosenberg St andards Track [Page 30]

RFC 5629 App Interaction Franework

A Recordi ng App

[(1) INVITE |

I >

| [(2) INVITE
| ______

| [(3) 200 XK
| | <

| (4) 200 K |

| <o |

| (5) ACK |

| o >

I I(G) ACK
| (7) REFER |

| <o |

[(8) 200 XK |

D CREEEEEE T >|

| (9) NOTIFY |
----------------------- >|

| (10) 200 XK |

| <o |

| (11) HTTP GET |
----------------------- >|

| (12) 200 &K |

| <---mm-oomeee e |

| (13) NOTI FY
|---cmmm >|

| (14) 200 &K |

| <---mmmoom oo |

| (15) HTTP PCST |
|----mmm e >|

| (16) 200 K |

| <--mmmmmm o |

Figure 6

Cct ober 2009

First, the caller, A sends an INVITE to set up a call (nessage 1).
Since the caller supports the framework and can handl e presentation-
capabl e user interface conponents, it includes the Supported header
field indicating that the GRUU extension and the Target-Di al og header
field are understood, the Al ow header field indicating that REFER is
under st ood, and the Contact header field that

header field paraneter.

Rosenberg

St andards Track

i ncl udes the "schenes"

[Page 31]

RFC 5629 App Interaction Franework Cct ober 2009

I NVI TE si p: B@xanpl e.com SIP/2.0

Via: SIP/ 2.0/ TLS host. exanpl e. com branch=z9h4bK9zz8
From Caller <sip:A@xanpl e.conp;tag=kkaz-

To: Call ee <sip: B@xanpl e. org>

Call -1D: fa77as7dad8-sd98aj zz@ost . exanpl e. com
CSeq: 1 INVITE

Max- Forwards: 70

Supported: gruu, tdialog

Allow | NVITE, OPTIONS, BYE, CANCEL, ACK, REFER
Accept: application/sdp, text/htn

<al | OneLi ne>

Cont act: <sip: A@xanpl e. com gr=urn: uui d: f 81d4f ae
- 7dec- 11d0- a765- 00a0c91e6bf 6>; schenmes="http, si p"
</ al | OneLi ne>

Content-Length: ...

Cont ent - Type: application/sdp

--SDP not shown- -

The proxy acts as a recording server, and forwards the INVITE to the
called party (nessage 2). It strips the Record-Route it would
normal ly insert due to the presence of the GRUU in the INVITE

I NVI TE si p: B@c. exanple.com SIP/ 2.0

Via: SIP/2.0/TLS app. exanpl e. com branch=z9hG4bK97sh
Via: SIP/ 2.0/ TLS host. exanpl e. com branch=z9h4bK9zz8
From Caller <sip:A@xanpl e.conp;tag=kkaz-

To: Call ee <sip: B@xanpl e. org>

Call -1D: fa77as7dad8-sd98aj zz@ost . exanpl e. com
CSeq: 1 INVITE

Max- Forwar ds: 70

Supported: gruu, tdialog

Allow | NVITE, OPTIONS, BYE, CANCEL, ACK, REFER
Accept: application/sdp, text/htn

<al | OneLi ne>

Cont act: <sip: A@xanpl e. com gr=urn: uui d: f 81d4f ae

- 7dec- 11d0- a765- 00a0c91e6bf 6>; schenmes="http, si p"

</ al | OneLi ne>

Cont ent - Lengt h: .

Cont ent - Type: application/sdp

--SDP not shown- -

B accepts the call with a 200 OK (nessage 3). It does not support
the framework, so the various header fields are not present.

Rosenberg St andards Track [Page 32]

RFC 5629 App Interaction Franework Cct ober 2009

SIP/2.0 200 &K

Via: SIP/ 2.0/ TLS app. exanpl e. com branch=z9h&x4bK97sh
Via: SIP/2.0/ TLS host. exanpl e. com branch=z9h4bK9zz8
From Caller <sip: A@xanple.conp;tag=kkaz-

To: Call ee <sip: B@xanpl e. conp; tag=7777

Call-1D: fa77as7dad8-sd98aj zz@ost. exanpl e. com

CSeq: 1 INVITE

Cont act: <si p: B@c. exanpl e. con»

Content-Length: ...

Cont ent - Type: application/sdp

--SDP not shown- -
This 200 OK i s passed back to the caller (nessage 4):

SIP/2.0 200 K

Recor d- Rout e: <si p: app. exanpl e. com | r>

Via: SIP/2.0/TLS host. exanpl e. con branch=z9hG4bK9zz8
From Caller <sip: A@xanple.conp;tag=kkaz-

To: Call ee <sip: B@xanple.conp; tag=7777

Call-1D: fa77as7dad8-sd98aj zz@ost . exanpl e. com

CSeq: 1 INVITE

Cont act: <sip: B@c. exanpl e. conr

Content-Length: ...

Cont ent - Type: application/sdp

--SDP not shown- -
The caller generates an ACK (nessage 5).

ACK si p: B@c. exanpl e. com

Rout e: <si p: app. exanpl e.com|r>

Via: SIP/2.0/ TLS host. exanpl e. com branch=z9h4bK9zz9
From Caller <sip: A@xanple.conp;tag=kkaz-

To: Call ee <sip: B@xanpl e. conp; tag=7777

Call-1D: fa77as7dad8-sd98aj zz@ost . exanpl e. com

CSeq: 1 ACK

The ACK is forwarded to the called party (nessage 6).

ACK si p: B@c. exanpl e. com

Via: SIP/2.0/TLS app. exanpl e. com branch=z9hG4bKh7s
Via: SIP/2.0/TLS host. exanpl e. con branch=z9hG&4bK9zz9
From Caller <sip:A@xanpl e.conp;tag=kkaz-

To: Call ee <sip: B@xanpl e. conp; tag=7777

Call-1D: fa77as7dad8-sd98aj zz@ost . exanpl e. com

CSeq: 1 ACK

Rosenberg St andards Track [Page 33]

RFC 5629 App Interaction Franework Cct ober 2009

Now, the application decides to push a user interface conponent to
user A. So, it sends it a REFER request (nmessage 7):

<al | OneLi ne>

REFER si p: A@xanpl e. com gr =ur n: uui d: f 81d4f ae

- 7dec- 11d0- a765- 00a0c91e6bf6 SIP/ 2.0

</ al | OneLi ne>

Ref er-To: https://app. exanpl e.confscript.p

Target-Di al og: fa77as7dad8- sd98aj zz@ost . exanpl e. com
;renote-tag=7777; 1 ocal -t ag=kkaz-

Require: tdial og

Via: SIP/2.0/TLS app. exanpl e. com branch=z9hG4bK9zh6

Max- Forwards: 70

From Recorder Application <sip:app.exanple.conp;tag=j hgf

<al | OneLi ne>

To: Caller <sip: A@xanpl e.com gr=urn: uuid: f 81d4f ae

- 7dec- 11d0- a765- 00a0c91e6bf 6>

</ al | OneLi ne>

Require: tdial og

Allow. | NVITE, OPTIONS, BYE, CANCEL, ACK, REFER

Call-1D: 66676776767@pp. exanpl e. com

CSeq: 1 REFER

Event: refer

Cont act: <si p: app. exanpl e. conp

Since the recording application is the same as the authoritative
proxy for the domain, it resolves the Request URI to the registered
contact of A and then sent there. The REFER is answered by a 200 K
(message 8).

SIP/2.0 200 &K

Via: SIP/ 2.0/ TLS app. exanpl e. com branch=z9hG4bK9zh6
From Recorder Application <sip:app.exanpl e. conp;tag=j hgf
To: Caller <sip: A@xanpl e.conp; t ag=pgoew

Call-1D: 66676776767@pp. exanpl e. com

Supported: gruu, tdialog

Allow | NVITE, OPTIONS, BYE, CANCEL, ACK, REFER

<al | OneLi ne>

Cont act: <sip: A@xanpl e. com gr=urn: uui d: f 81d4f ae

- 7dec- 11d0- a765- 00a0c91e6bf 6>; schenmes="htt p, si p"

</ al | OneLi ne>

CSeq: 1 REFER

Rosenberg St andards Track [Page 34]

RFC 5629 App Interaction Franework Cct ober 2009

User A sends a NOTIFY (nessage 9):

NOTI FY si p: app. exanpl e.com SIP/ 2.0

Via: SIP/2.0/TLS host. exanpl e. cony branch=z9h&4bK9320394238995
To: Recorder Application <sip:app.exanpl e. conp; t ag=j hgf
From Caller <sip: A@xanple.conp;tag=pgoew

Call-1D 66676776767 @pp. exanpl e. com

CSeq: 1 NOTIFY

Max- Forwards: 70

<al | OneLi ne>

Cont act: <sip: A@xanpl e. com gr=ur n: uui d: f 81d4f ae

- 7dec- 11d0- a765- 00a0c91e6bf 6>; schemes="http, si p"

</ al | OneLi ne>

Event: refer;id=93809824

Subscription-State: active; expires=3600

Cont ent - Type: nessage/ si pfrag; versi on=2.0

Cont ent - Lengt h: 20

SIP/2.0 100 Trying
And the recording server responds with a 200 OK (nmessage 10).

SIP/2.0 200 K

Via: SIP/2.0/TLS host. exanpl e. con branch=z9h&4bK9320394238995
To: Recorder Application <sip:app.exanpl e.conp;tag=j hgf

From Caller <sip: A@xanple.conp;tag=pgoew

Call-1D: 66676776767@pp. exanpl e. com

CSeq: 1 NOTIFY

The REFER request contained a Target-Di al og header field paraneter
with a valid dialog identifier. Furthernore, all of the signaling
was over TLS and the dialog identifiers contain sufficient
randommess. As such, the caller, A automatically authorizes the
application. It then acts on the Refer-To URI, fetching the script
from app. exanpl e. com (nessage 11). The response, nessage 12,
contains a web application that the user can click on to enable
recording. Because the client executed the URL in the Refer-To, it
generates another NOTIFY to the application, informing it of the
successful response (nmessage 13). This is answered with a 200 K
(message 14). \Wen the user clicks on the link (nessage 15), the
results are posted to the server, and an updated display is provided
(message 16).

Rosenberg St andards Track [Page 35]

RFC 5629 App Interaction Franework Cct ober 2009

13.

14.

15.

16.

16.

Security Considerations

There are many security considerations associated with this
framework. It allows applications in the network to instantiate user
i nterface conponents on a client device. Such instantiations need to
be from aut henticated applications, and also need to be authorized to
place a U into the client. |ndeed, the stronger requirenent is

aut horization. It is not as inportant to know the nane of the
provider of the application, as it is to know that the provider is
aut horized to instantiate conponents.

This specification defines specific authorization techni ques and
requirenents. Autonatic authorization is granted if the application
can prove that it is on the call path, or is trusted by an el ement on
the call path. As docunented above, this can be acconplished by the
use of cryptographically randomdialog identifiers and the usage of
SIPS for nessage confidentiality. It is RECOWENDED that SIPS be

i npl ement ed by user agents conpliant to this specification. This
does not represent a change fromthe requirenments in RFC 3261

Contri butors

Thi s docunment was produced as a result of discussions anongst the
application interaction design team Al nenbers of this team
contributed significantly to the ideas enbodied in this docunent.
The menbers of this teamwere

Eric Burger
Cul I en Jenni ngs
Robert Fairlie-Cuni nghane

Acknowl edgenent s
The authors would like to thank Martin Dolly and Rohan Mahy for their
i nput and comments. Thanks to Allison Mankin for her support of this
wor k.

Ref erences

1. Nor mati ve Ref erences

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirenent
Level s", BCP 14, RFC 2119, March 1997.

[2] Rosenberg, J., Schul zrinne, H, Canmarillo, G, Johnston, A
Peterson, J., Sparks, R, Handley, M, and E. Schooler, "SIP
Session Initiation Protocol”, RFC 3261, June 2002.

Rosenberg St andards Track [Page 36]

RFC 5629

[3]

[4]

[5]

[6]

[7]

[8]

[9]

App Interaction Franework Cct ober 2009

Rosenberg, J. and H Schul zrinne, "Reliability of Provisional
Responses in Session Initiation Protocol (SIP)", RFC 3262,
June 2002.

Roach, A., "Session Initiation Protocol (SIP)-Specific Event
Notification", RFC 3265, June 2002.

Mcd ashan, S., Lucas, B., Porter, B., Rehor, K., Burnett, D.,
Carter, J., Ferrans, J., and A Hunt, "Voice Extensible Mrku
Language (VoiceXM.) Version 2.0", WBC CR CR-voi cexnl 20-
20030220, February 20083.

Rosenberg, J., Schul zrinne, H, and P. Kyzivat, "Indicating
User Agent Capabilities in the Session Initiation Protocol
(SIP)", RFC 3840, August 2004.

Sparks, R, "The Session Initiation Protocol (SIP) Refer
Met hod", RFC 3515, April 2003.

Burger, E. and M Dolly, "A Session Initiation Protocol (SIP)
Event Package for Key Press Stinulus (KPM.)", RFC 4730,
Novenber 2006.

Rosenberg, J., "Obtaining and Using d obal |y Routable User
Agent URIs (GRUUs) in the Session Initiation Protocol (SIP)",
RFC 5627, Cctober 2009.

[10] Rosenberg, J., "Request Authorization through D al og
Identification in the Session Initiation Protocol (SIP)",
RFC 4538, June 2006.

16.2. Informative References

[11] Peterson, J. and C. Jennings, "Enhancenents for Authenticated
Identity Managenment in the Session Initiation Protocol (SIP)",
RFC 4474, August 2006.

[12] Day, M, Rosenberg, J., and H Sugano, "A Mdel for Presence
and | nstant Messagi ng", RFC 2778, February 2000.

[13] Jennings, C., Peterson, J., and M Watson, "Private Extensions
to the Session Initiation Protocol (SIP) for Asserted ldentity
wi thin Trusted Networks", RFC 3325, Novenber 2002.

[14] Rosenberg, J., "A Franework for Conferencing with the Session

Rosenberg

Initiation Protocol (SIP)", RFC 4353, February 2006.

St andards Track [Page 37]

RFC 5629

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Aut hor’ s

App Interaction Franework Cct ober 2009

Rosenberg, J., Schul zrinne, H, and P. Kyzivat, "Caller
Preferences for the Session Initiation Protocol (SIP)"
RFC 3841, August 2004.

Rosenberg, J., Schul zrinne, H, and R Mhy, "An |INVITE-
Initiated Di al og Event Package for the Session Initiation
Protocol (SIP)", RFC 4235, Novenber 2005

Sparks, R, Hawylyshen, A, Johnston, A, Rosenberg, J., and
H. Schul zrinne, "Session Initiation Protocol (SIP) Torture Test
Messages", RFC 4475, May 2006.

Schul zrinne, H., Casner, S., Frederick, R, and V. Jacobson
"RTP: A Transport Protocol for Real-Tine Applications", STD 64,
RFC 3550, July 2003.

Schul zrinne, H and T. Taylor, "RTP Payload for DIMF Digits,
Tel ephony Tones, and Tel ephony Signals", RFC 4733, Decenber
2006.

Rosenberg, J. and H. Schul zrinne, "An O fer/Answer Mdel with
Session Description Protocol (SDP)", RFC 3264, June 2002.

Rosenberg, J., "A Session Initiation Protocol (SIP) Event
Package for Registrations", RFC 3680, March 2004.

Addr ess

Jonat han Rosenberg

Ci sco Systens

600 Lani dex Pl aza

Par si ppany, NJ 07054
us

Phone:
EMi | :

URI :

Rosenberg

+1 973 952-5000
j drosen@i sco. com
http://ww. jdrosen. net

St andards Track [Page 38]

