
Network Working Group J. Rosenberg
Request for Comments: 5629 Cisco Systems
Category: Standards Track October 2009

 A Framework for Application Interaction
 in the Session Initiation Protocol (SIP)

Abstract

 This document describes a framework for the interaction between users
 and Session Initiation Protocol (SIP) based applications. By
 interacting with applications, users can guide the way in which they
 operate. The focus of this framework is stimulus signaling, which
 allows a user agent (UA) to interact with an application without
 knowledge of the semantics of that application. Stimulus signaling
 can occur to a user interface running locally with the client, or to
 a remote user interface, through media streams. Stimulus signaling
 encompasses a wide range of mechanisms, ranging from clicking on
 hyperlinks, to pressing buttons, to traditional Dual-Tone Multi-
 Frequency (DTMF) input. In all cases, stimulus signaling is
 supported through the use of markup languages, which play a key role
 in this framework.

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

Rosenberg Standards Track [Page 1]

RFC 5629 App Interaction Framework October 2009

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow

 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Rosenberg Standards Track [Page 2]

RFC 5629 App Interaction Framework October 2009

Table of Contents

 1. Introduction . 4
 2. Conventions Used in This Document 4
 3. Definitions . 4
 4. A Model for Application Interaction 7
 4.1. Functional vs. Stimulus 9
 4.2. Real-Time vs. Non-Real-Time 10
 4.3. Client-Local vs. Client-Remote 10
 4.4. Presentation-Capable vs. Presentation-Free 11
 5. Interaction Scenarios on Telephones 11
 5.1. Client Remote . 12
 5.2. Client Local . 12
 5.3. Flip-Flop . 13
 6. Framework Overview . 13
 7. Deployment Topologies . 16
 7.1. Third-Party Application 16
 7.2. Co-Resident Application 17
 7.3. Third-Party Application and User Device Proxy 18
 7.4. Proxy Application . 19
 8. Application Behavior . 19
 8.1. Client-Local Interfaces 20
 8.1.1. Discovering Capabilities 20
 8.1.2. Pushing an Initial Interface Component 20
 8.1.3. Updating an Interface Component 22
 8.1.4. Terminating an Interface Component 22
 8.2. Client-Remote Interfaces 23
 8.2.1. Originating and Terminating Applications 23
 8.2.2. Intermediary Applications 24
 9. User Agent Behavior . 24
 9.1. Advertising Capabilities 24
 9.2. Receiving User Interface Components 25
 9.3. Mapping User Input to User Interface Components 26
 9.4. Receiving Updates to User Interface Components 27
 9.5. Terminating a User Interface Component 27
 10. Inter-Application Feature Interaction 27
 10.1. Client-Local UI . 28
 10.2. Client-Remote UI . 29
 11. Intra Application Feature Interaction 29
 12. Example Call Flow . 30
 13. Security Considerations 36
 14. Contributors . 36
 15. Acknowledgements . 36
 16. References . 36
 16.1. Normative References 36
 16.2. Informative References 37

Rosenberg Standards Track [Page 3]

RFC 5629 App Interaction Framework October 2009

1. Introduction

 The Session Initiation Protocol (SIP) [2] provides the ability for
 users to initiate, manage, and terminate communications sessions.
 Frequently, these sessions will involve a SIP application. A SIP
 application is defined as a program running on a SIP-based element
 (such as a proxy or user agent) that provides some value-added
 function to a user or system administrator. Examples of SIP
 applications include prepaid calling card calls, conferencing, and
 presence-based [12] call routing.

 In order for most applications to properly function, they need input
 from the user to guide their operation. As an example, a prepaid
 calling card application requires the user to input their calling
 card number, their PIN code, and the destination number they wish to
 reach. The process by which a user provides input to an application
 is called "application interaction".

 Application interaction can be either functional or stimulus.
 Functional interaction requires the user device to understand the
 semantics of the application, whereas stimulus interaction does not.
 Stimulus signaling allows for applications to be built without
 requiring modifications to the user device. Stimulus interaction is
 the subject of this framework. The framework provides a model for
 how users interact with applications through user interfaces, and how
 user interfaces and applications can be distributed throughout a
 network. This model is then used to describe how applications can
 instantiate and manage user interfaces.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [1]

3. Definitions

 SIP Application: A SIP application is defined as a program running
 on a SIP-based element (such as a proxy or user agent) that
 provides some value-added function to a user or system
 administrator. Examples of SIP applications include prepaid
 calling card calls, conferencing, and presence-based [12] call
 routing.

 Application Interaction: The process by which a user provides input
 to an application.

Rosenberg Standards Track [Page 4]

RFC 5629 App Interaction Framework October 2009

 Real-Time Application Interaction: Application interaction that
 takes place while an application instance is executing. For
 example, when a user enters their PIN number into a prepaid
 calling card application, this is real-time application
 interaction.

 Non-Real-Time Application Interaction: Application interaction that
 takes place asynchronously with the execution of the application.
 Generally, non-real-time application interaction is accomplished
 through provisioning.

 Functional Application Interaction: Application interaction is
 functional when the user device has an understanding of the
 semantics of the interaction with the application.

 Stimulus Application Interaction: Application interaction is
 stimulus when the user device has no understanding of the
 semantics of the interaction with the application.

 User Interface (UI): The user interface provides the user with
 context to make decisions about what they want. The user
 interacts with the device, which conveys the user input to the
 user interface. The user interface interprets the information and
 passes it to the application.

 User Interface Component: A piece of user interface that operates
 independently of other pieces of the user interface. For example,
 a user might have two separate web interfaces to a prepaid calling
 card application: one for hanging up and making another call, and
 another for entering the username and PIN.

 User Device: The software or hardware system that the user directly
 interacts with to communicate with the application. An example of
 a user device is a telephone. Another example is a PC with a web
 browser.

 User Device Proxy: A software or hardware system that a user
 indirectly interacts through to communicate with the application.
 This indirection can be through a network. An example is a
 gateway from IP to the Public Switched Telephone Network (PSTN).
 It acts as a user device proxy, acting on behalf of the user on
 the circuit network.

 User Input: The "raw" information passed from a user to a user
 interface. Examples of user input include a spoken word or a
 click on a hyperlink.

Rosenberg Standards Track [Page 5]

RFC 5629 App Interaction Framework October 2009

 Client-Local User Interface: A user interface that is co-resident
 with the user device.

 Client-Remote User Interface: A user interface that executes
 remotely from the user device. In this case, a standardized
 interface is needed between the user device and the user
 interface. Typically, this is done through media sessions: audio,
 video, or application sharing.

 Markup Language: A markup language describes a logical flow of
 presentation of information to the user, collection of information
 from the user, and transmission of that information to an
 application.

 Media Interaction: A means of separating a user and a user interface
 by connecting them with media streams.

 Interactive Voice Response (IVR): An IVR is a type of user interface
 that allows users to speak commands to the application, and hear
 responses to those commands prompting for more information.

 Prompt-and-Collect: The basic primitive of an IVR user interface.
 The user is presented with a voice option, and the user speaks
 their choice.

 Barge-In: The act of entering information into an IVR user interface
 prior to the completion of a prompt requesting that information.

 Focus: A user interface component has focus when user input is
 provided to it, as opposed to any other user interface components.
 This is not to be confused with the term "focus" within the SIP
 conferencing framework, which refers to the center user agent in a
 conference [14].

 Focus Determination: The process by which the user device determines
 which user interface component will receive the user input.

 Focusless Device: A user device that has no ability to perform focus
 determination. An example of a focusless device is a telephone
 with a keypad.

 Presentation-Capable UI: A user interface that can prompt the user
 with input, collect results, and then prompt the user with new
 information based on those results.

Rosenberg Standards Track [Page 6]

RFC 5629 App Interaction Framework October 2009

 Presentation-Free UI: A user interface that cannot prompt the user
 with information.

 Feature Interaction: A class of problems that result when multiple
 applications or application components are trying to provide
 services to a user at the same time.

 Inter-Application Feature Interaction: Feature interactions that
 occur between applications.

 DTMF: Dual-Tone Multi-Frequency. DTMF refers to a class of tones
 generated by circuit-switched telephony devices when the user
 presses a key on the keypad. As a result, DTMF and keypad input
 are often used synonymously, when in fact one of them (DTMF) is
 merely a means of conveying the other (the keypad input) to a
 client-remote user interface (the switch, for example).

 Application Instance: A single execution path of a SIP application.

 Originating Application: A SIP application that acts as a User Agent
 Client (UAC), making a call on behalf of the user.

 Terminating Application: A SIP application that acts as a User Agent
 Server (UAS), answering a call generated by a user. IVR
 applications are terminating applications.

 Intermediary Application: A SIP application that is neither the
 caller or callee, but rather a third party involved in a call.

4. A Model for Application Interaction

 +---+ +---+ +---+ +---+
 | | | | | | | |
 | | | U | | U | | A |
 | | Input | s | Input | s | Results | p |
 | | ---------> | e | ---------> | e | ----------> | p |
 | U | | r | | r | | l |
 | s | | | | | | i |
 | e | | D | | I | | c |
 | r | Output | e | Output | f | Update | a |
 | | <--------- | v | <--------- | a | <.......... | t |
 | | | i | | c | | i |
 | | | c | | e | | o |
 | | | e | | | | n |
 | | | | | | | |
 +---+ +---+ +---+ +---+

 Figure 1: Model for Real-Time Interactions

Rosenberg Standards Track [Page 7]

RFC 5629 App Interaction Framework October 2009

 Figure 1 presents a general model for how users interact with
 applications. Generally, users interact with a user interface
 through a user device. A user device can be a telephone, or it can
 be a PC with a web browser. Its role is to pass the user input from
 the user to the user interface. The user interface provides the user
 with context in order to make decisions about what they want. The
 user interacts with the device, causing information to be passed from
 the device to the user interface. The user interface interprets the
 information, and passes it as a user interface event to the
 application. The application may be able to modify the user
 interface based on this event. Whether or not this is possible
 depends on the type of user interface.

 User interfaces are fundamentally about rendering and interpretation.
 Rendering refers to the way in which the user is provided context.
 This can be through hyperlinks, images, sounds, videos, text, and so
 on. Interpretation refers to the way in which the user interface
 takes the "raw" data provided by the user, and returns the result to
 the application as a meaningful event, abstracted from the
 particulars of the user interface. As an example, consider a prepaid
 calling card application. The user interface worries about details
 such as what prompt the user is provided, whether the voice is male
 or female, and so on. It is concerned with recognizing the speech
 that the user provides, in order to obtain the desired information.
 In this case, the desired information is the calling card number, the
 PIN code, and the destination number. The application needs that
 data, and it doesn’t matter to the application whether it was
 collected using a male prompt or a female one.

 User interfaces generally have real-time requirements towards the
 user. That is, when a user interacts with the user interface, the
 user interface needs to react quickly, and that change needs to be
 propagated to the user right away. However, the interface between
 the user interface and the application need not be that fast. Faster
 is better, but the user interface itself can frequently compensate
 for long latencies between the user interface and the application.
 In the case of a prepaid calling card application, when the user is
 prompted to enter their PIN, the prompt should generally stop
 immediately once the first digit of the PIN is entered. This is
 referred to as "barge-in". After the user interface collects the
 rest of the PIN, it can tell the user to "please wait while
 processing". The PIN can then be gradually transmitted to the
 application. In this example, the user interface has compensated for
 a slow UI to application interface by asking the user to wait.

 The separation between user interface and application is absolutely
 fundamental to the entire framework provided in this document. Its
 importance cannot be overstated.

Rosenberg Standards Track [Page 8]

RFC 5629 App Interaction Framework October 2009

 With this basic model, we can begin to taxonomize the types of
 systems that can be built.

4.1. Functional vs. Stimulus

 The first way to taxonomize the system is to consider the interface
 between the UI and the application. There are two fundamentally
 different models for this interface. In a functional interface, the
 user interface has detailed knowledge about the application and is,
 in fact, specific to the application. The interface between the two
 components is through a functional protocol, capable of representing
 the semantics that can be exposed through the user interface.
 Because the user interface has knowledge of the application, it can
 be optimally designed for that application. As a result, functional
 user interfaces are almost always the most user friendly, the
 fastest, and the most responsive. However, in order to allow
 interoperability between user devices and applications, the details
 of the functional protocols need to be specified in standards. This
 slows down innovation and limits the scope of applications that can
 be built.

 An alternative is a stimulus interface. In a stimulus interface, the
 user interface is generic -- that is, totally ignorant of the details
 of the application. Indeed, the application may pass instructions to
 the user interface describing how it should operate. The user
 interface translates user input into "stimulus", which are data
 understood only by the application, and not by the user interface.
 Because they are generic, and because they require communications
 with the application in order to change the way in which they render
 information to the user, stimulus user interfaces are usually slower,
 less user friendly, and less responsive than a functional
 counterpart. However, they allow for substantial innovation in
 applications, since no standardization activity is needed to build a
 new application, as long as it can interact with the user within the
 confines of the user interface mechanism. The web is an example of a
 stimulus user interface to applications.

 In SIP systems, functional interfaces are provided by extending the
 SIP protocol to provide the needed functionality. For example, the
 SIP caller preferences specification [15] provides a functional
 interface that allows a user to request applications to route the
 call to specific types of user agents. Functional interfaces are
 important, but are not the subject of this framework. The primary
 goal of this framework is to address the role of stimulus interfaces
 to SIP applications.

Rosenberg Standards Track [Page 9]

RFC 5629 App Interaction Framework October 2009

4.2. Real-Time vs. Non-Real-Time

 Application interaction systems can also be real-time or non-real-
 time. Non-real-time interaction allows the user to enter information
 about application operation asynchronously with its invocation.
 Frequently, this is done through provisioning systems. As an
 example, a user can set up the forwarding number for a call-forward
 on no-answer application using a web page. Real-time interaction
 requires the user to interact with the application at the time of its
 invocation.

4.3. Client-Local vs. Client-Remote

 Another axis in the taxonomization is whether the user interface is
 co-resident with the user device (which we refer to as a client-local
 user interface), or the user interface runs in a host separated from
 the client (which we refer to as a client-remote user interface). In
 a client-remote user interface, there exists some kind of protocol
 between the client device and the UI that allows the client to
 interact with the user interface over a network.

 The most important way to separate the UI and the client device is
 through media interaction. In media interaction, the interface
 between the user and the user interface is through media: audio,
 video, messaging, and so on. This is the classic mode of operation
 for VoiceXML [5], where the user interface (also referred to as the
 voice browser) runs on a platform in the network. Users communicate
 with the voice browser through the telephone network (or using a SIP
 session). The voice browser interacts with the application using
 HTTP to convey the information collected from the user.

 In the case of a client-local user interface, the user interface runs
 co-located with the user device. The interface between them is
 through the software that interprets the user’s input and passes it
 to the user interface. The classic example of this is the Web. In
 the Web, the user interface is a web browser, and the interface is
 defined by the HTML document that it’s rendering. The user interacts
 directly with the user interface running in the browser. The results
 of that user interface are sent to the application (running on the
 web server) using HTTP.

 It is important to note that whether or not the user interface is
 local or remote (in the case of media interaction) is not a property
 of the modality of the interface, but rather a property of the
 system. As an example, it is possible for a Web-based user interface
 to be provided with a client-remote user interface. In such a
 scenario, video- and application-sharing media sessions can be used
 between the user and the user interface. The user interface, still

Rosenberg Standards Track [Page 10]

RFC 5629 App Interaction Framework October 2009

 guided by HTML, now runs "in the network", remote from the client.
 Similarly, a VoiceXML document can be interpreted locally by a client
 device, with no media streams at all. Indeed, the VoiceXML document
 can be rendered using text, rather than media, with no impact on the
 interface between the user interface and the application.

 It is also important to note that systems can be hybrid. In a hybrid
 user interface, some aspects of it (usually those associated with a
 particular modality) run locally, and others run remotely.

4.4. Presentation-Capable vs. Presentation-Free

 A user interface can be capable of presenting information to the user
 (a presentation-capable UI), or it can be capable only of collecting
 user input (a presentation-free UI). These are very different types
 of user interfaces. A presentation-capable UI can provide the user
 with feedback after every input, providing the context for collecting
 the next input. As a result, presentation-capable user interfaces
 require an update to the information provided to the user after each
 input. The Web is a classic example of this. After every input
 (i.e., a click), the browser provides the input to the application
 and fetches the next page to render. In a presentation-free user
 interface, this is not the case. Since the user is not provided with
 feedback, these user interfaces tend to merely collect information as
 it’s entered, and pass it to the application.

 Another difference is that a presentation-free user interface cannot
 easily support the concept of a focus. Selection of a focus usually
 requires a means for informing the user of the available
 applications, allowing the user to choose, and then informing them
 about which one they have chosen. Without the first and third steps
 (which a presentation-free UI cannot provide), focus selection is
 very difficult. Without a selected focus, the input provided to
 applications through presentation-free user interfaces is more of a
 broadcast or notification operation.

5. Interaction Scenarios on Telephones

 In this section, we apply the model of Section 4 to telephones.

 In a traditional telephone, the user interface consists of a 12-key
 keypad, a speaker, and a microphone. Indeed, from here forward, the
 term "telephone" is used to represent any device that meets, at a
 minimum, the characteristics described in the previous sentence.
 Circuit-switched telephony applications are almost universally
 client-remote user interfaces. In the Public Switched Telephone
 Network (PSTN), there is usually a circuit interface between the user
 and the user interface. The user input from the keypad is conveyed

Rosenberg Standards Track [Page 11]

RFC 5629 App Interaction Framework October 2009

 using Dual-Tone Multi-Frequency (DTMF), and the microphone input as
 Pulse Code Modulated (PCM) encoded voice.

 In an IP-based system, there is more variability in how the system
 can be instantiated. Both client-remote and client-local user
 interfaces to a telephone can be provided.

 In this framework, a PSTN gateway can be considered a User Device
 Proxy. It is a proxy for the user because it can provide, to a user
 interface on an IP network, input taken from a user on a circuit-
 switched telephone. The gateway may be able to run a client-local
 user interface, just as an IP telephone might.

5.1. Client Remote

 The most obvious instantiation is the "classic" circuit-switched
 telephony model. In that model, the user interface runs remotely
 from the client. The interface between the user and the user
 interface is through media, which is set up by SIP and carried over
 the Real Time Transport Protocol (RTP) [18]. The microphone input
 can be carried using any suitable voice-encoding algorithm. The
 keypad input can be conveyed in one of two ways. The first is to
 convert the keypad input to DTMF, and then convey that DTMF using a
 suitable encoding algorithm (such as PCMU). An alternative, and
 generally the preferred approach, is to transmit the keypad input
 using RFC 4733 [19], which provides an encoding mechanism for
 carrying keypad input within RTP.

 In this classic model, the user interface would run on a server in
 the IP network. It would perform speech recognition and DTMF
 recognition to derive the user intent, feed them through the user
 interface, and provide the result to an application.

5.2. Client Local

 An alternative model is for the entire user interface to reside on
 the telephone. The user interface can be a VoiceXML browser, running
 speech recognition on the microphone input, and feeding the keypad
 input directly into the script. As discussed above, the VoiceXML
 script could be rendered using text instead of voice, if the
 telephone has a textual display.

 For simpler phones without a display, the user interface can be
 described by a Keypad Markup Language request document [8]. As the
 user enters digits in the keypad, they are passed to the user
 interface, which generates user interface events that can be
 transported to the application.

Rosenberg Standards Track [Page 12]

RFC 5629 App Interaction Framework October 2009

5.3. Flip-Flop

 A middle-ground approach is to flip back and forth between a client-
 local and client-remote user interface. Many voice applications are
 of the type that listen to the media stream and wait for some
 specific trigger that kicks off a more complex user interaction. The
 long pound in a prepaid calling card application is one example.
 Another example is a conference recording application, where the user
 can press a key at some point in the call to begin recording. When
 the key is pressed, the user hears a whisper to inform them that
 recording has started.

 The ideal way to support such an application is to install a client-
 local user interface component that waits for the trigger to kick off
 the real interaction. Once the trigger is received, the application
 connects the user to a client-remote user interface that can play
 announcements, collect more information, and so on.

 The benefit of flip-flopping between a client-local and client-remote
 user interface is cost. The client-local user interface will
 eliminate the need to send media streams into the network just to
 wait for the user to press the pound key on the keypad.

 The Keypad Markup Language (KPML) was designed to support exactly
 this kind of need [8]. It models the keypad on a phone and allows an
 application to be informed when any sequence of keys has been
 pressed. However, KPML has no presentation component. Since user
 interfaces generally require a response to user input, the
 presentation will need to be done using a client-remote user
 interface that gets instantiated as a result of the trigger.

 It is tempting to use a hybrid model, where a prompt-and-collect
 application is implemented by using a client-remote user interface
 that plays the prompts, and a client-local user interface, described
 by KPML, that collects digits. However, this only complicates the
 application. Firstly, the keypad input will be sent to both the
 media stream and the KPML user interface. This requires the
 application to sort out which user inputs are duplicates, a process
 that is very complicated. Secondly, the primary benefit of KPML is
 to avoid having a media stream towards a user interface. However,
 there is already a media stream for the prompting, so there is no
 real savings.

6. Framework Overview

 In this framework, we use the term "SIP application" to refer to a
 broad set of functionality. A SIP application is a program running
 on a SIP-based element (such as a proxy or user agent) that provides

Rosenberg Standards Track [Page 13]

RFC 5629 App Interaction Framework October 2009

 some value-added function to a user or system administrator. SIP
 applications can execute on behalf of a caller, a called party, or a
 multitude of users at once.

 Each application has a number of instances that are executing at any
 given time. An instance represents a single execution path for an
 application. It is established as a result of some event. That
 event can be a SIP event, such as the reception of a SIP INVITE
 request, or it can be a non-SIP event, such as a web form post or
 even a timer. Application instances also have an end time. Some
 instances have a lifetime that is coupled with a SIP transaction or
 dialog. For example, a proxy application might begin when an INVITE
 arrives, and terminate when the call is answered. Other applications
 have a lifetime that spans multiple dialogs or transactions. For
 example, a conferencing application instance may exist so long as
 there are dialogs connected to it. When the last dialog terminates,
 the application instance terminates. Other applications have a
 lifetime that is completely decoupled from SIP events.

 It is fundamental to the framework described here that multiple
 application instances may interact with a user during a single SIP
 transaction or dialog. Each instance may be for the same
 application, or different applications. Each of the applications may
 be completely independent, in that each may be owned by a different
 provider, and may not be aware of each other’s existence. Similarly,
 there may be application instances interacting with the caller, and
 instances interacting with the callee, both within the same
 transaction or dialog.

 The first step in the interaction with the user is to instantiate one
 or more user interface components for the application instance. A
 user interface component is a single piece of the user interface that
 is defined by a logical flow that is not synchronously coupled with
 any other component. In other words, each component runs
 independently.

 A user interface component can be instantiated in one of the user
 agents in a dialog (for a client-local user interface), or within a
 network element (for a client-remote user interface). If a client-
 local user interface is to be used, the application needs to
 determine whether or not the user agent is capable of supporting a
 client-local user interface, and in what format. In this framework,
 all client-local user interface components are described by a markup
 language. A markup language describes a logical flow of presentation
 of information to the user, a collection of information from the
 user, and a transmission of that information to an application.
 Examples of markup languages include HTML, Wireless Markup Language
 (WML), VoiceXML, and the Keypad Markup Language (KPML) [8].

Rosenberg Standards Track [Page 14]

RFC 5629 App Interaction Framework October 2009

 Unlike an application instance, which has a very flexible lifetime, a
 user interface component has a very fixed lifetime. A user interface
 component is always associated with a dialog. The user interface
 component can be created at any point after the dialog (or early
 dialog) is created. However, the user interface component terminates
 when the dialog terminates. The user interface component can be
 terminated earlier by the user agent, and possibly by the
 application, but its lifetime never exceeds that of its associated
 dialog.

 There are two ways to create a client-local interface component. For
 interface components that are presentation capable, the application
 sends a REFER [7] request to the user agent. The Refer-To header
 field contains an HTTP URI that points to the markup for the user
 interface, and the REFER contains a Target-Dialog header field [10]
 which identifies the dialog associated with the user interface
 component. For user interface components that are presentation free
 (such as those defined by KPML), the application sends a SUBSCRIBE
 request to the user agent. The body of the SUBSCRIBE request
 contains a filter, which, in this case, is the markup that defines
 when information is to be sent to the application in a NOTIFY. The
 SUBSCRIBE does not contain the Target-Dialog header field, since
 equivalent information is conveyed in the Event header field.

 If a user interface component is to be instantiated in the network,
 there is no need to determine the capabilities of the device on which
 the user interface is instantiated. Presumably, it is on a device on
 which the application knows a UI can be created. However, the
 application does need to connect the user device to the user
 interface. This will require manipulation of media streams in order
 to establish that connection.

 The interface between the user interface component and the
 application depends on the type of user interface. For presentation-
 capable user interfaces, such as those described by HTML and
 VoiceXML, HTTP form POST operations are used. For presentation-free
 user interfaces, a SIP NOTIFY is used. The differing needs and
 capabilities of these two user interfaces, as described in
 Section 4.4, are what drives the different choices for the
 interactions. Since presentation-capable user interfaces require an
 update to the presentation every time user data is entered, they are
 a good match for HTTP. Since presentation-free user interfaces
 merely transmit user input to the application, a NOTIFY is more
 appropriate.

 Indeed, for presentation-free user interfaces, there are two
 different modalities of operation. The first is called "one shot".
 In the one-shot role, the markup waits for a user to enter some

Rosenberg Standards Track [Page 15]

RFC 5629 App Interaction Framework October 2009

 information and, when they do, reports this event to the application.
 The application then does something, and the markup is no longer
 used. In the other modality, called "monitor", the markup stays
 permanently resident, and reports information back to an application
 until termination of the associated dialog.

7. Deployment Topologies

 This section presents some of the network topologies in which this
 framework can be instantiated.

7.1. Third-Party Application

 +-------------+
 /---| Application |
 / +-------------+
 /
 SUB/ / REFER/
 NOT / HTTP
 /
 +--------+ SIP (INVITE) +-----+
 | UI A--------------------X |
 |........| | SIP |
 | User | RTP | UA |
 | Device B--------------------Y |
 +--------+ +-----+

 Figure 2: Third-Party Topology

 In this topology, the application that is interested in interacting
 with the users exists outside of the SIP dialog between the user
 agents. In that case, the application learns about the initiation
 and termination of the dialog, along with the dialog identifiers,
 through some out-of-band means. One such possibility is the dialog
 event package [16]. Dialog information is only revealed to trusted
 parties, so the application would need to be trusted by one of the
 users in order to obtain this information.

 At any point during the dialog, the application can instantiate user
 interface components on the user device of the caller or callee. It
 can do this using either SUBSCRIBE or REFER, depending on the type of
 user interface (presentation capable or presentation free).

Rosenberg Standards Track [Page 16]

RFC 5629 App Interaction Framework October 2009

7.2. Co-Resident Application

 +--------+ SIP (INVITE) +-----+
 | User A--------------------X SIP |
 | Device | RTP | UA |
 |........B--------------------Y |
 | | SUB/NOT | App)|
 | UI A’-------------------X’ |
 +--------+ REFER/HTTP +-----+

 Figure 3: Co-Resident Topology

 In this deployment topology, the application is co-resident with one
 of the user agents (the one on the right in the picture above). This
 application can install client-local user interface components on the
 other user agent, which is acting as the user device. These
 components can be installed using either SUBSCRIBE, for presentation-
 free user interfaces, or REFER, for presentation-capable ones. This
 situation typically arises when the application wishes to install UI
 components on a presentation-capable user interface. If the only
 user input is via keypad input, the framework is not needed per se,
 because the UA/application will receive the input via RFC 4733 in the
 RTP stream.

 If the application resides in the called party, it is called a
 "terminating application". If it resides in the calling party, it is
 called an "originating application".

 This kind of topology is common in protocol converter and gateway
 applications.

Rosenberg Standards Track [Page 17]

RFC 5629 App Interaction Framework October 2009

7.3. Third-Party Application and User Device Proxy

 +-------------+
 /---| Application |
 / +-------------+
 /
 SUB/ / REFER/
 NOT / HTTP
 /
 +-----+ SIP +---M----+ SIP +-----+
 | V--------------------C A--------------------X |
 | SIP | | UI | | SIP |
 | UAa | RTP | | RTP | UAb |
 | W--------------------D B--------------------Y |
 +-----+ +--------+ +-----+
 User User
 Device Device
 Proxy

 Figure 4: User Device Proxy Topology

 In this deployment topology, there is a third-party application as in
 Section 7.1. However, instead of installing a user interface
 component on the end user device, the component is installed in an
 intermediate device, known as a User Device Proxy. From the
 perspective of the actual user device (on the left), the User Device
 Proxy is a client remote user interface. As such, media, typically
 transported using RTP (including RFC 4733 for carrying user input),
 is sent from the user device to the client remote user interface on
 the User Device Proxy. As far as the application is concerned, it is
 installing what it thinks is a client-local user interface on the
 user device, but it happens to be on a user device proxy that looks
 like the user device to the application.

 The user device proxy will need to terminate and re-originate both
 signaling (SIP) and media traffic towards the actual peer in the
 conversation. The User Device Proxy is a media relay in the
 terminology of RFC 3550 [18]. The User Device Proxy will need to
 monitor the media streams associated with each dialog, in order to
 convert user input received in the media stream to events reported to
 the user interface. This can pose a challenge in multi-media
 systems, where it may be unclear on which media stream the user input
 is being sent. As discussed in RFC 3264 [20], if a user agent has a
 single media source and is supporting multiple streams, it is
 supposed to send that source to all streams. In cases where there
 are multiple sources, the mapping is a matter of local policy. In

Rosenberg Standards Track [Page 18]

RFC 5629 App Interaction Framework October 2009

 the absence of a way to explicitly identify or request which sources
 map to which streams, the user device proxy will need to do the best
 job it can. This specification RECOMMENDS that the User Device Proxy
 monitor the first stream (defined in terms of ordering of media
 sessions within a session description). As such, user agents SHOULD
 send their user input on the first stream, absent a policy to direct
 it otherwise.

7.4. Proxy Application

 +----------+
 SUB/NOT | App | SUB/NOT
 +--------------->| |<-----------------+
 | REFER/HTTP |..........| REFER/HTTP |
 | | SIP | |
 | | Proxy | |
 | +----------+ |
 V ^ | V
 +----------+ | | +----------+
 | UI | INVITE | | INVITE | UI |
 | |------------+ +------------>| |
 |......... | |..........|
 | SIP |...................................| SIP |
 | UA | | UA |
 +----------+ RTP +----------+
 User Device User Device

 Figure 5: Proxy Application Topology

 In this topology, the application is co-resident with a transaction
 stateful, record-routing proxy server on the call path between two
 user devices. The application uses SUBSCRIBE or REFER to install
 user interface components on one or both user devices.

 This topology is common in routing applications, such as a web-
 assisted call-routing application.

8. Application Behavior

 The behavior of an application within this framework depends on
 whether it seeks to use a client-local or client-remote user
 interface.

Rosenberg Standards Track [Page 19]

RFC 5629 App Interaction Framework October 2009

8.1. Client-Local Interfaces

 One key component of this framework is support for client-local user
 interfaces.

8.1.1. Discovering Capabilities

 A client-local user interface can only be instantiated on a user
 agent if the user agent supports that type of user interface
 component. Support for client-local user interface components is
 declared by both the UAC and UAS in their Allow, Accept, Supported,
 and Allow-Event header fields of dialog-initiating requests and
 responses. If the Allow header field indicates support for the SIP
 SUBSCRIBE method, and the Allow-Event header field indicates support
 for the KPML package [8], and the Supported header field indicates
 support for the Globally Routable UA URI (GRUU) [9] specification
 (which, in turn, means that the Contact header field contains a
 GRUU), it means that the UA can instantiate presentation-free user
 interface components. In this case, the application can push
 presentation-free user interface components according to the rules of
 Section 8.1.2. The specific markup languages that can be supported
 are indicated in the Accept header field.

 If the Allow header field indicates support for the SIP REFER method,
 and the Supported header field indicates support for the Target-
 Dialog header field [10], and the Contact header field contains UA
 capabilities [6] that indicate support for the HTTP URI scheme, it
 means that the UA supports presentation-capable user interface
 components. In this case, the application can push presentation-
 capable user interface components to the client according to the
 rules of Section 8.1.2. The specific markups that are supported are
 indicated in the Accept header field.

 A third-party application that is not present on the call path will
 not be privy to these header fields in the dialog-initiating requests
 that pass by. As such, it will need to obtain this capability
 information in other ways. One way is through the registration event
 package [21], which can contain user agent capability information
 provided in REGISTER requests [6].

8.1.2. Pushing an Initial Interface Component

 Generally, we anticipate that interface components will need to be
 created at various different points in a SIP session. Clearly, they
 will need to be pushed during session setup, or after the session is
 established. A user interface component is always associated with a
 specific dialog, however.

Rosenberg Standards Track [Page 20]

RFC 5629 App Interaction Framework October 2009

 An application MUST NOT attempt to push a user interface component to
 a user agent until it has determined that the user agent has the
 necessary capabilities and a dialog has been created. In the case of
 a UAC, this means that an application MUST NOT push a user interface
 component for an INVITE-initiated dialog until the application has
 seen a request confirming the receipt of a dialog-creating response.
 This could be an ACK for a 200 OK, or a PRACK for a provisional
 response [3]. For SUBSCRIBE-initiated dialogs, the application MUST
 NOT push a user interface component until the application has seen a
 200 OK to the NOTIFY request. For a user interface component on a
 UAS, the application MUST NOT push a user interface component for an
 INVITE-initiated dialog until it has seen a dialog-creating response
 from the UAS. For a SUBSCRIBE-initiated dialog, it MUST NOT push a
 user interface component until it has seen a NOTIFY request from the
 notifier.

 To create a presentation-capable UI component on the UA, the
 application sends a REFER request to the UA. This REFER MUST be sent
 to the GRUU [9] advertised by that UA in the Contact header field of
 the dialog-initiating request or response sent by that UA. Note that
 this REFER request creates a separate dialog between the application
 and the UA. The Refer-To header field of the REFER request MUST
 contain an HTTP URI that references the markup document to be
 fetched.

 Furthermore, it is essential for the REFER request to be correlated
 with the dialog to which the user interface component will be
 associated. This is necessary for authorization and for terminating
 the user interface components when the dialog terminates. To provide
 this context, the REFER request MUST contain a Target-Dialog header
 field identifying the dialog with which the user interface component
 is associated. As discussed in [10], this request will also contain
 a Require header field with the tdialog option tag.

 To create a presentation-free user interface component, the
 application sends a SUBSCRIBE request to the UA. The SUBSCRIBE MUST
 be sent to the GRUU advertised by the UA. This SUBSCRIBE request
 creates a separate dialog. The SUBSCRIBE request MUST use the KPML
 [8] event package. The body of the SUBSCRIBE request contains the
 markup document that defines the conditions under which the
 application wishes to be notified of user input.

 In both cases, the REFER or SUBSCRIBE request SHOULD include a
 display name in the From header field that identifies the name of the
 application. For example, a prepaid calling card might include a
 From header field that looks like:

Rosenberg Standards Track [Page 21]

RFC 5629 App Interaction Framework October 2009

 From: "Prepaid Calling Card" <sip:prepaid@example.com>

 Any of the SIP identity assertion mechanisms that have been defined,
 such as [11] and [13], are applicable to these requests as well.

8.1.3. Updating an Interface Component

 Once a user interface component has been created on a client, it can
 be updated. The means for updating it depends on the type of UI
 component.

 Presentation-capable UI components are updated using techniques
 already in place for those markups. In particular, user input will
 cause an HTTP POST operation to push the user input to the
 application. The result of the POST operation is a new markup that
 the UI is supposed to use. This allows the UI to be updated in
 response to user action. Some markups, such as HTML, provide the
 ability to force a refresh after a certain period of time, so that
 the UI can be updated without user input. Those mechanisms can be
 used here as well. However, there is no support for an asynchronous
 push of an updated UI component from the application to the user
 agent. A new REFER request to the same GRUU would create a new UI
 component rather than update any components already in place.

 For presentation-free UI, the story is different. The application
 MAY update the filter at any time by generating a SUBSCRIBE refresh
 with the new filter. The UA will immediately begin using this new
 filter.

8.1.4. Terminating an Interface Component

 User interface components have a well-defined lifetime. They are
 created when the component is first pushed to the client. User
 interface components are always associated with the SIP dialog on
 which they were pushed. As such, their lifetime is bound by the
 lifetime of the dialog. When the dialog ends, so does the interface
 component.

 However, there are some cases where the application would like to
 terminate the user interface component before its natural termination
 point. For presentation-capable user interfaces, this is not
 possible. For presentation-free user interfaces, the application MAY
 terminate the component by sending a SUBSCRIBE with Expires equal to
 zero. This terminates the subscription, which removes the UI
 component.

 A client can remove a UI component at any time. For presentation-
 capable UI, this is analogous to the user dismissing the web form

Rosenberg Standards Track [Page 22]

RFC 5629 App Interaction Framework October 2009

 window. There is no mechanism provided for reporting this kind of
 event to the application. The application MUST be prepared to time
 out and never receive input from a user. The duration of this
 timeout is application dependent. For presentation-free user
 interfaces, the UA can explicitly terminate the subscription. This
 will result in the generation of a NOTIFY with a Subscription-State
 header field equal to "terminated".

8.2. Client-Remote Interfaces

 As an alternative to, or in conjunction with client-local user
 interfaces, an application can make use of client-remote user
 interfaces. These user interfaces can execute co-resident with the
 application itself (in which case no standardized interfaces between
 the UI and the application need to be used), or they can run
 separately. This framework assumes that the user interface runs on a
 host that has a sufficient trust relationship with the application.
 As such, the means for instantiating the user interface is not
 considered here.

 The primary issue is to connect the user device to the remote user
 interface. Doing so requires the manipulation of media streams
 between the client and the user interface. Such manipulation can
 only be done by user agents. There are two types of user agent
 applications within this framework: originating/terminating
 applications, and intermediary applications.

8.2.1. Originating and Terminating Applications

 Originating and terminating applications are applications that are
 themselves the originator or the final recipient of a SIP invitation.
 They are "pure" user agent applications, not back-to-back user
 agents. The classic example of such an application is an interactive
 voice response (IVR) application, which is typically a terminating
 application. It is a terminating application because the user
 explicitly calls it; i.e., it is the actual called party. An example
 of an originating application is a wakeup call application, which
 calls a user at a specified time in order to wake them up.

 Because originating and terminating applications are a natural
 termination point of the dialog, manipulation of the media session by
 the application is trivial. Traditional SIP techniques for adding
 and removing media streams, modifying codecs, and changing the
 address of the recipient of the media streams can be applied.

Rosenberg Standards Track [Page 23]

RFC 5629 App Interaction Framework October 2009

8.2.2. Intermediary Applications

 Intermediary applications are, at the same time, more common than
 originating/terminating applications and more complex. Intermediary
 applications are applications that are neither the actual caller nor
 the called party. Rather, they represent a "third party" that wishes
 to interact with the user. The classic example is the ubiquitous
 prepaid calling card application.

 In order for the intermediary application to add a client-remote user
 interface, it needs to manipulate the media streams of the user agent
 to terminate on that user interface. This also introduces a
 fundamental feature interaction issue. Since the intermediary
 application is not an actual participant in the call, the user will
 need to interact with both the intermediary application and its peer
 in the dialog. Doing both at the same time is complicated and is
 discussed in more detail in Section 10.

9. User Agent Behavior

9.1. Advertising Capabilities

 In order to participate in applications that make use of stimulus
 interfaces, a user agent needs to advertise its interaction
 capabilities.

 If a user agent supports presentation-capable user interfaces, it
 MUST support the REFER method. It MUST include, in all dialog-
 initiating requests and responses, an Allow header field that
 includes the REFER method. The user agent MUST support the target
 dialog specification [10], and MUST include the "tdialog" option tag
 in the Supported header field of dialog-forming requests and
 responses. Furthermore, the UA MUST support the SIP user agent
 capabilities specification [6]. The UA MUST be capable of being
 REFERed to an HTTP URI. It MUST include, in the Contact header field
 of its dialog-initiating requests and responses, a "schemes" Contact
 header field parameter that includes the HTTP URI scheme. The UA
 MUST include, in all dialog-initiating requests and responses, an
 Accept header field listing all of those markups supported by the UA.
 It is RECOMMENDED that all user agents that support presentation-
 capable user interfaces support HTML.

 If a user agent supports presentation-free user interfaces, it MUST
 support the SUBSCRIBE [4] method. It MUST support the KPML [8] event
 package. It MUST include, in all dialog-initiating requests and
 responses, an Allow header field that includes the SUBSCRIBE method.
 It MUST include, in all dialog-initiating requests and responses, an
 Allow-Events header field that lists the KPML event package. The UA

Rosenberg Standards Track [Page 24]

RFC 5629 App Interaction Framework October 2009

 MUST include, in all dialog-initiating requests and responses, an
 Accept header field listing those event filters it supports. At a
 minimum, a UA MUST support the "application/kpml-request+xml" MIME
 type.

 For either presentation-free or presentation-capable user interfaces,
 the user agent MUST support the GRUU [9] specification. The Contact
 header field in all dialog-initiating requests and responses MUST
 contain a GRUU. The UA MUST include a Supported header field that
 contains the "gruu" option tag and the "tdialog" option tag.

 Because these headers are examined by proxies that may be executing
 applications, a UA that wishes to support client-local user
 interfaces should not encrypt them.

9.2. Receiving User Interface Components

 Once the UA has created a dialog (in either the early or confirmed
 states), it MUST be prepared to receive a SUBSCRIBE or REFER request
 against its GRUU. If the UA receives such a request prior to the
 establishment of a dialog, the UA MUST reject the request.

 A user agent SHOULD attempt to authenticate the sender of the
 request. The sender will generally be an application; therefore, the
 user agent is unlikely to ever have a shared secret with it, making
 digest authentication useless. However, authenticated identities can
 be obtained through other means, such as the Identity mechanism [11].

 A user agent MAY have pre-defined authorization policies that permit
 applications which have authenticated themselves with a particular
 identity to push user interface components. If such a set of
 policies is present, it is checked first. If the application is
 authorized, processing proceeds.

 If the application has authenticated itself but is not explicitly
 authorized or blocked, this specification RECOMMENDS that the
 application be automatically authorized if it can prove that it was
 either on the call path, or is trusted by one of the elements on the
 call path. An application proves this to the user agent by
 demonstrating that it knows the dialog identifiers. That occurs by
 including them in a Target-Dialog header field for REFER requests, or
 in the Event header field parameters of the KPML SUBSCRIBE request.

 Because the dialog identifiers serve as a tool for authorization, a
 user agent compliant to this framework SHOULD use dialog identifiers
 that are cryptographically random, with at least 128 bits of
 randomness. It is recommended that this randomness be split between
 the Call-ID and From header field tags in the case of a UAC.

Rosenberg Standards Track [Page 25]

RFC 5629 App Interaction Framework October 2009

 Furthermore, to ensure that only applications resident in or trusted
 by on-path elements can instantiate a user interface component, a
 user agent compliant to this specification SHOULD use the Session
 Initiation Protocol Secure (SIPS) URI scheme for all dialogs it
 initiates. This will guarantee secure links between all the elements
 on the signaling path.

 If the dialog was not established with a SIPS URI, or the user agent
 did not choose cryptographically random dialog identifiers, then the
 application MUST NOT automatically be authorized, even if it
 presented valid dialog identifiers. A user agent MAY apply any other
 policies in addition to (but not instead of) the ones specified here
 in order to authorize the creation of the user interface component.
 One such mechanism would be to prompt the user, informing them of the
 identity of the application and the dialog it is associated with. If
 an authorization policy requires user interaction, the user agent
 SHOULD respond to the SUBSCRIBE or REFER request with a 202. In the
 case of SUBSCRIBE, if authorization is not granted, the user agent
 SHOULD generate a NOTIFY to terminate the subscription. In the case
 of REFER, the user agent MUST NOT act upon the URI in the Refer-To
 header field until user authorization is obtained.

 If an application does not present a valid dialog identifier in its
 REFER or SUBSCRIBE request, the user agent MUST reject the request
 with a 403 response.

 If a REFER request to an HTTP URI is authorized, the UA executes the
 URI and fetches the content to be rendered to the user. This
 instantiates a presentation-capable user interface component. If a
 SUBSCRIBE was authorized, a presentation-free user interface
 component is instantiated.

9.3. Mapping User Input to User Interface Components

 Once the user interface components are instantiated, the user agent
 must direct user input to the appropriate component. In the case of
 presentation-capable user interfaces, this process is known as focus
 selection. It is done by means that are specific to the user
 interface on the device. In the case of a PC, for example, the
 window manager would allow the user to select the appropriate user
 interface component to which their input is directed.

 For presentation-free user interfaces, the situation is more
 complicated. In some cases, the device may support a mechanism that
 allows the user to select a "line", and thus the associated dialog.
 Any user input on the keypad while this line is selected are fed to
 the user interface components associated with that dialog.

Rosenberg Standards Track [Page 26]

RFC 5629 App Interaction Framework October 2009

 Otherwise, for client-local user interfaces, the user input is
 assumed to be associated with all user interface components. For
 client-remote user interfaces, the user device converts the user
 input to media, typically conveyed using RFC 4733, and sends this to
 the client-remote user interface. This user interface then needs to
 map user input from potentially many media streams into user
 interface events. The process for doing this is described in
 Section 7.3.

9.4. Receiving Updates to User Interface Components

 For presentation-capable user interfaces, updates to the user
 interface occur in ways specific to that user interface component.
 In the case of HTML, for example, the document can tell the client to
 fetch a new document periodically. However, this framework does not
 provide any additional machinery to asynchronously push a new user
 interface component to the client.

 For presentation-free user interfaces, an application can push an
 update to a component by sending a SUBSCRIBE refresh with a new
 filter. The user agent will process these according to the rules of
 the event package.

9.5. Terminating a User Interface Component

 Termination of a presentation-capable user interface component is a
 trivial procedure. The user agent merely dismisses the window (or
 its equivalent). The fact that the component is dismissed is not
 communicated to the application. As such, it is purely a local
 matter.

 In the case of a presentation-free user interface, the user might
 wish to cease interacting with the application. However, most
 presentation-free user interfaces will not have a way for the user to
 signal this through the device. If such a mechanism did exist, the
 UA SHOULD generate a NOTIFY request with a Subscription-State header
 field equal to "terminated" and a reason of "rejected". This tells
 the application that the component has been removed and that it
 should not attempt to re-subscribe.

10. Inter-Application Feature Interaction

 The inter-application feature interaction problem is inherent to
 stimulus signaling. Whenever there are multiple applications, there
 are multiple user interfaces. The system has to determine to which
 user interface any particular input is destined. That question is
 the essence of the inter-application feature interaction problem.

Rosenberg Standards Track [Page 27]

RFC 5629 App Interaction Framework October 2009

 Inter-application feature interaction is not an easy problem to
 resolve. For now, we consider separately the issues for client-local
 and client-remote user interface components.

10.1. Client-Local UI

 When the user interface itself resides locally on the client device,
 the feature interaction problem is actually much simpler. The end
 device knows explicitly about each application, and therefore can
 present the user with each one separately. When the user provides
 input, the client device can determine to which user interface the
 input is destined. The user interface to which input is destined is
 referred to as the "application in focus", and the means by which the
 focused application is selected is called "focus determination".

 Generally speaking, focus determination is purely a local operation.
 In the PC universe, focus determination is provided by window
 managers. Each application does not know about focus; it merely
 receives the user input that has been targeted to it when it’s in
 focus. This basic concept applies to SIP-based applications as well.

 Focus determination will frequently be trivial, depending on the user
 interface type. Consider a user that makes a call from a PC. The
 call passes through a prepaid calling card application and a call-
 recording application. Both of these wish to interact with the user.
 Both push an HTML-based user interface to the user. On the PC, each
 user interface would appear as a separate window. The user interacts
 with the call-recording application by selecting its window, and with
 the prepaid calling card application by selecting its window. Focus
 determination is literally provided by the PC window manager. It is
 clear to which application the user input is targeted.

 As another example, consider the same two applications, but on a
 "smart phone" that has a set of buttons, and next to each button,
 there is an LCD display that can provide the user with an option.
 This user interface can be represented using the Wireless Markup
 Language (WML), for example.

 The phone would allocate some number of buttons to each application.
 The prepaid calling card would get one button for its "hangup"
 command, and the recording application would get one for its "start/
 stop" command. The user can easily determine which application to
 interact with by pressing the appropriate button. Pressing a button
 determines focus and provides user input, both at the same time.

 Unfortunately, not all devices will have these advanced displays. A
 PSTN gateway, or a basic IP telephone, may only have a 12-key keypad.
 The user interfaces for these devices are provided through the Keypad

Rosenberg Standards Track [Page 28]

RFC 5629 App Interaction Framework October 2009

 Markup Language (KPML). Considering once again the feature
 interaction case above, the prepaid calling card application and the
 call-recording application would both pass a KPML document to the
 device. When the user presses a button on the keypad, to which
 document does the input apply? The device does not allow the user to
 select. A device where the user cannot provide focus is called a
 "focusless device". This is quite a hard problem to solve. This
 framework does not make any explicit normative recommendation, but it
 concludes that the best option is to send the input to both user
 interfaces unless the markup in one interface has indicated that it
 should be suppressed from others. This is a sensible choice by
 analogy -- it’s exactly what the existing circuit-switched telephone
 network will do. It is an explicit non-goal to provide a better
 mechanism for feature interaction resolution than the PSTN on devices
 that have the same user interface as they do on the PSTN. Devices
 with better displays, such as PCs or screen phones, can benefit from
 the capabilities of this framework, allowing the user to determine
 which application they are interacting with.

 Indeed, when a user provides input on a focusless device, the input
 must be passed to all client-local user interfaces AND all client-
 remote user interfaces, unless the markup tells the UI to suppress
 the media. In the case of KPML, key events are passed to remote user
 interfaces by encoding them as described in RFC 4733 [19]. Of
 course, since a client cannot determine whether or not a media stream
 terminates in a remote user interface, these key events are passed in
 all audio media streams unless the KPML request document is used to
 suppress them.

10.2. Client-Remote UI

 When the user interfaces run remotely, the determination of focus can
 be much, much harder. There are many architectures that can be
 deployed to handle the interaction. None are ideal. However, all
 are beyond the scope of this specification.

11. Intra Application Feature Interaction

 An application can instantiate a multiplicity of user interface
 components. For example, a single application can instantiate two
 separate HTML components and one WML component. Furthermore, an
 application can instantiate both client-local and client-remote user
 interfaces.

 The feature interaction issues between these components within the
 same application are less severe. If an application has multiple
 client user interface components, their interaction is resolved
 identically to the inter-application case -- through focus

Rosenberg Standards Track [Page 29]

RFC 5629 App Interaction Framework October 2009

 determination. However, the problems in focusless user devices (such
 as a keypad on a telephone) generally won’t exist, since the
 application can generate user interfaces that do not overlap in their
 usage of an input.

 The real issue is that the optimal user experience frequently
 requires some kind of coupling between the differing user interface
 components. This is a classic problem in multi-modal user
 interfaces, such as those described by Speech Application Language
 Tags (SALT). As an example, consider a user interface where a user
 can either press a labeled button to make a selection, or listen to a
 prompt, and speak the desired selection. Ideally, when the user
 presses the button, the prompt should cease immediately, since both
 of them were targeted at collecting the same information in parallel.
 Such interactions are best handled by markups that natively support
 such interactions, such as SALT, and thus require no explicit support
 from this framework.

12. Example Call Flow

 This section shows the operation of a call-recording application.
 This application allows a user to record the media in their call by
 clicking on a button in a web form. The application uses a
 presentation-capable user interface component that is pushed to the
 caller. The conventions of [17] are used to describe representation
 of long message lines.

Rosenberg Standards Track [Page 30]

RFC 5629 App Interaction Framework October 2009

 A Recording App B
 |(1) INVITE | |
 |----------------------->| |
 | |(2) INVITE |
 | |----------------------->|
 | |(3) 200 OK |
 | |<-----------------------|
 |(4) 200 OK | |
 |<-----------------------| |
 |(5) ACK | |
 |----------------------->| |
 | |(6) ACK |
 | |----------------------->|
 |(7) REFER | |
 |<-----------------------| |
 |(8) 200 OK | |
 |----------------------->| |
 |(9) NOTIFY | |
 |----------------------->| |
 |(10) 200 OK | |
 |<-----------------------| |
 |(11) HTTP GET | |
 |----------------------->| |
 |(12) 200 OK | |
 |<-----------------------| |
 |(13) NOTIFY | |
 |----------------------->| |
 |(14) 200 OK | |
 |<-----------------------| |
 |(15) HTTP POST | |
 |----------------------->| |
 |(16) 200 OK | |
 |<-----------------------| |

 Figure 6

 First, the caller, A, sends an INVITE to set up a call (message 1).
 Since the caller supports the framework and can handle presentation-
 capable user interface components, it includes the Supported header
 field indicating that the GRUU extension and the Target-Dialog header
 field are understood, the Allow header field indicating that REFER is
 understood, and the Contact header field that includes the "schemes"
 header field parameter.

Rosenberg Standards Track [Page 31]

RFC 5629 App Interaction Framework October 2009

 INVITE sip:B@example.com SIP/2.0
 Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9zz8
 From: Caller <sip:A@example.com>;tag=kkaz-
 To: Callee <sip:B@example.org>
 Call-ID: fa77as7dad8-sd98ajzz@host.example.com
 CSeq: 1 INVITE
 Max-Forwards: 70
 Supported: gruu, tdialog
 Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, REFER
 Accept: application/sdp, text/html
 <allOneLine>
 Contact: <sip:A@example.com;gr=urn:uuid:f81d4fae
 -7dec-11d0-a765-00a0c91e6bf6>;schemes="http,sip"
 </allOneLine>
 Content-Length: ...
 Content-Type: application/sdp

 --SDP not shown--

 The proxy acts as a recording server, and forwards the INVITE to the
 called party (message 2). It strips the Record-Route it would
 normally insert due to the presence of the GRUU in the INVITE:

 INVITE sip:B@pc.example.com SIP/2.0
 Via: SIP/2.0/TLS app.example.com;branch=z9hG4bK97sh
 Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9zz8
 From: Caller <sip:A@example.com>;tag=kkaz-
 To: Callee <sip:B@example.org>
 Call-ID: fa77as7dad8-sd98ajzz@host.example.com
 CSeq: 1 INVITE
 Max-Forwards: 70
 Supported: gruu, tdialog
 Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, REFER
 Accept: application/sdp, text/html
 <allOneLine>
 Contact: <sip:A@example.com;gr=urn:uuid:f81d4fae
 -7dec-11d0-a765-00a0c91e6bf6>;schemes="http,sip"
 </allOneLine>
 Content-Length: ...
 Content-Type: application/sdp

 --SDP not shown--

 B accepts the call with a 200 OK (message 3). It does not support
 the framework, so the various header fields are not present.

Rosenberg Standards Track [Page 32]

RFC 5629 App Interaction Framework October 2009

 SIP/2.0 200 OK
 Via: SIP/2.0/TLS app.example.com;branch=z9hG4bK97sh
 Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9zz8
 From: Caller <sip:A@example.com>;tag=kkaz-
 To: Callee <sip:B@example.com>;tag=7777
 Call-ID: fa77as7dad8-sd98ajzz@host.example.com
 CSeq: 1 INVITE
 Contact: <sip:B@pc.example.com>
 Content-Length: ...
 Content-Type: application/sdp

 --SDP not shown--

 This 200 OK is passed back to the caller (message 4):

 SIP/2.0 200 OK
 Record-Route: <sip:app.example.com;lr>
 Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9zz8
 From: Caller <sip:A@example.com>;tag=kkaz-
 To: Callee <sip:B@example.com>;tag=7777
 Call-ID: fa77as7dad8-sd98ajzz@host.example.com
 CSeq: 1 INVITE
 Contact: <sip:B@pc.example.com>
 Content-Length: ...
 Content-Type: application/sdp

 --SDP not shown--

 The caller generates an ACK (message 5).

 ACK sip:B@pc.example.com
 Route: <sip:app.example.com;lr>
 Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9zz9
 From: Caller <sip:A@example.com>;tag=kkaz-
 To: Callee <sip:B@example.com>;tag=7777
 Call-ID: fa77as7dad8-sd98ajzz@host.example.com
 CSeq: 1 ACK

 The ACK is forwarded to the called party (message 6).

 ACK sip:B@pc.example.com
 Via: SIP/2.0/TLS app.example.com;branch=z9hG4bKh7s
 Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9zz9
 From: Caller <sip:A@example.com>;tag=kkaz-
 To: Callee <sip:B@example.com>;tag=7777
 Call-ID: fa77as7dad8-sd98ajzz@host.example.com
 CSeq: 1 ACK

Rosenberg Standards Track [Page 33]

RFC 5629 App Interaction Framework October 2009

 Now, the application decides to push a user interface component to
 user A. So, it sends it a REFER request (message 7):

 <allOneLine>
 REFER sip:A@example.com;gr=urn:uuid:f81d4fae
 -7dec-11d0-a765-00a0c91e6bf6 SIP/2.0
 </allOneLine>
 Refer-To: https://app.example.com/script.pl
 Target-Dialog: fa77as7dad8-sd98ajzz@host.example.com
 ;remote-tag=7777;local-tag=kkaz-
 Require: tdialog
 Via: SIP/2.0/TLS app.example.com;branch=z9hG4bK9zh6
 Max-Forwards: 70
 From: Recorder Application <sip:app.example.com>;tag=jhgf
 <allOneLine>
 To: Caller <sip:A@example.com;gr=urn:uuid:f81d4fae
 -7dec-11d0-a765-00a0c91e6bf6>
 </allOneLine>
 Require: tdialog
 Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, REFER
 Call-ID: 66676776767@app.example.com
 CSeq: 1 REFER
 Event: refer
 Contact: <sip:app.example.com>

 Since the recording application is the same as the authoritative
 proxy for the domain, it resolves the Request URI to the registered
 contact of A, and then sent there. The REFER is answered by a 200 OK
 (message 8).

 SIP/2.0 200 OK
 Via: SIP/2.0/TLS app.example.com;branch=z9hG4bK9zh6
 From: Recorder Application <sip:app.example.com>;tag=jhgf
 To: Caller <sip:A@example.com>;tag=pqoew
 Call-ID: 66676776767@app.example.com
 Supported: gruu, tdialog
 Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, REFER
 <allOneLine>
 Contact: <sip:A@example.com;gr=urn:uuid:f81d4fae
 -7dec-11d0-a765-00a0c91e6bf6>;schemes="http,sip"
 </allOneLine>
 CSeq: 1 REFER

Rosenberg Standards Track [Page 34]

RFC 5629 App Interaction Framework October 2009

 User A sends a NOTIFY (message 9):

 NOTIFY sip:app.example.com SIP/2.0
 Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9320394238995
 To: Recorder Application <sip:app.example.com>;tag=jhgf
 From: Caller <sip:A@example.com>;tag=pqoew
 Call-ID: 66676776767@app.example.com
 CSeq: 1 NOTIFY
 Max-Forwards: 70
 <allOneLine>
 Contact: <sip:A@example.com;gr=urn:uuid:f81d4fae
 -7dec-11d0-a765-00a0c91e6bf6>;schemes="http,sip"
 </allOneLine>
 Event: refer;id=93809824
 Subscription-State: active;expires=3600
 Content-Type: message/sipfrag;version=2.0
 Content-Length: 20

 SIP/2.0 100 Trying

 And the recording server responds with a 200 OK (message 10).

 SIP/2.0 200 OK
 Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9320394238995
 To: Recorder Application <sip:app.example.com>;tag=jhgf
 From: Caller <sip:A@example.com>;tag=pqoew
 Call-ID: 66676776767@app.example.com
 CSeq: 1 NOTIFY

 The REFER request contained a Target-Dialog header field parameter
 with a valid dialog identifier. Furthermore, all of the signaling
 was over TLS and the dialog identifiers contain sufficient
 randomness. As such, the caller, A, automatically authorizes the
 application. It then acts on the Refer-To URI, fetching the script
 from app.example.com (message 11). The response, message 12,
 contains a web application that the user can click on to enable
 recording. Because the client executed the URL in the Refer-To, it
 generates another NOTIFY to the application, informing it of the
 successful response (message 13). This is answered with a 200 OK
 (message 14). When the user clicks on the link (message 15), the
 results are posted to the server, and an updated display is provided
 (message 16).

Rosenberg Standards Track [Page 35]

RFC 5629 App Interaction Framework October 2009

13. Security Considerations

 There are many security considerations associated with this
 framework. It allows applications in the network to instantiate user
 interface components on a client device. Such instantiations need to
 be from authenticated applications, and also need to be authorized to
 place a UI into the client. Indeed, the stronger requirement is
 authorization. It is not as important to know the name of the
 provider of the application, as it is to know that the provider is
 authorized to instantiate components.

 This specification defines specific authorization techniques and
 requirements. Automatic authorization is granted if the application
 can prove that it is on the call path, or is trusted by an element on
 the call path. As documented above, this can be accomplished by the
 use of cryptographically random dialog identifiers and the usage of
 SIPS for message confidentiality. It is RECOMMENDED that SIPS be
 implemented by user agents compliant to this specification. This
 does not represent a change from the requirements in RFC 3261.

14. Contributors

 This document was produced as a result of discussions amongst the
 application interaction design team. All members of this team
 contributed significantly to the ideas embodied in this document.
 The members of this team were:

 Eric Burger
 Cullen Jennings
 Robert Fairlie-Cuninghame

15. Acknowledgements

 The authors would like to thank Martin Dolly and Rohan Mahy for their
 input and comments. Thanks to Allison Mankin for her support of this
 work.

16. References

16.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

Rosenberg Standards Track [Page 36]

RFC 5629 App Interaction Framework October 2009

 [3] Rosenberg, J. and H. Schulzrinne, "Reliability of Provisional
 Responses in Session Initiation Protocol (SIP)", RFC 3262,
 June 2002.

 [4] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [5] McGlashan, S., Lucas, B., Porter, B., Rehor, K., Burnett, D.,
 Carter, J., Ferrans, J., and A. Hunt, "Voice Extensible Markup
 Language (VoiceXML) Version 2.0", W3C CR CR-voicexml20-
 20030220, February 2003.

 [6] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating
 User Agent Capabilities in the Session Initiation Protocol
 (SIP)", RFC 3840, August 2004.

 [7] Sparks, R., "The Session Initiation Protocol (SIP) Refer
 Method", RFC 3515, April 2003.

 [8] Burger, E. and M. Dolly, "A Session Initiation Protocol (SIP)
 Event Package for Key Press Stimulus (KPML)", RFC 4730,
 November 2006.

 [9] Rosenberg, J., "Obtaining and Using Globally Routable User
 Agent URIs (GRUUs) in the Session Initiation Protocol (SIP)",
 RFC 5627, October 2009.

 [10] Rosenberg, J., "Request Authorization through Dialog
 Identification in the Session Initiation Protocol (SIP)",
 RFC 4538, June 2006.

16.2. Informative References

 [11] Peterson, J. and C. Jennings, "Enhancements for Authenticated
 Identity Management in the Session Initiation Protocol (SIP)",
 RFC 4474, August 2006.

 [12] Day, M., Rosenberg, J., and H. Sugano, "A Model for Presence
 and Instant Messaging", RFC 2778, February 2000.

 [13] Jennings, C., Peterson, J., and M. Watson, "Private Extensions
 to the Session Initiation Protocol (SIP) for Asserted Identity
 within Trusted Networks", RFC 3325, November 2002.

 [14] Rosenberg, J., "A Framework for Conferencing with the Session
 Initiation Protocol (SIP)", RFC 4353, February 2006.

Rosenberg Standards Track [Page 37]

RFC 5629 App Interaction Framework October 2009

 [15] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller
 Preferences for the Session Initiation Protocol (SIP)",
 RFC 3841, August 2004.

 [16] Rosenberg, J., Schulzrinne, H., and R. Mahy, "An INVITE-
 Initiated Dialog Event Package for the Session Initiation
 Protocol (SIP)", RFC 4235, November 2005.

 [17] Sparks, R., Hawrylyshen, A., Johnston, A., Rosenberg, J., and
 H. Schulzrinne, "Session Initiation Protocol (SIP) Torture Test
 Messages", RFC 4475, May 2006.

 [18] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications", STD 64,
 RFC 3550, July 2003.

 [19] Schulzrinne, H. and T. Taylor, "RTP Payload for DTMF Digits,
 Telephony Tones, and Telephony Signals", RFC 4733, December
 2006.

 [20] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
 Session Description Protocol (SDP)", RFC 3264, June 2002.

 [21] Rosenberg, J., "A Session Initiation Protocol (SIP) Event
 Package for Registrations", RFC 3680, March 2004.

Author’s Address

 Jonathan Rosenberg
 Cisco Systems
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 EMail: jdrosen@cisco.com
 URI: http://www.jdrosen.net

Rosenberg Standards Track [Page 38]

