Net wor k Wor ki ng Group M Upadhyay

Request for Comments: 5653 Googl e
bsol etes: 2853 S. Mal kan
Cat egory: Standards Track Activldentity

August 2009

Ceneric Security Service APl Version 2: Java Bindi ngs Update

Abst r act

The Ceneric Security Services Application Program Interface (GSS-API)
of fers application programers uniform access to security services
atop a variety of underlying cryptographic nechani sns. This docunent
updates the Java bindings for the GSS-API that are specified in
"Generic Security Service APl Version 2 : Java Bindings" (RFC 2853).
Thi s docunent obsol etes RFC 2853 by maki ng specific and increnental
clarifications and corrections to it in response to identification of
transcription errors and inplenmentati on experience.

The GSS- APl is described at a | anguage-i ndependent conceptual |eve

in "Generic Security Service Application ProgramInterface Version 2,
Update 1" (RFC 2743). The GSS-APlI allows a caller application to
authenticate a principal identity, to delegate rights to a peer, and
to apply security services such as confidentiality and integrity on a
per - message basis. Exanples of security nechani sns defined for GSS-
APl are "The Sinple Public-Key GSS-API Mechani smi (RFC 2025) and "The
Kerberos Version 5 Generic Security Service Application Program
Interface (GSS-API) Mechanism Version 2" (RFC 4121).

Status of This Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice

Copyright (c) 2009 | ETF Trust and the persons identified as the
document authors. All rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Docunents in effect on the date of
publication of this docunent (http://trustee.ietf.org/license-info).
Pl ease revi ew these docunents carefully, as they describe your rights
and restrictions with respect to this docunent.

Upadhyay & Mal kani St andards Track [Page 1]

RFC 5653

Java GSS- APl Updat e August 2009

This docunent nay contain material from | ETF Docunents or |ETF
Contributions published or nmade publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in some of this
materi al may not have granted the I ETF Trust the right to all ow
nmodi fi cations of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |license fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
outside the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to format
it for publication as an RFC or to translate it into |anguages other
than Engli sh.

Tabl e of Contents

PP

Introducti ON 6
Conventions and Li CENSES 7
GSS- APl Qperational Paradigm 8
Additional Control s 9
4.1, Delegati On e 10
4.2. Mitual Authentication 11
4.3. Replay and Qut-of-Sequence Detection 11
4.4. Anonynous Authentication i, 12
4.5, Confidentiality 13
4.6. Inter-process Context Transfer 13
4.7. The Use of Inconplete Contexts 14
Calling Conventi Ons 15
5.1. Package Name 15
5.2. Provider Framework 15
5. 3. Integer TYPesS ... 16
5.4, Opaque Data TYPesS .. i 16
B D, StriNgS .t 16
5.6. Object ldentifiers 16
5.7. Object ldentifier Sets i, 17
5.8. Credential s 17
5.0, CoNt Xt S . 19
5.10. Authentication Tokens 19
5.11. Inter-Process TOKENS e 20
5.12. Error RepoOrting 20

5.12.1. GSS Status Codes 21

5.12.2. Mechani sm Specific Status Codes 23

5.12.3. Supplenentary Status Codes 23
B 13, NAMBS ..t 24
5.14. Channel Bindings i e 26
5.15. Stream Qbj €CLS .. ot 27
5.16. Optional Parameters 28
Introduction to GSS-API Cl asses and Interfaces 28
6. 1. GSSMENager C assSt 28
6.2. GSSNane Interface 29

Upadhyay & Mal kani St andards Track [Page 2]

RFC 5653 Java GSS- APl Updat e August 2009
6.3. GSSCredential Interface i, 30
6.4. GSSContext Interface 30
6.5. MessageProp C asst 31
6.6. GSSEXCeption € ass 32
B6.7. Od G asSS ..t 32
6.8. ChannelBinding €l ass 32

7. Detailed GSS-API Class Description 33
7.1. public abstract class GSSManagero, 33
7.1.1. Exanple Code 34
7.1.2. getlnstance 34
7.1.3. getMechs ... 35
7.1.4. getNanesForMech e 35
7.1.5. getMechsForName 35
7.1.6. createName 35
7.1.7. createName 36
7.1.8. createName e 36
7.1.9. createName e 37
7.1.10. createCredential 38
7.1.11. createCredential 38
7.1.12. createCredential e 39
7.1.13. createContext 39
7.1.14. createContext 40
7.1.15. createContext 40
7.1.16. addProvider AtFront 41
7.1.17. Exanple Code 41
7.1.18. addProvider AtENd0 42
7.1.19. Exanple Code 43

7.2. public interface GSSNanme 44
7.2.1. Exanmple Code 44
7.2.2. Static Constants 45
7.2.3. equal s ... 46
7.2.4. equal s ... 46
7.2.5. canonicalize 46

7. 2.6, eXPOrt e 47
T.2.7. LOSLIiNg ..o 47
7.2.8. getStringNameTypet 47
7.2.9. I SANONYNMDUS . .ttt e e e e 47
7.2.00. 1SMN ... e 47

7.3. public interface GSSCredential inplements Cloneable 47
7.3.1. Exanmple Code 49
7.3.2. Static Constants 49
7.3. 3. di SPOSe .. i 50
7.3.4., getName e 50
7.3.5. getName 50
7.3.6. getRemaminingLifetime 50
7.3.7. getRemaininglnitLifetime 51
7.3.8. getRemai ningAcceptLifetime 51
7.3.9. getlUsage 51
Upadhyay & Mal kani St andards Track [Page 3]

RFC 5653
10.
11.
2.
3.
7.4. public

CoNoO~WNE TR B

NN NN N NN NN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNND NSNS
BAAR AR AR AR A AR A AR AR R AR R AR A AR A AR AR RARRARRARTWOWW
N
o

Upadhyay & Mal kani

Java GSS- APl Updat e August 2009

getlUsage ... 51
get MeCchs .. 52
add ... 52
equal s ... 53
interface GSSContext 53
Exanple Code 54
Static Constants 56
initSecContext 56
Exanple Code 57
initSecContext 58
Exanple Code 58
accept SecCont ext 59
Exanple Code i 60
accept SecContext 61
Exanple Code 61
isEstablished 62
di SPOSE ..o 62
getWapSizeLimt 63
1T 1 63
1L 1 64
UNWE AP« ot e et et et e e e e e 65
UNWE AP« e e et e e e e e e e e e e e e 66
getM C .. 67
get M C L 68
verifyM C .. 68
verifyM C oo 69
EXPOr L 70
request Mutual Auth 71
requestReplayDet i 71
request SequenceDet 71
requestCredDeleg i 71
request Anonymity 72
request Conf 72
requestinteg 72
requestLifetime 73
setChannel Binding 73
getCredDel egState 73
getMutual AuthState 73
getReplayDet State 74
get SequenceDet State 74
get AnonymityState 74
isTransferable 74
isProtReady e 74
getConfState 75
getlntegState 75
getLifetinme 75
get SrcName 75
getTargName 75
St andards Track [Page 4]

RFC 5653 Java GSS- APl Updat e August 2009

10.
11.
12.

T.4.44, getMech 76
7.4.45. getDelegCred 76
7.4.46. islnitiator 76

7.5. public class MessageProp i 76
7.5. 1. CoNStrUCLOrS ... e e 77

7.5, 2. et Q0P 77
7.5.3. getPrivacy 77
7.5.4. getMnorStatus 77
7.5.5. getMnorString 77
7.5.6. SetQOP .. 78
7.5.7. SELPrivacy 78
7.5.8. ishuplicateToken 78
7.5.9. isAdToken 78
7.5.10. isUnseqToKen 78
7.5.11. isGpToken 78
7.5.12. setSupplenentaryStates 79

7.6. public class ChannelBinding 79
7.6.1. ConsStrUCLtOrS e 80
7.6.2. getlnitiatorAddress, 80
7.6.3. getAcceptorAddress ... 80
7.6.4. getApplicationData 81
7.6.5. equal s ... 81

7.7. public class Od 81
7.7.1. CoNStrUCLOrS e 81

7. 7.2, LOSLIiNg ..o 82
7.7.3. equal s ... 82
7.7.4. getDER 82
7.7.5. containedln 83

7.8. public class GSSException extends Exception 83
7.8.1. Static Constants 83
7.8.2. CONSELIUCLOrS ... it e e e 86
7.8.3. getMa) OF .. 86
7.8.4. getM NOr ... 86
7.8.5. getMajorString 87
7.8.6. getMNOrString 87
7.8.7. SetM NOr ... 87
7.8.8. tOSLIinNg ... e 87
7.8.9. getMeSSage 87
Sanple Applications 88
8.1. Sinple GSS Context Initiator 88
8.2. Sinple GSS Context ACCEpPtoOr, 92
Security Considerati ONS e 96
ACKNOW edgmENt S 96
Changes since RFC 2853 i 97
Ref erences 98
12.1. Normative References i, 98
12.2. Informative References i, 98

Upadhyay & Mal kani St andards Track [Page 5]

RFC 5653 Java GSS- APl Updat e August 2009

1

I ntroduction

Thi s docunent specifies Java | anguage bi ndings for the Generic
Security Services Application Programming Interface version 2 (GSS-
APl). GSS-APlI version 2 is described in a | anguage-i ndependent
format in RFC 2743 [GSSAPI v2- UPDATE]. The GSS-API allows a caller
application to authenticate a principal identity, to delegate rights
to a peer, and to apply security services such as confidentiality and
integrity on a per-nessage basis.

This docunment and its predecessor, RFC 2853 [RFC2853], |everage the
wor k done by the working group (WG in the area of RFC 2743

[GSSAPI v2- UPDATE] and the C-bindi ngs of RFC 2744 [GSSAPI - Cbhi nd] .
Wienever appropriate, text has been used fromthe C bindings docunent
(RFC 2744) to explain generic concepts and provide direction to the

i mpl enent ors.

The design goals of this APl have been to satisfy all the
functionality defined in RFC 2743 [GSSAPI v2- UPDATE] and to provide
these services in an object-oriented nethod. The specification also
ainms to satisfy the needs of both types of Java application

devel opers, those who would |ike access to a "systemw de" GSS-API

i npl ementation, as well as those who would want to provide their own
"custont inplenentation.

A systemw de inplenentation is one that is available to all
applications in the formof a library package. It may be the
standard package in the Java runtinme environment (JRE) being used or
it my be additionally installed and accessible to any application
via the CLASSPATH.

A custominpl enentati on of the GSS-API, on the other hand, is one
that would, in nost cases, be bundled with the application during
distribution. It is expected that such an inplenentation would be
meant to provide for sone particular need of the application, such as
support for sone specific nechani sm

The design of this APl also ains to provide a flexible franmework to
add and manage GSS- APl nechani sms. GSS- APl | everages the Java

Crypt ography Architecture (JCA) provider nodel to support the
plugability of nechanisns. Mechanisns can be added on a systemw de
basis, where all users of the framework will have them avail abl e.
The specification also allows for the addition of nechanisns per-

i nstance of the GSS-API.

Lastly, this specification presents an APl that will naturally fit
within the operation environnment of the Java platform Readers are
assuned to be famliar with both the GSS-API and the Java platform

Upadhyay & Mal kani St andards Track [Page 6]

RFC 5653 Java GSS- APl Updat e August 2009

2.

Conventi ons and Li censes

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

The following license applies to all code segnents included in this
specification. |If code is extracted fromthis specification, please
include the following text in the code:

Copyright (c) 2009 | ETF Trust and the persons identified as
authors of the code. Al rights reserved.

Redi stribution and use in source and binary forns, with or wthout
nmodi fication, are permtted provided that the followi ng conditions
are net:

- Redistributions of source code nust retain the above copyri ght
notice, this list of conditions and the follow ng disclainer.

- Redistributions in binary form nust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in
t he docunentation and/or other materials provided with the
di stribution.

- Neither the name of Internet Society, |ETF or | ETF Trust, nor the
nanes of specific contributors, may be used to endorse or pronote
products derived fromthis software wi thout specific prior
written perm ssion

THI S SOFTWARE | S PROVI DED BY THE COPYRI GHT HCOLDERS AND

CONTRI BUTORS " AS | S AND ANY EXPRESS OR | MPLI ED WARRANTI ES,

I NCLUDI NG, BUT NOT LIMTED TGO, THE | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE ARE

DI SCLAI MED. I N NO EVENT SHALL THE COPYRI GHT OMNER OR CONTRI BUTORS
BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL,
EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT NOT LIM TED
TO, PROCUREMENT OF SUBSTI TUTE GOCDS COR SERVI CES; LOSS OF USE,
DATA, OR PRCFITS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON
ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT, STRICT LI ABILITY
OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY
QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE
POSSI Bl LI TY OF SUCH DAMAGE

This code is part of RFC 5653; see the RFC itself for full |ega
noti ces.

Upadhyay & Mal kani St andards Track [Page 7]

RFC 5653 Java GSS- APl Updat e August 2009

3.

GSS- APl Qper ati onal Paradi gm

"CGeneric Security Service Application Programm ng Interface, Version
2" [GSSAPI v2- UPDATE] defines a generic security APl to calling
applications. It allows a comunicating application to authenticate
the user associated with another application, to delegate rights to
anot her application, and to apply security services such as
confidentiality and integrity on a per-nessage basis.

There are four stages to using GSS-API

1) The application acquires a set of credentials with which it may
prove its identity to other processes. The application’s
credentials vouch for its global identity, which may or nmay not be
related to any |ocal usernane under which it may be running.

2) A pair of communicating applications establish a joint security
context using their credentials. The security context
encapsul ates shared state infornmation, which is required in order
that per-nessage security services nay be provided. Exanples of
state information that m ght be shared between applications as
part of a security context are cryptographi c keys and nessage
sequence nunbers. As part of the establishnent of a security
context, the context initiator is authenticated to the responder
and nay require that the responder is authenticated back to the
initiator. The initiator nmay optionally give the responder the
right to initiate further security contexts, acting as an agent or
del egate of the initiator. This transfer of rights is terned
"del egation”, and is achieved by creating a set of credentials,
simlar to those used by the initiating application, but which nmay
be used by the responder

A GSSCont ext object is used to establish and naintain the shared

i nformati on that makes up the security context. Certain
GSSCont ext methods will generate a token, which applications treat
as cryptographically protected, opaque data. The caller of such a
GSSCont ext nmethod is responsible for transferring the token to the
peer application, encapsulated if necessary in an application-to-
application protocol. On receipt of such a token, the peer
application should pass it to a correspondi ng GSSCont ext met hod
which will decode the token and extract the information, updating
the security context state infornmation accordingly.

Upadhyay & Mal kani St andards Track [Page 8]

RFC 5653 Java GSS- APl Updat e August 2009

4,

3) Per-nmessage services are invoked on a GSSContext object to apply
ei ther:

integrity and data origin authentication, or
confidentiality, integrity and data origin authentication

to application data, which are treated by GSS-APlI as arbitrary
octet-strings. An application transnmtting a nessage that it

wi shes to protect will call the appropriate GSSContext nethod
(getM C or wap) to apply protection, and send the resulting token
to the receiving application. The receiver will pass the received

token (and, in the case of data protected by getMC, the
acconpanyi ng nessage-data) to the correspondi ng decodi ng net hod of
t he GSSContext interface (verifyMC or unwap) to renove the
protection and validate the data.

4) At the conpletion of a communications session (which nmay extend
across several transport connections), each application uses a
GSSCont ext nmethod to invalidate the security context and rel ease
any system or cryptographic resources held. Miltiple contexts may
al so be used (either successively or simultaneously) within a
si ngl e conmuni cati ons associ ation, at the discretion of the
applications.

Addi ti onal Controls

This section discusses the optional services that a context initiator
may request of the GSS-API before the context establishment. Each of
these services is requested by calling the appropriate nutator nethod
in the GSSCont ext object before the first call to init is perforned.
Only the context initiator can request context flags.

The optional services defined are:

Del egation: The (usually tenporary) transfer of rights from
initiator to acceptor, enabling the acceptor to authenticate
itself as an agent of the initiator

Mut ual Aut hentication: In addition to the initiator authenticating
its identity to the context acceptor, the context acceptor should
al so authenticate itself to the initiator

Replay Detection: In addition to providing nessage integrity
servi ces, GSSContext per-nessage operations of getM C and w ap
shoul d i ncl ude nmessage nunbering information to enable verifyMC
and unwap to detect if a nmessage has been duplicated.

Upadhyay & Mal kani St andards Track [Page 9]

RFC 5653 Java GSS- APl Updat e August 2009

Qut - of - Sequence Detection: In addition to providi ng nessage
integrity services, GSSContext per-nessage operations (getM C and
wrap) should include nessage sequencing information to enable
verifyM C and unwap to detect if a nessage has been received out
of sequence.

Anonynmous Aut henti cation: The establishment of the security
context should not reveal the initiator’s identity to the context
acceptor.

Some mechani snms may not support all optional services, and sone
mechani snms nmay only support sonme services in conjunction with others.
The GSSContext interface offers query nethods to allow the
verification by the calling application of which services will be
avail abl e fromthe context when the establishnent phase is conplete.

In general, if the security mechanismis capable of providing a
requested service, it should do so even if additional services nust
be enabled in order to provide the requested service. |f the

mechani smis incapable of providing a requested service, it should
proceed wi thout the service |eaving the application to abort the
context establishnent process if it considers the requested service
to be nmandatory.

Sonme nechani sns may specify that support for sone services is
optional, and that inplenentors of the nechani smneed not provide it.
This is nost commonly true of the confidentiality service, often
because of legal restrictions on the use of data-encryption, but may
apply to any of the services. Such mechanisns are required to send
at |l east one token fromacceptor to initiator during context
establ i shment when the initiator indicates a desire to use such a
service, so that the initiating GSS-APlI can correctly indicate

whet her the service is supported by the acceptor’s GSS-API.

4.1. Del egation

The GSS-API allows del egation to be controlled by the initiating
application via the request CredDel eg nethod before the first call to
init has been issued. Sone nechani sns do not support del egation, and
for such nechanisns, attenpts by an application to enable del egation
are ignored.

The acceptor of a security context, for which the initiator enabled
del egation, can check if del egation was enabl ed by using the

get CredDel egSt at e nmet hod of the GSSContext interface. |n cases when
it is enabled, the del egated credential object can be obtai ned by
calling the getDel egCred nethod. The obtai ned GSSCredential object
may then be used to initiate subsequent GSS-API security contexts as
an agent or delegate of the initiator. |If the original initiator’'s

Upadhyay & Mal kani St andards Track [Page 10]

RFC 5653 Java GSS- APl Updat e August 2009

identity is "A" and the delegate’'s identity is "B", then, depending
on the underlying nmechanism the identity enbodi ed by the del egated
credential may be either "A" or "B acting for A"

For many mechani sns that support del egation, a sinple bool ean does
not provide enough control. Exanples of additional aspects of

del egation control that a nechani smnight provide to an application
are duration of delegation, network addresses from which del egation
is valid, and constraints on the tasks that nmay be perforned by a

del egate. Such controls are presently outside the scope of the GSS-
APl . GSS- APl inplenentations supporting mechani sns of fering

addi tional controls should provide extension routines that all ow
these controls to be exercised (perhaps by nodifying the initiator’s
GSS- APl credential object prior toits use in establishing a
context). However, the sinple delegation control provided by GSS-API
shoul d al ways be able to override other nechani smspecific del egation
controls. If the application instructs the GSSContext object that

del egation is not desired, then the inplenentation nust not pernit

del egation to occur. This is an exception to the general rule that a
mechani sm nay enabl e services even if they are not requested --

del egation may only be provided at the explicit request of the
appl i cation.

4.2. Mitual Authentication

Usual |y, a context acceptor will require that a context initiator
authenticate itself so that the acceptor may make an access-contro
decision prior to performng a service for the initiator. In sone
cases, the initiator may al so request that the acceptor authenticate
itself. GSS-APlI allows the initiating application to request this
mut ual aut hentication service by calling the request Mutual Auth net hod
of the GSSContext interface with a "true" paraneter before nmaking the
first call toinit. The initiating application is informed as to
whet her or not the context acceptor has authenticated itself. Note
that some nmechani sms may not support nutual authentication, and other
mechani sns nmay al ways perform nutual authentication, whether or not
the initiating application requests it. |n particular, mnmutua

aut hentication may be required by some nmechanisns in order to support
replay or out-of-sequence nmessage detection, and for such mechani sns,
a request for either of these services will automatically enable

mut ual aut henti cati on.

4.3. Replay and Qut-of - Sequence Detection
The GSS- APl may provide detection of ms-ordered nessages once a

security context has been established. Protection nmay be applied to
messages by either application, by calling either getMC or wap

Upadhyay & Mal kani St andards Track [Page 11]

RFC 5653 Java GSS- APl Updat e August 2009

met hods of the GSSContext interface, and verified by the peer
application by calling verifyMC or unwap for the peer’s GSSCont ext
obj ect.

The get M C net hod cal cul ates a cryptographi ¢ checksum of an
application nessage, and returns that checksumin a token. The
application should pass both the token and the nessage to the peer
application, which presents themto the verifyM C nethod of the
peer’s GSSCont ext object.

The wrap nethod cal cul ates a cryptographi c checksum of an application
message, and pl aces both the checksum and the nessage inside a single
token. The application should pass the token to the peer

application, which presents it to the unwap nmethod of the peer’s
GSSCont ext object to extract the nessage and verify the checksum

Either pair of routines may be capabl e of detecting out-of-sequence
nmessage delivery or the duplication of nessages. Details of such

m s-ordered nessages are indicated through suppl enentary query

met hods of the MessageProp object that is filled in by each of these
routines.

A mechani smneed not maintain a list of all tokens that have been
processed in order to support these status codes. A typica
mechani sm ni ght retain informati on about only the nost recent "N'

t okens processed, allowing it to distinguish duplicates and m ssing
tokens within the nost recent "N' nessages; the receipt of a token
ol der than the nost recent "N' would result in the isd dToken nethod
of the instance of MessageProp to return "true"

4.4. Anonynous Aut hentication

In certain situations, an application may wish to initiate the

aut henti cation process to authenticate a peer, without revealing its
own identity. As an exanple, consider an application providing
access to a database containing nedical information and offering
unrestricted access to the service. A client of such a service mght
wi sh to authenticate the service (in order to establish trust in any
information retrieved fromit), but might not wish the service to be
able to obtain the client’s identity (perhaps due to privacy concerns
about the specific inquiries, or perhaps sinply to avoid being placed
on mailing-lists).

In normal use of the GSS-API, the initiator's identity is nade

avail able to the acceptor as a result of the context establishnent
process. However, context initiators may request that their identity
not be revealed to the context acceptor. Many nechani sns do not
support anonynous aut hentication, and for such nmechani sns, the

Upadhyay & Mal kani St andards Track [Page 12]

RFC 5653 Java GSS- APl Updat e August 2009

request will not be honored. An authentication token will still be
generated, but the application is always inforned if a requested
service is unavail able, and has the option to abort context
establishnent if anonymity is valued above the other security
services that would require a context to be established.

In addition to informing the application that a context is

est abl i shed anonynously (via the isAnonynous nethod of the GSSCont ext
class), the getSrcNane nmet hod of the acceptor’s GSSCont ext object
will, for such contexts, return a reserved internal-form nane,
defined by the inplenentation

The toString nmethod for a GSSNane object representing an anonynous
entity will return a printable name. The returned value will be
syntactically distinguishable fromany valid principal name supported
by the inplenentation. The associated nane-type object identifier
will be an oid representing the value of NT_ANONYMOUS. This nane-
type oid will be defined as a public, static G d object of the
GSSNane class. The printable form of an anonynous nane shoul d be
chosen such that it inplies anonymity, since this name may appear in,
for exanple, audit logs. For exanple, the string "<anonymous>" ni ght
be a good choice, if no valid printable names supported by the

i npl ementation can begin with "<" and end with ">"

When using the equal nethod of the GSSNane interface, and one of the
operands is a GSSNane i nstance representing an anonynous entity, the
met hod nust return "fal se"

4.5. Confidentiality

I f a GSSContext supports the confidentiality service, wap nethod nay
be used to encrypt application nessages. Messages are selectively
encrypted, under the control of the setPrivacy nmethod of the
MessageProp object used in the wap method.

4.6. Inter-process Context Transfer

GSS- APl v2 provides functionality that allows a security context to be
transferred between processes on a single machine. These are

i mpl ement ed using the export method of GSSContext and a byte array
constructor of the same class. The npbst conmon use for such a
feature is a client-server design where the server is inplenented as
a single process that accepts incomng security contexts, which then
| aunches child processes to deal with the data on these contexts. |In
such a design, the child processes nust have access to the security
context object created within the parent so that they can use per-
message protection services and delete the security context when the
communi cati on session ends.

Upadhyay & Mal kani St andards Track [Page 13]

RFC 5653 Java GSS- APl Updat e August 2009

Since the security context data structure is expected to contain
sequencing information, it is inpractical in general to share a

cont ext between processes. Thus, the GSSContext interface provides
an export method that the process, which currently owns the context,
can call to declare that it has no intention to use the context
subsequently, and to create an inter-process token contai ning

i nformati on needed by the adopting process to successfully recreate
the context. After successful conpletion of export, the origina
security context is nmade inaccessible to the calling process by GSS-
APl , and any further usage of this object will result in failures.
The originating process transfers the inter-process token to the
adopti ng process, which creates a new GSSCont ext object using the
byte array constructor. The properties of the context are equival ent
to that of the original context.

The inter-process token nay contain sensitive data fromthe origina
security context (including cryptographic keys). Applications using
inter-process tokens to transfer security contexts nust take
appropriate steps to protect these tokens in transit.

| mpl enent ati ons are not required to support the inter-process
transfer of security contexts. Calling the isTransferable nethod of
the GSSContext interface will indicate if the context object is
transferable.

4.7. The Use of Inconplete Contexts

Some mechani snms rmay al |l ow t he per-nessage services to be used before
the context establishnent process is conplete. For exanple, a
mechani sm nay include sufficient information in its initial context-
| evel tokens for the context acceptor to i medi ately decode nessages
protected with wap or getMC. For such a nmechanism the initiating
application need not wait until subsequent context-|evel tokens have
been sent and received before invoking the per-nessage protection
services

An application can invoke the isProt Ready nethod of the GSSCont ext
class to determine if the per-nessage services are available in
advance of conplete context establishment. Applications wishing to
use per-message protection services on partially established contexts
shoul d query this method before attenpting to i nvoke wap or getM C

Upadhyay & Mal kani St andards Track [Page 14]

RFC 5653 Java GSS- APl Updat e August 2009

5.

5.

5.

Cal l'i ng Conventi ons

Java provides the inplenmentors with not just a syntax for the

| anguage, but al so an operational environnent. For exanple, nmenory
is automatically managed and does not require application
intervention. These | anguage features have allowed for a sinpler API
and have led to the elimnation of certain GSS-API functions.

Moreover, the JCA defines a provider nodel that allows for

i mpl enent ati on-i ndependent access to security services. Using this
nodel , applications can seam essly switch between different

i npl enent ati ons and dynanically add new services. The GSS- AP
specification | everages these concepts by the usage of providers for
t he mechani sm i npl enent ati ons.

1. Package Nane

The classes and interfaces defined in this docunent reside in the
package called "org.ietf.jgss". Applications that wi sh to nake use
of this APl should inport this package nane as shown in section 8.

2. Pr ovi der Franewor k

The Java security APlI's use a provider architecture that all ows
applications to be inplenentation i ndependent and security API

i mpl enentations to be nodul ar and extensible. The
java.security.Provider class is an abstract class that a vendor
extends. This class maps various properties that represent different
security services that are available to the nanes of the actua

vendor cl asses that inplenment those services. Wen requesting a
service, an application sinply specifies the desired provider and the
APl del egates the request to service classes available fromthat

provi der.

Usi ng the Java security provider nodel insulates applications from
i npl enentation details of the services they wish to use
Applications can switch between providers easily and new providers
can be added as needed, even at runtine.

The GSS-API may use providers to find conponents for specific
underlying security nechanisns. For instance, a particul ar provider
m ght contain conponents that will allow the GSS-API to support the
Ker beros v5 nechani sm [RFC4121] and anot her mi ght contain conponents
to support the Sinple Public-Key GSS-API Mechani sm (SPKM [RFC2025].
By del egating nmechani smspecific functionality to the conponents
obt ai ned from providers, the GSS-API can be extended to support an
arbitrary list of mechani sm

Upadhyay & Mal kani St andards Track [Page 15]

RFC 5653 Java GSS- APl Updat e August 2009

How t he GSS- APl |ocates and queries these providers is beyond the
scope of this docunent and is being deferred to a Service Provider
Interface (SPl) specification. The availability of such an SP
specification is not mandatory for the adoption of this AP
specification nor is it mandatory to use providers in the

i npl enentation of a GSS-API framework. However, by using the

provi der franmework together with an SPI specification, one can create
an extensible and inpl enentation-i ndependent GSS- APl framewor k.

5.3. Integer Types

Al'l nuneric values are declared as "int" primtive Java type. The
Java specification guarantees that this will be a 32-bit tw's
conpl enent si gned nunber.

Throughout this API, the "bool ean" primtive Java type is used
wher ever a bool ean value is required or returned.

5.4. (Opaque Data Types

Java byte arrays are used to represent opaque data types that are
consurmed and produced by the GSS-API in the formof tokens. Java
arrays contain a length field that enables the users to easily
deternmne their size. The |anguage has autonatic garbage collection
that alleviates the need by devel opers to rel ease nenory and
sinplifies buffer ownership issues.

5.5. Strings

The String object will be used to represent all textual data. The
Java String object transparently treats all characters as two-byte
Uni code characters, which allows support for many locals. Al
routines returning or accepting textual data will use the String
obj ect.

5.6. (Object ldentifiers

An G d object will be used to represent Universal Object ldentifiers
(AGds). Qds are SO defined, hierarchically globally interpretable
identifiers used within the GSS-API framework to identify security
mechani sms and nane formats. The O d object can be created froma
string representation of its dot notation (e.g., "1.3.6.1.5.6.2") as
well as fromits ASN. 1 DER encoding. Methods are al so provided to
test equality and provide the DER representation for the object.

Upadhyay & Mal kani St andards Track [Page 16]

RFC 5653 Java GSS- APl Updat e August 2009

An inmportant feature of the Od class is that its instances are
immutable -- i.e., there are no nethods defined that allow one to
change the contents of an Gd. This property allows one to treat
these objects as "statics" w thout the need to perform copies.

Certain routines allow the usage of a default oid. A "null" val ue
can be used in those cases.

5.7. (Object ldentifier Sets

The Java bindi ngs represent object identifier sets as arrays of Gd
objects. Al Java arrays contain a length field, which allows for
easy mani pul ati on and reference.

In order to support the full functionality of RFC 2743 [GSSAPI v2-
UPDATE], the G d class includes a nethod that checks for existence of
an O d object within a specified array. This is equivalent in
functionality to gss test _oid_set nenber. The use of Java arrays and
Java’'s autonatic garbage collection has elimnated the need for the
followi ng routines: gss create enpty oid _set, gss rel ease oid_set,
and gss_add_oid_set_nenber. Java GSS-APlI inplenmentations will not
contain them Java's automatic garbage collection and the inmmutable
property of the O d object elimnates the menory nanagenent issues of
the C counterpart.

Whenever a default value for an Object Identifier Set is required, a
"nul " value can be used. Please consult the detailed nethod
description for details.

5.8. Credentials

GSS- APl credentials are represented by the GSSCredential interface.
The interface contains several constructs to allow for the creation
of nmost common credential objects for the initiator and the acceptor.
Conmpari sons are perforned using the interface’s "equal s" nmethod. The
foll owi ng general description of GSS-API credentials is included from
the C-bindings specification

GSS- APl credentials can contain mechani smspecific principa

aut hentication data for multiple nmechanisms. A GSS-API credenti al
is conposed of a set of credential-elenents, each of which is
applicable to a single nmechanism A credential may contain at
nost one credential -el enent for each supported nmechanism A
credential -elenent identifies the data needed by a single

nmechani smto authenticate a single principal, and conceptual ly
contains two credential -references that describe the actua
mechani sm specific authentication data, one to be used by GSS-API
for initiating contexts, and one to be used for accepting

Upadhyay & Mal kani St andards Track [Page 17]

RFC 5653 Java GSS- APl Updat e August 2009

contexts. For mechani snms that do not distinguish between acceptor
and initiator credentials, both references would point to the sane
under | yi ng nechani smspecific authentication data.

Credential s describe a set of nechani smspecific principals, and give
their holder the ability to act as any of those principals. Al
principal identities asserted by a single GSS-API credential should
belong to the sane entity, although enforcenent of this property is
an i nmplementation-specific matter. A single GSSCredential object
represents all the credential elenents that have been acquired.

The creation of an GSSCont ext object allows the value of "null" to be
specified as the GSSCredential input paranmeter. This will indicate a
desire by the application to act as a default principal. Wile

i ndi vi dual GSS- APl inplenentations are free to deternine such default
behavi or as appropriate to the nechanism the follow ng default
behavi or by these routines is recommended for portability:

For the initiator side of the context:

1) If there is only a single principal capable of initiating security
contexts for the chosen mechanismthat the application is
aut horized to act on behalf of, then that principal shall be used;
ot her wi se,

2) If the platform maintains a concept of a default network-identity
for the chosen nmechanism and if the application is authorized to
act on behalf of that identity for the purpose of initiating
security contexts, then the principal corresponding to that
identity shall be used; otherw se,

3) If the platform maintains a concept of a default |ocal identity,
and provides a neans to map local identities into network-
identities for the chosen nechanism and if the application is
aut horized to act on behalf of the network-identity inmge of the
default local identity for the purpose of initiating security
contexts using the chosen nechanism then the principa
corresponding to that identity shall be used; otherw se,

4) A user-configurable default identity should be used.
For the acceptor side of the context:
1) If there is only a single authorized principal identity capable of

accepting security contexts for the chosen nechani sm then that
principal shall be used; otherw se,

Upadhyay & Mal kani St andards Track [Page 18]

RFC 5653 Java GSS- APl Updat e August 2009

2) If the nmechanismcan determine the identity of the target
princi pal by exani ning the context-establishnment token processed
during the accept nmethod, and if the accepting application is
aut horized to act as that principal for the purpose of accepting
security contexts using the chosen nechanism then that principa
identity shall be used; otherw se,

3) If the mechani sm supports context acceptance by any principal, and
i f mutual authentication was not requested, any principal that the
application is authorized to accept security contexts under using
t he chosen nechani sm may be used; ot herwi se,

4) A user-configurable default identity shall be used.

The purpose of the above rules is to allow security contexts to be
established by both initiator and acceptor using the default behavior
whenever possible. Applications requesting default behavior are
likely to be nore portable across nmechani sns and i npl enentations than
ones that instantiate an GSSCredenti al object representing a specific
identity.

5.9. Cont ext s

The GSSContext interface is used to represent one end of a GSS-API
security context, storing state information appropriate to that end
of the peer conmunication, including cryptographic state information.
The instantiation of the context object is done differently by the
initiator and the acceptor. After the context has been instanti ated,
the initiator may choose to set various context options that wll
deternm ne the characteristics of the desired security context. Wen
all the application-desired characteristics have been set, the
initiator will call the initSecContext nethod, which will produce a
token for consunption by the peer’s acceptSecContext nethod. It is
the responsibility of the application to deliver the authentication
token(s) between the peer applications for processing. Upon

conpl etion of the context-establishnent phase, context attributes can
be retrieved, by both the initiator and acceptor, using the accessor
nmet hods. These will reflect the actual attributes of the established
context. At this point, the context can be used by the application
to apply cryptographic services to its data.

5.10. Authentication Tokens
A token is a caller-opaque type that GSS-APlI uses to naintain

synchroni zati on between each end of the GSS-API security context.
The token is a cryptographically protected octet-string, generated by

Upadhyay & Mal kani St andards Track [Page 19]

RFC 5653 Java GSS- APl Updat e August 2009

t he underlying nechani smat one end of a GSS-APlI security context for
use by the peer nmechanismat the other end. Encapsulation (if
required) within the application protocol and transfer of the token
are the responsibility of the peer applications.

Java GSS- APl uses byte arrays to represent authentication tokens.
Over | oaded nethods exist that allow the caller to supply input and
output streans that will be used for the reading and witing of the
t oken dat a.

5.11. I nter-Process Tokens

Certain GSS-APlI routines are intended to transfer data between
processes in multi-process prograns. These routines use a caller-
opaque octet-string, generated by the GSS-APlI in one process for use
by the GSS-API in another process. The calling application is
responsi ble for transferring such tokens between processes. Note
that, while GSS-API inplenentors are encouraged to avoid placing
sensitive information within inter-process tokens, or to
cryptographically protect them nmany inplenentations will be unable
to avoid placing key material or other sensitive data within them

It is the application’s responsibility to ensure that inter-process
tokens are protected in transit, and transferred only to processes
that are trustworthy. An inter-process token is represented using a
byte array emtted fromthe export nmethod of the GSSCont ext
interface. The receiver of the inter-process token would initialize
an GSSContext object with this token to create a new context. Once a
cont ext has been exported, the GSSContext object is invalidated and
is no |longer avail able.

5.12. Error Reporting

RFC 2743 [GSSAPI v2- UPDATE] defined the usage of nmjor and m nor
status values for the signaling of GSS-APlI errors. The najor code,
al so called GSS status code, is used to signal errors at the GSS-API
| evel , independent of the underlying nechanisn(s). The mnor status
val ue or Mechani sm status code, is a nechani smdefined error val ue

i ndi cating a mechani smspecific error code.

Java GSS- APl uses exceptions inplenmented by the GSSException class to
signal both m nor and nmajor error values. Both nechani smspecific
errors and GSS-APlI |evel errors are signaled through instances of
this class. The usage of exceptions replaces the need for mgjor and
m nor codes to be used within the APl calls. The GSSException cl ass
al so contains nethods to obtain textual representations for both the
maj or and minor val ues, which is equivalent to the functionality of
gss_di spl ay_st at us.

Upadhyay & Mal kani St andards Track [Page 20]

RFC 5653 Java GSS- APl Updat e August 2009

5.12.1. GSS Status Codes

GSS status codes indicate errors that are independent of the
under | yi ng mechani snm(s) used to provide the security service. The
errors that can be indicated via a GSS status code are generic API
routine errors (errors that are defined in the GSS-API

specification). These bindings take advantage of the Java exceptions
nmechani sm thus, elinnating the need for calling errors.

A GSS status code indicates a single fatal generic APl error fromthe
routi ne that has thrown the GSSException. Using exceptions announces
that a fatal error has occurred during the execution of the method.
The GSS- APl operational nodel also allows for the signaling of

suppl enentary status information fromthe per-nessage calls. These
need to be handled as return val ues since using exceptions is not
appropriate for informatory or warning-like information. The nethods
that are capabl e of produci ng supplenentary information are the two
per - nessage net hods GSSContext.verifyM C() and GSSCont ext. unw ap().
These nethods fill the supplenentary status codes in the MessageProp
obj ect that was passed in.

A GSSException object, along with providing the functionality for
setting of the various error codes and translating theminto textua
representation, also contains the definitions of all the nuneric
error values. The following table lists the definitions of error
codes:

Tabl e: GSS St atus Codes

Nare Val ue Meani ng

BAD_BI NDI NGS 1 I ncorrect channel bindings were
suppl i ed.

BAD MECH 2 An unsupported nmechani sm
was requested.

BAD NAME 3 An invalid nane was suppli ed.

BAD NAMETYPE 4 A supplied name was of an
unsupported type.

BAD STATUS 5 An invalid status code was
suppl i ed.

BAD M C 6 A token had an invalid MC

CONTEXT_EXPI RED 7 The context has expired.

Upadhyay & Mal kani St andards Track [Page 21]

RFC 5653 Java GSS- APl Updat e August 2009

CREDENTI ALS EXPI RED 8 The referenced credentials
have expired.

DEFECTI VE_CREDENTI AL 9 A supplied credential was
i nvalid.

DEFECTI VE_TOKEN 10 A supplied token was invalid.

FAI LURE 11 M scel | aneous fail ure,
unspecified at the GSS-API
| evel

NO_CONTEXT 12 I nvalid context has been
suppl i ed.

NO_CRED 13 No credentials were supplied, or

the credentials were unavail abl e
or inaccessi bl e.

BAD QOP 14 The quality-of-protection (QOP)
requested coul d not be provided.

UNAUTHORI ZED 15 The operation is forbidden by
the | ocal security policy.

UNAVAI LABLE 16 The operation or option is
unavai | abl e.

DUPLI CATE_ELEMENT 17 The requested credentia
el emrent al ready exists.

NAVE NOT_MN 18 The provi ded nane was not a
nmechani sm nane.

The follow ng four status codes (DUPLI CATE_TOKEN, OLD TOKEN
UNSEQ TCOKEN, and GAP_TOKEN) are contained in a GSSException
only if detected during context establishnment, in which case it
is a fatal error. (During per-nessage calls, these values are

i ndi cated as suppl enentary information contained in the
MessageProp object.) They are:

DUPLI CATE_TOKEN 19 The token was a duplicate of an
earlier version.
OLD _TOKEN 20 The token’s validity period has

expired.

Upadhyay & Mal kani St andards Track [Page 22]

RFC 5653 Java GSS- APl Updat e August 2009

UNSEQ TCKEN 21 A later token has al ready been
processed.

GAP_TOKEN 22 The expected token was not
recei ved.

The GSS mmjor status code of FAILURE is used to indicate that the
under | yi ng nechani sm detected an error for which no specific GSS
status code is defined. The mechani smspecific status code can
provi de nore details about the error.

The different najor status codes that can be contained in the
GSSException object thrown by the nethods in this specification are
the same as the major status codes returned by the correspondi ng
calls in RFC 2743 [GSSAPI v2- UPDATE] .

5.12.2. Mechani sm Specific Status Codes

Mechani sm specific status codes are comunicated in two ways, they
are part of any GSSException thrown fromthe mechani smspecific |ayer
to signal a fatal error, or they are part of the MessageProp object
that the per-nmessage calls use to signal non-fatal errors.

A default value of 0 in either the GSSException object or the
MessageProp object will be used to represent the absence of any
nmechani sm speci fic status code.

5.12.3. Supplenmentary Status Codes
Suppl enentary status codes are confined to the per-nessage nethods of
t he GSSContext interface. Because of the informative nature of these
errors it is not appropriate to use exceptions to signal them
I nstead, the per-nessage operations of the GSSContext interface
return these values in a MessageProp object.

The MessageProp cl ass defines query nethods that return bool ean
val ues indicating the foll owi ng suppl enmentary states:

Tabl e: Suppl enentary Status Methods
Met hod Name Meani ng when "true" is returned

i sDupl i cat eToken The token was a duplicate of an
earlier token.

i s dToken The token’s validity period has
expired.

Upadhyay & Mal kani St andards Track [Page 23]

RFC 5653 Java GSS- APl Updat e August 2009

A

i sUnseqToken A later token has al ready been
processed.
i sGapToken An expected per-nessage token was

not received.

‘true" return value for any of the above nethods indicates that the

t oken exhi bited the specified property. The application nust
determine the appropriate course of action for these suppl enentary
val ues. They are not treated as errors by the GSS-API

5.13.

Nanes

A name is used to identify a person or entity. GSS-APlI authenticates
the rel ationship between a nane and the entity claimng the nane.

Since different authentication mechani snms may enpl oy different
nanespaces for identifying their principals, GSS-APlI’'s naning support
is necessarily conplex in multi-nmechani smenvironnents (or even in
sone singl e-mechani sm environments where the underlying mechani sm
supports nultipl e nanespaces).

Two di stinct conceptual representations are defined for nanes:

1

2)

A GSS- APl formrepresented by inplenentations of the GSSNane
interface: A single GSSNane object may contain multiple nanmes from
di f ferent namespaces, but all names should refer to the sane
entity. An exanple of such an internal name would be the nane
returned froma call to the get Nane nethod of the GSSCredenti al
interface, when applied to a credential containing credentia

el ements for multiple authentication mechani sns enpl oyi ng

di f ferent namespaces. This GSSNanme object will contain a distinct
nane for the entity for each authentication nmechani sm

For GSS- APl inplenmentations supporting nultiple namespaces,
GSSNane i npl enentati ons nust contain sufficient information to
deternmi ne the namespace to which each primtive nane bel ongs

Mechani sm speci fic contiguous byte array and string forns:
Different GSSName initialization nmethods are provided to handl e
both byte array and string formats and to acconmopdate vari ous
calling applications and nane types. These fornmats are capabl e of
containing only a single nane (froma single nanespace).

Conti guous string nanes are always acconpani ed by an obj ect
identifier specifying the nanespace to which the nane bel ongs, and
their format is dependent on the authentication nmechani smthat

enpl oys that name. The string nane fornms are assunmed to be
printable, and nay therefore be used by GSS-API applications for

Upadhyay & Mal kani St andards Track [Page 24]

RFC 5653 Java GSS- APl Updat e August 2009

communi cation with their users. The byte array nane fornats are
assumed to be in non-printable formats (e.g., the byte array
returned fromthe export nethod of the GSSName interface).

A GSSNanme object can be converted to a contiguous representation by
using the toString nethod. This will guarantee that the nane will be
converted to a printable format. Different initialization nethods in
the GSSNane interface are defined allow ng support for multiple

synt axes for each supported nanespace, and allow ng users the freedom
to choose a preferred nane representation. The toString method
shoul d use an i npl enent ati on-chosen printable syntax for each
supported nane type. To obtain the printable nane type,

get Stri ngNaneType net hod can be used.

There is no guarantee that calling the toString nethod on the GSSName
interface will produce the same string formas the original inported
string nane. Furthernore, it is possible that the nane was not even
constructed froma string representation. The sane applies to
nanespace identifiers, which may not necessarily survive unchanged
after a journey through the internal nanme form An exanple of this
nm ght be a nechani smthat authenticates X 500 nanmes, but provides an
al gorithm c mapping of Internet DNS nanes into X. 500. That
mechani sm s i npl enentation of GSSNanme mi ght, when presented with a
DNS name, generate an internal nane that contained both the origina
DNS name and the equival ent X. 500 nane. Alternatively, it mght only
store the X. 500 nane. 1In the latter case, the toString nmethod of
GSSNanme woul d nost |ikely generate a printable X 500 nane, rather
than the original DNS nane.

The context acceptor can obtain a GSSNane object representing the
entity perfornming the context initiation (through the usage of

get SrcNane nmethod). Since this nanme has been authenticated by a
singl e mechanism it contains only a single nane (even if the

i nternal nanme presented by the context initiator to the GSSCont ext
obj ect had multiple conponents). Such nanes are termed internal -
mechani sm nanes (or M\s), and the nanes emtted by GSSCont ext
interface in the getSrcNane and get TargNane are always of this type.
Since sonme applications may require MNs without wanting to incur the
overhead of an authentication operation, creation nmethods are

provi ded that take not only the name buffer and nanme type, but al so
the mechanismoid for which this name should be created. When
dealing with an existing GSSNane object, the canonicalize nethod nay
be invoked to convert a general internal name into an M\

GSSNane obj ects can be conpared using their equal method, which
returns "true" if the two nanes being conpared refer to the sane
entity. This is the preferred way to perform nane conpari sons

i nstead of using the printable nanes that a given GSS- AP

Upadhyay & Mal kani St andards Track [Page 25]

RFC 5653 Java GSS- APl Updat e August 2009

i mpl enentati on nay support. Since GSS-API assunes that all prinitive
names contained within a given internal name refer to the sane
entity, equal can return "true" if the two names have at | east one
primtive nane in conmmon. |f the inplenmentation enbodi es know edge
of equival ence rel ati onshi ps between nanmes taken fromdifferent
nanespaces, this know edge may al so all ow successful conparisons of

i nternal nanes containing no overlapping prinitive el enents.

When used in large access control lists, the overhead of creating a
GSSNane obj ect on each nane and invoking the equal nethod on each
nane fromthe Access Control List (ACL) may be prohibitive. As an
alternative way of supporting this case, GSS-APlI defines a special
formof the contiguous byte array nane, which may be conpared
directly (byte by byte). Contiguous nanmes suitable for conparison
are generated by the export nethod. Exported nanes nmay be re-

i nported by using the byte array constructor and specifying the
NT_EXPORT_NAME as the nanme type object identifier. The resulting
GSSNanme nane will also be a M\

The GSSNane interface defines public static O d objects representing
the standard nanme types. Structurally, an exported nanme object

consi sts of a header containing an O D identifying the mechani smthat
aut henticated the nanme, and a trailer containing the nane itself,
where the syntax of the trailer is defined by the individua
mechani sm specification. Detailed description of the format is
specified in the | anguage-i ndependent GSS- APl specification

[GSSAPI v2- UPDATE] .

Note that the results obtained by using the equals nmethod will in
general be different fromthose obtai ned by invoking canonicalize and
export, and then conparing the byte array output. The first series
of operation determ nes whether two (unauthenticated) nanmes identify
the sane principal; the second whether a particul ar nmechani sm woul d
aut henticate them as the sane principal. These two operations will
in general give the sanme results only for M\s.

It is inmportant to note that the above are guidelines as to how
GSSNane i npl enent ati ons shoul d behave, and are not intended to be
specific requirenments of how name objects nmust be inplenented. The
mechani sm desi gners are free to decide on the details of their

i npl ement ati ons of the GSSNane interface as |ong as the behavior
satisfies the above guidelines.

5.14. Channel Bi ndi ngs
GSS- APl supports the use of user-specified tags to identify a given

context to the peer application. These tags are intended to be used
to identify the particular comruni cations channel that carries the

Upadhyay & Mal kani St andards Track [Page 26]

RFC 5653 Java GSS- APl Updat e August 2009

context. Channel bindings are conmunicated to the GSS-API using the
Channel Bi ndi ng object. The application nmay use byte arrays to
specify the application data to be used in the channel binding as
wel |l as using instances of the InetAddress. The |InetAddress for the
initiator and/or acceptor can be used within an instance of a
Channel Bi ndi ng. Channel Bi ndi ng can be set for the GSSContext object
usi ng the set Channel Bi ndi ng nethod before the first call to init or
accept has been perforned. Unless the set Channel Bi ndi ng net hod has
been used to set the Channel Bi nding for a GSSCont ext object, "null"
Channel Binding will be assuned. InetAddress is currently the only
address type defined within the Java platformand as such, it is the
only one supported within the Channel Binding class. Applications
that use other types of addresses can include themas part of the
application-specific data.

Conceptual Iy, the GSS-API concatenates the initiator and acceptor
address information, and the application-supplied byte array to form
an octet-string. The nechanism cal cul ates a Message Integrity Code
(MC) over this octet-string and binds the MC to the context

est abli shnent token enmitted by the init nethod of the GSSContext
interface. The sane bindings are set by the context acceptor for its
GSSCont ext obj ect and during processing of the accept nmethod, a MC
is calculated in the sane way. The calculated MCis conpared with
that found in the token, and if the MCs differ, accept will throw a
GSSException with the nmajor code set to BAD BI NDINGS, and the context
will not be established. Sone nmechani sms may include the actua
channel binding data in the token (rather than just a MC);
applications should therefore not use confidential data as channel -
bi ndi ng conponents.

I ndi vi dual mechani sns may i npose additional constraints on addresses
that may appear in channel bindings. For exanple, a nechani sm nmay
verify that the initiator address field of the channel binding
contains the correct network address of the host system Portable
applications should therefore ensure that they either provide correct
information for the address fields, or omt the setting of the
addressing i nformation.

5.15. Stream bjects

The cont ext object provides overl oaded nmethods that use input and

out put streans as the neans to convey authentication and per-nessage
GSS- APl tokens. It is inmportant to note that the streans are
expected to contain the usual GSS-APlI tokens, which woul d otherw se
be handl ed through the usage of byte arrays. The tokens are expected
to have a definite start and an end. The callers are responsible for

Upadhyay & Mal kani St andards Track [Page 27]

RFC 5653 Java GSS- APl Updat e August 2009

ensuring that the supplied streans will not block, or expect to bl ock
until a full token is processed by the GSS-API nmethod. Only a single
GSS- APl token will be processed per invocation of the stream based
et hod.

The usage of streans allows the callers to have control and
managenent of the supplied buffers. Because streans are non-
primtive objects, the callers can nake the streanms as conplicated or
as sinple as desired sinply by using the streans defined in the
java.io package or creating their own through the use of inheritance.
This will allow for the application’s greatest flexibility.

5.16. Optional Paraneters

Whenever the application wishes to omit an optional paraneter the
"nul " value shall be used. The detailed nmethod descriptions

i ndi cate which paraneters are optional. Method overl oading has al so
been used as a technique to indicate default paraneters.

6. Introduction to GSS-API C asses and Interfaces

This section presents a brief description of the classes and
interfaces that constitute the GSS-API. The inplenmentations of these
are obtained fromthe CLASSPATH defined by the application. |If Java
GSS becones part of the standard Java APls, then these classes will
be avail able by default on all systens as part of the JRE s system

cl asses.

This section also shows the correspondi ng RFC 2743 [GSSAPI v2- UPDATE]
functionality inplenented by each of the classes. Detailed
description of these classes and their nethods is presented in
section 7.

6.1. GSSManager C ass

This abstract class serves as a factory to instantiate
i mpl enentati ons of the GSS-API interfaces and al so provi des nethods
to make queries about underlying security nechanisns.

A default inplenmentation can be obtained using the static nethod
getlnstance(). Applications that desire to provide their own

i mpl enent ati on of the GSSManager class can sinply extend the abstract
cl ass thensel ves.

This class contains equivalents of the foll owing RFC 2743 [GSSAPI v2-
UPDATE] routi nes:

Upadhyay & Mal kani St andards Track [Page 28]

RFC 5653 Java GSS- APl Updat e August 2009

RFC 2743 Routine Functi on Section(s)

gss_i nport _nane Create an internal nanme from 7.1.6-
the supplied information. 7.1.9

gss_acquire _cred Acqui re credenti al 7.1.10-
for use. 7.1.12

gss_i mport _sec_cont ext Create a previously exported 7.1.15
cont ext .

gss_indi cate_nechs Li st the nechani sns 7.1.3

supported by this GSS-API
i mpl enent ati on.

gss_inquire_nechs_for_nane Li st the nechani sns 7.1.5
supporting the
speci fied nane type

gss_inquire_nanes_for_nech Li st the name types 7.1.4
supported by the
speci fi ed nmechani sm

GSSNane | nterface

GSS- APl nanes are represented in the Java bindings through the
GSSNane interface. Different name formats and their definitions are
identified with Universal Object Identifiers (oids). The format of

t he nanes can be derived based on the unique oid of each name type
The following GSS-API routines are provided by the GSSNanme interface:

RFC 2743 Routine Functi on Section(s)

gss_di spl ay_nane Covert internal name 7.2.7
representation to text format.

gss_conpar e_nane Conpare two internal nanes. 7.2.3
7.2.4
gss_rel ease_nane Rel ease resources associ at ed N A
with the internal nane.
gss_canoni cal i ze_nane Convert an internal nane to a 7.2.5
nmechani sm nane.
gss_export _name Convert a mechani sm nane to 7.2.6

export format.

Upadhyay & Mal kani St andards Track [Page 29]

RFC 5653 Java GSS- APl Updat e August 2009

6. 3.

6. 4.

gss_duplicate_nane Create a copy of the internal N A
name.
The gss_rel ease_nanme call is not provided as Java does its own
garbage collection. The gss_duplicate_name call is also redundant;

the GSSNane interface has no nutator nethods that can change the
state of the object so it is safe for sharing across threads.

GSSCredential Interface

The GSSCredential interface is responsible for the encapsul ation of
GSS- APl credentials. Credentials identify a single entity and
provi de the necessary cryptographic infornation to enable the
creation of a context on behalf of that entity. A single credentia
may contain nultiple mechani smspecific credentials, each referred to
as a credential elenment. The GSSCredential interface provides the
functionality of the follow ng GSS-API routines:

RFC 2743 Routine Functi on Section(s)

gss_add_cred Constructs credentials 7.3.12
increnental ly.

gss_inquire cred bt ai n i nfornation about 7.3.4-
credenti al . 7.3.11
gss_inquire_cred_by_nech bt ai n per - mechani sm 7.3.5-
i nformati on about 7.3.10

a credenti al .

gss_rel ease _cred Di spose of credentials 7.3.3
after use.

GSSCont ext I nterface

This interface encapsul ates the functionality of context-level calls
required for security context establishnment and managenent between
peers as well as the per-nessage services offered to applications. A
context is established between a pair of peers and allows the usage
of security services on a per-nessage basis on application data. It
is created over a single security mechanism The GSSCont ext
interface provides the functionality of the foll owi ng GSS- API
routines:

RFC 2743 Routi ne Functi on Section(s)
gss_init_sec_cont ext Initiate the creation of a 7.4. 3-
security context with a peer. 7.4.6

Upadhyay & Mal kani St andards Track [Page 30]

RFC 5653 Java GSS- APl Updat e August 2009

gss_accept _sec_cont ext Accept a security context 7.4.7-
initiated by a peer. 7.4.10

gss_del et e_sec_cont ext Destroy a security context. 7.4.12

gss_context _tine bt ai n renmai ni ng cont ext 7.4.41
tinme.

gss_i nqui re_cont ext bt ai n cont ext 7.4.32-
characteristics. 7.4.46

gss_wrap_size limt Determ ne token-size limt 7.4.13

for gss_wap.

gss_export _sec_cont ext Transfer security context 7.4.22
to anot her process.

gss_get _nmic Cal cul ate a cryptographic 7.4.18
Message Integrity Code (M Q) 7.4.19
for a nessage.

gss_verify mc Verify integrity on a received 7.4.20,
nmessage. 7.4.21

gss_wrap Attach a M C to a nessage and 7.4.14,
optionally encrypt the nmessage 7.4.15
cont ent.

gss_unw ap btain a previously wapped 7.4.16
application nessage verifying 7.4.17

its integrity and optionally
decrypting it.

The functionality offered by the gss_process_context_token routine
has not been included in the Java bindings specification. The
correspondi ng functionality of gss_del ete_sec_context has al so been
nodified to not return any peer tokens. This has been proposed in
accordance to the reconmendati ons stated in RFC 2743 [GSSAPI v2-
UPDATE]. GSSCont ext does offer the functionality of destroying the
| ocally stored context information

6.5. MessageProp C ass
This hel per class is used in the per-nessage operations on the
context. An instance of this class is created by the application and

then passed into the per-message calls. |In some cases, the
application conveys infornmation to the GSS-API inplenentation through

Upadhyay & Mal kani St andards Track [Page 31]

RFC 5653 Java GSS- APl Updat e August 2009

this object and in other cases the GSS-APlI returns infornmation to the
application by setting it in this object. See the description of the
per - message operations wap, unwap, getMC, and verifyMC in the
GSSCont ext interfaces for details.

6.6. GSSException d ass

Exceptions are used in the Java bindings to signal fatal errors to
the calling applications. This replaces the major and m nor codes
used in the C bindings specification as a nmethod of signaling
failures. The GSSException class handl es both m nor and maj or codes,
as well as their translation into textual representation. Al GSS-
APl met hods are declared as throwing this exception

RFC 2743 Routi ne Functi on Section
gss_di spl ay_st at us Retrieve textual 7.8.5, 7.8.6
representation of error 7.8.8, 7.8.9

codes.
6.7. Od dass

This utility class is used to represent Universal Object ldentifiers
and their associated operations. GSS-API uses object identifiers to
di stingui sh between security mechani sns and nane types. This class,
asi de from bei ng used whenever an object identifier is needed,

i mpl enents the followi ng GSS-API functionality:

RFC 2743 Routi ne Functi on Secti on

gss_test _oid_set nenber Determine if the specified oid 7.7.5
is part of a set of oids.

6.8. Channel Bi ndi ng d ass

An instance of this class is used to specify channel binding
informati on to the GSSContext object before the start of a security
context establishnent. The application nmay use a byte array to
specify application data to be used in the channel binding as well as
to use instances of the InetAddress. InetAddress is currently the
only address type defined within the Java platformand as such, it is
the only one supported within the Channel Bi nding class. Applications
that use other types of addresses can include themas part of the
application data.

Upadhyay & Mal kani St andards Track [Page 32]

RFC 5653 Java GSS- APl Updat e August 2009

7. Detailed GSS-API O ass Description

This section lists a detailed description of all the public nethods
that each of the GSS-API classes and interfaces nust provide.

7.1. public abstract class GSSManager

The GSSManager class is an abstract class that serves as a factory
for three GSS interfaces: GSSName, GSSCredential, and GSSContext. It
al so provides nethods for applications to determ ne what mechani sns
are available fromthe GSS i npl enentati on and what nanme types these
mechani sns support. An instance of the default GSSManager subcl ass
may be obtai ned through the static nmethod getlnstance(), but
applications are free to instantiate ot her subclasses of GSSManager

Al but one nethod in this class are declared abstract. This neans
that subcl asses have to provide the conplete inplenentation for those
met hods. The only exception to this is the static nethod

getl nstance(), which will have platformspecific code to return an

i nstance of the default subcl ass.

Pl atform providers of GSS are required not to add any constructors to
this class, private, public, or protected. This will ensure that al
subcl asses invoke only the default constructor provided to the base
class by the conpiler.

A subcl ass extendi ng the GSSManager abstract class may be inpl enented
as a nodul ar provider-based | ayer that utilizes some well-known
service provider specification. The GSSManager APl provides the
application with nethods to set provider preferences on such an

i npl enentation. These nethods also allow the inplenentation to throw
a wel | -defined exception in case provider-based configuration is not
supported. Applications that expect to be portable should be aware
of this and recover cleanly by catching the exception

It is envisioned that there will be three nbst comobn ways in which
providers will be used:

1) The application does not care about what provider is used (the
default case).

2) The application wants a particular provider to be used
preferentially, either for a particular mechanismor all the tineg,
irrespective of the nechani sm

3) The application wants to use the locally configured providers as

far as possible, but if support is mssing for one or nore
mechani sns, then it wants to fall back on its own provider

Upadhyay & Mal kani St andards Track [Page 33]

RFC 5653 Java GSS- APl Updat e August 2009

The GSSManager cl ass has two nethods that enabl e these nodes of
usage: addProviderAtFront() and addProvi der AtEnd(). These net hods
have the effect of creating an ordered list of <provider, oid> pairs
where each pair indicates a preference of provider for a given oid.
The use of these nmethods does not require any know edge of whatever
service provider specification the GSSManager subclass follows. It
is hoped that these nethods will serve the needs of nost
applications. Additional nmethods may be added to an extended
GSShvanager that could be part of a service provider specification
that is standardized | ater.
7.1.1. Exanple Code

GSShanager nmgr = GSSManager . get | nstance();

/1 What nechs are available to us?

G d[] supportedMechs = ngr. get Mechs();

/'l Set a preference for the provider to be used when support

/'l is needed for the nechanisns:

/l "1.2.840.113554.1.2.2" and "1.3.6.1.5.5.1.1".

Od krb = new Gd("1.2.840.113554.1.2.2");
ad spknl = new GOd("1.3.6.1.5.5.1.1");

Provider p = (Provider) (new comfoo.security.Provider());

ngr . addPr ovi der At Front (p, krb);
ngr . addPr ovi der At Front (p, spknid);

/1 What name types does this spkminpl enentation support?
G d[] nanmeTypes = ngr. get NanesFor Mech(spknt) ;

7.1.2. getlnstance
public static GSSManager getlnstance()

Returns the default GSSManager i nplenentation.

Upadhyay & Mal kani St andards Track [Page 34]

RFC 5653 Java GSS- APl Updat e August 2009

7.1.3. getMechs
public abstract G d[] getMechs()
Returns an array of GO d objects indicating the nechani sns avail abl e
to GSS-APlI callers. A "null" value is returned when no nmechani sm are

avai l abl e (an exanple of this would be when nechani smare dynamcally
configured, and currently no mechanisnms are installed).

7.1.4. getNanmesFor Mech

public abstract QO d[] getNanmesFor Mech(G d nech)
t hrows GSSExcepti on

Returns nane type G d' s supported by the specified nmechani sm

Par anet ers:

mech: The O d object for the mechanismto query.

7.1.5. get MechsFor Nane
public abstract G d[] get MechsForNane(G d naneType)

Returns an array of O d objects corresponding to the nmechani sns that
support the specific name type. "null" is returned when no nechani sns

are found to support the specified nanme type.
Par anet er s:

naneType: The O d object for the nanme type.

7.1.6. createNane

public abstract GSSNanme createNanme(String naneStr, G d naneType)
t hrows GSSExcepti on

Factory nethod to convert a contiguous string name fromthe specified
nanespace to a GSSNane object. |In general, the GSSNanme obj ect
created will not be an MN; two exanples that are exceptions to this
are when the namespace type paraneter indicates NI_EXPORT_NAME or
when the GSS-API inplenentation is not nulti-nmechani sm

Par anet ers:

naneStr: The string representing a printable formof the nane
to create.

Upadhyay & Mal kani St andards Track [Page 35]

RFC 5653 Java GSS- APl Updat e August 2009

7.

7.

1

1

naneType: The O d specifying the namespace of the printable
name is supplied. Note that naneType serves to
describe and qualify the interpretation of the input
naneStr, it does not necessarily inmply a type for
t he out put GSSNane inplenentation. The "null" val ue
can be used to specify that a nechani smspecific
default printable syntax should be assuned by each
nmechani sm t hat exami nes nameStr.

7. cr eat eNane

public abstract GSSNanme createNane(byte[] nane, O d naneType)
t hrows GSSExcepti on

Factory nethod to convert a contiguous byte array containing a nane
fromthe specified nanespace to a GSSNanme object. 1In general, the
GSSNane object created will not be an M\; two exanples that are
exceptions to this are when the nanespace type paraneter indicates
NT_EXPORT_NAME or when the GSS-API inplenentation is not multi-
nmechani sm

Par anet ers:
nane: The byte array containing the nane to create

naneType: The O d specifying the nanmespace of the nane

supplied in the byte array. Note that naneType
serves to describe and qualify the interpretation of
the input name byte array; it does not necessarily
inply a type for the output GSSNane inplenentation
The "null" value can be used to specify that a
nmechani sm speci fic default syntax should be assuned
by each nechani smthat examnines the byte array.

8. cr eat eNane

public abstract GSSNane createNane(String naneStr, O d naneType,
G d mech) throws GSSException

Factory nethod to convert a contiguous string name fromthe specified
nanespace to a GSSNane object that is a nmechanismnane (M\N). In
other words, this nethod is a utility that does the equivalent of two
steps: the createNane described in section 7.1.6, and then also the
GSSNane. canoni cal i ze() described in section 7.2.5.

Upadhyay & Mal kani St andards Track [Page 36]

RFC 5653 Java GSS- APl Updat e August 2009

7.

1

Par anet ers:

namesStr: The string representing a printable form of the nanme
to create.
naneType: The O d specifying the namespace of the printable

nane supplied. Note that naneType serves to
describe and qualify the interpretation of the input
nameStr; it does not necessarily inply a type for

t he out put GSSNane inplenentation. The "null" val ue
can be used to specify that a nechani smspecific
default printable syntax should be assuned when the
nmechani sm exam nes nameStr.

nmech: O d specifying the mechani smfor which this nane
shoul d be creat ed.

9. cr eat eNane

public abstract GSSName createNane(byte[] nane, O d naneType,
G d mech) throws GSSException

Factory nethod to convert a contiguous byte array containing a nane
fromthe specified nanespace to a GSSNane object that is an MN. In
other words, this nethod is a utility that does the equivalent of two
steps: the createNane described in section 7.1.7, and then also the
GSSNane. canoni cal i ze() described in section 7.2.5.

Par anet er s:
nane: The byte array representing the nane to create

naneType: The O d specifying the namespace of the nane

supplied in the byte array. Note that naneType
serves to describe and qualify the interpretation of
the input nane byte array, it does not necessarily
inmply a type for the output GSSNane inplenentation
The "null" value can be used to specify that a
nmechani sm specific default syntax should be assuned
by each mechani smthat exam nes the byte array.

mech: O d specifying the mechanismfor which this nane
shoul d be creat ed.

Upadhyay & Mal kani St andards Track [Page 37]

RFC 5653 Java GSS- APl Updat e August 2009

7.1.10. createCredenti al

public abstract GSSCredential createCredential (int usage)
t hrows GSSExcepti on

Factory nethod for acquiring default credentials. This will cause
the GSS-API to use systemspecific defaults for the set of
mechani sms, name, and a DEFAULT lifetine.

Par anet ers:

usage: The intended usage for this credential object. The
val ue of this paranmeter nust be one of:

GSSCr edenti al . I NI TI ATE_AND_ACCEPT(0),
GSSCredential . I NI TI ATE_ONLY(1), or
GSSCr edent i al . ACCEPT_ONLY(2)
7.1.11. createCredential
public abstract GSSCredential createCredential (GSSNane aNane,
int lifetime, O d nmech, int usage)
t hrows GSSExcepti on
Factory nethod for acquiring a single nechani smcredential .

Par anet ers:

aNane: Nanme of the principal for whomthis credential is to
be acquired. Use "null" to specify the default
princi pal .

lifetinme: The nunber of seconds that credentials should renmain

valid. Use GSSCredential.|NDEFI Nl TE LI FETI ME to
request that the credentials have the maxi mum
permtted lifetinme. Use

GSSCr edenti al . DEFAULT_LI FETI ME to request default
credential lifetinme.

nmech: The oid of the desired nmechanism Use "(Gd) null"
to request the default mechanisn(s).

Upadhyay & Mal kani St andards Track [Page 38]

RFC 5653 Java GSS- APl Updat e August 2009

usage: The intended usage for this credential object. The
val ue of this paranmeter nust be one of:

GSSCredenti al . I NI TI ATE_AND_ACCEPT(0),
GSSCredential . I NI TI ATE_ONLY(1), or
GSSCr edent i al . ACCEPT_ONLY(2)

7.1.12. createCredenti al

public abstract GSSCredential createCredential (GSSNane aNane,
int lifetinme, G d[] nechs, int usage)
t hrows GSSExcepti on

Factory nethod for acquiring credentials over a set of nechanisns.
Acquires credentials for each of the nechanisns specified in the
array called nmechs. To determine the Iist of mechanisnms’ for which
the acquisition of credentials succeeded, the caller should use the
GSSCr edenti al . get Mechs() net hod.

Par anet ers:

aNarne: Nanme of the principal for whomthis credential is to
be acquired. Use "null" to specify the default
princi pal .

lifetime: The nunber of seconds that credentials should remnain

valid. Use GSSCredential.|NDEFI NI TE_LIFETI ME to
request that the credentials have the maxi mum
permtted lifetime. Use

GSSCr edenti al . DEFAULT LI FETI ME to request default
credential lifetime.

nmechs: The array of nechani sns over which the credential is
to be acquired. Use "(Qd[]) null" for requesting a
system specific default set of mechanisns.

usage: The intended usage for this credential object. The
val ue of this paranmeter nust be one of:

GSSCredenti al . I NI TI ATE_AND_ACCEPT(0),
GSSCredential . I NI TIATE_ONLY(1), or
GSSCr edent i al . ACCEPT_ONLY(2)
7.1.13. createContext
public abstract GSSContext createContext(GSSNane peer, G d nech,

GSSCredential nyCred, int lifetine)
t hrows GSSExcepti on

Upadhyay & Mal kani St andards Track [Page 39]

RFC 5653 Java GSS- APl Updat e August 2009

Factory nethod for creating a context on the initiator’s side.
Context flags may be nodified through the nutator nethods prior to
cal i ng GSSCont ext.initSecContext().
Par anet er s:

peer: Nanme of the target peer

nmech: O d of the desired nechanism Use "(Gid) null" to
request the default nechani sm

my Cr ed: Credentials of the initiator. Use "null" to act as
a default initiator principal

lifetime: The request lifetime, in seconds, for the context.
Use GSSCont ext. | NDEFI NI TE_LI FETI ME and
GSSCont ext . DEFAULT_LI FETIME to request indefinite or
default context lifetine.
7.1.14. createContext

public abstract GSSContext createContext(GSSCredential myCred)
t hrows GSSExcepti on

Factory nethod for creating a context on the acceptor’ side. The
context’'s properties will be deternmined fromthe input token supplied
to the accept nethod.

Par anet er s:

my Cr ed: Credentials for the acceptor. Use "null" to act as
a default acceptor principal

7.1.15. cr eat eCont ext

public abstract GSSContext createContext(byte[] interProcessToken)
t hrows GSSExcepti on

Factory nethod for creating a previously exported context. The
context properties will be determned fromthe input token and can’t
be nodified through the set nethods.

Par anet ers:

i nterProcessToken: The token previously emtted fromthe export
et hod.

Upadhyay & Mal kani St andards Track [Page 40]

RFC 5653 Java GSS- APl Updat e August 2009

7.1.16. addProvi der At Fr ont

public abstract void addProvi der At Front (Provider p, G d mech)
t hrows GSSExcepti on

This method is used to indicate to the GSSManager that the
application would like a particular provider to be used ahead of all
ot hers when support is desired for the given mechanism Wen a val ue
of "null" is used instead of an G d for the mechani sm the GSSManager
nmust use the indicated provider ahead of all others no matter what
the mechanismis. Only when the indicated provider does not support
t he needed nechani sm shoul d the GSSManager nove on to a different
provi der.

Calling this nmethod repeatedly preserves the ol der settings but
lowers themin preference thus form ng an ordered |list of provider
and G d pairs that grows at the top

Calling addProviderAtFront with a null Gd will renove all previous
preferences that were set for this provider in the GSSManager

i nstance. Calling addProviderAtFront with a non-null G d wll renove
any previous preference that was set using this nechanismand this
provi der together.

I f the GSSManager inplenentation does not support an SPI with a

pl uggabl e provider architecture, it should throw a GSSException with
the status code GSSExcepti on. UNAVAI LABLE to indicate that the
operation i s unavail abl e.

Par anet ers:

p: The provider instance that should be used whenever
support is needed for nech

mech: The mechani sm for which the provider is being set.
7.1.17. Exanpl e Code

Suppose an application desired that the provider A always be checked
first when any nmechanismis needed, it would call:

GSShanager ngr = GSSManager. get |l nstance();

/1 mgr may at this point have its own pre-configured |ist
/'l of provider preferences. The following will prepend to
/1 any such list:

nmgr . addPr ovi der At Front (A, null);

Upadhyay & Mal kani St andards Track [Page 41]

RFC 5653 Java GSS- APl Updat e August 2009

Now if it also desired that the mechanismof QG d nl al ways be
obtai ned fromthe provider B before the previously set A was checked,
it would call:

ngr . addPr ovi der At Front (B, nl);

The GSSManager would then first check with Bif nl was needed. In
case B did not provide support for nil, the GSSManager woul d conti nue
on to check with A If any nmechanismn? is needed where n2 is
different fromml, then the GSSManager would skip B and check with A
directly.

Suppose, at a later tine, the following call is nade to the same
GSShanager i nstance:

ngr . addPr ovi der At Front (B, nul I)

then the previous setting with the pair (B, ml) is subsuned by this
and should be renmoved. Effectively, the Iist of preferences now
becones {(B, null), (A null), ... //followed by the pre-configured
list.

Pl ease note, however, that the follow ng call:
ngr . addPr ovi der At Front (A, nB)

does not subsune the previous setting of (A null), and the list wll
effectively beconme {(A nmB), (B, null), (A null), ...}

7.1.18. addProvi der At End

public abstract void addProvi der At End(Provider p, O d mech)
t hr ows GSSExcepti on

This method is used to indicate to the GSSManager that the
application would like a particular provider to be used if no other
provi der can be found that supports the given nechanism \Wen a
value of "null" is used instead of an O d for the nechanism the
GSShanager must use the indicated provider for any nechani sm

Calling this nmethod repeatedly preserves the ol der settings, but

rai ses them above newer ones in preference thus form ng an ordered
list of providers and O d pairs that grows at the bottom Thus, the
ol der provider settings will be utilized first before this one is.

If there are any previously existing preferences that conflict with

the preference being set here, then the GSSManager should ignore this
request.

Upadhyay & Mal kani St andards Track [Page 42]

RFC 5653 Java GSS- APl Updat e August 2009

I f the GSSManager inplenentation does not support an SPI with a

pl uggabl e provider architecture, it should throw a GSSException with
the status code GSSExcepti on. UNAVAI LABLE to indicate that the
operation is unavail abl e.

Par anet ers:

p: The provider instance that shoul d be used whenever
support is needed for nech.

mech: The mechani sm for which the provider is being set.
7.1.19. Exanpl e Code

Suppose an application desired that when a nechanismof Gd ml is
needed, the system default providers always be checked first, and
only when they do not support nil should a provider A be checked. It
woul d then make the call:

GSShanager ngr = GSSManager. get | nstance();

ngr . addPr ovi der At End(A, ml);
Now, if it also desired that for all nechanisns the provider B be
checked after all configured providers have been checked, it would
then call:

ngr . addPr ovi der At End(B, null);

Effectively, the list of preferences now becones {..., (A ml), (B,
null)}.
Suppose, at a later tine, the following call is nade to the same

GSSManager i nstance:

ngr . addPr ovi der At End(B, nR)
then the previous setting with the pair (B, null) subsunes this;
therefore, this request should be ignored. The same woul d happen if
a request is made for the already existing pairs of (A nl) or (B,
nul).
Pl ease note, however, that the follow ng call:

ngr . addPr ovi der At End(A, nul I)

is not subsuned by the previous setting of (A ml) and the list wll
effectively becone {..., (A ml), (B, null), (A null)}.

Upadhyay & Mal kani St andards Track [Page 43]

RFC 5653

7.

7.

2.

2.

Java GSS- APl Updat e August 2009

public interface GSSName

This interface encapsul ates a single GSS-APlI principal entity.
Different nane formats and their definitions are identified with

Uni ver sal

hject ldentifiers (G ds). The format of the nanes can be

derived based on the unique oid of its namespace type.

1. Exanple Code

I ncl uded bel ow are code exanples utilizing the GSSNane i nterface.
The code bel ow creates a GSSNanme, converts it to a mechani sm nane
(MN), perforns a conparison, obtains a printable representation of

t he nane,

exports it and then re-inports to obtain a new GSSNane.

GSShanager nmgr = GSSManager . get | nstance();

// create a host-based service nane
GSSNane name = ngr.creat eNane("servi ce@ost",

GSSNarme. NT_HOSTBASED_SERVI CE) ;

G d krb5 = new G d("1.2.840.113554.1.2.2");

GSSNanme nmechNane = nane. canoni cal i ze(kr b5);

/1 the above two steps are equivalent to the foll ow ng
GSSNanme nmechNane = ngr. creat eNanme("servi ce@ost",

GSSNane. NT_HOSTBASED SERVI CE, kr b5) :

/1 perform nane conparison
i f (nane. equal s(nmechNane))

print("Nanmes are equals.");

/] obtain textual representation of name and its printable
/'l name type
print(mechNane.toString() +

mechNane. get St ri ngNaneType().toString());

/1l export and re-inport the name
byte[] exportNane = nechNane. export();

/1 create a new nane object fromthe exported buffer
GSSNane newNane = ngr. cr eat eNane(export Nane,

GSSNane. NT_EXPORT_NAME) ;

Upadhyay & Mal kani St andards Track [Page 44]

RFC 5653 Java GSS- APl Updat e August 2009

7.2.2. Static Constants
public static final G d NT_HOSTBASED SERVI CE

G d indicating a host-based service nane form It is used to
represent services associated with host conputers. This nane formis
constructed using two el enents, "service" and "hostnane", as foll ows:

servi ce@ost nane

Val ues for the "service" elenent are registered with the ANA. It
represents the followi ng value: { iso(1l) nenber-body(2) Unites
States(840) nit(113554) infosys(1l) gssapi(2) generic(1l)
service_nane(4) }

public static final G d NTI_USER NAME

Nane type to indicate a naned user on a local system It represents
the follow ng value: { iso(1l) menber-body(2) United States(840)
mt(113554) infosys(1l) gssapi(2) generic(l) user_nane(l) }

public static final G d NT_MACH NE_U D _NAVE

Nane type to indicate a nuneric user identifier corresponding to a
user on a local system(e.g., Ud). It represents the follow ng
val ue: { iso(1) nenber-body(2) United States(840) mt(113554)

i nfosys(1) gssapi (2) generic(1l) machine_uid_nanme(2) }

public static final G d NI_STRI NG U D NAME

Nanme type to indicate a string of digits representing the nuneric
user identifier of a user on a local system It represents the
followi ng value: { iso(1) nmenber-body(2) United States(840)
mt(113554) infosys(1l) gssapi(2) generic(l) string uid_nane(3) }

public static final G d NT_ANONYMOUS

Nanme type for representing an anonynous entity. It represents the
followi ng value: { iso(1), org(3), dod(6), internet(1), security(5),
nanet ypes(6), gss-anonynous-nanme(3) }

public static final GO d NT_EXPORT_NAVE

Name type used to indicate an exported name produced by the export

method. It represents the follow ng value: { iso(1l), org(3), dod(6),
internet (1), security(5), nanetypes(6), gss-api-exported-nane(4) }

Upadhyay & Mal kani St andards Track [Page 45]

RFC 5653 Java GSS- APl Updat e August 2009

7.

7.

2.

2.

. 2.

3.

equal s

publ i c bool ean equal s(GSSNane anot her) throws GSSException

Compares two GSSName objects to determ ne whether they refer to the
sanme entity. This nmethod may throw a GSSExcepti on when the nanes
cannot be conpared. |If either of the nanes represents an anonynous
entity, the nethod will return "false"

Par anet ers:

4,

5.

anot her : GSSNane object with which to conpare
equal s
publ i c bool ean equal s(bj ect anot her)

A variation of the equals nmethod, described in section 7.2.3, that
is provided to override the Object.equals() nethod that the

i mpl ementing class will inherit. The behavior is exactly the sane
as that in section 7.2.3 except that no GSSException is thrown;
instead, "false" will be returned in the situation where an error

occurs. (Note that the Java | anguage specification requires that
two objects that are equal according to the equal s((oject) nethod
nmust return the sane integer result when the hashCode() nethod is
called on them)
Par anet er s:
anot her : GSSNane object with which to conpare

canoni cal i ze
publ i c GSSNane canonicalize(G d nmech) throws GSSException
Creates a nechanismnane (M) froman arbitrary internal nane.
This is equivalent to using the factory nethods described in
sections 7.1.8 or 7.1.9 that take the nechani sm name as one of
their paraneters
Par anet er s:

nmech: The oid for the nechani smfor which the canonica
formof the nane is requested.

Upadhyay & Mal kani St andards Track [Page 46]

RFC 5653 Java GSS- APl Updat e August 2009

7.2.6. export
public byte[] export() throws GSSException
Returns a canoni cal contiguous byte representation of a mechani sm
nane (MN), suitable for direct, byte-by-byte conparison by
aut hori zation functions. |If the nane is not an M\, inplenentations
may throw a GSSException with the NAME NOT_MN status code. |If an
i mpl erent ati on chooses not to throw an exception, it should use sone
system speci fic default mechanismto canonicalize the nane and then
export it. The format of the header of the output buffer is
specified in RFC 2743 [GSSAPI v2- UPDATE] .

7.2.7. toString
public String toString()
Returns a textual representation of the GSSNane object. To retrieve
the printed nane format, which deternines the syntax of the returned
string, the getStringNameType net hod can be used.

7.2.8. getStringNaneType
public G d getStringNameType() throws GSSException
Returns the oid representing the type of nane returned through the
toString nethod. Using this oid, the syntax of the printable nane
can be deterni ned.

7.2.9. isAnonynous
publ i c bool ean i sAnonynmous()

Tests if this nane object represents an anonynous entity. Returns
"true" if this is an anonynous nane.

7.2.10. isMN
publ i ¢ bool ean i sM\()

Tests if this nane object contains only one mechanismelenment and is
thus a nechani sm nane as defined by RFC 2743 [GSSAPI v2- UPDATE] .

7.3. public interface GSSCredential inplenents C oneable
This interface encapsul ates the GSS-APlI credentials for an entity. A

credential contains all the necessary cryptographic information to
enabl e the creation of a context on behalf of the entity that it

Upadhyay & Mal kani St andards Track [Page 47]

RFC 5653 Java GSS- APl Updat e August 2009

represents. It may contain nultiple, distinct, mechani smspecific
credential elenents, each containing information for a specific
security mechanism but all referring to the same entity.

A credential may be used to performcontext initiation, acceptance,
or both.

GSS- APl i npl ement ati ons nust inpose a |ocal access-control policy on
callers to prevent unauthorized callers fromacquiring credentials to
which they are not entitled. GSS-APlI credential creation is not
intended to provide a "login to the network” function, as such a
function would involve the creation of new credentials rather than
merely acquiring a handle to existing credentials. Such functions,

if required, should be defined in inplenentation-specific extensions
to the API.

If credential acquisition is tine-consum ng for a nechanism the
mechani sm nay choose to delay the actual acquisition until the
credential is required (e.g., by GSSContext). Such nechani sm
specific inplenentation decisions should be invisible to the calling
application; thus, the query methods i nmedi ately follow ng the
creation of a credential object rmust return valid credential data,
and may therefore incur the overhead of a deferred credenti al

acqui sition.

Applications will create a credential object passing the desired
paraneters. The application can then use the query nethods to obtain
specific informati on about the instantiated credential object
(equivalent to the gss_inquire routines). Wen the credential is no
| onger needed, the application should call the dispose (equivalent to
gss_rel ease _cred) nethod to rel ease any resources held by the
credential object and to destroy any cryptographically sensitive

i nformati on.

Cl asses inplenenting this interface also inplenent the C oneable
interface. This indicates that the class will support the clone()
met hod that will allow the creation of duplicate credentials. This
is useful when called just before the add() call to retain a copy of
the original credential

Upadhyay & Mal kani St andards Track [Page 48]

RFC 5653 Java GSS- APl Updat e August 2009

7.3.1. Exanple Code
Thi s exanpl e code denonstrates the creation of a GSSCredenti al
i npl ementation for a specific entity, querying of its fields, and its
rel ease when it is no | onger needed.
GSShanager ngr = GSSManager. get |l nstance();

/] start by creating a name object for the entity
GSSNane name = ngr. creat eNane("user Name", GSSNane. NT_USER NAME)

/1 now acquire credentials for the entity
GSSCredential cred = ngr.createCredential (naneg,
GSSCr edent i al . ACCEPT_ONLY) ;
/1 display credential information - name, remaining lifetine,
/1 and the mechanisnms it has been acquired over
print(cred.getNane().toString());
print(cred. get Renai ni ngLifetine());
G d[] nmechs = cred. get Mechs();
if (mechs !'= null) {
for (int i = 0; i < mechs.length; i++)
print(nmechs[i].toString());

/'l release systemresources held by the credentia
cred. di spose();

7.3.2. Static Constants
public static final int I N TIATE AND ACCEPT

Credential usage flag requesting that it be able to be used for both
context initiation and acceptance. The value of this constant is O.

public static final int I N TIATE ONLY

Credential usage flag requesting that it be able to be used for
context initiation only. The value of this constant is 1

public static final int ACCEPT_ONLY

Credential usage flag requesting that it be able to be used for
context acceptance only. The value of this constant is 2.

public static final int DEFAULT_ LI FETI ME

Alifetine constant representing the default credential lifetine.

Upadhyay & Mal kani St andards Track [Page 49]

RFC 5653 Java GSS- APl Updat e August 2009

The val ue of this constant is O.
public static final int |INDEFIN TE_LIFETI ME
Alifetinme constant representing indefinite credential lifetine. The
val ue of this constant is the nmaxi muminteger value in Java -
I nt eger. MAX_VALUE.

7.3.3. dispose
public void dispose() throws GSSException
Rel eases any sensitive information that the GSSCredential object may
be containing. Applications should call this nethod as soon as the
credential is no longer needed to nmininmize the time any sensitive
i nformati on i s maintained.

7.3.4. get Nane
publ i c GSSNane get Nane() throws GSSException
Retrieves the nane of the entity that the credential asserts.

7.3.5. getNane
public GSSNane get Nane(QG d nmechd D) t hrows GSSException
Retrieves a nmechani smnane of the entity that the credential asserts
Equi val ent to calling canonicalize() on the nane returned by section
7.3.4.

Par anet ers:

mechd D: The nmechani sm for which informati on shoul d be
r et ur ned.

7.3.6. getRenminingLifetine
public int getRemainingLifetinme() throws GSSException

Returns the remaining lifetime in seconds for a credential. The
remaining lifetime is the mninumlifetine for any of the underlying
credential mechanisms. A return val ue of
GSSCredential . | NDEFI NI TE_LI FETI ME i ndi cates that the credential does
not expire. A return value of O indicates that the credential is

al ready expired.

Upadhyay & Mal kani St andards Track [Page 50]

RFC 5653 Java GSS- APl Updat e August 2009

7.3.7. getRenmmininglnitLifetine
public int getRemaininglnitLifetinme(G d mech) throws GSSException
Returns the remaining lifetime in seconds for the credential to
remai n capable of initiating security contexts under the specified
mechanism A return val ue of GSSCredential.|NDEFI NI TE LI FETI ME
i ndi cates that the credential does not expire for context initiation.
A return value of 0 indicates that the credential is already expired.
Par anet er s:

nmechd D: The mechani sm for which information should be
ret ur ned.

7.3.8. getRemmi ni ngAcceptLifetinme
public int getRenmi ni ngAcceptLifetinme(GO d nech) throws GSSException
Returns the remaining lifetine in seconds for the credential to
remai n capabl e of accepting security contexts under the specified
mechanism A return val ue of GSSCredential .| NDEFI NI TE LI FETI MVE
indicates that the credential does not expire for context acceptance.
A return value of 0 indicates that the credential is already expired.

Par anet ers:

mechd D: The nmechani sm for which informati on shoul d be
r et ur ned.

7.3.9. getUsage
public int getUsage() throws GSSException
Returns the credential usage flag as a union over all nechanisns.
The return value will be one of GSSCredential.|N TI ATE AND ACCEPT(0),
GSSCredential . NI TIATE_ ONLY(1), or GSSCredential . ACCEPT_ONLY(2).
7.3.10. getUsage
public int getUsage(G d nmechO D) throws GSSException
Returns the credential usage flag for the specified nechanismonly.

The return value will be one of GSSCredential.lN TI ATE_AND ACCEPT(O0),
GSSCredential . | NI TI ATE_ONLY(1), or GSSCredential . ACCEPT_ONLY(2).

Upadhyay & Mal kani St andards Track [Page 51]

RFC 5653 Java GSS- APl Updat e August 2009

Par anet ers:

mechd D: The nmechani sm for which informati on shoul d be
r et ur ned.

7.3.11. getMechs

public G d[] getMechs() throws GSSException

Returns an array of mechani sms supported by this credential
7.3.12. add

public void add(GSSNanme aNane, int initLifetinme, int acceptLifetine,
O d nech, int usage) throws GSSException

Adds a mechani smspecific credential-elenent to an existing
credential. This nethod allows the construction of credentials one
nechanismat a tine.

This routine is envisioned to be used mainly by context acceptors
during the creation of acceptance credentials, which are to be used
with a variety of clients using different security mechani sns.

This routine adds the new credential elenent "in-place". To add the
element in a new credential, first call clone() to obtain a copy of
this credential, then call its add() nethod.

Par anet er s:

aNane: Nanme of the principal for whomthis credentia
is to be acquired. Use "null" to specify the
defaul t principal.

initLifetime: The nunber of seconds that credentials should
remain valid for initiating of security
contexts. Use
GSSCr edenti al . | NDEFI NI TE_LI FETI ME to request
that the credentials have the nmaxi mum pernitted
lifetime. Use GSSCredential . DEFAULT_ LI FETI ME
to request default credential lifetine.

acceptLifetine: The nunber of seconds that credentials should

remain valid for accepting of security
cont exts.

Upadhyay & Mal kani St andards Track [Page 52]

RFC 5653 Java GSS- APl Updat e August 2009

Use GSSCredential .| NDEFI NI TE_LI FETI ME to
request that the credentials have the maxinmum
permitted lifetime. Use

GSSCr edent i al . DEFAULT_LI FETI ME to request
default credential lifetine.

nmech: The mechani sns over which the credential is to
be acqui red.

usage: The intended usage for this credential object.
The val ue of this paranmeter nust be one of:

GSSCr edenti al . | NI TI ATE_AND_ACCEPT(0) ,
GSSCredential . | NI TIATE_ONLY(1), or
GSSCr edent i al . ACCEPT_ONLY(2)

7.3.13. equals
public bool ean equal s(bj ect anot her)

Tests if this GSSCredential refers to the same entity as the supplied
object. The two credentials nust be acquired over the same
mechani sms and nust refer to the same principal. Returns "true" if
the two GSSCredentials refer to the sanme entity; "fal se" otherw se
(Note that the Java | anguage specification [JLS] requires that two
obj ects that are equal according to the equal s(Qhject) nethod nust
return the same integer result when the hashCode() nethod is called
on them)

Par anet ers:
anot her: Anot her GSSCredential object for conparison.
7.4. public interface GSSContext

This interface encapsul ates the GSS-APlI security context and provides
the security services (wap, unwap, getMC, verifyMC) that are
avai |l abl e over the context. Security contexts are established

bet ween peers using locally acquired credentials. Miltiple contexts
may exi st sinultaneously between a pair of peers, using the sane or
different set of credentials. GSS-APlI functions in a manner

i ndependent of the underlying transport protocol and depends on its
calling application to transport its tokens between peers.

Upadhyay & Mal kani St andards Track [Page 53]

RFC 5653 Java GSS- APl Updat e August 2009

Bef ore the context establishnent phase is initiated, the context
initiator may request specific characteristics desired of the
establi shed context. These can be set using the set nmethods. After
the context is established, the caller can check the actua
characteristic and services offered by the context using the query
net hods.

The context establishnent phase begins with the first call to the
init method by the context initiator. During this phase, the

i nitSecContext and accept SecContext nethods will produce GSS-AP

aut henti cati on tokens, which the calling application needs to send to
its peer. If an error occurs at any point, an exception wll get
thrown and the code will start executing in a catch block. [|f not,
the nornmal flow of code continues and the application can nake a cal
to the isEstablished() nmethod. |If this nethod returns "false" it
indicates that a token is needed fromits peer in order to continue
the context establishnment phase. A return value of "true" signals
that the local end of the context is established. This may stil
require that a token be sent to the peer, if one is produced by GSS-
APl . During the context establishnent phase, the isProtReady()

met hod nmay be called to deternmine if the context can be used for the
per - message operations. This allows applications to use per-nmessage
operations on contexts that aren’t fully established.

After the context has been established or the isProtReady() nethod
returns "true", the query routines can be invoked to determ ne the
actual characteristics and services of the established context. The
application can also start using the per-nmessage net hods of wap and
getM C to obtain cryptographic operations on application supplied
dat a.

When the context is no |longer needed, the application should cal
di spose to rel ease any systemresources the context may be using.

7.4.1. Exanple Code

The exanpl e code presented bel ow denonstrates the usage of the
GSSContext interface for the initiating peer. Different operations
on the GSSCont ext object are presented, including: object
instantiation, setting of desired flags, context establishnment, query
of actual context flags, per-nmessage operations on application data,
and finally context deletion.

GSShanager ngr = GSSManager. get | nstance();
/] start by creating the nanme for a service entity

GSSName target Nanme = ngr.createNane("servi ce@ost",
GSSNane. NT_HOSTBASED_SERVI CE)

Upadhyay & Mal kani St andards Track [Page 54]

RFC 5653 Java GSS- APl Updat e August 2009

/1l create a context using default credentials for the above entity
/1 and the inplenentation-specific default mechani sm
GSSCont ext context = ngr.createCont ext (target Nane,

nul |, [* default mechanism*/

nul |, /* default credentials */

GSSCont ext . | NDEFI NI TE_LI FETI ME) ;

/'l set desired context options - all others are "false" by default
cont ext . request Conf (true);

cont ext . request Mut ual Aut h(true);

cont ext . request Repl ayDet (true);

cont ext . request SequenceDet (true);

/] establish a context between peers - using byte arrays
byte[]i nTok = new byte[0];

try {
do {

byte[] outTok = context.initSecContext(inTok, O,
i nTok. | engt h) ;

/'l send the token if present
if (outTok != null)
sendToken(out Tok) ;
/1 check if we should expect nore tokens
if (context.isEstablished())
br eak;

/1 another token expected from peer
i nTok = readToken();

} while (true);
} catch (GSSException e) {
print("GSSAPI error: " + e.getMssage());

/1 display context infornmation

print("Remaining lifetinme in seconds = " + context.getLifetinme());
print("Context nechanism= " + context.getMech().toString());
print("Initiator =" + context.getSrcNane().toString());
print("Acceptor =" + context.getTargNane().toString());

i f (context.getConfState())
print("Confidentiality security service avail able");

if (context.getlntegState())

Upadhyay & Mal kani St andards Track [Page 55]

RFC 5653 Java GSS- APl Updat e August 2009

print("Integrity security service avail able");

/1 performwap on an application-supplied nessage, appMsg,
/1 using QOP = 0, and requesting privacy service

byte[] appMsg ..
MessageProp nProp = new MessageProp(0, true);
byte[] tok = context.w ap(appMsg, 0, appMsg.length, nProp);

if (nmProp.getPrivacy())
print("Message protected with privacy.");

sendToken(t ok);

/Il release the |ocal end of the context
cont ext . di spose();

7.4.2. Static Constants
public static final int DEFAULT_LI FETI ME

Alifetine constant representing the default context lifetime. The
val ue of this constant is O.

public static final int |NDEFIN TE_LIFETI ME

Alifetinme constant representing indefinite context lifetine. The
val ue of this constant is the maxi muminteger value in Java -
I nt eger. MAX_VALUE.

7.4.3. initSecContext

public byte[] initSecContext(byte[] inputBuf, int offset, int Ien)
t hrows GSSExcepti on

Called by the context initiator to start the context creation
process. This is equivalent to the stream based net hod except that
the token buffers are handl ed as byte arrays instead of using stream
objects. This nmethod may return an output token that the application
will need to send to the peer for processing by the accept call.
Typically, the application would do so by calling the flush() nethod
on an QutputStreamthat encapsul ates the connection between the two
peers. The application can call isEstablished() to deternine if the
context establishnent phase is conplete for this peer. A return

val ue of "false" fromisEstablished() indicates that nore tokens are
expected to be supplied to the initSecContext() nethod. Note that it
is possible that the initSecContext() nethod will return a token for

Upadhyay & Mal kani St andards Track [Page 56]

RFC 5653 Java GSS- APl Updat e August 2009

the peer and isEstablished() will return "true" also. This indicates
that the token needs to be sent to the peer, but the l|local end of the
context is now fully established.

Upon conpl etion of the context establishment, the avail abl e context
options may be queried through the get nethods.

Par anet ers:

i nput Buf : Token generated by the peer. This paraneter is
ignored on the first call.

of fset: The offset within the inputBuf where the token
begi ns.

| en: The I ength of the token within the inputBuf

(starting at the offset).
7.4.4. Exanple Code

/| Create a new GSSContext inplenmentation object.
/| GSSCont ext wrapper inplenents interface GSSContext.
GSSCont ext context = ngr.createContext(...);

byte[] inTok = new byte[O0];

try {
do {

byte[] outTok = context.initSecContext(inTok, O,
i nTok. | engt h);

/'l send the token if present
if (outTok !'= null)
sendToken(out Tok) ;

/1l check if we should expect nore tokens
if (context.isEstablished())
br eak;

/'l anot her token expected from peer
i nTok = readToken();
} while (true);

} catch (GSSException e) {
print("GSSAPI error: " + e.getMessage());
}

Upadhyay & Mal kani St andards Track [Page 57]

RFC 5653 Java GSS- APl Updat e August 2009

7.4.5. initSecContext

public int initSecContext(lnputStreaminStream
Qut put St ream out St ream) throws GSSExcepti on

Called by the context initiator to start the context creation
process. This is equivalent to the byte-array-based nethod. This
met hod may wite an output token to the out Stream which the
application will need to send to the peer for processing by the

accept call. Typically, the application would do so by calling the
flush() nethod on an QutputStreamthat encapsul ates the connection
between the two peers. The application can call isEstablished() to

deternmine if the context establishnment phase is conplete for this
peer. A return value of "false" fromisEstablished indicates that
nore tokens are expected to be supplied to the initSecContext nethod.
Note that it is possible that the initSecContext() nmethod will return
a token for the peer and isEstablished() will return "true" also.
This indicates that the token needs to be sent to the peer, but the

| ocal end of the context is now fully established.

The GSS- APl aut hentication tokens contain a definitive start and end.
This method will attenpt to read one of these tokens per invocation
and may bl ock on the streamif only part of the token is avail able.

Upon conpl etion of the context establishment, the avail abl e context
options may be queried through the get nethods.

Par anet ers:

i nStream Contai ns the token generated by the peer. This
paraneter is ignored on the first call.

out St ream Qut put stream where the output token will be
written. During the final stage of context
establi shnent, there nmay be no bytes witten.

7.4.6. Exanple Code

This sanple code nerely denonstrates the token exchange during the
context establishnent phase. It is expected that nost Java
applications will use custominplenentations of the I nput and Qut put
streans that encapsul ate the conmunication routines. For instance, a
sinmple read on the application | nputStream when called by the
Context, mght cause a token to be read fromthe peer, and a sinple
flush() on the application QutputStream ni ght cause a previously
witten token to be transmitted to the peer.

Upadhyay & Mal kani St andards Track [Page 58]

RFC 5653 Java GSS- APl Updat e August 2009

/1l Create a new GSSContext inplenentation object.

/| GSSCont ext wrapper inplenents interface GSSContext.
GSSCont ext context = ngr.createContext(...);

/1 use standard java.io stream objects

Byt eArrayQut put St ream os = new Byt eArrayQut put Strean();
Byt eArrayl nput Streamis = null;

try {
do {
context.initSecContext(is, 0S);

/1 send token if present
if (os.size() > 0)
sendToken(o0s);
/'l check if we should expect nore tokens
if (context.isEstablished())
br eak;

/'l anot her token expected from peer
is = recvToken();

} while (true);
} catch (GSSException e) {
print("GSSAPI error: " + e.getMessage());
7.4.7. accept SecCont ext

public byte[] acceptSecContext(byte[] inTok, int offset, int |len)
t hr ows GSSExcepti on

Call ed by the context acceptor upon receiving a token fromthe peer.

This call is equivalent to the stream based nethod except that the
token buffers are handled as byte arrays instead of using stream
obj ect s.

This method may return an output token that the application will need
to send to the peer for further processing by the init call

The "null" return value indicates that no token needs to be sent to

the peer. The application can call isEstablished() to determine if

the context establishnment phase is conplete for this peer. A return
val ue of "false" fromisEstablished() indicates that nore tokens are
expected to be supplied to this method.

Upadhyay & Mal kani St andards Track [Page 59]

RFC 5653 Java GSS- APl Updat e August 2009

Note that it is possible that acceptSecContext() will return a token
for the peer and isEstablished() will return "true" also. This

i ndi cates that the token needs to be sent to the peer, but the |oca
end of the context is now fully established.

Upon conpl etion of the context establishment, the avail abl e context
options may be queried through the get nethods.

Par anet ers:

i nTok: Token generated by the peer
of fset: The offset within the inTok where the token begins
| en: The length of the token within the inTok (starting

at the offset).
7.4.8. Exanple Code

/1 acquire server credentials
GSSCredential server = ngr.createCredential (...);

/1l create acceptor GSS-API context fromthe default provider
GSSCont ext context = ngr.createContext(server, null);

try {
do {
byte[] inTok = readToken();

byte[] out Tok = context.accept SecCont ext (i nTok, O,
i nTok. | engt h);

/1 possibly send token to peer
if (outTok != null)
sendToken(out Tok) ;

/1 check if local context establishment is conplete
if (context.isEstablished())
br eak;
} while (true);

} catch (GSSException e) {
print("GSS-APl error: " + e.getMessage());

Upadhyay & Mal kani St andards Track [Page 60]

RFC 5653 Java GSS- APl Updat e August 2009

7.4.9. accept SecCont ext

public void accept SecCont ext (I nput Stream i nSt ream
Qut put St ream out St ream) throws GSSExcepti on

Call ed by the context acceptor upon receiving a token fromthe peer
This call is equivalent to the byte array nethod. It may wite an
out put token to the outStream which the application will need to
send to the peer for processing by its initSecContext nethod.
Typically, the application would do so by calling the flush() method
on an QutputStream that encapsul ates the connection between the two
peers. The application can call isEstablished() to deternine if the
context establishnent phase is conplete for this peer. A return

val ue of "false" fromisEstablished() indicates that nore tokens are
expected to be supplied to this method.

Note that it is possible that acceptSecContext() will return a token
for the peer and isEstablished() will return "true" also. This

i ndi cates that the token needs to be sent to the peer, but the |oca
end of the context is now fully established.

The GSS- APl aut hentication tokens contain a definitive start and end.
This method will attenpt to read one of these tokens per invocation
and nay block on the streamif only part of the token is avail able.

Upon conpl etion of the context establishment, the avail abl e context
options may be queried through the get nethods.

Par anet er s:
i nStream Contai ns the token generated by the peer

out St ream Qut put stream where the output token will be
written. During the final stage of context
establi shnent, there nmay be no bytes witten.

7.4.10. Exanple Code

This sanple code nerely denonstrates the token exchange during the
context establishnent phase. It is expected that nost Java
applications will use custominplenentations of the I nput and Qut put
streans that encapsul ate the conmunication routines. For instance, a
sinmple read on the application | nputStream when called by the
Context, mght cause a token to be read fromthe peer, and a sinple
flush() on the application QutputStream ni ght cause a previously
witten token to be transmitted to the peer.

Upadhyay & Mal kani St andards Track [Page 61]

RFC 5653 Java GSS- APl Updat e August 2009

/1 acquire server credentials
GSSCredential server = nmgr.createCredential (...);

/'l create acceptor GSS-APlI context fromthe default provider
GSSCont ext context = ngr.createContext(server, null);

/1l use standard java.io stream objects

Byt eArrayQut put St ream os = new Byt eArrayQut put Strean();
Byt eArrayl nput Streamis = null

try {
do {

is = recvToken();

cont ext . accept SecContext (i s, 0S);

/1 possibly send token to peer

if (os.size() > 0)

sendToken(o0s);
/'l check if local context establishnment is conplete
if (context.isEstablished())
br eak;
} while (true);
} catch (GSSException e) {
print("GSS-APlI error: " + e.getMessage());
7.4.11. isEstablished
public bool ean i sEstablished()
Used during context establishnent to deternmine the state of the
context. Returns "true" if this is a fully established context on
the caller’s side and no nore tokens are needed fromthe peer
Shoul d be called after a call to initSecContext() or
accept SecCont ext () when no GSSException is thrown.
7.4.12. dispose

public void dispose() throws GSSException

Rel eases any system resources and cryptographic information stored in
the context object. This will invalidate the context.

Upadhyay & Mal kani St andards Track [Page 62]

RFC 5653 Java GSS- APl Updat e August 2009

7.4.13. getWapSi zeLimt

public int getWapSi zeLinit(int gqop, bool ean confReq,
i nt maxTokenSi ze) throws GSSException

Returns t he maxi num nmessage size that, if presented to the wap
met hod with the sanme confReq and qop paraneters, will result in an
out put token containing no nore than the maxTokenSi ze byt es.

This call is intended for use by applications that conmuni cate over
protocol s that inmpose a maxi num nessage size. It enables the
application to fragnent nessages prior to applying protection.

GSS- APl i npl enent ati ons are recommended but not required to detect
invalid QOP val ues when getWapSi zeLinit is called. This routine
guarantees only a maxi num nessage size, not the availability of
specific QOP values for nessage protection

Successful conpletion of this call does not guarantee that wap will
be able to protect a nessage of the conputed length, since this
ability may depend on the availability of systemresources at the
time that wap is called. However, if the inplenentation itself

i nposes an upper limt on the length of nessages that may be
processed by wrap, the inplenentation should not return a val ue that
is greater than this |ength.

Par anet ers:

gop: Indicates the |l evel of protection wap will be asked
to provide.

conf Req: Indicates if wap will be asked to provide privacy
servi ce.

maxTokenSi ze: The desired maxi mum size of the token emtted by
wrap.

7.4.14. wap

public byte[] wap(byte[] inBuf, int offset, int len
MessageProp nsgProp) throws GSSException

Appl i es per-nessage security services over the established security
context. The nethod will return a token with a cryptographic MC and
may optionally encrypt the specified inBuf. This nmethod is
equivalent in functionality to its streamcounterpart. The returned
byte array will contain both the MC and the nessage.

Upadhyay & Mal kani St andards Track [Page 63]

RFC 5653 Java GSS- APl Updat e August 2009

The MessageProp object is instantiated by the application and used to
specify a QOP value that selects cryptographic algorithnms, and a
privacy service to optionally encrypt the nmessage. The underlying
mechanismthat is used in the call may not be able to provide the

privacy service. It sets the actual privacy service that it does
provide in this MessageProp object, which the caller should then
query upon return. |If the nechanismis not able to provide the

requested QOP, it throws a GSSException with the BAD QOP code.

Since sonme application-level protocols may wi sh to use tokens emtted
by wap to provide "secure fram ng", inplenmentations should support
the wrappi ng of zero-Ilength nessages.

The application will be responsible for sending the token to the
peer.

Par anet ers:

i nBuf : Application data to be protected.
of fset: The offset within the i nBuf where the data begins.
| en: The length of the data within the inBuf (starting at

the offset).

nmsgPr op: I nstance of MessageProp that is used by the
application to set the desired QOP and privacy
state. Set the desired QOP to O to request the
default QOP. Upon return fromthis method, this
object will contain the actual privacy state that
was applied to the nessage by the underlying
nmechani sm

7.4.15. wap

public void wap(lnputStreaminStream Qutput Stream out Stream
MessageProp nsgProp) throws GSSException

Allows to apply per-nmessage security services over the established
security context. The nmethod will produce a token with a
cryptographic M C and nmay optionally encrypt the nmessage in inStream
The outStreamwi ||l contain both the MC and the nessage.

The MessageProp object is instantiated by the application and used to
specify a QOP value that selects cryptographic algorithnms, and a
privacy service to optionally encrypt the nmessage. The underlying
mechanismthat is used in the call may not be able to provide the
privacy service. It sets the actual privacy service that it does

Upadhyay & Mal kani St andards Track [Page 64]

RFC 5653 Java GSS- APl Updat e August 2009

provide in this MessageProp object, which the caller should then
query upon return. |If the nechanismis not able to provide the
requested QOP, it throws a GSSException with the BAD QOP code.

Since sone application-level protocols may wi sh to use tokens emitted
by wap to provide "secure fram ng", inplenentations should support
the wrappi ng of zero-length nessages.

The application will be responsible for sending the token to the
peer.

Par anet ers:

i nStream I nput stream containing the application data to be
pr ot ect ed.
out St r eam The output streamto which to wite the protected

message. The application is responsible for sending
this to the other peer for processing in its unwap
nmet hod.

nmsgPr op: I nstance of MessageProp that is used by the
application to set the desired QOP and privacy
state. Set the desired QOP to 0 to request the
default QOP. Upon return fromthis nmethod, this
object will contain the actual privacy state that
was applied to the nmessage by the underlying
mechani sm

7.4.16. unwrap

public byte[] unwap(byte[] inBuf, int offset, int len
MessageProp nmsgProp) throws GSSException

Used by the peer application to process tokens generated with the
wrap call. This call is equal in functionality to its stream
counterpart. The nethod will return the nessage supplied in the peer
application to the wap call, verifying the enbedded M C.

The MessageProp object is instantiated by the application and is used
by the underlying mechanismto return information to the caller such
as the QOP, whether confidentiality was applied to the nessage, and
ot her suppl enentary nessage state information.

Si nce some application-level protocols may wish to use tokens enitted

by wap to provide "secure fram ng", inplenmentations should support
t he wrappi ng and unwr appi ng of zero-length nessages.

Upadhyay & Mal kani St andards Track [Page 65]

RFC 5653 Java GSS- APl Updat e August 2009

Par anet ers:

i nBuf : GSS- APl wrap token received from peer.
of fset: The offset within the i nBuf where the token begins.
| en: The I ength of the token within the inBuf (starting

at the offset).

nmsgPr op: Upon return fromthe nethod, this object wll
contain the applied QOP, the privacy state of the
message, and suppl enentary information, described in
section 5.12.3, stating whether the token was a
duplicate, old, out of sequence, or arriving after a

gap.
7.4.17. unwap

public void unwap(l nput StreaminStream QutputStream out Stream
MessageProp nmsgProp) throws GSSException

Used by the peer application to process tokens generated with the
wrap call. This call is equal in functionality to its byte array
counterpart. It will produce the nessage supplied in the peer
application to the wap call, verifying the enbedded M C.

The MessageProp object is instantiated by the application and is used
by the underlying nmechanismto return information to the caller such
as the QOP, whether confidentiality was applied to the nmessage, and
ot her suppl enentary nessage state information.

Si nce some application-level protocols nmay wish to use tokens enitted
by wap to provide "secure fram ng", inplenmentations should support
t he wrappi ng and unwr appi ng of zero-length nessages.

Par anet ers:

i nStream I nput stream containing the GSS-API w ap token
received fromthe peer.

out St r eam The output streamto which to wite the application
nessage.

Upadhyay & Mal kani St andards Track [Page 66]

RFC 5653 Java GSS- APl Updat e August 2009

nsgPr op: Upon return fromthe nethod, this object wll
contain the applied QOP, the privacy state of the
nmessage, and suppl enentary information, described in
section 5.12.3, stating whether the token was a
duplicate, old, out of sequence, or arriving after a

gap.
7.4.18. getMC

public byte[] getM C(byte[] inMsg, int offset, int len,
MessageProp nsgProp) throws GSSException

Returns a token containing a cryptographic MC for the supplied
nmessage for transfer to the peer application. Unlike wap, which
encapsul ates the user nessage in the returned token, only the nmessage
MC is returned in the output token. This nmethod is identical in
functionality to its stream counterpart.

Note that privacy can only be applied through the wap call.
Si nce some application-level protocols may wish to use tokens enitted
by getMC to provide "secure fram ng", inplenentations should support

derivation of MCs from zero-|length nessages.

Par anet ers:

i nMsg: Message over which to generate MC.
of fset: The offset within the inMsg where the token begins.
| en: The I ength of the token within the inMg (starting

at the offset).

nmsgPr op: I nstance of MessageProp that is used by the
application to set the desired QOP. Set the desired
QP to 0 in nsgProp to request the default QOP.
Alternatively, pass in "null" for nsgProp to request
defaul t QOP.

Upadhyay & Mal kani St andards Track [Page 67]

RFC 5653 Java GSS- APl Updat e August 2009

7.4.19. getMC

public void getM C(I nput Stream i nStream QutputStream out Stream
MessageProp nmsgProp) throws GSSException

Produces a token containing a cryptographic MC for the supplied
message, for transfer to the peer application. Unlike wap, which
encapsul ates the user nessage in the returned token, only the nessage
MC is produced in the output token. This nmethod is identical in
functionality to its byte array counterpart.

Note that privacy can only be applied through the wap call.

Si nce some application-level protocols nmay wish to use tokens enitted
by getMC to provide "secure franmi ng", inplenentations should support
derivation of MCs from zero-|ength nessages.

Par anet ers:

i nStream I nput stream containing the nmessage over which to
generate M C.

out St r eam Qut put streamto which to wite the GSS-APlI out put
t oken.
nmsgPr op: I nstance of MessageProp that is used by the

application to set the desired QOP. Set the desired
QP to 0 in nmsgProp to request the default QOP.
Alternatively, pass in "null" for msgProp to request

default QOP.
7.4.20. verifyMC

public void verifyM C(byte[] inTok, int tokOffset, int tokLen,
byte[] inMsg, int msgOfset, int nsglLen,
MessageProp nsgProp) throws GSSException

Verifies the cryptographic MC, contained in the token paraneter,
over the supplied nmessage. This nethod is equivalent in
functionality to its stream counterpart.

The MessageProp object is instantiated by the application and is used
by the underlying nmechanismto return information to the caller such
as the QOP indicating the strength of protection that was applied to
the message and ot her suppl enmentary nmessage state infornation.

Upadhyay & Mal kani St andards Track [Page 68]

RFC 5653 Java GSS- APl Updat e August 2009

Since sone application-level protocols may wi sh to use tokens emtted
by getMC to provide "secure frami ng", inplenentations should support
the calculation and verification of MCs over zero-length nessages.

Par anet ers:

i nTok: Token generated by peer’s getM C net hod
tokOf f set: The of fset within the inTok where the token begins.
t okLen: The I ength of the token within the inTok (starting

at the offset).

i nMsQ: Application message over which to verify the
cryptographic M C.

msgdf f set : The offset within the inMsg where the nmessage
begi ns.
nmsglLen: The length of the nessage within the inMsg (starting

at the offset).

nmsgPr op: Upon return fromthe nethod, this object wll
contain the applied QOP and suppl enentary
i nformati on, described in section 5.12.3, stating
whet her the token was a duplicate, old, out of
sequence, or arriving after a gap. The
confidentiality state will be set to "fal se"

7.4.21. verifyMC

public void verifyM C(I nput StreamtokStream | nputStream nsgStream
MessageProp nmsgProp) throws GSSException

Verifies the cryptographic MC, contained in the token paraneter,
over the supplied nessage. This nethod is equivalent in
functionality to its byte array counterpart.

The MessageProp object is instantiated by the application and is used
by the underlying nmechanismto return information to the caller such
as the QOP indicating the strength of protection that was applied to
the message and ot her suppl enentary nessage state information

Si nce some application-level protocols may wish to use tokens enitted

by getMC to provide "secure frami ng", inplenentations should support
the cal culation and verification of MCs over zero-length nessages.

Upadhyay & Mal kani St andards Track [Page 69]

RFC 5653 Java GSS- APl Updat e August 2009

Par anet ers:

t okSt ream I nput stream containing the token generated by the
peer’s getM C net hod.

nsgSt r eam | nput stream containing the application nmessage over
which to verify the cryptographic MC.

nmsgPr op: Upon return fromthe nethod, this object wll
contain the applied QOP and suppl ementary
i nformati on, described in section 5.12.3, stating
whet her the token was a duplicate, old, out of
sequence, or arriving after a gap. The
confidentiality state will be set to "fal se"

7.4.22. export
public byte[] export() throws GSSException

Provi ded to support the sharing of work between nmultiple processes.
This routine will typically be used by the context acceptor, in an
application where a single process receives incom ng connection
requests and accepts security contexts over them then passes the
establ i shed context to one or nore other processes for nessage
exchange.

Thi s method deactivates the security context and creates an inter-
process token whi ch, when passed to the byte array constructor of the
GSSContext interface in another process, will re-activate the context
in the second process. Only a single instantiation of a given
context nmay be active at any one tine; a subsequent attenpt by a
context exporter to access the exported security context will fail.

The inplenentati on may constrain the set of processes by which the

i nter-process token may be inported, either as a function of |oca
security policy, or as a result of inplenentation decisions. For
exanpl e, sone inplenentations nay constrain contexts to be passed
only between processes that run under the same account, or which are
part of the same process group.

The inter-process token nmay contain security-sensitive information
(for exanple, cryptographic keys). Wile nechanisns are encouraged
to either avoid placing such sensitive information within inter-
process tokens or to encrypt the token before returning it to the
application, in a typical GSS-APlI inplenentation, this may not be
possi ble. Thus, the application nust take care to protect the

i nter-process token, and ensure that any process to which the token
is transferred is trustworthy.

Upadhyay & Mal kani St andards Track [Page 70]

RFC 5653 Java GSS- APl Updat e August 2009

7.4.23. request Mutual Auth
public void request Miut ual Aut h(bool ean state) throws GSSException
Sets the request state of the nutual authentication flag for the
context. This nmethod is only valid before the context creation
process begins and only for the initiator.

Par anet ers:

Sstate: Bool ean representing if mnutual authentication should
be requested during context establishnent.

7.4.24. request Repl ayDet
public void request Repl ayDet (bool ean state) throws GSSException
Sets the request state of the replay detection service for the
context. This nmethod is only valid before the context creation
process begins and only for the initiator.

Par anet ers:

state: Bool ean representing if replay detection is desired
over the established context.

7.4.25. request SequenceDet
public void request SequenceDet (bool ean state) throws GSSException
Sets the request state for the sequence checki ng service of the
context. This method is only valid before the context creation
process begins and only for the initiator.

Par anet er s:

state: Bool ean representing if sequence detection is
desired over the established context.

7.4.26. request CredDel eg
public void request CredDel eg(bool ean state) throws GSSException
Sets the request state for the credential delegation flag for the

context. This nmethod is only valid before the context creation
process begins and only for the initiator.

Upadhyay & Mal kani St andards Track [Page 71]

RFC 5653 Java GSS- APl Updat e August 2009

Par anet ers:

st at e: Bool ean representing if credential delegation is
desired.

7.4.27. requestAnonynity
public void request Anonynity(bool ean state) throws GSSException
Request s anonynmous support over the context. This nmethod is only
valid before the context creation process begins and only for the
initiator.
Par anet ers:

state: Bool ean representing if anonynmity support is
request ed.

7.4.28. request Conf
public void request Conf(bool ean state) throws GSSException
Requests that confidentiality service be avail abl e over the context.
This method is only valid before the context creation process begins
and only for the initiator.

Par anet ers:

Sstate: Boolean indicating if confidentiality services are
to be requested for the context.

7.4.29. requestinteg
public void requestlnteg(bool ean state) throws GSSException
Requests that integrity services be avail able over the context. This
method is only valid before the context creation process begins and
only for the initiator.

Par anet ers:

state: Boolean indicating if integrity services are to be
requested for the context.

Upadhyay & Mal kani St andards Track [Page 72]

RFC 5653 Java GSS- APl Updat e August 2009

7.4.30. requestLifetine
public void requestLifetine(int lifetine) throws GSSException
Sets the desired lifetime for the context in seconds. This nmethod is
only valid before the context creation process begins and only for
the initiator. Use GSSContext.|NDEFIN TE LI FETI ME and
GSSCont ext . DEFAULT LI FETIME to request indefinite or default context
lifetinme.
Par anet er s:
lifetime: The desired context lifetime in seconds.
7.4.31. set Channel Bi ndi ng
public void set Channel Bi ndi ng(Channel Bi ndi ng cb) throws GSSException

Sets the channel bindings to be used during context establishnent.
This method is only valid before the context creation process begins.

Par anet ers:
cb: Channel bindings to be used.
7.4.32. getCredDel egState
publ i c bool ean get CredDel egSt ate()

Returns the state of the del egated credentials for the context. When
i ssued before context establishnent is conpleted or when the

i sProt Ready nethod returns "false", it returns the desired state;
otherwise, it will indicate the actual state over the established
cont ext .

7.4.33. getMitual Aut hSt ate
publ i c bool ean get Mut ual Aut hSt at e()

Returns the state of the nutual authentication option for the
context. Wen issued before context establishnment conpletes or when

the i sProt Ready nethod returns "false", it returns the desired state;
otherwise, it will indicate the actual state over the established
cont ext .

Upadhyay & Mal kani St andards Track [Page 73]

RFC 5653 Java GSS- APl Updat e August 2009

7.4.34. getReplayDet State
publ i c bool ean get Repl ayDet St at e()

Returns the state of the replay detection option for the context.
When i ssued before context establishnment conpl etes or when the

i sProt Ready nethod returns "false", it returns the desired state;
otherwise, it will indicate the actual state over the established
cont ext .

7.4.35. getSequenceDet State
publ i c bool ean get SequenceDet St at e()

Returns the state of the sequence detection option for the context.
When issued before context establishment conpl etes or when the

i sProt Ready nethod returns "false", it returns the desired state;
otherwise, it will indicate the actual state over the established
cont ext .

7.4.36. getAnonynityState
publ i c bool ean get AnonynityState()
Returns "true" if this is an anonynous context. Wen issued before
cont ext establishment conpletes or when the isProtReady method
returns "false", it returns the desired state; otherwise, it wll
indicate the actual state over the established context.

7.4.37. isTransferable
public bool ean isTransferable() throws GSSException
Returns "true" if the context is transferable to other processes
t hrough the use of the export method. This call is only valid on
fully established contexts.

7.4.38. isProtReady
publ i c bool ean i sProt Ready()
Returns "true" if the per-nessage operations can be applied over the
context. Sone nechanisns nmay all ow the usage of per-nessage
operations before the context is fully established. This will also

i ndicate that the get nmethods will return actual context state
characteristics instead of the desired ones.

Upadhyay & Mal kani St andards Track [Page 74]

RFC 5653 Java GSS- APl Updat e August 2009

7.4.39. getConfState
public bool ean get Conf State()
Returns the confidentiality service state over the context. Wen
i ssued before context establishnent conpletes or when the isProtReady
nmet hod returns "false", it returns the desired state; otherwise, it
will indicate the actual state over the established context.

7.4.40. getlintegState
public bool ean getl ntegState()
Returns the integrity service state over the context. \Wen issued
bef ore context establishnment conpl etes or when the isProtReady nethod
returns "false", it returns the desired state; otherwise, it wll
indicate the actual state over the established context.

7.4.41. getLifetinme
public int getLifetinme()
Returns the context lifetine in seconds. \Wen issued before context
est abl i shnent conpl etes or when the isProt Ready nethod returns
"false", it returns the desired lifetine; otherwise, it will indicate
the remaining lifetinme for the context.

7.4.42. get SrcNane

public GSSNane get SrcNane() throws GSSException

Returns the name of the context initiator. This call is valid only
after the context is fully established or the isProtReady nethod
returns "true". It is guaranteed to return an M\

7.4.43. get TargNane

publ i c GSSNane get TargNane() throws GSSException

Returns the name of the context target (acceptor). This call is
valid only after the context is fully established or the isProtReady
met hod returns "true". It is guaranteed to return an M\

Upadhyay & Mal kani St andards Track [Page 75]

RFC 5653 Java GSS- APl Updat e August 2009

7.4.44. get Mech
public G d getMech() throws GSSException

Returns the nmechanismoid for this context. This nethod may be
call ed before the context is fully established, but the nechani sm
returned may change on successive calls in negotiated nechani sm case.

7.4.45. getDel egCred
public GSSCredential getDel egCred() throws GSSException

Returns the del egated credential object on the acceptor’'s side. To
check for availability of del egated credentials call

get Del egCredState. This call is only valid on fully established
cont exts.

7.4.46. islnitiator
public boolean islnitiator() throws GSSException

Returns "true" if this is the initiator of the context. This call is
only valid after the context creation process has started.

7.5. public class MessageProp

This is a utility class used within the per-nmessage GSSCont ext
nmet hods to convey per-nmessage properties.

When used with the GSSContext interface’s wap and get M C nethods, an
instance of this class is used to indicate the desired QOP and to
request if confidentiality services are to be applied to caller
supplied data (wap only). To request default QOP, the value of 0
shoul d be used for QOP.

When used with the unwap and verifyM C nethods of the GSSCont ext
interface, an instance of this class will be used to indicate the
applied QOP and confidentiality services over the supplied nessage.
In the case of verifyMC the confidentiality state will always be
"false". Upon return fromthese nethods, this object will also
contain any suppl enmentary status values applicable to the processed
token. The suppl enmentary status val ues can indicate old tokens, out
of sequence tokens, gap tokens, or duplicate tokens.

Upadhyay & Mal kani St andards Track [Page 76]

RFC 5653 Java GSS- APl Updat e August 2009

7.5.1. Constructors
public MessageProp(bool ean privState)

Constructor that sets QOP to O indicating that the default QOP is
request ed.

Par anet ers:

privState: The desired privacy state. "true" for privacy and
"false"” for integrity only.

public MessageProp(int qop, boolean privState)
Constructor that sets the values for the qop and privacy state.
Par anet ers:

gop: The desired QOP. Use 0 to request a default QOP.

privState: The desired privacy state. "true" for privacy and
"false" for integrity only.

7.5.2. getQOP
public int get QOP()
Retrieves the QOP val ue.
7.5.3. getPrivacy
publ i c bool ean get Privacy()
Retrieves the privacy state.
7.5.4. getM nor Status
public int getM norStatus()

Retrieves the minor status that the underlying nechani sm m ght have
set.

7.5.5. getMnorString
public String getM norString()

Returns a string explaining the mechani smspecific error code. "null"
wi Il be returned when no mechani smerror code has been set.

Upadhyay & Mal kani St andards Track [Page 77]

RFC 5653 Java GSS- APl Updat e August 2009

7.5.6. setQOP
public void set QOP(int qopVal)
Sets the QOP val ue.
Par anet ers:

gopVval : The QOP value to be set. Use 0 to request a default
QOP val ue.

7.5.7. setPrivacy

public void setPrivacy(bool ean privState)

Sets the privacy state.

Par anet ers:

privState: The privacy state to set.

7.5.8. isDuplicateToken

publ i c bool ean isDuplicateToken()

Returns "true" if this is a duplicate of an earlier token
7.5.9. isddToken

public bool ean i sO dToken()

Returns "true" if the token’s validity period has expired.
7.5.10. isUnseqToken

publ i c bool ean i sUnseqToken()

Returns "true" if a later token has al ready been processed.
7.5.11. isGapToken

publ i c bool ean i sGapToken()

Returns "true" if an expected per-nessage token was not received.

Upadhyay & Mal kani St andards Track [Page 78]

RFC 5653 Java GSS- APl Updat e August 2009

7.5.12. setSuppl ementarySt at es

7.

public void set Suppl ement arySt at es(bool ean dupl i cat e,
bool ean ol d, bool ean unseq, bool ean gap
int mnorStatus, String mnorString)

This method sets the state for the supplenentary information flags
and the minor status in MessageProp. It is not used by the
application but by the GSS inplenentation to return this information
to the caller of a per-nmessage context method.

Par anet ers:

dupli cat e: "true" if the token was a duplicate of an earlier
t oken; otherw se, "fal se"

ol d: "true" if the token’s validity period has expired
ot herwi se, "fal se"

unseq: "true" if a later token has already been processed
ot herwi se, "fal se"

gap: "true" if one or nore predecessor tokens have not
yet been successfully processed; otherw se, "fal se"

m nor Status: The integer minor status code that the underlying
mechani smwants to set.

m norString: The textual representation of the mnorStatus val ue.
public class Channel Bi ndi ng

The GSS- APl accommmobdat es the concept of caller-provided channe

bi ndi ng i nformati on. Channel bindings are used to strengthen the
quality with which peer entity authentication is provided during
context establishnent. They enable the GSS-APlI callers to bind the
establ i shnent of the security context to relevant characteristics
i ke addresses or to application-specific data.

The caller initiating the security context nust determ ne the
appropriate channel binding values to set in the GSSContext object.
The acceptor nust provide an identical binding in order to validate
that received tokens possess correct channel -rel ated characteristics.

Use of channel bindings is optional in GSS-API. Since channel -

bi ndi ng i nformati on may be transmitted in context establishnment

t okens, applications should therefore not use confidential data as
channel - bi ndi ng conponents.

Upadhyay & Mal kani St andards Track [Page 79]

RFC 5653 Java GSS- APl Updat e August 2009

7.6.1. Constructors

publ i ¢ Channel Bi ndi ng(| net Address initAddr, |netAddress accept Addr
byte[] appData)

Create a Channel Bi ndi ng object with user-supplied address information
and data. "null" values can be used for any fields that the
application does not want to specify.

Par anet er s:

i ni t Addr: The address of the context initiator. "null" value
can be supplied to indicate that the application
does not want to set this value.

accept Addr : The address of the context acceptor. "null" val ue
can be supplied to indicate that the application
does not want to set this val ue.

appDat a: Application-supplied data to be used as part of the
channel bindings. "null" value can be supplied to
i ndicate that the application does not want to set
this val ue.

publ i ¢ Channel Bi ndi ng(byte[] appDat a)
Creates a Channel Bi ndi ng obj ect w thout any addressing information
Par anet er s:

appDat a: Application supplied data to be used as part of the
channel bi ndi ngs.

7.6.2. getlnitiatorAddress
public Inet Address getlnitiatorAddress()

Returns the initiator’s address for this channel binding. "null" is
returned if the address has not been set.

7.6.3. getAcceptor Addr ess
public I net Address get Accept or Address()

Returns the acceptor’s address for this channel binding. "null" is
returned if the address has not been set.

Upadhyay & Mal kani St andards Track [Page 80]

RFC 5653 Java GSS- APl Updat e August 2009

7.6.4. getApplicationData
public byte[] getApplicationData()
Returns application data being used as part of the Channel Bi ndi ng.
"null" is returned if no application data has been specified for the
channel bi ndi ng.

7.6.5. equals
publ i c bool ean equal s(Obj ect obj)
Returns "true" if two channel bindings match. (Note that the Java
| anguage specification requires that two objects that are equa
according to the equal s(Cbject) method nust return the same integer
result when the hashCode() method is called on them)
Par anet ers:

obj : Anot her channel binding with which to conpare
7.7. public class Gd

This class represents Universal Object Identifiers (G ds) and their
associ at ed operati ons.

O ds are hierarchically globally interpretable identifiers used
within the GSS-API framework to identify mechani sms and nane formats.

The structure and encoding of Ods is defined in | SO EC 8824 and
| SO EC-8825. For exanple, the G d representation of the Kerberos v5
mechanismis "1.2.840.113554. 1. 2. 2".

The GSSNanme nane cl ass contains public static O d objects
representing the standard nane types defined in GSS-API

7.7.1. Constructors
public Gd(String strad) throws GSSException

Creates an O d object froma string representation of its integer
conponents (e.g., "1.2.840.113554.1.2.2").

Par anet ers:
strGd: The string representation for the oid

public G d(IlnputStreamderQ d) throws GSSException

Upadhyay & Mal kani St andards Track [Page 81]

RFC 5653 Java GSS- APl Updat e August 2009

Creates an O d object fromits DER encoding. This refers to the ful
encodi ng including tag and |l ength. The structure and encodi ng of
Gds is defined in | SO EC 8824 and | SO EC-8825. This nethod is
identical in functionality to its byte array counterpart.
Par anet ers:

der O d: St ream cont ai ni ng the DER-encoded oid
public G d(byte[] DERG d) throws GSSException
Creates an O d object fromits DER encoding. This refers to the ful
encodi ng including tag and |l ength. The structure and encodi ng of
Ods is defined in | SO EC 8824 and | SO EC-8825. This nethod is
identical in functionality to its byte array counterpart.
Par anet er s:

der O d: Byte array storing a DER-encoded oid

7.7.2. toString

public String toString()

Returns a string representation of the oid' s integer conponents in
dot separated notation (e.g., "1.2.840.113554.1.2.2").

7.7.3. equals
public bool ean equal s(Obj ect hj)
Returns "true" if the two G d objects represent the same oid val ue.
(Note that the Java | anguage specification [JLS] requires that two
objects that are equal according to the equal s(Ohject) nethod nust
return the same integer result when the hashCode() nethod is called
on them)
Par anet ers:

obj : Another GO d object with which to conpare

7.7.4. getDER

public byte[] getDER()

Returns the full ASN 1 DER encoding for this oid object, which
i ncludes the tag and | ength.

Upadhyay & Mal kani St andards Track [Page 82]

RFC 5653 Java GSS- APl Updat e August 2009

7.7.5. containedln
public bool ean containedln(G d[] oids)

A utility method to test if an G d object is contained within the
supplied G d object array.

Par anet ers:
oi ds: An array of oids to search

7.8. public class GSSException extends Exception
This exception is thrown whenever a fatal GSS-APlI error occurs
i ncl udi ng mechani smspecific errors. It may contain both, the najor
and mnor, GSS-APlI status codes. The nechani sminplenentors are
responsi ble for setting appropriate mnor status codes when throw ng
this exception. Aside fromdelivering the nuneric error code(s) to
the caller, this class perforns the mapping fromtheir numeric val ues
to textual representations. Al Java GSS-APlI net hods are decl ared
throwi ng this exception.
Al'l inplenmentations are encouraged to use the Java
i nternationalization techniques to provide |local translations of the
message strings.

7.8.1. Static Constants

Al'l valid major GSS-API error code values are declared as constants
in this class.

public static final int BAD_BI NDI NGS
Channel bindings msmatch error. The value of this constant is 1
public static final int BAD MECH

Unsupported nmechani smrequested error. The value of this constant is
2.

public static final int BAD_NAME
Invalid nane provided error. The value of this constant is 3.
public static final int BAD NAMETYPE

Name of unsupported type provided error. The value of this constant
is 4.

Upadhyay & Mal kani St andards Track [Page 83]

RFC 5653 Java GSS- APl Updat e August 2009

public static final int BAD STATUS

Invalid status code error - this is the default status value. The
val ue of this constant is 5.

public static final int BAD MC

Token had invalid integrity check error. The value of this constant
is 6.

public static final int CONTEXT_EXPI RED

Specified security context expired error. The value of this constant
is 7.

public static final int CREDENTI ALS EXPI RED

Expired credentials detected error. The value of this constant is 8.
public static final int DEFECTIVE_CREDENTI AL

Defective credential error. The value of this constant is 9.

public static final int DEFECTI VE TCOKEN

Defective token error. The value of this constant is 10.

public static final int FAl LURE

CGeneral failure, unspecified at GSS-APl level. The value of this
constant is 11.

public static final int NO_CONTEXT

Invalid security context error. The value of this constant is 12.
public static final int NO CRED

Invalid credentials error. The value of this constant is 13.
public static final int BAD QOP

Unsupported QOP value error. The value of this constant is 14.
public static final int UNAUTHORI ZED

Operation unauthorized error. The value of this constant is 15.

Upadhyay & Mal kani St andards Track [Page 84]

RFC 5653 Java GSS- APl Updat e August 2009

public static final int UNAVAI LABLE
Operation unavailable error. The value of this constant is 16.
public static final int DUPLI CATE_ELEMENT

Duplicate credential elenment requested error. The value of this
constant is 17.

public static final int NAME_NOT_IWN

Nanme contains nulti-nmechanismelenents error. The value of this
constant is 18.

public static final int DUPLI CATE_TOKEN

The token was a duplicate of an earlier token. This is contained in
an exception only when detected during context establishnent, in
which case it is considered a fatal error. (Non-fatal supplenentary
codes are indicated via the MessageProp object.) The value of this
constant is 19.

public static final int OLD TOKEN

The token's validity period has expired. This is contained in an
exception only when detected during context establishnent, in which
case it is considered a fatal error. (Non-fatal supplenentary codes
are indicated via the MessageProp object.) The value of this
constant is 20.

public static final int UNSEQ TOKEN

A later token has al ready been processed. This is contained in an
exception only when detected during context establishnent, in which
case it is considered a fatal error. (Non-fatal supplenentary codes
are indicated via the MessageProp object.) The value of this
constant is 21.

public static final int GAP_TOKEN

An expected per-nessage token was not received. This is contained in
an exception only when detected during context establishnent, in
which case it is considered a fatal error. (Non-fatal supplenentary
codes are indicated via the MessageProp object.) The value of this
constant is 22.

Upadhyay & Mal kani St andards Track [Page 85]

RFC 5653 Java GSS- APl Updat e August 2009

7.8.2. Constructors
publ i c GSSException(int mnaj or Code)
Creates a GSSException object with a specified major code.
Par anet ers:

maj or Code: The GSS error code causing this exception to be
t hr own.

publ i c GSSException(int nmmjorCode, int ninorCode, String minorString)
Creates a GSSException object with the specified major code, m nor
code, and m nor code textual explanation. This constructor is to be
used when the exception is originating fromthe security nechani sm
It allows to specify the GSS code and the nechani sm code

Par anet ers:

maj or Code: The GSS error code causing this exception to be
t hr own.

m nor Code: The mechani sm error code causing this exception to
be thrown.

mnorString: The textual explanation of the mechanismerror code.
7.8.3. getMjor
public int getMjor()

Returns the maj or code representing the GSS error code that caused
this exception to be thrown.

7.8.4. getM nor
public int getMnor()
Returns the mechani smerror code that caused this exception. The

m nor code is set by the underlying nechanism Value of 0 indicates
t hat nechani smerror code is not set.

Upadhyay & Mal kani St andards Track [Page 86]

RFC 5653 Java GSS- APl Updat e August 2009

7.8.5. getMajorString
public String getMjorString()

Returns a string explaining the GSS major error code causing this
exception to be thrown.

7.8.6. getMnorString
public String getM norString()

Returns a string explaining the mechani smspecific error code. "null"
will be returned when no nmechani smerror code has been set.

7.8.7. setMnor
public void setM nor(int mnorCode, String nessage)

Used internally by the GSS-API inplenentation and the underlying
nmechani sns to set the minor code and its textual representation.

Par anet er s:
m nor Code: The mechani smspecific error code.
nmessage: A textual explanation of the nechani smerror code.
7.8.8. toString
public String toString()

Returns a textual representation of both the major and m nor status
codes.

7.8.9. getMessage
public String get Message()
Returns a detail ed nmessage of this exception. Overrides

Thr owabl e. get Message. It is customary in Java to use this nmethod to
obt ai n exception information.

Upadhyay & Mal kani St andards Track [Page 87]

RFC 5653 Java GSS- APl Updat e August 2009

8. Sanple Applications
8.1. Sinple GSS Context Initiator

import org.ietf.jgss.*;

/**
* This is a partial sketch for a sinple client programthat acts
* as a GSS context initiator. It illustrates howto use the Java
* bindings for the GSS-API specified in
* CGeneric Security Service APl Version 2 : Java bindi ngs
*
*
* This code sketch assumes the existence of a GSS- AP
* inplenmentation that supports the nmechanismthat it will need
* and is present as a library package (org.ietf.jgss) either as
* part of the standard JRE or in the CLASSPATH the application
* specifies.
*/

public class Sinpledient {

private String serviceNane; // nane of peer (i.e., server)
private GSSCredential clientCred = null;

private GSSContext context = null;

private O d nech; // underlying nmechanismto use

private GSSManager ngr = GSSManager. getl nstance();
private void clientActions() {
initializeGSS();
est abl i shCont ext ();
doConmuni cati on();
}
/**
* Acquire credentials for the client.
*/

private void initializeGSS() {

try {
clientCred = ngr.createCredential (null /*default princ*/,

GSSCredential . INDEFINITE LIFETIME /* max lifetime */,
mech /* nechanismto use */,

Upadhyay & Mal kani St andards Track [Page 88]

RFC 5653 Java GSS- APl Updat e August

GSSCredential . INITIATE ONLY /* init context */);

print("GSSCredential created for " +
cred. get Name().toString());
print("Credential lifetinme (sec)=" +
cred. get Renmai ni ngLi fetinme());
} catch (GSSException e) {
print("GSS-APlI error in credential acquisition:
+ e. get Message());

}

/**

* Does the security context establishnent with the
* server.

*/

private void establishContext() {

byte[] inToken = new byte[0];
byte[] out Token = null;

try {

GSSNane peer = ngr. creat eNane(servi ceNane,

2009

GSSName. NT_HOSTBASED_SERVI CE) ;

context = ngr.createContext(peer, nmech, gssCred,

GSSCont ext . | NDEFI NI TE_LI FETI ME/ *1 i fetine*/);

/1 WIIl need to support confidentiality
cont ext . request Conf (true);

while (!context.isEstablished()) {

out Token = context.initSecContext(inToken, O,

i nToken. | engt h) ;

if (outToken != null)
wri t eGSSToken(out Token);

if (!context.isEstablished())
i nToken = readGSSToken();

Upadhyay & Mal kani St andards Track [Page 89]

RFC 5653 Java GSS- APl Updat e August 2009

GSSNane peer = context.get SrcNane();
print("Security context established with " + peer +
" using underlying nmechanism" + mech.toString());
} catch (GSSException e) {
print("GSS-APlI error during context establishment:
+ e. get Message());

}

/**
* Sends sone data to the server and reads back the
* response.
*/
private void doComunication() {
byte[] inToken = null
byte[] out Token = null;
byte[] buffer;

/1 Container for nmultiple input-output argunents to and
/1l fromthe per-nessage routines (e.g., wap/unwap).
MessageProp nessgl nfo = new MessageProp();

try {

/*

* Now send sone bytes to the server to be

* processed. They will be integrity protected
* but not encrypted for privacy.

*/

buffer = readFronFile();

/1 Set privacy to "false" and use the default QOP
nmessgl nf o. set Pri vacy(fal se);

out Token = context.wap(buffer, 0, buffer.length,

messgl nf o) ;
wr i t eGSSToken(out Token);
/*
* Now read the response fromthe server
*/

Upadhyay & Mal kani St andards Track [Page 90]

RFC 5653 Java GSS- APl Updat e August 2009

i nToken = readGSSToken();
buf fer = context.unwap(i nToken, O,

i nToken. I engt h, nessgl nfo);
/1 Al ok if no exception was thrown!

GSSNane peer = context.get SrcNane();

print("Message from" + peer.toString()
+ " arrived.");

print("Was it encrypted? " +
messgl nf o. get Pri vacy());

print("Duplicate Token? " +
messgl nfo. i sDupl i cat eToken());
print("dd Token? " +

nmessgl nfo. i sA dToken());
print("Unsequenced Token? " +

messgl nf o. i sUnseqToken());
print("Gap Token? " +

messgl nfo. i sGapToken());

} catch (GSSException e) {
print("GSS-APl error in per-nessage calls:
+ e. get Message());

} // end of doConmmuni cation nethod

} // end of class Sinpledient

Upadhyay & Mal kani St andards Track [Page 91]

RFC 5653 Java GSS- APl Updat e August 2009

8.2. Sinple GSS Context Acceptor

import org.ietf.jgss.*;

*

/
This is a partial sketch for a sinple server programthat acts
as a GSS context acceptor. It illustrates how to use the Java
bi ndi ngs for the GSS-API specified in

Generic Security Service APl Version 2 : Java bindings.

This code sketch assunes the existence of a GSS- API

i npl enentation that supports the nechanisns that it will need
and is present as a library package (org.ietf.jgss) either as
part of the standard JRE or in the CLASSPATH the application
speci fies.

L I G R T I

~

import org.ietf.jgss.*;
public class SinpleServer {

private String servi ceNang;
private GSSNanme nane;
private GSSCredential cred;

private GSSManager nyr;

/**

* Wait for client connections, establish security contexts
* and provide service.
*/

private void | oop() {

nmgr = GSSManager . get |l nstance();

nane = nyr.creat eNane(servi ceNane,
GSSNane. NT_HOSTBASED_SERVI CE) ;

cred ngr . cr eat eCredenti al (nane,
GSSCr edenti al . | NDEFI NI TE_LI FETI VE,
nul |,

GSSCr edent i al . ACCEPT_ONLY) ;

Upadhyay & Mal kani St andards Track [Page 92]

RFC 5653 Java GSS- APl Updat e August 2009

/1 Loop infinitely
while (true) {

Socket s = server Sock. accept();

/1l Start a new thread to serve this connection
Thread server Thread = new Server Thread(s);
server Thread. start ();

}
/**
* I nner class ServerThread whose run() nethod provides the

* secure service to a connection.
*/

private class ServerThread extends Thread {

/**

* Deals with the connection fromone client. It also
* handl es all GSSException’s thrown while talking to
* this client.

*/

public void run() {

byte[] inToken = null;
byte[] out Token = null;
byte[] buffer;

GSSName peer;

/1 Container for nultiple input-output argunents to
/1 and fromthe per-nessage routines

/1 (i.e., wap/unwap).

MessageProp supplInfo
GSSCont ext secCont ext

new MessageProp();
nul | ;

try {

/1 Now do the context establishment |oop

GSSCont ext context = ngr.createContext(cred);

Upadhyay & Mal kani St andards Track [Page 93]

RFC 5653

Upadhyay & Mal kani

Java GSS- APl Updat e August 2009

while (!context.isEstablished()) {
i nToken = readGSSToken();

out Token = cont ext. accept SecCont ext (i nToken
0, inToken.length);

if (outToken !'= null)
wr i t eGSSToken(out Token) ;

/1 SinpleServer wants confidentiality to be
/] available. Check for it.
if (!context.getConfState())(

}

GSSNane peer = context.get SrcName();
O d nech = context.get Mech();
print("Security context established with " +
peer.toString() +
usi ng underlying nechanism" +
mech.toString() +
" from Provider " +
cont ext . get Provi der (). get Name());

/1 Now read the bytes sent by the client to be
/1 processed.
i nToken = readGSSToken();

/1l Unwap the nessage
buf fer = context.unw ap(inToken, O,

i nToken. | ength, supplInfo);
/1 Al ok if no exception was thrown!

/1 Print other supplenentary per-nessage status
/1 information.

print("Message from" +

peer.toString() + " arrived.");
print("Was it encrypted? " +

suppl I nfo. get Privacy());
print("Duplicate Token? " +

suppl I nfo. i sDuplicateToken());
print("Ad Token? " + supplInfo.isddToken());

St andards Track [Page 94]

RFC 5653 Java GSS- APl Updat e August 2009

print("Unsequenced Token? " +
suppl I nfo. i sUnseqToken());
print("Gap Token? " + supplInfo.isGapToken());

/*
* Now process the bytes and send back an
* encrypted response.
*/
buffer = serverProcess(buffer);
/1 Encipher it and send it across
suppl I nfo. set Privacy(true); // privacy requested
suppl I nfo.set QOP(0); // default QOP
out Token = context.wap(buffer, 0, buffer.length,
suppl I nfo);
wr i t eGSSToken(out Token) ;
} catch (GSSException e) {
print("GSS-APlI Error: " + e.getMessage());
/1l Alternatively, could call e.getMjorMssage()

/1 and e.getM nor Message()
print (" Abandoni ng security context.");

} // end of run nethod in ServerThread

} // end of inner class ServerThread

} // end of class SinpleServer

Upadhyay & Mal kani St andards Track [Page 95]

RFC 5653 Java GSS- APl Updat e August 2009

9.

10.

Security Considerations

The Java | anguage security nodel allows platformproviders to have
pol i cy-based fine-grained access control over any resource that an
application wants. Wen using a Java security manager (such as, but
not limted to, the case of applets running in browsers) the
application code is in a sandbox by default.

Adnmini strators of the platformJRE deterni ne what permnissions, if

any, are to be given to source fromdifferent codebases. Thus, the
adm nistrator has to be aware of any special requirements that the
GSS provider might have for systemresources. For instance, a

Ker beros provider mght wish to nake a network connection to the Key
Distribution Center (KDC) to obtain initial credentials. This would
not be allowed under the sandbox unl ess the adm nistrator had granted
perm ssions for this. Also, note that this granting and checking of
per m ssi ons happens transparently to the application and is outside
the scope of this docunent.

The Java | anguage allows admi nistrators to pre-configure a list of
security service providers in the <JRE>/1ib/security/java.security
file. At runtime, the system approaches these providers in order of
preference when | ooking for security related services. Applications
have a neans to nodify this list through nethods in the "Security"
class in the "java.security" package. However, since these

nodi fications would be visible in the entire Java Virtual Machine
(JVM and thus affect all code executing in it, this operation is not
avail abl e in the sandbox and requires special permi ssions to perform
Thus, when a GSS application has special needs that are net by a
particul ar security provider, it has two choices:

1) To install the provider on a JVMw de basis using the
java.security. Security class and then depend on the systemto find
the right provider automatically when the need arises. (This
woul d require the application to be granted a "insertProvider
SecurityPerm ssion".)

2) To pass an instance of the provider to the l|ocal instance of
GSSManager so that only factory calls going through that
GSShanager use the desired provider. (This would not require any
per m ssi ons.)

Acknowl edgrent s

Thi s proposed APl |everages earlier work performed by the | ETF s CAT
WG as outlined in both RFC 2743 [GSSAPI v2- UPDATE] and RFC 2744

[GSSAPI - Chi nd]. Many conceptual definitions, inplenentation
directions, and explanations have been included fromthese docunents.

Upadhyay & Mal kani St andards Track [Page 96]

RFC 5653 Java GSS- APl Updat e August 2009

11.

W would Iike to thank M ke Eisler, Lin Ling, Ram Marti, M chae
Saltz, and other menbers of Sun’s devel opment team for their hel pfu
i nput, coments, and suggesti ons.

We woul d also Iike to thank Joe Sal owey, and M chael Smith for many
i nsightful ideas and suggestions that have contributed to this
docunent .

Changes since RFC 2853
Thi s docunent has foll owi ng changes:
1) Major GSS Status Code Constant Val ues

RFC 2853 listed all the GSS status code values in two different
sections: section 4.12.1 defined nuneric values for them and
section 6.8.1 defined themas static constants in the GSSException
cl ass without assigning any values. Due to an inconsistent
orderi ng between these two sections, all of the GSS nmjor status
codes resulted in msalignnent, and a subsequent disagreenent

bet ween depl oyed i npl ement ati ons.

Thi s docunent defines the nuneric values of the GSS status codes
in both sections, while nmaintaining the original ordering from
section 6.8.1 of RFC 2853 [RFC2853], and obsol etes the GSS status
code values defined in section 4.12.1. The relevant sections in
this docunent are sections 5.12.1 and 7.8. 1.

2) GSS Credential Usage Constant Val ues

RFC 2853 section 6.3.2 defines static constants for the
GSSCredential usage flags. However, the values of these constants
were not defined anywhere in RFC 2853 [RFC2853].

Thi s docunent defines the credential usage values in section
7.3.2. The original ordering of these values fromsection 6.3.2
of RFC 2853 [RFC2853] is naintained.

3) GSS Host-Based Service Name

RFC 2853 [RFC2853], section 6.2.2, defines the static constant for
the GSS host-based service O D NT_HOSTBASED SERVI CE, using a
deprecated O D val ue.

Thi s docunent updates the NT_HOSTBASED SERVICE O D value in
section 7.2.2 to be consistent with the C bindings in RFC 2744
[GSSAPI - Cbi nd] .

Upadhyay & Mal kani St andards Track [Page 97]

RFC 5653

Java GSS- APl Updat e August 2009

12. References

12.1. Normative References

[GSSAPI - Cbi nd]

Way, J., "Generic Security Service APl Version 2
C bi ndi ngs", RFC 2744, January 2000.

[GSSAPI v2- UPDATE]

Linn, J., "Generic Security Service Application Program
Interface Version 2, Update 1", RFC 2743, January 2000.

[RFC2025] Adans, C., "The Sinple Public-Key GSS-API Mechani sm
(SPKM ", RFC 2025, Cctober 1996.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

[RFC2853] Kabat, J. and M Upadhyay, "Generic Security Service API
Version 2 : Java Bindings", RFC 2853, June 2000.

[RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
Version 5 Ceneric Security Service Application Program
Interface (GSS-API) Mechanism Version 2", RFC 4121, July
2005.

12.2. Informative References
[JLS] Cosling, J., Joy, B., Steele, G, and G Bracha "The Java

Language Specification", Third Edition
http://java. sun. coni docs/ books/j | s/.

Upadhyay & Mal kani St andards Track [Page 98]

RFC 5653 Java GSS- APl Updat e August 2009

Aut hors’ Addr esses

Mayank D. Upadhyay

Googl e Inc.

1600 Anphitheatre Parkway
Mountain View, CA 94043
USA

EMai | : m d. upadhyay+i etf @nail . com
Seena Mal kani

Activldentity Corp.

6623 Dunbarton Circle

Frenont, California 94555

USA

EMai | : Seena. Mal kani @nai | . com

Upadhyay & Mal kani St andards Track [Page 99]

