
Internet Engineering Task Force (IETF) D. Black
Request for Comments: 5663 S. Fridella
Category: Standards Track EMC Corporation
ISSN: 2070-1721 J. Glasgow
 Google
 January 2010

 Parallel NFS (pNFS) Block/Volume Layout

Abstract

 Parallel NFS (pNFS) extends Network File Sharing version 4 (NFSv4) to
 allow clients to directly access file data on the storage used by the
 NFSv4 server. This ability to bypass the server for data access can
 increase both performance and parallelism, but requires additional
 client functionality for data access, some of which is dependent on
 the class of storage used. The main pNFS operations document
 specifies storage-class-independent extensions to NFS; this document
 specifies the additional extensions (primarily data structures) for
 use of pNFS with block- and volume-based storage.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5663.

Black, et al. Standards Track [Page 1]

RFC 5663 pNFS Block/Volume Layout January 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Black, et al. Standards Track [Page 2]

RFC 5663 pNFS Block/Volume Layout January 2010

Table of Contents

 1. Introduction ..4
 1.1. Conventions Used in This Document4
 1.2. General Definitions ..5
 1.3. Code Components Licensing Notice5
 1.4. XDR Description ..5
 2. Block Layout Description ..7
 2.1. Background and Architecture7
 2.2. GETDEVICELIST and GETDEVICEINFO9
 2.2.1. Volume Identification9
 2.2.2. Volume Topology10
 2.2.3. GETDEVICELIST and GETDEVICEINFO deviceid412
 2.3. Data Structures: Extents and Extent Lists12
 2.3.1. Layout Requests and Extent Lists15
 2.3.2. Layout Commits16
 2.3.3. Layout Returns16
 2.3.4. Client Copy-on-Write Processing17
 2.3.5. Extents are Permissions18
 2.3.6. End-of-file Processing20
 2.3.7. Layout Hints20
 2.3.8. Client Fencing21
 2.4. Crash Recovery Issues23
 2.5. Recalling Resources: CB_RECALL_ANY23
 2.6. Transient and Permanent Errors24
 3. Security Considerations ..24
 4. Conclusions ..26
 5. IANA Considerations ..26
 6. Acknowledgments ..26
 7. References ...27
 7.1. Normative References27
 7.2. Informative References27

Black, et al. Standards Track [Page 3]

RFC 5663 pNFS Block/Volume Layout January 2010

1. Introduction

 Figure 1 shows the overall architecture of a Parallel NFS (pNFS)
 system:

 +-----------+
 |+-----------+ +-----------+
 ||+-----------+ | |
 ||| | NFSv4.1 + pNFS | |
 +|| Clients |<------------------------------>| Server |
 +| | | |
 +-----------+ | |
 ||| +-----------+
 ||| | | |
 ||| |
 ||| Storage +-----------+ |
 ||| Protocol |+-----------+ |
 ||+----------------||+-----------+ Control |
 |+-----------------||| | Protocol|
 +------------------+|| Storage |------------+
 +| Systems |
 +-----------+

 Figure 1: pNFS Architecture

 The overall approach is that pNFS-enhanced clients obtain sufficient
 information from the server to enable them to access the underlying
 storage (on the storage systems) directly. See the pNFS portion of
 [NFSv4.1] for more details. This document is concerned with access
 from pNFS clients to storage systems over storage protocols based on
 blocks and volumes, such as the Small Computer System Interface
 (SCSI) protocol family (e.g., parallel SCSI, Fibre Channel Protocol
 (FCP) for Fibre Channel, Internet SCSI (iSCSI), Serial Attached SCSI
 (SAS), and Fibre Channel over Ethernet (FCoE)). This class of
 storage is referred to as block/volume storage. While the Server to
 Storage System protocol, called the "Control Protocol", is not of
 concern for interoperability here, it will typically also be a
 block/volume protocol when clients use block/ volume protocols.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Black, et al. Standards Track [Page 4]

RFC 5663 pNFS Block/Volume Layout January 2010

1.2. General Definitions

 The following definitions are provided for the purpose of providing
 an appropriate context for the reader.

 Byte

 This document defines a byte as an octet, i.e., a datum exactly 8
 bits in length.

 Client

 The "client" is the entity that accesses the NFS server’s
 resources. The client may be an application that contains the
 logic to access the NFS server directly. The client may also be
 the traditional operating system client that provides remote file
 system services for a set of applications.

 Server

 The "server" is the entity responsible for coordinating client
 access to a set of file systems and is identified by a server
 owner.

1.3. Code Components Licensing Notice

 The external data representation (XDR) description and scripts for
 extracting the XDR description are Code Components as described in
 Section 4 of "Legal Provisions Relating to IETF Documents" [LEGAL].
 These Code Components are licensed according to the terms of Section
 4 of "Legal Provisions Relating to IETF Documents".

1.4. XDR Description

 This document contains the XDR ([XDR]) description of the NFSv4.1
 block layout protocol. The XDR description is embedded in this
 document in a way that makes it simple for the reader to extract into
 a ready-to-compile form. The reader can feed this document into the
 following shell script to produce the machine readable XDR
 description of the NFSv4.1 block layout:

 #!/bin/sh
 grep ’^ *///’ $* | sed ’s?^ */// ??’ | sed ’s?^ *///$??’

Black, et al. Standards Track [Page 5]

RFC 5663 pNFS Block/Volume Layout January 2010

 That is, if the above script is stored in a file called "extract.sh",
 and this document is in a file called "spec.txt", then the reader can
 do:

 sh extract.sh < spec.txt > nfs4_block_layout_spec.x

 The effect of the script is to remove both leading white space and a
 sentinel sequence of "///" from each matching line.

 The embedded XDR file header follows, with subsequent pieces embedded
 throughout the document:

 /// /*
 /// * This code was derived from RFC 5663.
 /// * Please reproduce this note if possible.
 /// */
 /// /*
 /// * Copyright (c) 2010 IETF Trust and the persons identified
 /// * as the document authors. All rights reserved.
 /// *
 /// * Redistribution and use in source and binary forms, with
 /// * or without modification, are permitted provided that the
 /// * following conditions are met:
 /// *
 /// * - Redistributions of source code must retain the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer.
 /// *
 /// * - Redistributions in binary form must reproduce the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer in the documentation and/or other
 /// * materials provided with the distribution.
 /// *
 /// * - Neither the name of Internet Society, IETF or IETF
 /// * Trust, nor the names of specific contributors, may be
 /// * used to endorse or promote products derived from this
 /// * software without specific prior written permission.
 /// *
 /// * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
 /// * AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
 /// * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 /// * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 /// * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 /// * EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 /// * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 /// * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 /// * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 /// * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

Black, et al. Standards Track [Page 6]

RFC 5663 pNFS Block/Volume Layout January 2010

 /// * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 /// * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 /// * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 /// * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 /// * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 /// */
 ///
 /// /*
 /// * nfs4_block_layout_prot.x
 /// */
 ///
 /// %#include "nfsv41.h"
 ///

 The XDR code contained in this document depends on types from the
 nfsv41.x file. This includes both nfs types that end with a 4, such
 as offset4, length4, etc., as well as more generic types such as
 uint32_t and uint64_t.

2. Block Layout Description

2.1. Background and Architecture

 The fundamental storage abstraction supported by block/volume storage
 is a storage volume consisting of a sequential series of fixed-size
 blocks. This can be thought of as a logical disk; it may be realized
 by the storage system as a physical disk, a portion of a physical
 disk, or something more complex (e.g., concatenation, striping, RAID,
 and combinations thereof) involving multiple physical disks or
 portions thereof.

 A pNFS layout for this block/volume class of storage is responsible
 for mapping from an NFS file (or portion of a file) to the blocks of
 storage volumes that contain the file. The blocks are expressed as
 extents with 64-bit offsets and lengths using the existing NFSv4
 offset4 and length4 types. Clients must be able to perform I/O to
 the block extents without affecting additional areas of storage
 (especially important for writes); therefore, extents MUST be aligned
 to 512-byte boundaries, and writable extents MUST be aligned to the
 block size used by the NFSv4 server in managing the actual file
 system (4 kilobytes and 8 kilobytes are common block sizes). This
 block size is available as the NFSv4.1 layout_blksize attribute.
 [NFSv4.1]. Readable extents SHOULD be aligned to the block size used
 by the NFSv4 server, but in order to support legacy file systems with
 fragments, alignment to 512-byte boundaries is acceptable.

Black, et al. Standards Track [Page 7]

RFC 5663 pNFS Block/Volume Layout January 2010

 The pNFS operation for requesting a layout (LAYOUTGET) includes the
 "layoutiomode4 loga_iomode" argument, which indicates whether the
 requested layout is for read-only use or read-write use. A read-only
 layout may contain holes that are read as zero, whereas a read-write
 layout will contain allocated, but un-initialized storage in those
 holes (read as zero, can be written by client). This document also
 supports client participation in copy-on-write (e.g., for file
 systems with snapshots) by providing both read-only and un-
 initialized storage for the same range in a layout. Reads are
 initially performed on the read-only storage, with writes going to
 the un-initialized storage. After the first write that initializes
 the un-initialized storage, all reads are performed to that now-
 initialized writable storage, and the corresponding read-only storage
 is no longer used.

 The block/volume layout solution expands the security
 responsibilities of the pNFS clients, and there are a number of
 environments where the mandatory to implement security properties for
 NFS cannot be satisfied. The additional security responsibilities of
 the client follow, and a full discussion is present in Section 3,
 "Security Considerations".

 o Typically, storage area network (SAN) disk arrays and SAN
 protocols provide access control mechanisms (e.g., Logical Unit
 Number (LUN) mapping and/or masking), which operate at the
 granularity of individual hosts, not individual blocks. For this
 reason, block-based protection must be provided by the client
 software.

 o Similarly, SAN disk arrays and SAN protocols typically are not
 able to validate NFS locks that apply to file regions. For
 instance, if a file is covered by a mandatory read-only lock, the
 server can ensure that only readable layouts for the file are
 granted to pNFS clients. However, it is up to each pNFS client to
 ensure that the readable layout is used only to service read
 requests, and not to allow writes to the existing parts of the
 file.

 Since block/volume storage systems are generally not capable of
 enforcing such file-based security, in environments where pNFS
 clients cannot be trusted to enforce such policies, pNFS block/volume
 storage layouts SHOULD NOT be used.

Black, et al. Standards Track [Page 8]

RFC 5663 pNFS Block/Volume Layout January 2010

2.2. GETDEVICELIST and GETDEVICEINFO

2.2.1. Volume Identification

 Storage systems such as storage arrays can have multiple physical
 network ports that need not be connected to a common network,
 resulting in a pNFS client having simultaneous multipath access to
 the same storage volumes via different ports on different networks.

 The networks may not even be the same technology -- for example,
 access to the same volume via both iSCSI and Fibre Channel is
 possible, hence network addresses are difficult to use for volume
 identification. For this reason, this pNFS block layout identifies
 storage volumes by content, for example providing the means to match
 (unique portions of) labels used by volume managers. Volume
 identification is performed by matching one or more opaque byte
 sequences to specific parts of the stored data. Any block pNFS
 system using this layout MUST support a means of content-based unique
 volume identification that can be employed via the data structure
 given here.

 /// struct pnfs_block_sig_component4 { /* disk signature component */
 /// int64_t bsc_sig_offset; /* byte offset of component
 /// on volume*/
 /// opaque bsc_contents<>; /* contents of this component
 /// of the signature */
 /// };
 ///

 Note that the opaque "bsc_contents" field in the
 "pnfs_block_sig_component4" structure MUST NOT be interpreted as a
 zero-terminated string, as it may contain embedded zero-valued bytes.
 There are no restrictions on alignment (e.g., neither bsc_sig_offset
 nor the length are required to be multiples of 4). The
 bsc_sig_offset is a signed quantity, which, when positive, represents
 an byte offset from the start of the volume, and when negative
 represents an byte offset from the end of the volume.

 Negative offsets are permitted in order to simplify the client
 implementation on systems where the device label is found at a fixed
 offset from the end of the volume. If the server uses negative
 offsets to describe the signature, then the client and server MUST
 NOT see different volume sizes. Negative offsets SHOULD NOT be used
 in systems that dynamically resize volumes unless care is taken to
 ensure that the device label is always present at the offset from the
 end of the volume as seen by the clients.

Black, et al. Standards Track [Page 9]

RFC 5663 pNFS Block/Volume Layout January 2010

 A signature is an array of up to "PNFS_BLOCK_MAX_SIG_COMP" (defined
 below) signature components. The client MUST NOT assume that all
 signature components are co-located within a single sector on a block
 device.

 The pNFS client block layout driver uses this volume identification
 to map pnfs_block_volume_type4 PNFS_BLOCK_VOLUME_SIMPLE deviceid4s to
 its local view of a LUN.

2.2.2. Volume Topology

 The pNFS block server volume topology is expressed as an arbitrary
 combination of base volume types enumerated in the following data
 structures. The individual components of the topology are contained
 in an array and components may refer to other components by using
 array indices.

 /// enum pnfs_block_volume_type4 {
 /// PNFS_BLOCK_VOLUME_SIMPLE = 0, /* volume maps to a single
 /// LU */
 /// PNFS_BLOCK_VOLUME_SLICE = 1, /* volume is a slice of
 /// another volume */
 /// PNFS_BLOCK_VOLUME_CONCAT = 2, /* volume is a
 /// concatenation of
 /// multiple volumes */
 /// PNFS_BLOCK_VOLUME_STRIPE = 3 /* volume is striped across
 /// multiple volumes */
 /// };
 ///
 /// const PNFS_BLOCK_MAX_SIG_COMP = 16;/* maximum components per
 /// signature */
 /// struct pnfs_block_simple_volume_info4 {
 /// pnfs_block_sig_component4 bsv_ds<PNFS_BLOCK_MAX_SIG_COMP>;
 /// /* disk signature */
 /// };
 ///
 ///
 /// struct pnfs_block_slice_volume_info4 {
 /// offset4 bsv_start; /* offset of the start of the
 /// slice in bytes */
 /// length4 bsv_length; /* length of slice in bytes */
 /// uint32_t bsv_volume; /* array index of sliced
 /// volume */
 /// };
 ///
 /// struct pnfs_block_concat_volume_info4 {
 /// uint32_t bcv_volumes<>; /* array indices of volumes
 /// which are concatenated */

Black, et al. Standards Track [Page 10]

RFC 5663 pNFS Block/Volume Layout January 2010

 /// };
 ///
 /// struct pnfs_block_stripe_volume_info4 {
 /// length4 bsv_stripe_unit; /* size of stripe in bytes */
 /// uint32_t bsv_volumes<>; /* array indices of volumes
 /// which are striped across --
 /// MUST be same size */
 /// };
 ///
 /// union pnfs_block_volume4 switch (pnfs_block_volume_type4 type) {
 /// case PNFS_BLOCK_VOLUME_SIMPLE:
 /// pnfs_block_simple_volume_info4 bv_simple_info;
 /// case PNFS_BLOCK_VOLUME_SLICE:
 /// pnfs_block_slice_volume_info4 bv_slice_info;
 /// case PNFS_BLOCK_VOLUME_CONCAT:
 /// pnfs_block_concat_volume_info4 bv_concat_info;
 /// case PNFS_BLOCK_VOLUME_STRIPE:
 /// pnfs_block_stripe_volume_info4 bv_stripe_info;
 /// };
 ///
 /// /* block layout specific type for da_addr_body */
 /// struct pnfs_block_deviceaddr4 {
 /// pnfs_block_volume4 bda_volumes<>; /* array of volumes */
 /// };
 ///

 The "pnfs_block_deviceaddr4" data structure is a structure that
 allows arbitrarily complex nested volume structures to be encoded.
 The types of aggregations that are allowed are stripes,
 concatenations, and slices. Note that the volume topology expressed
 in the pnfs_block_deviceaddr4 data structure will always resolve to a
 set of pnfs_block_volume_type4 PNFS_BLOCK_VOLUME_SIMPLE. The array
 of volumes is ordered such that the root of the volume hierarchy is
 the last element of the array. Concat, slice, and stripe volumes
 MUST refer to volumes defined by lower indexed elements of the array.

 The "pnfs_block_device_addr4" data structure is returned by the
 server as the storage-protocol-specific opaque field da_addr_body in
 the "device_addr4" structure by a successful GETDEVICEINFO operation
 [NFSv4.1].

 As noted above, all device_addr4 structures eventually resolve to a
 set of volumes of type PNFS_BLOCK_VOLUME_SIMPLE. These volumes are
 each uniquely identified by a set of signature components.
 Complicated volume hierarchies may be composed of dozens of volumes
 each with several signature components; thus, the device address may
 require several kilobytes. The client SHOULD be prepared to allocate
 a large buffer to contain the result. In the case of the server

Black, et al. Standards Track [Page 11]

RFC 5663 pNFS Block/Volume Layout January 2010

 returning NFS4ERR_TOOSMALL, the client SHOULD allocate a buffer of at
 least gdir_mincount_bytes to contain the expected result and retry
 the GETDEVICEINFO request.

2.2.3. GETDEVICELIST and GETDEVICEINFO deviceid4

 The server in response to a GETDEVICELIST request typically will
 return a single "deviceid4" in the gdlr_deviceid_list array. This is
 because the deviceid4 when passed to GETDEVICEINFO will return a
 "device_addr4", which encodes the entire volume hierarchy. In the
 case of copy-on-write file systems, the "gdlr_deviceid_list" array
 may contain two deviceid4’s, one referencing the read-only volume
 hierarchy, and one referencing the writable volume hierarchy. There
 is no required ordering of the readable and writable IDs in the array
 as the volumes are uniquely identified by their deviceid4, and are
 referred to by layouts using the deviceid4. Another example of the
 server returning multiple device items occurs when the file handle
 represents the root of a namespace spanning multiple physical file
 systems on the server, each with a different volume hierarchy. In
 this example, a server implementation may return either a list of
 device IDs used by each of the physical file systems, or it may
 return an empty list.

 Each deviceid4 returned by a successful GETDEVICELIST operation is a
 shorthand id used to reference the whole volume topology. These
 device IDs, as well as device IDs returned in extents of a LAYOUTGET
 operation, can be used as input to the GETDEVICEINFO operation.
 Decoding the "pnfs_block_deviceaddr4" results in a flat ordering of
 data blocks mapped to PNFS_BLOCK_VOLUME_SIMPLE volumes. Combined
 with the mapping to a client LUN described in Section 2.2.1 "Volume
 Identification", a logical volume offset can be mapped to a block on
 a pNFS client LUN [NFSv4.1].

2.3. Data Structures: Extents and Extent Lists

 A pNFS block layout is a list of extents within a flat array of data
 blocks in a logical volume. The details of the volume topology can
 be determined by using the GETDEVICEINFO operation (see discussion of
 volume identification, Section 2.2 above). The block layout
 describes the individual block extents on the volume that make up the
 file. The offsets and length contained in an extent are specified in
 units of bytes.

Black, et al. Standards Track [Page 12]

RFC 5663 pNFS Block/Volume Layout January 2010

 /// enum pnfs_block_extent_state4 {
 /// PNFS_BLOCK_READ_WRITE_DATA = 0,/* the data located by this
 /// extent is valid
 /// for reading and writing. */
 /// PNFS_BLOCK_READ_DATA = 1, /* the data located by this
 /// extent is valid for reading
 /// only; it may not be
 /// written. */
 /// PNFS_BLOCK_INVALID_DATA = 2, /* the location is valid; the
 /// data is invalid. It is a
 /// newly (pre-) allocated
 /// extent. There is physical
 /// space on the volume. */
 /// PNFS_BLOCK_NONE_DATA = 3 /* the location is invalid.
 /// It is a hole in the file.
 /// There is no physical space
 /// on the volume. */
 /// };

 ///
 /// struct pnfs_block_extent4 {
 /// deviceid4 bex_vol_id; /* id of logical volume on
 /// which extent of file is
 /// stored. */
 /// offset4 bex_file_offset; /* the starting byte offset in
 /// the file */
 /// length4 bex_length; /* the size in bytes of the
 /// extent */
 /// offset4 bex_storage_offset; /* the starting byte offset
 /// in the volume */
 /// pnfs_block_extent_state4 bex_state;
 /// /* the state of this extent */
 /// };
 ///
 /// /* block layout specific type for loc_body */
 /// struct pnfs_block_layout4 {
 /// pnfs_block_extent4 blo_extents<>;
 /// /* extents which make up this
 /// layout. */
 /// };
 ///

 The block layout consists of a list of extents that map the logical
 regions of the file to physical locations on a volume. The
 "bex_storage_offset" field within each extent identifies a location
 on the logical volume specified by the "bex_vol_id" field in the
 extent. The bex_vol_id itself is shorthand for the whole topology of

Black, et al. Standards Track [Page 13]

RFC 5663 pNFS Block/Volume Layout January 2010

 the logical volume on which the file is stored. The client is
 responsible for translating this logical offset into an offset on the
 appropriate underlying SAN logical unit. In most cases, all extents
 in a layout will reside on the same volume and thus have the same
 bex_vol_id. In the case of copy-on-write file systems, the
 PNFS_BLOCK_READ_DATA extents may have a different bex_vol_id from the
 writable extents.

 Each extent maps a logical region of the file onto a portion of the
 specified logical volume. The bex_file_offset, bex_length, and
 bex_state fields for an extent returned from the server are valid for
 all extents. In contrast, the interpretation of the
 bex_storage_offset field depends on the value of bex_state as follows
 (in increasing order):

 o PNFS_BLOCK_READ_WRITE_DATA means that bex_storage_offset is valid,
 and points to valid/initialized data that can be read and written.

 o PNFS_BLOCK_READ_DATA means that bex_storage_offset is valid and
 points to valid/ initialized data that can only be read. Write
 operations are prohibited; the client may need to request a
 read-write layout.

 o PNFS_BLOCK_INVALID_DATA means that bex_storage_offset is valid,
 but points to invalid un-initialized data. This data must not be
 physically read from the disk until it has been initialized. A
 read request for a PNFS_BLOCK_INVALID_DATA extent must fill the
 user buffer with zeros, unless the extent is covered by a
 PNFS_BLOCK_READ_DATA extent of a copy-on-write file system. Write
 requests must write whole server-sized blocks to the disk; bytes
 not initialized by the user must be set to zero. Any write to
 storage in a PNFS_BLOCK_INVALID_DATA extent changes the written
 portion of the extent to PNFS_BLOCK_READ_WRITE_DATA; the pNFS
 client is responsible for reporting this change via LAYOUTCOMMIT.

 o PNFS_BLOCK_NONE_DATA means that bex_storage_offset is not valid,
 and this extent may not be used to satisfy write requests. Read
 requests may be satisfied by zero-filling as for
 PNFS_BLOCK_INVALID_DATA. PNFS_BLOCK_NONE_DATA extents may be
 returned by requests for readable extents; they are never returned
 if the request was for a writable extent.

 An extent list contains all relevant extents in increasing order of
 the bex_file_offset of each extent; any ties are broken by increasing
 order of the extent state (bex_state).

Black, et al. Standards Track [Page 14]

RFC 5663 pNFS Block/Volume Layout January 2010

2.3.1. Layout Requests and Extent Lists

 Each request for a layout specifies at least three parameters: file
 offset, desired size, and minimum size. If the status of a request
 indicates success, the extent list returned must meet the following
 criteria:

 o A request for a readable (but not writable) layout returns only
 PNFS_BLOCK_READ_DATA or PNFS_BLOCK_NONE_DATA extents (but not
 PNFS_BLOCK_INVALID_DATA or PNFS_BLOCK_READ_WRITE_DATA extents).

 o A request for a writable layout returns PNFS_BLOCK_READ_WRITE_DATA
 or PNFS_BLOCK_INVALID_DATA extents (but not PNFS_BLOCK_NONE_DATA
 extents). It may also return PNFS_BLOCK_READ_DATA extents only
 when the offset ranges in those extents are also covered by
 PNFS_BLOCK_INVALID_DATA extents to permit writes.

 o The first extent in the list MUST contain the requested starting
 offset.

 o The total size of extents within the requested range MUST cover at
 least the minimum size. One exception is allowed: the total size
 MAY be smaller if only readable extents were requested and EOF is
 encountered.

 o Extents in the extent list MUST be logically contiguous for a
 read-only layout. For a read-write layout, the set of writable
 extents (i.e., excluding PNFS_BLOCK_READ_DATA extents) MUST be
 logically contiguous. Every PNFS_BLOCK_READ_DATA extent in a
 read-write layout MUST be covered by one or more
 PNFS_BLOCK_INVALID_DATA extents. This overlap of
 PNFS_BLOCK_READ_DATA and PNFS_BLOCK_INVALID_DATA extents is the
 only permitted extent overlap.

 o Extents MUST be ordered in the list by starting offset, with
 PNFS_BLOCK_READ_DATA extents preceding PNFS_BLOCK_INVALID_DATA
 extents in the case of equal bex_file_offsets.

 If the minimum requested size, loga_minlength, is zero, this is an
 indication to the metadata server that the client desires any layout
 at offset loga_offset or less that the metadata server has "readily
 available". Readily is subjective, and depends on the layout type
 and the pNFS server implementation. For block layout servers,
 readily available SHOULD be interpreted such that readable layouts
 are always available, even if some extents are in the
 PNFS_BLOCK_NONE_DATA state. When processing requests for writable
 layouts, a layout is readily available if extents can be returned in
 the PNFS_BLOCK_READ_WRITE_DATA state.

Black, et al. Standards Track [Page 15]

RFC 5663 pNFS Block/Volume Layout January 2010

2.3.2. Layout Commits

 /// /* block layout specific type for lou_body */
 /// struct pnfs_block_layoutupdate4 {
 /// pnfs_block_extent4 blu_commit_list<>;
 /// /* list of extents which
 /// * now contain valid data.
 /// */
 /// };
 ///

 The "pnfs_block_layoutupdate4" structure is used by the client as the
 block-protocol specific argument in a LAYOUTCOMMIT operation. The
 "blu_commit_list" field is an extent list covering regions of the
 file layout that were previously in the PNFS_BLOCK_INVALID_DATA
 state, but have been written by the client and should now be
 considered in the PNFS_BLOCK_READ_WRITE_DATA state. The bex_state
 field of each extent in the blu_commit_list MUST be set to
 PNFS_BLOCK_READ_WRITE_DATA. The extents in the commit list MUST be
 disjoint and MUST be sorted by bex_file_offset. The
 bex_storage_offset field is unused. Implementors should be aware
 that a server may be unable to commit regions at a granularity
 smaller than a file-system block (typically 4 KB or 8 KB). As noted
 above, the block-size that the server uses is available as an NFSv4
 attribute, and any extents included in the "blu_commit_list" MUST be
 aligned to this granularity and have a size that is a multiple of
 this granularity. If the client believes that its actions have moved
 the end-of-file into the middle of a block being committed, the
 client MUST write zeroes from the end-of-file to the end of that
 block before committing the block. Failure to do so may result in
 junk (un-initialized data) appearing in that area if the file is
 subsequently extended by moving the end-of-file.

2.3.3. Layout Returns

 The LAYOUTRETURN operation is done without any block layout specific
 data. When the LAYOUTRETURN operation specifies a
 LAYOUTRETURN4_FILE_return type, then the layoutreturn_file4 data
 structure specifies the region of the file layout that is no longer
 needed by the client. The opaque "lrf_body" field of the
 "layoutreturn_file4" data structure MUST have length zero. A
 LAYOUTRETURN operation represents an explicit release of resources by
 the client, usually done for the purpose of avoiding unnecessary
 CB_LAYOUTRECALL operations in the future. The client may return
 disjoint regions of the file by using multiple LAYOUTRETURN
 operations within a single COMPOUND operation.

Black, et al. Standards Track [Page 16]

RFC 5663 pNFS Block/Volume Layout January 2010

 Note that the block/volume layout supports unilateral layout
 revocation. When a layout is unilaterally revoked by the server,
 usually due to the client’s lease time expiring, or a delegation
 being recalled, or the client failing to return a layout in a timely
 manner, it is important for the sake of correctness that any in-
 flight I/Os that the client issued before the layout was revoked are
 rejected at the storage. For the block/volume protocol, this is
 possible by fencing a client with an expired layout timer from the
 physical storage. Note, however, that the granularity of this
 operation can only be at the host/logical-unit level. Thus, if one
 of a client’s layouts is unilaterally revoked by the server, it will
 effectively render useless *all* of the client’s layouts for files
 located on the storage units comprising the logical volume. This may
 render useless the client’s layouts for files in other file systems.

2.3.4. Client Copy-on-Write Processing

 Copy-on-write is a mechanism used to support file and/or file system
 snapshots. When writing to unaligned regions, or to regions smaller
 than a file system block, the writer must copy the portions of the
 original file data to a new location on disk. This behavior can
 either be implemented on the client or the server. The paragraphs
 below describe how a pNFS block layout client implements access to a
 file that requires copy-on-write semantics.

 Distinguishing the PNFS_BLOCK_READ_WRITE_DATA and
 PNFS_BLOCK_READ_DATA extent types in combination with the allowed
 overlap of PNFS_BLOCK_READ_DATA extents with PNFS_BLOCK_INVALID_DATA
 extents allows copy-on-write processing to be done by pNFS clients.
 In classic NFS, this operation would be done by the server. Since
 pNFS enables clients to do direct block access, it is useful for
 clients to participate in copy-on-write operations. All block/volume
 pNFS clients MUST support this copy-on-write processing.

 When a client wishes to write data covered by a PNFS_BLOCK_READ_DATA
 extent, it MUST have requested a writable layout from the server;
 that layout will contain PNFS_BLOCK_INVALID_DATA extents to cover all
 the data ranges of that layout’s PNFS_BLOCK_READ_DATA extents. More
 precisely, for any bex_file_offset range covered by one or more
 PNFS_BLOCK_READ_DATA extents in a writable layout, the server MUST
 include one or more PNFS_BLOCK_INVALID_DATA extents in the layout
 that cover the same bex_file_offset range. When performing a write
 to such an area of a layout, the client MUST effectively copy the
 data from the PNFS_BLOCK_READ_DATA extent for any partial blocks of
 bex_file_offset and range, merge in the changes to be written, and
 write the result to the PNFS_BLOCK_INVALID_DATA extent for the blocks
 for that bex_file_offset and range. That is, if entire blocks of
 data are to be overwritten by an operation, the corresponding

Black, et al. Standards Track [Page 17]

RFC 5663 pNFS Block/Volume Layout January 2010

 PNFS_BLOCK_READ_DATA blocks need not be fetched, but any partial-
 block writes must be merged with data fetched via
 PNFS_BLOCK_READ_DATA extents before storing the result via
 PNFS_BLOCK_INVALID_DATA extents. For the purposes of this
 discussion, "entire blocks" and "partial blocks" refer to the
 server’s file-system block size. Storing of data in a
 PNFS_BLOCK_INVALID_DATA extent converts the written portion of the
 PNFS_BLOCK_INVALID_DATA extent to a PNFS_BLOCK_READ_WRITE_DATA
 extent; all subsequent reads MUST be performed from this extent; the
 corresponding portion of the PNFS_BLOCK_READ_DATA extent MUST NOT be
 used after storing data in a PNFS_BLOCK_INVALID_DATA extent. If a
 client writes only a portion of an extent, the extent may be split at
 block aligned boundaries.

 When a client wishes to write data to a PNFS_BLOCK_INVALID_DATA
 extent that is not covered by a PNFS_BLOCK_READ_DATA extent, it MUST
 treat this write identically to a write to a file not involved with
 copy-on-write semantics. Thus, data must be written in at least
 block-sized increments, aligned to multiples of block-sized offsets,
 and unwritten portions of blocks must be zero filled.

 In the LAYOUTCOMMIT operation that normally sends updated layout
 information back to the server, for writable data, some
 PNFS_BLOCK_INVALID_DATA extents may be committed as
 PNFS_BLOCK_READ_WRITE_DATA extents, signifying that the storage at
 the corresponding bex_storage_offset values has been stored into and
 is now to be considered as valid data to be read.
 PNFS_BLOCK_READ_DATA extents are not committed to the server. For
 extents that the client receives via LAYOUTGET as
 PNFS_BLOCK_INVALID_DATA and returns via LAYOUTCOMMIT as
 PNFS_BLOCK_READ_WRITE_DATA, the server will understand that the
 PNFS_BLOCK_READ_DATA mapping for that extent is no longer valid or
 necessary for that file.

2.3.5. Extents are Permissions

 Layout extents returned to pNFS clients grant permission to read or
 write; PNFS_BLOCK_READ_DATA and PNFS_BLOCK_NONE_DATA are read-only
 (PNFS_BLOCK_NONE_DATA reads as zeroes), PNFS_BLOCK_READ_WRITE_DATA
 and PNFS_BLOCK_INVALID_DATA are read/write, (PNFS_BLOCK_INVALID_DATA
 reads as zeros, any write converts it to PNFS_BLOCK_READ_WRITE_DATA).
 This is the only means a client has of obtaining permission to
 perform direct I/O to storage devices; a pNFS client MUST NOT perform
 direct I/O operations that are not permitted by an extent held by the
 client. Client adherence to this rule places the pNFS server in
 control of potentially conflicting storage device operations,
 enabling the server to determine what does conflict and how to avoid
 conflicts by granting and recalling extents to/from clients.

Black, et al. Standards Track [Page 18]

RFC 5663 pNFS Block/Volume Layout January 2010

 Block/volume class storage devices are not required to perform read
 and write operations atomically. Overlapping concurrent read and
 write operations to the same data may cause the read to return a
 mixture of before-write and after-write data. Overlapping write
 operations can be worse, as the result could be a mixture of data
 from the two write operations; data corruption can occur if the
 underlying storage is striped and the operations complete in
 different orders on different stripes. When there are multiple
 clients who wish to access the same data, a pNFS server can avoid
 these conflicts by implementing a concurrency control policy of
 single writer XOR multiple readers. This policy MUST be implemented
 when storage devices do not provide atomicity for concurrent
 read/write and write/write operations to the same data.

 If a client makes a layout request that conflicts with an existing
 layout delegation, the request will be rejected with the error
 NFS4ERR_LAYOUTTRYLATER. This client is then expected to retry the
 request after a short interval. During this interval, the server
 SHOULD recall the conflicting portion of the layout delegation from
 the client that currently holds it. This reject-and-retry approach
 does not prevent client starvation when there is contention for the
 layout of a particular file. For this reason, a pNFS server SHOULD
 implement a mechanism to prevent starvation. One possibility is that
 the server can maintain a queue of rejected layout requests. Each
 new layout request can be checked to see if it conflicts with a
 previous rejected request, and if so, the newer request can be
 rejected. Once the original requesting client retries its request,
 its entry in the rejected request queue can be cleared, or the entry
 in the rejected request queue can be removed when it reaches a
 certain age.

 NFSv4 supports mandatory locks and share reservations. These are
 mechanisms that clients can use to restrict the set of I/O operations
 that are permissible to other clients. Since all I/O operations
 ultimately arrive at the NFSv4 server for processing, the server is
 in a position to enforce these restrictions. However, with pNFS
 layouts, I/Os will be issued from the clients that hold the layouts
 directly to the storage devices that host the data. These devices
 have no knowledge of files, mandatory locks, or share reservations,
 and are not in a position to enforce such restrictions. For this
 reason the NFSv4 server MUST NOT grant layouts that conflict with
 mandatory locks or share reservations. Further, if a conflicting
 mandatory lock request or a conflicting open request arrives at the
 server, the server MUST recall the part of the layout in conflict
 with the request before granting the request.

Black, et al. Standards Track [Page 19]

RFC 5663 pNFS Block/Volume Layout January 2010

2.3.6. End-of-file Processing

 The end-of-file location can be changed in two ways: implicitly as
 the result of a WRITE or LAYOUTCOMMIT beyond the current end-of-file,
 or explicitly as the result of a SETATTR request. Typically, when a
 file is truncated by an NFSv4 client via the SETATTR call, the server
 frees any disk blocks belonging to the file that are beyond the new
 end-of-file byte, and MUST write zeros to the portion of the new
 end-of-file block beyond the new end-of-file byte. These actions
 render any pNFS layouts that refer to the blocks that are freed or
 written semantically invalid. Therefore, the server MUST recall from
 clients the portions of any pNFS layouts that refer to blocks that
 will be freed or written by the server before processing the truncate
 request. These recalls may take time to complete; as explained in
 [NFSv4.1], if the server cannot respond to the client SETATTR request
 in a reasonable amount of time, it SHOULD reply to the client with
 the error NFS4ERR_DELAY.

 Blocks in the PNFS_BLOCK_INVALID_DATA state that lie beyond the new
 end-of-file block present a special case. The server has reserved
 these blocks for use by a pNFS client with a writable layout for the
 file, but the client has yet to commit the blocks, and they are not
 yet a part of the file mapping on disk. The server MAY free these
 blocks while processing the SETATTR request. If so, the server MUST
 recall any layouts from pNFS clients that refer to the blocks before
 processing the truncate. If the server does not free the
 PNFS_BLOCK_INVALID_DATA blocks while processing the SETATTR request,
 it need not recall layouts that refer only to the PNFS_BLOCK_INVALID
 DATA blocks.

 When a file is extended implicitly by a WRITE or LAYOUTCOMMIT beyond
 the current end-of-file, or extended explicitly by a SETATTR request,
 the server need not recall any portions of any pNFS layouts.

2.3.7. Layout Hints

 The SETATTR operation supports a layout hint attribute [NFSv4.1].
 When the client sets a layout hint (data type layouthint4) with a
 layout type of LAYOUT4_BLOCK_VOLUME (the loh_type field), the
 loh_body field contains a value of data type pnfs_block_layouthint4.

 /// /* block layout specific type for loh_body */
 /// struct pnfs_block_layouthint4 {
 /// uint64_t blh_maximum_io_time; /* maximum i/o time in seconds
 /// */
 /// };
 ///

Black, et al. Standards Track [Page 20]

RFC 5663 pNFS Block/Volume Layout January 2010

 The block layout client uses the layout hint data structure to
 communicate to the server the maximum time that it may take an I/O to
 execute on the client. Clients using block layouts MUST set the
 layout hint attribute before using LAYOUTGET operations.

2.3.8. Client Fencing

 The pNFS block protocol must handle situations in which a system
 failure, typically a network connectivity issue, requires the server
 to unilaterally revoke extents from one client in order to transfer
 the extents to another client. The pNFS server implementation MUST
 ensure that when resources are transferred to another client, they
 are not used by the client originally owning them, and this must be
 ensured against any possible combination of partitions and delays
 among all of the participants to the protocol (server, storage and
 client). Two approaches to guaranteeing this isolation are possible
 and are discussed below.

 One implementation choice for fencing the block client from the block
 storage is the use of LUN masking or mapping at the storage systems
 or storage area network to disable access by the client to be
 isolated. This requires server access to a management interface for
 the storage system and authorization to perform LUN masking and
 management operations. For example, the Storage Management
 Initiative Specification (SMI-S) [SMIS] provides a means to discover
 and mask LUNs, including a means of associating clients with the
 necessary World Wide Names or Initiator names to be masked.

 In the absence of support for LUN masking, the server has to rely on
 the clients to implement a timed-lease I/O fencing mechanism.
 Because clients do not know if the server is using LUN masking, in
 all cases, the client MUST implement timed-lease fencing. In timed-
 lease fencing, we define two time periods, the first, "lease_time" is
 the length of a lease as defined by the server’s lease_time attribute
 (see [NFSv4.1]), and the second, "blh_maximum_io_time" is the maximum
 time it can take for a client I/O to the storage system to either
 complete or fail; this value is often 30 seconds or 60 seconds, but
 may be longer in some environments. If the maximum client I/O time
 cannot be bounded, the client MUST use a value of all 1s as the
 blh_maximum_io_time.

 After a new client ID is established, the client MUST use SETATTR
 with a layout hint of type LAYOUT4_BLOCK_VOLUME to inform the server
 of its maximum I/O time prior to issuing the first LAYOUTGET
 operation. While the maximum I/O time hint is a per-file attribute,
 it is actually a per-client characteristic. Thus, the server MUST
 maintain the last maximum I/O time hint sent separately for each
 client. Each time the maximum I/O time changes, the server MUST

Black, et al. Standards Track [Page 21]

RFC 5663 pNFS Block/Volume Layout January 2010

 apply it to all files for which the client has a layout. If the
 client does not specify this attribute on a file for which a block
 layout is requested, the server SHOULD use the most recent value
 provided by the same client for any file; if that client has not
 provided a value for this attribute, the server SHOULD reject the
 layout request with the error NFS4ERR_LAYOUTUNAVAILABLE. The client
 SHOULD NOT send a SETATTR of the layout hint with every LAYOUTGET. A
 server that implements fencing via LUN masking SHOULD accept any
 maximum I/O time value from a client. A server that does not
 implement fencing may return an error NFS4ERR_INVAL to the SETATTR
 operation. Such a server SHOULD return NFS4ERR_INVAL when a client
 sends an unbounded maximum I/O time (all 1s), or when the maximum I/O
 time is significantly greater than that of other clients using block
 layouts with pNFS.

 When a client receives the error NFS4ERR_INVAL in response to the
 SETATTR operation for a layout hint, the client MUST NOT use the
 LAYOUTGET operation. After responding with NFS4ERR_INVAL to the
 SETATTR for layout hint, the server MUST return the error
 NFS4ERR_LAYOUTUNAVAILABLE to all subsequent LAYOUTGET operations from
 that client. Thus, the server, by returning either NFS4ERR_INVAL or
 NFS4_OK determines whether or not a client with a large, or an
 unbounded-maximum I/O time may use pNFS.

 Using the lease time and the maximum I/O time values, we specify the
 behavior of the client and server as follows.

 When a client receives layout information via a LAYOUTGET operation,
 those layouts are valid for at most "lease_time" seconds from when
 the server granted them. A layout is renewed by any successful
 SEQUENCE operation, or whenever a new stateid is created or updated
 (see the section "Lease Renewal" of [NFSv4.1]). If the layout lease
 is not renewed prior to expiration, the client MUST cease to use the
 layout after "lease_time" seconds from when it either sent the
 original LAYOUTGET command or sent the last operation renewing the
 lease. In other words, the client may not issue any I/O to blocks
 specified by an expired layout. In the presence of large
 communication delays between the client and server, it is even
 possible for the lease to expire prior to the server response
 arriving at the client. In such a situation, the client MUST NOT use
 the expired layouts, and SHOULD revert to using standard NFSv41 READ
 and WRITE operations. Furthermore, the client must be configured
 such that I/O operations complete within the "blh_maximum_io_time"
 even in the presence of multipath drivers that will retry I/Os via
 multiple paths.

Black, et al. Standards Track [Page 22]

RFC 5663 pNFS Block/Volume Layout January 2010

 As stated in the "Dealing with Lease Expiration on the Client"
 section of [NFSv4.1], if any SEQUENCE operation is successful, but
 sr_status_flag has SEQ4_STATUS_EXPIRED_ALL_STATE_REVOKED,
 SEQ4_STATUS_EXPIRED_SOME_STATE_REVOKED, or
 SEQ4_STATUS_ADMIN_STATE_REVOKED is set, the client MUST immediately
 cease to use all layouts and device ID to device address mappings
 associated with the corresponding server.

 In the absence of known two-way communication between the client and
 the server on the fore channel, the server must wait for at least the
 time period "lease_time" plus "blh_maximum_io_time" before
 transferring layouts from the original client to any other client.
 The server, like the client, must take a conservative approach, and
 start the lease expiration timer from the time that it received the
 operation that last renewed the lease.

2.4. Crash Recovery Issues

 A critical requirement in crash recovery is that both the client and
 the server know when the other has failed. Additionally, it is
 required that a client sees a consistent view of data across server
 restarts. These requirements and a full discussion of crash recovery
 issues are covered in the "Crash Recovery" section of the NFSv41
 specification [NFSv4.1]. This document contains additional crash
 recovery material specific only to the block/volume layout.

 When the server crashes while the client holds a writable layout, and
 the client has written data to blocks covered by the layout, and the
 blocks are still in the PNFS_BLOCK_INVALID_DATA state, the client has
 two options for recovery. If the data that has been written to these
 blocks is still cached by the client, the client can simply re-write
 the data via NFSv4, once the server has come back online. However,
 if the data is no longer in the client’s cache, the client MUST NOT
 attempt to source the data from the data servers. Instead, it should
 attempt to commit the blocks in question to the server during the
 server’s recovery grace period, by sending a LAYOUTCOMMIT with the
 "loca_reclaim" flag set to true. This process is described in detail
 in Section 18.42.4 of [NFSv4.1].

2.5. Recalling Resources: CB_RECALL_ANY

 The server may decide that it cannot hold all of the state for
 layouts without running out of resources. In such a case, it is free
 to recall individual layouts using CB_LAYOUTRECALL to reduce the
 load, or it may choose to request that the client return any layout.

Black, et al. Standards Track [Page 23]

RFC 5663 pNFS Block/Volume Layout January 2010

 The NFSv4.1 spec [NFSv4.1] defines the following types:

 const RCA4_TYPE_MASK_BLK_LAYOUT = 4;

 struct CB_RECALL_ANY4args {
 uint32_t craa_objects_to_keep;
 bitmap4 craa_type_mask;
 };

 When the server sends a CB_RECALL_ANY request to a client specifying
 the RCA4_TYPE_MASK_BLK_LAYOUT bit in craa_type_mask, the client
 should immediately respond with NFS4_OK, and then asynchronously
 return complete file layouts until the number of files with layouts
 cached on the client is less than craa_object_to_keep.

2.6. Transient and Permanent Errors

 The server may respond to LAYOUTGET with a variety of error statuses.
 These errors can convey transient conditions or more permanent
 conditions that are unlikely to be resolved soon.

 The transient errors, NFS4ERR_RECALLCONFLICT and NFS4ERR_TRYLATER,
 are used to indicate that the server cannot immediately grant the
 layout to the client. In the former case, this is because the server
 has recently issued a CB_LAYOUTRECALL to the requesting client,
 whereas in the case of NFS4ERR_TRYLATER, the server cannot grant the
 request possibly due to sharing conflicts with other clients. In
 either case, a reasonable approach for the client is to wait several
 milliseconds and retry the request. The client SHOULD track the
 number of retries, and if forward progress is not made, the client
 SHOULD send the READ or WRITE operation directly to the server.

 The error NFS4ERR_LAYOUTUNAVAILABLE may be returned by the server if
 layouts are not supported for the requested file or its containing
 file system. The server may also return this error code if the
 server is the progress of migrating the file from secondary storage,
 or for any other reason that causes the server to be unable to supply
 the layout. As a result of receiving NFS4ERR_LAYOUTUNAVAILABLE, the
 client SHOULD send future READ and WRITE requests directly to the
 server. It is expected that a client will not cache the file’s
 layoutunavailable state forever, particular if the file is closed,
 and thus eventually, the client MAY reissue a LAYOUTGET operation.

3. Security Considerations

 Typically, SAN disk arrays and SAN protocols provide access control
 mechanisms (e.g., LUN mapping and/or masking) that operate at the
 granularity of individual hosts. The functionality provided by such

Black, et al. Standards Track [Page 24]

RFC 5663 pNFS Block/Volume Layout January 2010

 mechanisms makes it possible for the server to "fence" individual
 client machines from certain physical disks -- that is to say, to
 prevent individual client machines from reading or writing to certain
 physical disks. Finer-grained access control methods are not
 generally available. For this reason, certain security
 responsibilities are delegated to pNFS clients for block/volume
 layouts. Block/volume storage systems generally control access at a
 volume granularity, and hence pNFS clients have to be trusted to only
 perform accesses allowed by the layout extents they currently hold
 (e.g., and not access storage for files on which a layout extent is
 not held). In general, the server will not be able to prevent a
 client that holds a layout for a file from accessing parts of the
 physical disk not covered by the layout. Similarly, the server will
 not be able to prevent a client from accessing blocks covered by a
 layout that it has already returned. This block-based level of
 protection must be provided by the client software.

 An alternative method of block/volume protocol use is for the storage
 devices to export virtualized block addresses, which do reflect the
 files to which blocks belong. These virtual block addresses are
 exported to pNFS clients via layouts. This allows the storage device
 to make appropriate access checks, while mapping virtual block
 addresses to physical block addresses. In environments where the
 security requirements are such that client-side protection from
 access to storage outside of the authorized layout extents is not
 sufficient, pNFS block/volume storage layouts SHOULD NOT be used
 unless the storage device is able to implement the appropriate access
 checks, via use of virtualized block addresses or other means. In
 contrast, an environment where client-side protection may suffice
 consists of co-located clients, server and storage systems in a data
 center with a physically isolated SAN under control of a single
 system administrator or small group of system administrators.

 This also has implications for some NFSv4 functionality outside pNFS.
 For instance, if a file is covered by a mandatory read-only lock, the
 server can ensure that only readable layouts for the file are granted
 to pNFS clients. However, it is up to each pNFS client to ensure
 that the readable layout is used only to service read requests, and
 not to allow writes to the existing parts of the file. Similarly,
 block/volume storage devices are unable to validate NFS Access
 Control Lists (ACLs) and file open modes, so the client must enforce
 the policies before sending a READ or WRITE request to the storage
 device. Since block/volume storage systems are generally not capable
 of enforcing such file-based security, in environments where pNFS
 clients cannot be trusted to enforce such policies, pNFS block/volume
 storage layouts SHOULD NOT be used.

Black, et al. Standards Track [Page 25]

RFC 5663 pNFS Block/Volume Layout January 2010

 Access to block/volume storage is logically at a lower layer of the
 I/O stack than NFSv4, and hence NFSv4 security is not directly
 applicable to protocols that access such storage directly. Depending
 on the protocol, some of the security mechanisms provided by NFSv4
 (e.g., encryption, cryptographic integrity) may not be available or
 may be provided via different means. At one extreme, pNFS with
 block/volume storage can be used with storage access protocols (e.g.,
 parallel SCSI) that provide essentially no security functionality.
 At the other extreme, pNFS may be used with storage protocols such as
 iSCSI that can provide significant security functionality. It is the
 responsibility of those administering and deploying pNFS with a
 block/volume storage access protocol to ensure that appropriate
 protection is provided to that protocol (physical security is a
 common means for protocols not based on IP). In environments where
 the security requirements for the storage protocol cannot be met,
 pNFS block/volume storage layouts SHOULD NOT be used.

 When security is available for a storage protocol, it is generally at
 a different granularity and with a different notion of identity than
 NFSv4 (e.g., NFSv4 controls user access to files, iSCSI controls
 initiator access to volumes). The responsibility for enforcing
 appropriate correspondences between these security layers is placed
 upon the pNFS client. As with the issues in the first paragraph of
 this section, in environments where the security requirements are
 such that client-side protection from access to storage outside of
 the layout is not sufficient, pNFS block/volume storage layouts
 SHOULD NOT be used.

4. Conclusions

 This document specifies the block/volume layout type for pNFS and
 associated functionality.

5. IANA Considerations

 There are no IANA considerations in this document. All pNFS IANA
 Considerations are covered in [NFSv4.1].

6. Acknowledgments

 This document draws extensively on the authors’ familiarity with the
 mapping functionality and protocol in EMC’s Multi-Path File System
 (MPFS) (previously named HighRoad) system [MPFS]. The protocol used
 by MPFS is called FMP (File Mapping Protocol); it is an add-on
 protocol that runs in parallel with file system protocols such as
 NFSv3 to provide pNFS-like functionality for block/volume storage.
 While drawing on FMP, the data structures and functional
 considerations in this document differ in significant ways, based on

Black, et al. Standards Track [Page 26]

RFC 5663 pNFS Block/Volume Layout January 2010

 lessons learned and the opportunity to take advantage of NFSv4
 features such as COMPOUND operations. The design to support pNFS
 client participation in copy-on-write is based on text and ideas
 contributed by Craig Everhart.

 Andy Adamson, Ben Campbell, Richard Chandler, Benny Halevy, Fredric
 Isaman, and Mario Wurzl all helped to review versions of this
 specification.

7. References

7.1. Normative References

 [LEGAL] IETF Trust, "Legal Provisions Relating to IETF Documents",
 http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf,
 November 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [NFSv4.1] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, January 2010.

 [XDR] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, May 2006.

7.2. Informative References

 [MPFS] EMC Corporation, "EMC Celerra Multi-Path File System
 (MPFS)", EMC Data Sheet,
 http://www.emc.com/collateral/software/data-sheet/
 h2006-celerra-mpfs-mpfsi.pdf.

 [SMIS] SNIA, "Storage Management Initiative Specification (SMI-S)
 v1.4", http://www.snia.org/tech_activities/standards/
 curr_standards/smi/SMI-S_Technical_Position_v1.4.0r4.zip.

Black, et al. Standards Track [Page 27]

RFC 5663 pNFS Block/Volume Layout January 2010

Authors’ Addresses

 David L. Black
 EMC Corporation
 176 South Street
 Hopkinton, MA 01748

 Phone: +1 (508) 293-7953
 EMail: black_david@emc.com

 Stephen Fridella
 Nasuni Inc
 313 Speen St
 Natick MA 01760

 EMail: stevef@nasuni.com

 Jason Glasgow
 Google
 5 Cambridge Center
 Cambridge, MA 02142

 Phone: +1 (617) 575 1599
 EMail: jglasgow@aya.yale.edu

Black, et al. Standards Track [Page 28]

