
Internet Engineering Task Force (IETF) T. Talpey
Request for Comments: 5666 Unaffiliated
Category: Standards Track B. Callaghan
ISSN: 2070-1721 Apple
 January 2010

 Remote Direct Memory Access Transport for Remote Procedure Call

Abstract

 This document describes a protocol providing Remote Direct Memory
 Access (RDMA) as a new transport for Remote Procedure Call (RPC).
 The RDMA transport binding conveys the benefits of efficient, bulk-
 data transport over high-speed networks, while providing for minimal
 change to RPC applications and with no required revision of the
 application RPC protocol, or the RPC protocol itself.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5666.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Talpey & Callaghan Standards Track [Page 1]

RFC 5666 RDMA Transport for RPC January 2010

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction ..3
 1.1. Requirements Language4
 2. Abstract RDMA Requirements4
 3. Protocol Outline ..5
 3.1. Short Messages ...6
 3.2. Data Chunks ..6
 3.3. Flow Control ...7
 3.4. XDR Encoding with Chunks8
 3.5. XDR Decoding with Read Chunks11
 3.6. XDR Decoding with Write Chunks12
 3.7. XDR Roundup and Chunks13
 3.8. RPC Call and Reply ..14
 3.9. Padding ...17
 4. RPC RDMA Message Layout ..18
 4.1. RPC-over-RDMA Header18
 4.2. RPC-over-RDMA Header Errors20
 4.3. XDR Language Description20
 5. Long Messages ..22
 5.1. Message as an RDMA Read Chunk23
 5.2. RDMA Write of Long Replies (Reply Chunks)24
 6. Connection Configuration Protocol25
 6.1. Initial Connection State26
 6.2. Protocol Description26
 7. Memory Registration Overhead28
 8. Errors and Error Recovery28
 9. Node Addressing ..28
 10. RPC Binding ...29
 11. Security Considerations30
 12. IANA Considerations ...31
 13. Acknowledgments ...32
 14. References ..33
 14.1. Normative References33
 14.2. Informative References33

Talpey & Callaghan Standards Track [Page 2]

RFC 5666 RDMA Transport for RPC January 2010

1. Introduction

 Remote Direct Memory Access (RDMA) [RFC5040, RFC5041], [IB] is a
 technique for efficient movement of data between end nodes, which
 becomes increasingly compelling over high-speed transports. By
 directing data into destination buffers as it is sent on a network,
 and placing it via direct memory access by hardware, the double
 benefit of faster transfers and reduced host overhead is obtained.

 Open Network Computing Remote Procedure Call (ONC RPC, or simply,
 RPC) [RFC5531] is a remote procedure call protocol that has been run
 over a variety of transports. Most RPC implementations today use UDP
 or TCP. RPC messages are defined in terms of an eXternal Data
 Representation (XDR) [RFC4506], which provides a canonical data
 representation across a variety of host architectures. An XDR data
 stream is conveyed differently on each type of transport. On UDP,
 RPC messages are encapsulated inside datagrams, while on a TCP byte
 stream, RPC messages are delineated by a record marking protocol. An
 RDMA transport also conveys RPC messages in a unique fashion that
 must be fully described if client and server implementations are to
 interoperate.

 RDMA transports present new semantics unlike the behaviors of either
 UDP or TCP alone. They retain message delineations like UDP while
 also providing a reliable, sequenced data transfer like TCP. Also,
 they provide the new efficient, bulk-transfer service of RDMA. RDMA
 transports are therefore naturally viewed as a new transport type by
 RPC.

 RDMA as a transport will benefit the performance of RPC protocols
 that move large "chunks" of data, since RDMA hardware excels at
 moving data efficiently between host memory and a high-speed network
 with little or no host CPU involvement. In this context, the Network
 File System (NFS) protocol, in all its versions [RFC1094] [RFC1813]
 [RFC3530] [RFC5661], is an obvious beneficiary of RDMA. A complete
 problem statement is discussed in [RFC5532], and related NFSv4 issues
 are discussed in [RFC5661]. Many other RPC-based protocols will also
 benefit.

 Although the RDMA transport described here provides relatively
 transparent support for any RPC application, the proposal goes
 further in describing mechanisms that can optimize the use of RDMA
 with more active participation by the RPC application.

Talpey & Callaghan Standards Track [Page 3]

RFC 5666 RDMA Transport for RPC January 2010

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Abstract RDMA Requirements

 An RPC transport is responsible for conveying an RPC message from a
 sender to a receiver. An RPC message is either an RPC call from a
 client to a server, or an RPC reply from the server back to the
 client. An RPC message contains an RPC call header followed by
 arguments if the message is an RPC call, or an RPC reply header
 followed by results if the message is an RPC reply. The call header
 contains a transaction ID (XID) followed by the program and procedure
 number as well as a security credential. An RPC reply header begins
 with an XID that matches that of the RPC call message, followed by a
 security verifier and results. All data in an RPC message is XDR
 encoded. For a complete description of the RPC protocol and XDR
 encoding, see [RFC5531] and [RFC4506].

 This protocol assumes the following abstract model for RDMA
 transports. These terms, common in the RDMA lexicon, are used in
 this document. A more complete glossary of RDMA terms can be found
 in [RFC5040].

 o Registered Memory
 All data moved via tagged RDMA operations is resident in
 registered memory at its destination. This protocol assumes
 that each segment of registered memory MUST be identified with a
 steering tag of no more than 32 bits and memory addresses of up
 to 64 bits in length.

 o RDMA Send
 The RDMA provider supports an RDMA Send operation with
 completion signaled at the receiver when data is placed in a
 pre-posted buffer. The amount of transferred data is limited
 only by the size of the receiver’s buffer. Sends complete at
 the receiver in the order they were issued at the sender.

 o RDMA Write
 The RDMA provider supports an RDMA Write operation to directly
 place data in the receiver’s buffer. An RDMA Write is initiated
 by the sender and completion is signaled at the sender. No
 completion is signaled at the receiver. The sender uses a
 steering tag, memory address, and length of the remote
 destination buffer. RDMA Writes are not necessarily ordered
 with respect to one another, but are ordered with respect to

Talpey & Callaghan Standards Track [Page 4]

RFC 5666 RDMA Transport for RPC January 2010

 RDMA Sends; a subsequent RDMA Send completion obtained at the
 receiver guarantees that prior RDMA Write data has been
 successfully placed in the receiver’s memory.

 o RDMA Read
 The RDMA provider supports an RDMA Read operation to directly
 place peer source data in the requester’s buffer. An RDMA Read
 is initiated by the receiver and completion is signaled at the
 receiver. The receiver provides steering tags, memory
 addresses, and a length for the remote source and local
 destination buffers. Since the peer at the data source receives
 no notification of RDMA Read completion, there is an assumption
 that on receiving the data, the receiver will signal completion
 with an RDMA Send message, so that the peer can free the source
 buffers and the associated steering tags.

 This protocol is designed to be carried over all RDMA transports
 meeting the stated requirements. This protocol conveys to the RPC
 peer information sufficient for that RPC peer to direct an RDMA layer
 to perform transfers containing RPC data and to communicate their
 result(s). For example, it is readily carried over RDMA transports
 such as Internet Wide Area RDMA Protocol (iWARP) [RFC5040, RFC5041],
 or InfiniBand [IB].

3. Protocol Outline

 An RPC message can be conveyed in identical fashion, whether it is a
 call or reply message. In each case, the transmission of the message
 proper is preceded by transmission of a transport-specific header for
 use by RPC-over-RDMA transports. This header is analogous to the
 record marking used for RPC over TCP, but is more extensive, since
 RDMA transports support several modes of data transfer; it is
 important to allow the upper-layer protocol to specify the most
 efficient mode for each of the segments in a message. Multiple
 segments of a message may thereby be transferred in different ways to
 different remote memory destinations.

 All transfers of a call or reply begin with an RDMA Send that
 transfers at least the RPC-over-RDMA header, usually with the call or
 reply message appended, or at least some part thereof. Because the
 size of what may be transmitted via RDMA Send is limited by the size
 of the receiver’s pre-posted buffer, the RPC-over-RDMA transport
 provides a number of methods to reduce the amount transferred by
 means of the RDMA Send, when necessary, by transferring various parts
 of the message using RDMA Read and RDMA Write.

Talpey & Callaghan Standards Track [Page 5]

RFC 5666 RDMA Transport for RPC January 2010

 RPC-over-RDMA framing replaces all other RPC framing (such as TCP
 record marking) when used atop an RPC/RDMA association, even though
 the underlying RDMA protocol may itself be layered atop a protocol
 with a defined RPC framing (such as TCP). It is however possible for
 RPC/RDMA to be dynamically enabled, in the course of negotiating the
 use of RDMA via an upper-layer exchange. Because RPC framing
 delimits an entire RPC request or reply, the resulting shift in
 framing must occur between distinct RPC messages, and in concert with
 the transport.

3.1. Short Messages

 Many RPC messages are quite short. For example, the NFS version 3
 GETATTR request, is only 56 bytes: 20 bytes of RPC header, plus a
 32-byte file handle argument and 4 bytes of length. The reply to
 this common request is about 100 bytes.

 There is no benefit in transferring such small messages with an RDMA
 Read or Write operation. The overhead in transferring steering tags
 and memory addresses is justified only by large transfers. The
 critical message size that justifies RDMA transfer will vary
 depending on the RDMA implementation and network, but is typically of
 the order of a few kilobytes. It is appropriate to transfer a short
 message with an RDMA Send to a pre-posted buffer. The RPC-over-RDMA
 header with the short message (call or reply) immediately following
 is transferred using a single RDMA Send operation.

 Short RPC messages over an RDMA transport:

 RPC Client RPC Server
 | RPC Call |
 Send | ------------------------------> |
 | |
 | RPC Reply |
 | <------------------------------ | Send

3.2. Data Chunks

 Some protocols, like NFS, have RPC procedures that can transfer very
 large chunks of data in the RPC call or reply and would cause the
 maximum send size to be exceeded if one tried to transfer them as
 part of the RDMA Send. These large chunks typically range from a
 kilobyte to a megabyte or more. An RDMA transport can transfer large
 chunks of data more efficiently via the direct placement of an RDMA
 Read or RDMA Write operation. Using direct placement instead of
 inline transfer not only avoids expensive data copies, but provides
 correct data alignment at the destination.

Talpey & Callaghan Standards Track [Page 6]

RFC 5666 RDMA Transport for RPC January 2010

3.3. Flow Control

 It is critical to provide RDMA Send flow control for an RDMA
 connection. RDMA receive operations will fail if a pre-posted
 receive buffer is not available to accept an incoming RDMA Send, and
 repeated occurrences of such errors can be fatal to the connection.
 This is a departure from conventional TCP/IP networking where buffers
 are allocated dynamically on an as-needed basis, and where
 pre-posting is not required.

 It is not practical to provide for fixed credit limits at the RPC
 server. Fixed limits scale poorly, since posted buffers are
 dedicated to the associated connection until consumed by receive
 operations. Additionally, for protocol correctness, the RPC server
 must always be able to reply to client requests, whether or not new
 buffers have been posted to accept future receives. (Note that the
 RPC server may in fact be a client at some other layer. For example,
 NFSv4 callbacks are processed by the NFSv4 client, acting as an RPC
 server. The credit discussions apply equally in either case.)

 Flow control for RDMA Send operations is implemented as a simple
 request/grant protocol in the RPC-over-RDMA header associated with
 each RPC message. The RPC-over-RDMA header for RPC call messages
 contains a requested credit value for the RPC server, which MAY be
 dynamically adjusted by the caller to match its expected needs. The
 RPC-over-RDMA header for the RPC reply messages provides the granted
 result, which MAY have any value except it MUST NOT be zero when no
 in-progress operations are present at the server, since such a value
 would result in deadlock. The value MAY be adjusted up or down at
 each opportunity to match the server’s needs or policies.

 The RPC client MUST NOT send unacknowledged requests in excess of
 this granted RPC server credit limit. If the limit is exceeded, the
 RDMA layer may signal an error, possibly terminating the connection.
 Even if an error does not occur, it is OPTIONAL that the server
 handle the excess request(s), and it MAY return an RPC error to the
 client. Also note that the never-zero requirement implies that an
 RPC server MUST always provide at least one credit to each connected
 RPC client from which no requests are outstanding. The client would
 deadlock otherwise, unable to send another request.

 While RPC calls complete in any order, the current flow control limit
 at the RPC server is known to the RPC client from the Send ordering
 properties. It is always the most recent server-granted credit value
 minus the number of requests in flight.

Talpey & Callaghan Standards Track [Page 7]

RFC 5666 RDMA Transport for RPC January 2010

 Certain RDMA implementations may impose additional flow control
 restrictions, such as limits on RDMA Read operations in progress at
 the responder. Because these operations are outside the scope of
 this protocol, they are not addressed and SHOULD be provided for by
 other layers. For example, a simple upper-layer RPC consumer might
 perform single-issue RDMA Read requests, while a more sophisticated,
 multithreaded RPC consumer might implement its own First In, First
 Out (FIFO) queue of such operations. For further discussion of
 possible protocol implementations capable of negotiating these
 values, see Section 6 "Connection Configuration Protocol" of this
 document, or [RFC5661].

3.4. XDR Encoding with Chunks

 The data comprising an RPC call or reply message is marshaled or
 serialized into a contiguous stream by an XDR routine. XDR data
 types such as integers, strings, arrays, and linked lists are
 commonly implemented over two very simple functions that encode
 either an XDR data unit (32 bits) or an array of bytes.

 Normally, the separate data items in an RPC call or reply are encoded
 as a contiguous sequence of bytes for network transmission over UDP
 or TCP. However, in the case of an RDMA transport, local routines
 such as XDR encode can determine that (for instance) an opaque byte
 array is large enough to be more efficiently moved via an RDMA data
 transfer operation like RDMA Read or RDMA Write.

 Semantically speaking, the protocol has no restriction regarding data
 types that may or may not be represented by a read or write chunk.
 In practice however, efficiency considerations lead to the conclusion
 that certain data types are not generally "chunkable". Typically,
 only those opaque and aggregate data types that may attain
 substantial size are considered to be eligible. With today’s
 hardware, this size may be a kilobyte or more. However, any object
 MAY be chosen for chunking in any given message.

 The eligibility of XDR data items to be candidates for being moved as
 data chunks (as opposed to being marshaled inline) is not specified
 by the RPC-over-RDMA protocol. Chunk eligibility criteria MUST be
 determined by each upper-layer in order to provide for an
 interoperable specification. One such example with rationale, for
 the NFS protocol family, is provided in [RFC5667].

 The interface by which an upper-layer implementation communicates the
 eligibility of a data item locally to RPC for chunking is out of
 scope for this specification. In many implementations, it is
 possible to implement a transparent RPC chunking facility. However,
 such implementations may lead to inefficiencies, either because they

Talpey & Callaghan Standards Track [Page 8]

RFC 5666 RDMA Transport for RPC January 2010

 require the RPC layer to perform expensive registration and
 de-registration of memory "on the fly", or they may require using
 RDMA chunks in reply messages, along with the resulting additional
 handshaking with the RPC-over-RDMA peer. However, these issues are
 internal and generally confined to the local interface between RPC
 and its upper layers, one in which implementations are free to
 innovate. The only requirement is that the resulting RPC RDMA
 protocol sent to the peer is valid for the upper layer. See, for
 example, [RFC5667].

 When sending any message (request or reply) that contains an eligible
 large data chunk, the XDR encoding routine avoids moving the data
 into the XDR stream. Instead, it does not encode the data portion,
 but records the address and size of each chunk in a separate "read
 chunk list" encoded within RPC RDMA transport-specific headers. Such
 chunks will be transferred via RDMA Read operations initiated by the
 receiver.

 When the read chunks are to be moved via RDMA, the memory for each
 chunk is registered. This registration may take place within XDR
 itself, providing for full transparency to upper layers, or it may be
 performed by any other specific local implementation.

 Additionally, when making an RPC call that can result in bulk data
 transferred in the reply, write chunks MAY be provided to accept the
 data directly via RDMA Write. These write chunks will therefore be
 pre-filled by the RPC server prior to responding, and XDR decode of
 the data at the client will not be required. These chunks undergo a
 similar registration and advertisement via "write chunk lists" built
 as a part of XDR encoding.

 Some RPC client implementations are not able to determine where an
 RPC call’s results reside during the "encode" phase. This makes it
 difficult or impossible for the RPC client layer to encode the write
 chunk list at the time of building the request. In this case, it is
 difficult for the RPC implementation to provide transparency to the
 RPC consumer, which may require recoding to provide result
 information at this earlier stage.

 Therefore, if the RPC client does not make a write chunk list
 available to receive the result, then the RPC server MAY return data
 inline in the reply, or if the upper-layer specification permits, it
 MAY be returned via a read chunk list. It is NOT RECOMMENDED that
 upper-layer RPC client protocol specifications omit write chunk lists
 for eligible replies, due to the lower performance of the additional
 handshaking to perform data transfer, and the requirement that the
 RPC server must expose (and preserve) the reply data for a period of

Talpey & Callaghan Standards Track [Page 9]

RFC 5666 RDMA Transport for RPC January 2010

 time. In the absence of a server-provided read chunk list in the
 reply, if the encoded reply overflows the posted receive buffer, the
 RPC will fail with an RDMA transport error.

 When any data within a message is provided via either read or write
 chunks, the chunk itself refers only to the data portion of the XDR
 stream element. In particular, for counted fields (e.g., a "<>"
 encoding) the byte count that is encoded as part of the field remains
 in the XDR stream, and is also encoded in the chunk list. The data
 portion is however elided from the encoded XDR stream, and is
 transferred as part of chunk list processing. It is important to
 maintain upper-layer implementation compatibility -- both the count
 and the data must be transferred as part of the logical XDR stream.
 While the chunk list processing results in the data being available
 to the upper-layer peer for XDR decoding, the length present in the
 chunk list entries is not. Any byte count in the XDR stream MUST
 match the sum of the byte counts present in the corresponding read or
 write chunk list. If they do not agree, an RPC protocol encoding
 error results.

 The following items are contained in a chunk list entry.

 Handle
 Steering tag or handle obtained when the chunk memory is
 registered for RDMA.

 Length
 The length of the chunk in bytes.

 Offset
 The offset or beginning memory address of the chunk. In order
 to support the widest array of RDMA implementations, as well as
 the most general steering tag scheme, this field is
 unconditionally included in each chunk list entry.

 While zero-based offset schemes are available in many RDMA
 implementations, their use by RPC requires individual
 registration of each read or write chunk. On many such
 implementations, this can be a significant overhead. By
 providing an offset in each chunk, many pre-registration or
 region-based registrations can be readily supported, and by
 using a single, universal chunk representation, the RPC RDMA
 protocol implementation is simplified to its most general form.

 Position
 For data that is to be encoded, the position in the XDR stream
 where the chunk would normally reside. Note that the chunk
 therefore inserts its data into the XDR stream at this position,

Talpey & Callaghan Standards Track [Page 10]

RFC 5666 RDMA Transport for RPC January 2010

 but its transfer is no longer "inline". Also note therefore
 that all chunks belonging to a single RPC argument or result
 will have the same position. For data that is to be decoded, no
 position is used.

 When XDR marshaling is complete, the chunk list is XDR encoded, then
 sent to the receiver prepended to the RPC message. Any source data
 for a read chunk, or the destination of a write chunk, remain behind
 in the sender’s registered memory, and their actual payload is not
 marshaled into the request or reply.

 +----------------+----------------+-------------
 | RPC-over-RDMA | |
 | header w/ | RPC Header | Non-chunk args/results
 | chunks | |
 +----------------+----------------+-------------

 Read chunk lists and write chunk lists are structured somewhat
 differently. This is due to the different usage -- read chunks are
 decoded and indexed by their argument’s or result’s position in the
 XDR data stream; their size is always known. Write chunks, on the
 other hand, are used only for results, and have neither a preassigned
 offset in the XDR stream nor a size until the results are produced,
 since the buffers may be only partially filled, or may not be used
 for results at all. Their presence in the XDR stream is therefore
 not known until the reply is processed. The mapping of write chunks
 onto designated NFS procedures and their results is described in
 [RFC5667].

 Therefore, read chunks are encoded into a read chunk list as a single
 array, with each entry tagged by its (known) size and its argument’s
 or result’s position in the XDR stream. Write chunks are encoded as
 a list of arrays of RDMA buffers, with each list element (an array)
 providing buffers for a separate result. Individual write chunk list
 elements MAY thereby result in being partially or fully filled, or in
 fact not being filled at all. Unused write chunks, or unused bytes
 in write chunk buffer lists, are not returned as results, and their
 memory is returned to the upper layer as part of RPC completion.
 However, the RPC layer MUST NOT assume that the buffers have not been
 modified.

3.5. XDR Decoding with Read Chunks

 The XDR decode process moves data from an XDR stream into a data
 structure provided by the RPC client or server application. Where
 elements of the destination data structure are buffers or strings,
 the RPC application can either pre-allocate storage to receive the

Talpey & Callaghan Standards Track [Page 11]

RFC 5666 RDMA Transport for RPC January 2010

 data or leave the string or buffer fields null and allow the XDR
 decode stage of RPC processing to automatically allocate storage of
 sufficient size.

 When decoding a message from an RDMA transport, the receiver first
 XDR decodes the chunk lists from the RPC-over-RDMA header, then
 proceeds to decode the body of the RPC message (arguments or
 results). Whenever the XDR offset in the decode stream matches that
 of a chunk in the read chunk list, the XDR routine initiates an RDMA
 Read to bring over the chunk data into locally registered memory for
 the destination buffer.

 When processing an RPC request, the RPC receiver (RPC server)
 acknowledges its completion of use of the source buffers by simply
 replying to the RPC sender (client), and the peer may then free all
 source buffers advertised by the request.

 When processing an RPC reply, after completing such a transfer, the
 RPC receiver (client) MUST issue an RDMA_DONE message (described in
 Section 3.8) to notify the peer (server) that the source buffers can
 be freed.

 The read chunk list is constructed and used entirely within the
 RPC/XDR layer. Other than specifying the minimum chunk size, the
 management of the read chunk list is automatic and transparent to an
 RPC application.

3.6. XDR Decoding with Write Chunks

 When a write chunk list is provided for the results of the RPC call,
 the RPC server MUST provide any corresponding data via RDMA Write to
 the memory referenced in the chunk list entries. The RPC reply
 conveys this by returning the write chunk list to the client with the
 lengths rewritten to match the actual transfer. The XDR decode of
 the reply therefore performs no local data transfer but merely
 returns the length obtained from the reply.

 Each decoded result consumes one entry in the write chunk list, which
 in turn consists of an array of RDMA segments. The length is
 therefore the sum of all returned lengths in all segments comprising
 the corresponding list entry. As each list entry is decoded, the
 entire entry is consumed.

 The write chunk list is constructed and used by the RPC application.
 The RPC/XDR layer simply conveys the list between client and server
 and initiates the RDMA Writes back to the client. The mapping of

Talpey & Callaghan Standards Track [Page 12]

RFC 5666 RDMA Transport for RPC January 2010

 write chunk list entries to procedure arguments MUST be determined
 for each protocol. An example of a mapping is described in
 [RFC5667].

3.7. XDR Roundup and Chunks

 The XDR protocol requires 4-byte alignment of each new encoded
 element in any XDR stream. This requirement is for efficiency and
 ease of decode/unmarshaling at the receiver -- if the XDR stream
 buffer begins on a native machine boundary, then the XDR elements
 will lie on similarly predictable offsets in memory.

 Within XDR, when non-4-byte encodes (such as an odd-length string or
 bulk data) are marshaled, their length is encoded literally, while
 their data is padded to begin the next element at a 4-byte boundary
 in the XDR stream. For TCP or RDMA inline encoding, this minimal
 overhead is required because the transport-specific framing relies on
 the fact that the relative offset of the elements in the XDR stream
 from the start of the message determines the XDR position during
 decode.

 On the other hand, RPC/RDMA Read chunks carry the XDR position of
 each chunked element and length of the Chunk segment, and can be
 placed by the receiver exactly where they belong in the receiver’s
 memory without regard to the alignment of their position in the XDR
 stream. Since any rounded-up data is not actually part of the upper
 layer’s message, the receiver will not reference it, and there is no
 reason to set it to any particular value in the receiver’s memory.

 When roundup is present at the end of a sequence of chunks, the
 length of the sequence will terminate it at a non-4-byte XDR
 position. When the receiver proceeds to decode the remaining part of
 the XDR stream, it inspects the XDR position indicated by the next
 chunk. Because this position will not match (else roundup would not
 have occurred), the receiver decoding will fall back to inspecting
 the remaining inline portion. If in turn, no data remains to be
 decoded from the inline portion, then the receiver MUST conclude that
 roundup is present, and therefore it advances the XDR decode position
 to that indicated by the next chunk (if any). In this way, roundup
 is passed without ever actually transferring additional XDR bytes.

 Some protocol operations over RPC/RDMA, for instance NFS writes of
 data encountered at the end of a file or in direct I/O situations,
 commonly yield these roundups within RDMA Read Chunks. Because any
 roundup bytes are not actually present in the data buffers being
 written, memory for these bytes would come from noncontiguous
 buffers, either as an additional memory registration segment or as an
 additional Chunk. The overhead of these operations can be

Talpey & Callaghan Standards Track [Page 13]

RFC 5666 RDMA Transport for RPC January 2010

 significant to both the sender to marshal them and even higher to the
 receiver to which to transfer them. Senders SHOULD therefore avoid
 encoding individual RDMA Read Chunks for roundup whenever possible.
 It is acceptable, but not necessary, to include roundup data in an
 existing RDMA Read Chunk, but only if it is already present in the
 XDR stream to carry upper-layer data.

 Note that there is no exposure of additional data at the sender due
 to eliding roundup data from the XDR stream, since any additional
 sender buffers are never exposed to the peer. The data is literally
 not there to be transferred.

 For RDMA Write Chunks, a simpler encoding method applies. Again,
 roundup bytes are not transferred, instead the chunk length sent to
 the receiver in the reply is simply increased to include any roundup.
 Because of the requirement that the RDMA Write Chunks are filled
 sequentially without gaps, this situation can only occur on the final
 chunk receiving data. Therefore, there is no opportunity for roundup
 data to insert misalignment or positional gaps into the XDR stream.

3.8. RPC Call and Reply

 The RDMA transport for RPC provides three methods of moving data
 between RPC client and server:

 Inline
 Data is moved between RPC client and server within an RDMA Send.

 RDMA Read
 Data is moved between RPC client and server via an RDMA Read
 operation via steering tag; address and offset obtained from a
 read chunk list.

 RDMA Write
 Result data is moved from RPC server to client via an RDMA Write
 operation via steering tag; address and offset obtained from a
 write chunk list or reply chunk in the client’s RPC call
 message.

 These methods of data movement may occur in combinations within a
 single RPC. For instance, an RPC call may contain some inline data
 along with some large chunks to be transferred via RDMA Read to the
 server. The reply to that call may have some result chunks that the
 server RDMA Writes back to the client. The following protocol
 interactions illustrate RPC calls that use these methods to move RPC
 message data:

Talpey & Callaghan Standards Track [Page 14]

RFC 5666 RDMA Transport for RPC January 2010

 An RPC with write chunks in the call message:

 RPC Client RPC Server
 | RPC Call + Write Chunk list |
 Send | ------------------------------> |
 | |
 | Chunk 1 |
 | <------------------------------ | Write
 | : |
 | Chunk n |
 | <------------------------------ | Write
 | |
 | RPC Reply |
 | <------------------------------ | Send

 In the presence of write chunks, RDMA ordering provides the guarantee
 that all data in the RDMA Write operations has been placed in memory
 prior to the client’s RPC reply processing.

 An RPC with read chunks in the call message:

 RPC Client RPC Server
 | RPC Call + Read Chunk list |
 Send | ------------------------------> |
 | |
 | Chunk 1 |
 | +------------------------------ | Read
 | v-----------------------------> |
 | : |
 | Chunk n |
 | +------------------------------ | Read
 | v-----------------------------> |
 | |
 | RPC Reply |
 | <------------------------------ | Send

Talpey & Callaghan Standards Track [Page 15]

RFC 5666 RDMA Transport for RPC January 2010

 An RPC with read chunks in the reply message:

 RPC Client RPC Server
 | RPC Call |
 Send | ------------------------------> |
 | |
 | RPC Reply + Read Chunk list |
 | <------------------------------ | Send
 | |
 | Chunk 1 |
 Read | ------------------------------+ |
 | <-----------------------------v |
 | : |
 | Chunk n |
 Read | ------------------------------+ |
 | <-----------------------------v |
 | |
 | Done |
 Send | ------------------------------> |

 The final Done message allows the RPC client to signal the server
 that it has received the chunks, so the server can de-register and
 free the memory holding the chunks. A Done completion is not
 necessary for an RPC call, since the RPC reply Send is itself a
 receive completion notification. In the event that the client fails
 to return the Done message within some timeout period, the server MAY
 conclude that a protocol violation has occurred and close the RPC
 connection, or it MAY proceed with a de-register and free its chunk
 buffers. This may result in a fatal RDMA error if the client later
 attempts to perform an RDMA Read operation, which amounts to the same
 thing.

 The use of read chunks in RPC reply messages is much less efficient
 than providing write chunks in the originating RPC calls, due to the
 additional message exchanges, the need for the RPC server to
 advertise buffers to the peer, the necessity of the server
 maintaining a timer for the purpose of recovery from misbehaving
 clients, and the need for additional memory registration. Their use
 is NOT RECOMMENDED by upper layers where efficiency is a primary
 concern [RFC5667]. However, they MAY be employed by upper-layer
 protocol bindings that are primarily concerned with transparency,
 since they can frequently be implemented completely within the RPC
 lower layers.

 It is important to note that the Done message consumes a credit at
 the RPC server. The RPC server SHOULD provide sufficient credits to
 the client to allow the Done message to be sent without deadlock
 (driving the outstanding credit count to zero). The RPC client MUST

Talpey & Callaghan Standards Track [Page 16]

RFC 5666 RDMA Transport for RPC January 2010

 account for its required Done messages to the server in its
 accounting of available credits, and the server SHOULD replenish any
 credit consumed by its use of such exchanges at its earliest
 opportunity.

 Finally, it is possible to conceive of RPC exchanges that involve any
 or all combinations of write chunks in the RPC call, read chunks in
 the RPC call, and read chunks in the RPC reply. Support for such
 exchanges is straightforward from a protocol perspective, but in
 practice such exchanges would be quite rare, limited to upper-layer
 protocol exchanges that transferred bulk data in both the call and
 corresponding reply.

3.9. Padding

 Alignment of specific opaque data enables certain scatter/gather
 optimizations. Padding leverages the useful property that RDMA
 transfers preserve alignment of data, even when they are placed into
 pre-posted receive buffers by Sends.

 Many servers can make good use of such padding. Padding allows the
 chaining of RDMA receive buffers such that any data transferred by
 RDMA on behalf of RPC requests will be placed into appropriately
 aligned buffers on the system that receives the transfer. In this
 way, the need for servers to perform RDMA Read to satisfy all but the
 largest client writes is obviated.

 The effect of padding is demonstrated below showing prior bytes on an
 XDR stream ("XXX" in the figure below) followed by an opaque field
 consisting of four length bytes ("LLLL") followed by data bytes
 ("DDD"). The receiver of the RDMA Send has posted two chained
 receive buffers. Without padding, the opaque data is split across
 the two buffers. With the addition of padding bytes ("ppp") prior to
 the first data byte, the data can be forced to align correctly in the
 second buffer.

 Buffer 1 Buffer 2
 Unpadded -------------- --------------

 XXXXXXXLLLLDDDDDDDDDDDDDD ---> XXXXXXXLLLLDDD DDDDDDDDDDD

 Padded

 XXXXXXXLLLLpppDDDDDDDDDDDDDD ---> XXXXXXXLLLLppp DDDDDDDDDDDDDD

Talpey & Callaghan Standards Track [Page 17]

RFC 5666 RDMA Transport for RPC January 2010

 Padding is implemented completely within the RDMA transport encoding,
 flagged with a specific message type. Where padding is applied, two
 values are passed to the peer: an "rdma_align", which is the padding
 value used, and "rdma_thresh", which is the opaque data size at or
 above which padding is applied. For instance, if the server is using
 chained 4 KB receive buffers, then up to (4 KB - 1) padding bytes
 could be used to achieve alignment of the data. The XDR routine at
 the peer MUST consult these values when decoding opaque values.
 Where the decoded length exceeds the rdma_thresh, the XDR decode MUST
 skip over the appropriate padding as indicated by rdma_align and the
 current XDR stream position.

4. RPC RDMA Message Layout

 RPC call and reply messages are conveyed across an RDMA transport
 with a prepended RPC-over-RDMA header. The RPC-over-RDMA header
 includes data for RDMA flow control credits, padding parameters, and
 lists of addresses that provide direct data placement via RDMA Read
 and Write operations. The layout of the RPC message itself is
 unchanged from that described in [RFC5531] except for the possible
 exclusion of large data chunks that will be moved by RDMA Read or
 Write operations. If the RPC message (along with the RPC-over-RDMA
 header) is too long for the posted receive buffer (even after any
 large chunks are removed), then the entire RPC message MAY be moved
 separately as a chunk, leaving just the RPC-over-RDMA header in the
 RDMA Send.

4.1. RPC-over-RDMA Header

 The RPC-over-RDMA header begins with four 32-bit fields that are
 always present and that control the RDMA interaction including RDMA-
 specific flow control. These are then followed by a number of items
 such as chunk lists and padding that MAY or MUST NOT be present
 depending on the type of transmission. The four fields that are
 always present are:

 1. Transaction ID (XID).
 The XID generated for the RPC call and reply. Having the XID at
 the beginning of the message makes it easy to establish the
 message context. This XID MUST be the same as the XID in the RPC
 header. The receiver MAY perform its processing based solely on
 the XID in the RPC-over-RDMA header, and thereby ignore the XID in
 the RPC header, if it so chooses.

 2. Version number.
 This version of the RPC RDMA message protocol is 1. The version
 number MUST be increased by 1 whenever the format of the RPC RDMA
 messages is changed.

Talpey & Callaghan Standards Track [Page 18]

RFC 5666 RDMA Transport for RPC January 2010

 3. Flow control credit value.
 When sent in an RPC call message, the requested value is provided.
 When sent in an RPC reply message, the granted value is returned.
 RPC calls SHOULD NOT be sent in excess of the currently granted
 limit.

 4. Message type.

 o RDMA_MSG = 0 indicates that chunk lists and RPC message follow.

 o RDMA_NOMSG = 1 indicates that after the chunk lists there is no
 RPC message. In this case, the chunk lists provide information
 to allow the message proper to be transferred using RDMA Read
 or Write and thus is not appended to the RPC-over-RDMA header.

 o RDMA_MSGP = 2 indicates that a chunk list and RPC message with
 some padding follow.

 o RDMA_DONE = 3 indicates that the message signals the completion
 of a chunk transfer via RDMA Read.

 o RDMA_ERROR = 4 is used to signal any detected error(s) in the
 RPC RDMA chunk encoding.

 Because the version number is encoded as part of this header, and the
 RDMA_ERROR message type is used to indicate errors, these first four
 fields and the start of the following message body MUST always remain
 aligned at these fixed offsets for all versions of the RPC-over-RDMA
 header.

 For a message of type RDMA_MSG or RDMA_NOMSG, the Read and Write
 chunk lists follow. If the Read chunk list is null (a 32-bit word of
 zeros), then there are no chunks to be transferred separately and the
 RPC message follows in its entirety. If non-null, then it’s the
 beginning of an XDR encoded sequence of Read chunk list entries. If
 the Write chunk list is non-null, then an XDR encoded sequence of
 Write chunk entries follows.

 If the message type is RDMA_MSGP, then two additional fields that
 specify the padding alignment and threshold are inserted prior to the
 Read and Write chunk lists.

 A header of message type RDMA_MSG or RDMA_MSGP MUST be followed by
 the RPC call or RPC reply message body, beginning with the XID. The
 XID in the RDMA_MSG or RDMA_MSGP header MUST match this.

Talpey & Callaghan Standards Track [Page 19]

RFC 5666 RDMA Transport for RPC January 2010

 +--------+---------+---------+-----------+-------------+----------
 | | | | Message | NULLs | RPC Call
 | XID | Version | Credits | Type | or | or
 | | | | | Chunk Lists | Reply Msg
 +--------+---------+---------+-----------+-------------+----------

 Note that in the case of RDMA_DONE and RDMA_ERROR, no chunk list or
 RPC message follows. As an implementation hint: a gather operation
 on the Send of the RDMA RPC message can be used to marshal the
 initial header, the chunk list, and the RPC message itself.

4.2. RPC-over-RDMA Header Errors

 When a peer receives an RPC RDMA message, it MUST perform the
 following basic validity checks on the header and chunk contents. If
 such errors are detected in the request, an RDMA_ERROR reply MUST be
 generated.

 Two types of errors are defined, version mismatch and invalid chunk
 format. When the peer detects an RPC-over-RDMA header version that
 it does not support (currently this document defines only version 1),
 it replies with an error code of ERR_VERS, and provides the low and
 high inclusive version numbers it does, in fact, support. The
 version number in this reply MUST be any value otherwise valid at the
 receiver. When other decoding errors are detected in the header or
 chunks, either an RPC decode error MAY be returned or the RPC/RDMA
 error code ERR_CHUNK MUST be returned.

4.3. XDR Language Description

 Here is the message layout in XDR language.

 struct xdr_rdma_segment {
 uint32 handle; /* Registered memory handle */
 uint32 length; /* Length of the chunk in bytes */
 uint64 offset; /* Chunk virtual address or offset */
 };

 struct xdr_read_chunk {
 uint32 position; /* Position in XDR stream */
 struct xdr_rdma_segment target;
 };

 struct xdr_read_list {
 struct xdr_read_chunk entry;
 struct xdr_read_list *next;
 };

Talpey & Callaghan Standards Track [Page 20]

RFC 5666 RDMA Transport for RPC January 2010

 struct xdr_write_chunk {
 struct xdr_rdma_segment target<>;
 };

 struct xdr_write_list {
 struct xdr_write_chunk entry;
 struct xdr_write_list *next;
 };

 struct rdma_msg {
 uint32 rdma_xid; /* Mirrors the RPC header xid */
 uint32 rdma_vers; /* Version of this protocol */
 uint32 rdma_credit; /* Buffers requested/granted */
 rdma_body rdma_body;
 };

 enum rdma_proc {
 RDMA_MSG=0, /* An RPC call or reply msg */
 RDMA_NOMSG=1, /* An RPC call or reply msg - separate body */
 RDMA_MSGP=2, /* An RPC call or reply msg with padding */
 RDMA_DONE=3, /* Client signals reply completion */
 RDMA_ERROR=4 /* An RPC RDMA encoding error */
 };

 union rdma_body switch (rdma_proc proc) {
 case RDMA_MSG:
 rpc_rdma_header rdma_msg;
 case RDMA_NOMSG:
 rpc_rdma_header_nomsg rdma_nomsg;
 case RDMA_MSGP:
 rpc_rdma_header_padded rdma_msgp;
 case RDMA_DONE:
 void;
 case RDMA_ERROR:
 rpc_rdma_error rdma_error;
 };

 struct rpc_rdma_header {
 struct xdr_read_list *rdma_reads;
 struct xdr_write_list *rdma_writes;
 struct xdr_write_chunk *rdma_reply;
 /* rpc body follows */
 };

 struct rpc_rdma_header_nomsg {
 struct xdr_read_list *rdma_reads;
 struct xdr_write_list *rdma_writes;
 struct xdr_write_chunk *rdma_reply;

Talpey & Callaghan Standards Track [Page 21]

RFC 5666 RDMA Transport for RPC January 2010

 };

 struct rpc_rdma_header_padded {
 uint32 rdma_align; /* Padding alignment */
 uint32 rdma_thresh; /* Padding threshold */
 struct xdr_read_list *rdma_reads;
 struct xdr_write_list *rdma_writes;
 struct xdr_write_chunk *rdma_reply;
 /* rpc body follows */
 };

 enum rpc_rdma_errcode {
 ERR_VERS = 1,
 ERR_CHUNK = 2
 };

 union rpc_rdma_error switch (rpc_rdma_errcode err) {
 case ERR_VERS:
 uint32 rdma_vers_low;
 uint32 rdma_vers_high;
 case ERR_CHUNK:
 void;
 default:
 uint32 rdma_extra[8];
 };

5. Long Messages

 The receiver of RDMA Send messages is required by RDMA to have
 previously posted one or more adequately sized buffers. The RPC
 client can inform the server of the maximum size of its RDMA Send
 messages via the Connection Configuration Protocol described later in
 this document.

 Since RPC messages are frequently small, memory savings can be
 achieved by posting small buffers. Even large messages like NFS READ
 or WRITE will be quite small once the chunks are removed from the
 message. However, there may be large messages that would demand a
 very large buffer be posted, where the contents of the buffer may not
 be a chunkable XDR element. A good example is an NFS READDIR reply,
 which may contain a large number of small filename strings. Also,
 the NFS version 4 protocol [RFC3530] features COMPOUND request and
 reply messages of unbounded length.

 Ideally, each upper layer will negotiate these limits. However, it
 is frequently necessary to provide a transparent solution.

Talpey & Callaghan Standards Track [Page 22]

RFC 5666 RDMA Transport for RPC January 2010

5.1. Message as an RDMA Read Chunk

 One relatively simple method is to have the client identify any RPC
 message that exceeds the RPC server’s posted buffer size and move it
 separately as a chunk, i.e., reference it as the first entry in the
 read chunk list with an XDR position of zero.

 Normal Message

 +--------+---------+---------+------------+-------------+----------
 | | | | | | RPC Call
 | XID | Version | Credits | RDMA_MSG | Chunk Lists | or
 | | | | | | Reply Msg
 +--------+---------+---------+------------+-------------+----------

 Long Message

 +--------+---------+---------+------------+-------------+
XID	Version	Credits	RDMA_NOMSG	Chunk Lists
 +--------+---------+---------+------------+-------------+
 |
 | +----------
 | | Long RPC Call
 +->| or
 | Reply Message
 +----------

 If the receiver gets an RPC-over-RDMA header with a message type of
 RDMA_NOMSG and finds an initial read chunk list entry with a zero XDR
 position, it allocates a registered buffer and issues an RDMA Read of
 the long RPC message into it. The receiver then proceeds to XDR
 decode the RPC message as if it had received it inline with the Send
 data. Further decoding may issue additional RDMA Reads to bring over
 additional chunks.

 Although the handling of long messages requires one extra network
 turnaround, in practice these messages will be rare if the posted
 receive buffers are correctly sized, and of course they will be
 non-existent for RDMA-aware upper layers.

Talpey & Callaghan Standards Track [Page 23]

RFC 5666 RDMA Transport for RPC January 2010

 A long call RPC with request supplied via RDMA Read

 RPC Client RPC Server
 | RDMA-over-RPC Header |
 Send | ------------------------------> |
 | |
 | Long RPC Call Msg |
 | +------------------------------ | Read
 | v-----------------------------> |
 | |
 | RDMA-over-RPC Reply |
 | <------------------------------ | Send

 An RPC with long reply returned via RDMA Read

 RPC Client RPC Server
 | RPC Call |
 Send | ------------------------------> |
 | |
 | RDMA-over-RPC Header |
 | <------------------------------ | Send
 | |
 | Long RPC Reply Msg |
 Read | ------------------------------+ |
 | <-----------------------------v |
 | |
 | Done |
 Send | ------------------------------> |

 It is possible for a single RPC procedure to employ both a long call
 for its arguments and a long reply for its results. However, such an
 operation is atypical, as few upper layers define such exchanges.

5.2. RDMA Write of Long Replies (Reply Chunks)

 A superior method of handling long RPC replies is to have the RPC
 client post a large buffer into which the server can write a large
 RPC reply. This has the advantage that an RDMA Write may be slightly
 faster in network latency than an RDMA Read, and does not require the
 server to wait for the completion as it must for RDMA Read.
 Additionally, for a reply it removes the need for an RDMA_DONE
 message if the large reply is returned as a Read chunk.

 This protocol supports direct return of a large reply via the
 inclusion of an OPTIONAL rdma_reply write chunk after the read chunk
 list and the write chunk list. The client allocates a buffer sized
 to receive a large reply and enters its steering tag, address and
 length in the rdma_reply write chunk. If the reply message is too

Talpey & Callaghan Standards Track [Page 24]

RFC 5666 RDMA Transport for RPC January 2010

 long to return inline with an RDMA Send (exceeds the size of the
 client’s posted receive buffer), even with read chunks removed, then
 the RPC server performs an RDMA Write of the RPC reply message into
 the buffer indicated by the rdma_reply chunk. If the client doesn’t
 provide an rdma_reply chunk, or if it’s too small, then if the upper-
 layer specification permits, the message MAY be returned as a Read
 chunk.

 An RPC with long reply returned via RDMA Write

 RPC Client RPC Server
 | RPC Call with rdma_reply |
 Send | ------------------------------> |
 | |
 | Long RPC Reply Msg |
 | <------------------------------ | Write
 | |
 | RDMA-over-RPC Header |
 | <------------------------------ | Send

 The use of RDMA Write to return long replies requires that the client
 applications anticipate a long reply and have some knowledge of its
 size so that an adequately sized buffer can be allocated. This is
 certainly true of NFS READDIR replies; where the client already
 provides an upper bound on the size of the encoded directory fragment
 to be returned by the server.

 The use of these "reply chunks" is highly efficient and convenient
 for both RPC client and server. Their use is encouraged for eligible
 RPC operations such as NFS READDIR, which would otherwise require
 extensive chunk management within the results or use of RDMA Read and
 a Done message [RFC5667].

6. Connection Configuration Protocol

 RDMA Send operations require the receiver to post one or more buffers
 at the RDMA connection endpoint, each large enough to receive the
 largest Send message. Buffers are consumed as Send messages are
 received. If a buffer is too small, or if there are no buffers
 posted, the RDMA transport MAY return an error and break the RDMA
 connection. The receiver MUST post sufficient, adequately buffers to
 avoid buffer overrun or capacity errors.

 The protocol described above includes only a mechanism for managing
 the number of such receive buffers and no explicit features to allow
 the RPC client and server to provision or control buffer sizing, nor
 any other session parameters.

Talpey & Callaghan Standards Track [Page 25]

RFC 5666 RDMA Transport for RPC January 2010

 In the past, this type of connection management has not been
 necessary for RPC. RPC over UDP or TCP does not have a protocol to
 negotiate the link. The server can get a rough idea of the maximum
 size of messages from the server protocol code. However, a protocol
 to negotiate transport features on a more dynamic basis is desirable.

 The Connection Configuration Protocol allows the client to pass its
 connection requirements to the server, and allows the server to
 inform the client of its connection limits.

 Use of the Connection Configuration Protocol by an upper layer is
 OPTIONAL.

6.1. Initial Connection State

 This protocol MAY be used for connection setup prior to the use of
 another RPC protocol that uses the RDMA transport. It operates
 in-band, i.e., it uses the connection itself to negotiate the
 connection parameters. To provide a basis for connection
 negotiation, the connection is assumed to provide a basic level of
 interoperability: the ability to exchange at least one RPC message at
 a time that is at least 1 KB in size. The server MAY exceed this
 basic level of configuration, but the client MUST NOT assume more
 than one, and MUST receive a valid reply from the server carrying the
 actual number of available receive messages, prior to sending its
 next request.

6.2. Protocol Description

 Version 1 of the Connection Configuration Protocol consists of a
 single procedure that allows the client to inform the server of its
 connection requirements and the server to return connection
 information to the client.

 The maxcall_sendsize argument is the maximum size of an RPC call
 message that the client MAY send inline in an RDMA Send message to
 the server. The server MAY return a maxcall_sendsize value that is
 smaller or larger than the client’s request. The client MUST NOT
 send an inline call message larger than what the server will accept.
 The maxcall_sendsize limits only the size of inline RPC calls. It
 does not limit the size of long RPC messages transferred as an
 initial chunk in the Read chunk list.

 The maxreply_sendsize is the maximum size of an inline RPC message
 that the client will accept from the server.

Talpey & Callaghan Standards Track [Page 26]

RFC 5666 RDMA Transport for RPC January 2010

 The maxrdmaread is the maximum number of RDMA Reads that may be
 active at the peer. This number correlates to the RDMA incoming RDMA
 Read count ("IRD") configured into each originating endpoint by the
 client or server. If more than this number of RDMA Read operations
 by the connected peer are issued simultaneously, connection loss or
 suboptimal flow control may result; therefore, the value SHOULD be
 observed at all times. The peers’ values need not be equal. If
 zero, the peer MUST NOT issue requests that require RDMA Read to
 satisfy, as no transfer will be possible.

 The align value is the value recommended by the server for opaque
 data values such as strings and counted byte arrays. The client MAY
 use this value to compute the number of prepended pad bytes when XDR
 encoding opaque values in the RPC call message.

 typedef unsigned int uint32;

 struct config_rdma_req {
 uint32 maxcall_sendsize;
 /* max size of inline RPC call */
 uint32 maxreply_sendsize;
 /* max size of inline RPC reply */
 uint32 maxrdmaread;
 /* max active RDMA Reads at client */
 };

 struct config_rdma_reply {
 uint32 maxcall_sendsize;
 /* max call size accepted by server */
 uint32 align;
 /* server’s receive buffer alignment */
 uint32 maxrdmaread;
 /* max active RDMA Reads at server */
 };

 program CONFIG_RDMA_PROG {
 version VERS1 {
 /*
 * Config call/reply
 */
 config_rdma_reply CONF_RDMA(config_rdma_req) = 1;
 } = 1;
 } = 100417;

Talpey & Callaghan Standards Track [Page 27]

RFC 5666 RDMA Transport for RPC January 2010

7. Memory Registration Overhead

 RDMA requires that all data be transferred between registered memory
 regions at the source and destination. All protocol headers as well
 as separately transferred data chunks use registered memory. Since
 the cost of registering and de-registering memory can be a large
 proportion of the RDMA transaction cost, it is important to minimize
 registration activity. This is easily achieved within RPC controlled
 memory by allocating chunk list data and RPC headers in a reusable
 way from pre-registered pools.

 The data chunks transferred via RDMA MAY occupy memory that persists
 outside the bounds of the RPC transaction. Hence, the default
 behavior of an RPC-over-RDMA transport is to register and de-register
 these chunks on every transaction. However, this is not a limitation
 of the protocol -- only of the existing local RPC API. The API is
 easily extended through such functions as rpc_control(3) to change
 the default behavior so that the application can assume
 responsibility for controlling memory registration through an RPC-
 provided registered memory allocator.

8. Errors and Error Recovery

 RPC RDMA protocol errors are described in Section 4. RPC errors and
 RPC error recovery are not affected by the protocol, and proceed as
 for any RPC error condition. RDMA transport error reporting and
 recovery are outside the scope of this protocol.

 It is assumed that the link itself will provide some degree of error
 detection and retransmission. iWARP’s Marker PDU Aligned (MPA) layer
 (when used over TCP), Stream Control Transmission Protocol (SCTP), as
 well as the InfiniBand link layer all provide Cyclic Redundancy Check
 (CRC) protection of the RDMA payload, and CRC-class protection is a
 general attribute of such transports. Additionally, the RPC layer
 itself can accept errors from the link level and recover via
 retransmission. RPC recovery can handle complete loss and
 re-establishment of the link.

 See Section 11 for further discussion of the use of RPC-level
 integrity schemes to detect errors and related efficiency issues.

9. Node Addressing

 In setting up a new RDMA connection, the first action by an RPC
 client will be to obtain a transport address for the server. The
 mechanism used to obtain this address, and to open an RDMA connection
 is dependent on the type of RDMA transport, and is the responsibility
 of each RPC protocol binding and its local implementation.

Talpey & Callaghan Standards Track [Page 28]

RFC 5666 RDMA Transport for RPC January 2010

10. RPC Binding

 RPC services normally register with a portmap or rpcbind [RFC1833]
 service, which associates an RPC program number with a service
 address. (In the case of UDP or TCP, the service address for NFS is
 normally port 2049.) This policy is no different with RDMA
 interconnects, although it may require the allocation of port numbers
 appropriate to each upper-layer binding that uses the RPC framing
 defined here.

 When mapped atop the iWARP [RFC5040, RFC5041] transport, which uses
 IP port addressing due to its layering on TCP and/or SCTP, port
 mapping is trivial and consists merely of issuing the port in the
 connection process. The NFS/RDMA protocol service address has been
 assigned port 20049 by IANA, for both iWARP/TCP and iWARP/SCTP.

 When mapped atop InfiniBand [IB], which uses a Group Identifier
 (GID)-based service endpoint naming scheme, a translation MUST be
 employed. One such translation is defined in the InfiniBand Port
 Addressing Annex [IBPORT], which is appropriate for translating IP
 port addressing to the InfiniBand network. Therefore, in this case,
 IP port addressing may be readily employed by the upper layer.

 When a mapping standard or convention exists for IP ports on an RDMA
 interconnect, there are several possibilities for each upper layer to
 consider:

 One possibility is to have an upper-layer server register its
 mapped IP port with the rpcbind service, under the netid (or
 netid’s) defined here. An RPC/RDMA-aware client can then resolve
 its desired service to a mappable port, and proceed to connect.
 This is the most flexible and compatible approach, for those upper
 layers that are defined to use the rpcbind service.

 A second possibility is to have the server’s portmapper register
 itself on the RDMA interconnect at a "well known" service address.
 (On UDP or TCP, this corresponds to port 111.) A client could
 connect to this service address and use the portmap protocol to
 obtain a service address in response to a program number, e.g., an
 iWARP port number, or an InfiniBand GID.

 Alternatively, the client could simply connect to the mapped well-
 known port for the service itself, if it is appropriately defined.
 By convention, the NFS/RDMA service, when operating atop such an
 InfiniBand fabric, will use the same 20049 assignment as for
 iWARP.

Talpey & Callaghan Standards Track [Page 29]

RFC 5666 RDMA Transport for RPC January 2010

 Historically, different RPC protocols have taken different approaches
 to their port assignment; therefore, the specific method is left to
 each RPC/RDMA-enabled upper-layer binding, and not addressed here.

 In Section 12, "IANA Considerations", this specification defines two
 new "netid" values, to be used for registration of upper layers atop
 iWARP [RFC5040, RFC5041] and (when a suitable port translation
 service is available) InfiniBand [IB]. Additional RDMA-capable
 networks MAY define their own netids, or if they provide a port
 translation, MAY share the one defined here.

11. Security Considerations

 RPC provides its own security via the RPCSEC_GSS framework [RFC2203].
 RPCSEC_GSS can provide message authentication, integrity checking,
 and privacy. This security mechanism will be unaffected by the RDMA
 transport. The data integrity and privacy features alter the body of
 the message, presenting it as a single chunk. For large messages the
 chunk may be large enough to qualify for RDMA Read transfer.
 However, there is much data movement associated with computation and
 verification of integrity, or encryption/decryption, so certain
 performance advantages may be lost.

 For efficiency, a more appropriate security mechanism for RDMA links
 may be link-level protection, such as certain configurations of
 IPsec, which may be co-located in the RDMA hardware. The use of
 link-level protection MAY be negotiated through the use of the new
 RPCSEC_GSS mechanism defined in [RFC5403] in conjunction with the
 Channel Binding mechanism [RFC5056] and IPsec Channel Connection
 Latching [RFC5660]. Use of such mechanisms is REQUIRED where
 integrity and/or privacy is desired, and where efficiency is
 required.

 An additional consideration is the protection of the integrity and
 privacy of local memory by the RDMA transport itself. The use of
 RDMA by RPC MUST NOT introduce any vulnerabilities to system memory
 contents, or to memory owned by user processes. These protections
 are provided by the RDMA layer specifications, and specifically their
 security models. It is REQUIRED that any RDMA provider used for RPC
 transport be conformant to the requirements of [RFC5042] in order to
 satisfy these protections.

 Once delivered securely by the RDMA provider, any RDMA-exposed
 addresses will contain only RPC payloads in the chunk lists,
 transferred under the protection of RPCSEC_GSS integrity and privacy.
 By these means, the data will be protected end-to-end, as required by
 the RPC layer security model.

Talpey & Callaghan Standards Track [Page 30]

RFC 5666 RDMA Transport for RPC January 2010

 Where upper-layer protocols choose to supply results to the requester
 via read chunks, a server resource deficit can arise if the client
 does not promptly acknowledge their status via the RDMA_DONE message.
 This can potentially lead to a denial-of-service situation, with a
 single client unfairly (and unnecessarily) consuming server RDMA
 resources. Servers for such upper-layer protocols MUST protect
 against this situation, originating from one or many clients. For
 example, a time-based window of buffer availability may be offered,
 if the client fails to obtain the data within the window, it will
 simply retry using ordinary RPC retry semantics. Or, a more severe
 method would be for the server to simply close the client’s RDMA
 connection, freeing the RDMA resources and allowing the server to
 reclaim them.

 A fairer and more useful method is provided by the protocol itself.
 The server MAY use the rdma_credit value to limit the number of
 outstanding requests for each client. By including the number of
 outstanding RDMA_DONE completions in the computation of available
 client credits, the server can limit its exposure to each client, and
 therefore provide uninterrupted service as its resources permit.

 However, the server must ensure that it does not decrease the credit
 count to zero with this method, since the RDMA_DONE message is not
 acknowledged. If the credit count were to drop to zero solely due to
 outstanding RDMA_DONE messages, the client would deadlock since it
 would never obtain a new credit with which to continue. Therefore,
 if the server adjusts credits to zero for outstanding RDMA_DONE, it
 MUST withhold its reply to at least one message in order to provide
 the next credit. The time-based window (or any other appropriate
 method) SHOULD be used by the server to recover resources in the
 event that the client never returns.

 The Connection Configuration Protocol, when used, MUST be protected
 by an appropriate RPC security flavor, to ensure it is not attacked
 in the process of initiating an RPC/RDMA connection.

12. IANA Considerations

 Three new assignments are specified by this document:

 - A new set of RPC "netids" for resolving RPC/RDMA services

 - Optional service port assignments for upper-layer bindings

 - An RPC program number assignment for the configuration protocol

 These assignments have been established, as below.

Talpey & Callaghan Standards Track [Page 31]

RFC 5666 RDMA Transport for RPC January 2010

 The new RPC transport has been assigned an RPC "netid", which is an
 rpcbind [RFC1833] string used to describe the underlying protocol in
 order for RPC to select the appropriate transport framing, as well as
 the format of the service addresses and ports.

 The following "Netid" registry strings are defined for this purpose:

 NC_RDMA "rdma"
 NC_RDMA6 "rdma6"

 These netids MAY be used for any RDMA network satisfying the
 requirements of Section 2, and able to identify service endpoints
 using IP port addressing, possibly through use of a translation
 service as described above in Section 10, "RPC Binding". The "rdma"
 netid is to be used when IPv4 addressing is employed by the
 underlying transport, and "rdma6" for IPv6 addressing.

 The netid assignment policy and registry are defined in [RFC5665].

 As a new RPC transport, this protocol has no effect on RPC program
 numbers or existing registered port numbers. However, new port
 numbers MAY be registered for use by RPC/RDMA-enabled services, as
 appropriate to the new networks over which the services will operate.

 For example, the NFS/RDMA service defined in [RFC5667] has been
 assigned the port 20049, in the IANA registry:

 nfsrdma 20049/tcp Network File System (NFS) over RDMA
 nfsrdma 20049/udp Network File System (NFS) over RDMA
 nfsrdma 20049/sctp Network File System (NFS) over RDMA

 The OPTIONAL Connection Configuration Protocol described herein
 requires an RPC program number assignment. The value "100417" has
 been assigned:

 rdmaconfig 100417 rpc.rdmaconfig

 The RPC program number assignment policy and registry are defined in
 [RFC5531].

13. Acknowledgments

 The authors wish to thank Rob Thurlow, John Howard, Chet Juszczak,
 Alex Chiu, Peter Staubach, Dave Noveck, Brian Pawlowski, Steve
 Kleiman, Mike Eisler, Mark Wittle, Shantanu Mehendale, David
 Robinson, and Mallikarjun Chadalapaka for their contributions to this
 document.

Talpey & Callaghan Standards Track [Page 32]

RFC 5666 RDMA Transport for RPC January 2010

14. References

14.1. Normative References

 [RFC1833] Srinivasan, R., "Binding Protocols for ONC RPC Version 2",
 RFC 1833, August 1995.

 [RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol
 Specification", RFC 2203, September 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, May 2006.

 [RFC5042] Pinkerton, J. and E. Deleganes, "Direct Data Placement
 Protocol (DDP) / Remote Direct Memory Access Protocol
 (RDMAP) Security", RFC 5042, October 2007.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC5403] Eisler, M., "RPCSEC_GSS Version 2", RFC 5403, February
 2009.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, May 2009.

 [RFC5660] Williams, N., "IPsec Channels: Connection Latching", RFC
 5660, October 2009.

 [RFC5665] Eisler, M., "IANA Considerations for Remote Procedure Call
 (RPC) Network Identifiers and Universal Address Formats",
 RFC 5665, January 2010.

14.2. Informative References

 [RFC1094] Sun Microsystems, "NFS: Network File System Protocol
 specification", RFC 1094, March 1989.

 [RFC1813] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS
 Version 3 Protocol Specification", RFC 1813, June 1995.

 [RFC3530] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "Network File System
 (NFS) version 4 Protocol", RFC 3530, April 2003.

Talpey & Callaghan Standards Track [Page 33]

RFC 5666 RDMA Transport for RPC January 2010

 [RFC5040] Recio, R., Metzler, B., Culley, P., Hilland, J., and D.
 Garcia, "A Remote Direct Memory Access Protocol
 Specification", RFC 5040, October 2007.

 [RFC5041] Shah, H., Pinkerton, J., Recio, R., and P. Culley, "Direct
 Data Placement over Reliable Transports", RFC 5041,
 October 2007.

 [RFC5532] Talpey, T. and C. Juszczak, "Network File System (NFS)
 Remote Direct Memory Access (RDMA) Problem Statement", RFC
 5532, May 2009.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System Version 4 Minor Version 1 Protocol",
 RFC 5661, January 2010.

 [RFC5667] Talpey, T. and B. Callaghan, "Network File System (NFS)
 Direct Data Placement", RFC 5667, January 2010.

 [IB] InfiniBand Trade Association, InfiniBand Architecture
 Specifications, available from
 http://www.infinibandta.org.

 [IBPORT] InfiniBand Trade Association, "IP Addressing Annex",
 available from http://www.infinibandta.org.

Authors’ Addresses

 Tom Talpey
 170 Whitman St.
 Stow, MA 01775 USA

 EMail: tmtalpey@gmail.com

 Brent Callaghan
 Apple Computer, Inc.
 MS: 302-4K
 2 Infinite Loop
 Cupertino, CA 95014 USA

 EMail: brentc@apple.com

Talpey & Callaghan Standards Track [Page 34]

