
Network Working Group P. Sarolahti
Request for Comments: 5682 Nokia Research Center
Updates: 4138 M. Kojo
Category: Standards Track University of Helsinki
 K. Yamamoto
 M. Hata
 NTT Docomo
 September 2009

 Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP

Abstract

 The purpose of this document is to move the F-RTO (Forward
 RTO-Recovery) functionality for TCP in RFC 4138 from
 Experimental to Standards Track status. The F-RTO support for Stream
 Control Transmission Protocol (SCTP) in RFC 4138 remains with
 Experimental status. See Appendix B for the differences between this
 document and RFC 4138.

 Spurious retransmission timeouts cause suboptimal TCP performance
 because they often result in unnecessary retransmission of the last
 window of data. This document describes the F-RTO detection
 algorithm for detecting spurious TCP retransmission timeouts. F-RTO
 is a TCP sender-only algorithm that does not require any TCP options
 to operate. After retransmitting the first unacknowledged segment
 triggered by a timeout, the F-RTO algorithm of the TCP sender
 monitors the incoming acknowledgments to determine whether the
 timeout was spurious. It then decides whether to send new segments
 or retransmit unacknowledged segments. The algorithm effectively
 helps to avoid additional unnecessary retransmissions and thereby
 improves TCP performance in the case of a spurious timeout.

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Sarolahti, et al. Standards Track [Page 1]

RFC 5682 F-RTO September 2009

Copyright and License Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

Table of Contents

 1. Introduction ..3
 1.1. Conventions and Terminology5
 2. Basic F-RTO Algorithm ...5
 2.1. The Algorithm ..5
 2.2. Discussion ...7
 3. SACK-Enhanced Version of the F-RTO Algorithm9
 3.1. The Algorithm ..9
 3.2. Discussion ..11
 4. Taking Actions after Detecting Spurious RTO11
 5. Evaluation of RFC 4138 ...12
 6. Security Considerations ..13
 7. Acknowledgments ..14
 Appendix A. Discussion of Window-Limited Cases15
 Appendix B. Changes since RFC 413816
 References ..16
 Normative References ...16
 Informative References ...17

Sarolahti, et al. Standards Track [Page 2]

RFC 5682 F-RTO September 2009

1. Introduction

 The Transmission Control Protocol (TCP) [Pos81] has two methods for
 triggering retransmissions. First, the TCP sender relies on incoming
 duplicate acknowledgments (ACKs), which indicate that the receiver is
 missing some of the data. After a required number of successive
 duplicate ACKs have arrived at the sender, it retransmits the first
 unacknowledged segment [APB09] and continues with a loss recovery
 algorithm such as NewReno [FHG04] or SACK-based (Selective
 Acknowledgment) loss recovery [BAFW03]. Second, the TCP sender
 maintains a retransmission timer that triggers retransmission of
 segments, if they have not been acknowledged before the
 retransmission timeout (RTO) occurs. When the retransmission timeout
 occurs, the TCP sender enters the RTO recovery where the congestion
 window is initialized to one segment and unacknowledged segments are
 retransmitted using the slow-start algorithm. The retransmission
 timer is adjusted dynamically, based on the measured round-trip times
 [PA00].

 It has been pointed out that the retransmission timer can expire
 spuriously and cause unnecessary retransmissions when no segments
 have been lost [LK00, GL02, LM03]. After a spurious retransmission
 timeout, the late acknowledgments of the original segments arrive at
 the sender, usually triggering unnecessary retransmissions of a whole
 window of segments during the RTO recovery. Furthermore, after a
 spurious retransmission timeout, a conventional TCP sender increases
 the congestion window on each late acknowledgment in slow start.
 This injects a large number of data segments into the network within
 one round-trip time, thus violating the packet conservation principle
 [Jac88].

 There are a number of potential reasons for spurious retransmission
 timeouts. First, some mobile networking technologies involve sudden
 delay spikes on transmission because of actions taken during a hand-
 off. Second, a hand-off may take place from a low latency path to a
 high latency path, suddenly increasing the round-trip time beyond the
 current RTO value. Third, on a low-bandwidth link the arrival of
 competing traffic (possibly with higher priority), or some other
 change in available bandwidth, can cause a sudden increase of the
 round-trip time. This may trigger a spurious retransmission timeout.
 A persistently reliable link layer can also cause a sudden delay when
 a data frame and several retransmissions of it are lost for some
 reason. This document does not distinguish between the different
 causes of such a delay spike. Rather, it discusses the spurious
 retransmission timeouts caused by a delay spike in general.

Sarolahti, et al. Standards Track [Page 3]

RFC 5682 F-RTO September 2009

 This document describes the F-RTO detection algorithm for TCP. It is
 based on the detection mechanism of the "Forward RTO-Recovery"
 (F-RTO) algorithm [SKR03] that is used for detecting spurious
 retransmission timeouts and thus avoids unnecessary retransmissions
 following the retransmission timeout. When the timeout is not
 spurious, the F-RTO algorithm reverts back to the conventional RTO
 recovery algorithm, and therefore has similar behavior and
 performance. In contrast to alternative algorithms proposed for
 detecting unnecessary retransmissions (Eifel [LK00, LM03] and DSACK-
 based (Duplicate SACK) algorithms [BA04]), F-RTO does not require any
 TCP options for its operation, and it can be implemented by modifying
 only the TCP sender. The Eifel algorithm uses TCP timestamps [BBJ92]
 for detecting a spurious timeout upon arrival of the first
 acknowledgment after the retransmission. The DSACK-based algorithms
 require that the TCP Selective Acknowledgment Option [MMFR96], with
 the DSACK extension [FMMP00], is in use. With DSACK, the TCP
 receiver can report if it has received a duplicate segment, enabling
 the sender to detect afterwards whether it has retransmitted segments
 unnecessarily. The F-RTO algorithm only attempts to detect and avoid
 unnecessary retransmissions after an RTO. Eifel and DSACK can also
 be used for detecting unnecessary retransmissions caused by other
 events, such as packet reordering.

 When the retransmission timer expires, the F-RTO sender retransmits
 the first unacknowledged segment as usual [APB09]. Deviating from
 the normal operation after a timeout, it then tries to transmit new,
 previously unsent data for the first acknowledgment that arrives
 after the timeout, given that the acknowledgment advances the window.
 If the second acknowledgment that arrives after the timeout advances
 the window (i.e., acknowledges data that was not retransmitted), the
 F-RTO sender declares the timeout spurious and exits the RTO
 recovery. However, if either of these two acknowledgments is a
 duplicate ACK, there will not be sufficient evidence of a spurious
 timeout. Therefore, the F-RTO sender retransmits the unacknowledged
 segments in slow start similar to the traditional algorithm. With a
 SACK-enhanced version of the F-RTO algorithm, spurious timeouts may
 be detected even if duplicate ACKs arrive after an RTO
 retransmission.

 This document specifies the F-RTO algorithm for TCP only, replacing
 the F-RTO functionality with TCP in RFC 4138 [SK05] and moving it
 from Experimental to Standards Track status. The algorithm can also
 be applied to the Stream Control Transmission Protocol (SCTP) [Ste07]
 that has acknowledgment and packet retransmission concepts similar to
 TCP. The considerations on applying F-RTO to SCTP are discussed in
 RFC 4138, but the F-RTO support for SCTP remains with Experimental
 status.

Sarolahti, et al. Standards Track [Page 4]

RFC 5682 F-RTO September 2009

 This document is organized as follows. Section 2 describes the basic
 F-RTO algorithm, and the SACK-enhanced F-RTO algorithm is given in
 Section 3. Section 4 discusses the possible actions to be taken
 after detecting a spurious RTO. Section 5 summarizes the experience
 with F-RTO implementations and the experimental results, and Section
 6 discusses the security considerations.

1.1. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119] and indicate requirement levels for protocols.

2. Basic F-RTO Algorithm

 A timeout is considered spurious if it would have been avoided had
 the sender waited longer for an acknowledgment to arrive [LM03].
 F-RTO affects the TCP sender behavior only after a retransmission
 timeout. Otherwise, the TCP behavior remains the same. When the
 retransmission timer expires, the F-RTO algorithm monitors incoming
 acknowledgments, and if the TCP sender gets an acknowledgment for a
 segment that was not retransmitted due to the timeout, the F-RTO
 algorithm declares a timeout spurious. The actions taken in response
 to a spurious timeout are not specified in this document, but we
 discuss some alternatives in Section 4. This section introduces the
 algorithm and then discusses the different steps of the algorithm in
 more detail.

 Following the practice used with the Eifel Detection algorithm
 [LM03], we use the "SpuriousRecovery" variable to indicate whether
 the retransmission is declared spurious by the sender. This variable
 can be used as an input for a corresponding response algorithm. With
 F-RTO, the value of SpuriousRecovery can be either SPUR_TO
 (indicating a spurious retransmission timeout) or FALSE (indicating
 that the timeout is not declared spurious and the TCP sender should
 follow the conventional RTO recovery algorithm). In addition, we use
 the "recover" variable specified in the NewReno algorithm [FHG04].

2.1. The Algorithm

 A TCP sender implementing the basic F-RTO algorithm MUST take the
 following steps after the retransmission timer expires. If the
 retransmission timer expires again during the execution of the F-RTO
 algorithm, the TCP sender MUST re-start the algorithm processing from
 step 1. If the sender implements some loss recovery algorithm other
 than Reno or NewReno [FHG04], the F-RTO algorithm SHOULD NOT be
 entered when earlier fast recovery is underway.

Sarolahti, et al. Standards Track [Page 5]

RFC 5682 F-RTO September 2009

 The F-RTO algorithm takes different actions based on whether an
 incoming acknowledgment advances the cumulative acknowledgment point
 for a received in-order segment, or whether it is a duplicate
 acknowledgment to indicate an out-of-order segment. Duplicate
 acknowledgment is defined in [APB09]. The F-RTO algorithm does not
 specify actions for receiving a segment that neither acknowledges new
 data nor is a duplicate acknowledgment. The TCP sender SHOULD ignore
 such segments and wait for a segment that either acknowledges new
 data or is a duplicate acknowledgment.

 1) When the retransmission timer expires, retransmit the first
 unacknowledged segment and set SpuriousRecovery to FALSE. If the
 TCP sender is already in RTO recovery AND "recover" is larger than
 or equal to SND.UNA (the oldest unacknowledged sequence number
 [Pos81]), do not enter step 2 of this algorithm. Instead, store
 the highest sequence number transmitted so far in variable
 "recover" and continue with slow-start retransmissions following
 the conventional RTO recovery algorithm.

 2) When the first acknowledgment after the RTO retransmission arrives
 at the TCP sender, store the highest sequence number transmitted
 so far in variable "recover". The TCP sender chooses one of the
 following actions, depending on whether the ACK advances the
 window or whether it is a duplicate ACK.

 a) If the acknowledgment is a duplicate ACK, OR the Acknowledgment
 field covers "recover" but not more than "recover", OR the
 acknowledgment does not acknowledge all of the data that was
 retransmitted in step 1, revert to the conventional RTO
 recovery and continue by retransmitting unacknowledged data in
 slow start. Do not enter step 3 of this algorithm. The
 SpuriousRecovery variable remains as FALSE.

 b) Else, if the acknowledgment advances the window AND the
 Acknowledgment field does not cover "recover", transmit up to
 two new (previously unsent) segments and enter step 3 of this
 algorithm. If the TCP sender does not have enough unsent data,
 it can send only one segment. In addition, the TCP sender MAY
 override the Nagle algorithm [Nag84] and immediately send a
 segment if needed. Note that sending two segments in this step
 is allowed by TCP congestion control requirements [APB09]: an
 F-RTO TCP sender simply chooses different segments to transmit.

 If the TCP sender does not have any new data to send, or the
 advertised window prohibits new transmissions, the recommended
 action is to skip step 3 of this algorithm and continue with
 slow-start retransmissions, following the conventional RTO

Sarolahti, et al. Standards Track [Page 6]

RFC 5682 F-RTO September 2009

 recovery algorithm. However, alternative ways of handling the
 window-limited cases that could result in better performance
 are discussed in Appendix A.

 3) When the second acknowledgment after the RTO retransmission
 arrives at the TCP sender, the TCP sender either declares the
 timeout spurious, or starts retransmitting the unacknowledged
 segments.

 a) If the acknowledgment is a duplicate ACK, set the congestion
 window to no more than 3 * MSS (where MSS indicates Maximum
 Segment Size), and continue with the slow-start algorithm
 retransmitting unacknowledged segments. The congestion window
 can be set to 3 * MSS, because two round-trip times have
 elapsed since the RTO, and a conventional TCP sender would have
 increased cwnd to 3 during the same time. Leave
 SpuriousRecovery set to FALSE.

 b) If the acknowledgment advances the window (i.e., if it
 acknowledges data that was not retransmitted after the
 timeout), declare the timeout spurious, set SpuriousRecovery to
 SPUR_TO, and set the value of the "recover" variable to SND.UNA
 (the oldest unacknowledged sequence number [Pos81]).

2.2. Discussion

 The F-RTO sender takes cautious actions when it receives duplicate
 acknowledgments after a retransmission timeout. Because duplicate
 ACKs may indicate that segments have been lost, reliably detecting a
 spurious timeout is difficult due to the lack of additional
 information. Therefore, it is prudent to follow the conventional TCP
 recovery in those cases.

 The condition in step 1 prevents the execution of the F-RTO algorithm
 in case a previous RTO recovery is underway when the retransmission
 timer expires, except in case the retransmission timer expires
 multiple times for the same segment. If the retransmission timer
 expires during an earlier RTO-based loss recovery, acknowledgments
 for retransmitted segments may falsely lead the TCP sender to declare
 the timeout spurious.

 If the first acknowledgment after the RTO retransmission covers the
 "recover" point at algorithm step (2a), there is not enough evidence
 that a non-retransmitted segment has arrived at the receiver after
 the timeout. This is a common case when a fast retransmission is
 lost and has been retransmitted again after an RTO, while the rest of

Sarolahti, et al. Standards Track [Page 7]

RFC 5682 F-RTO September 2009

 the unacknowledged segments were successfully delivered to the TCP
 receiver before the retransmission timeout. Therefore, the timeout
 cannot be declared spurious in this case.

 If the first acknowledgment after the RTO retransmission does not
 acknowledge all of the data that was retransmitted in step 1, the TCP
 sender reverts to the conventional RTO recovery. Otherwise, a
 malicious receiver acknowledging partial segments could cause the
 sender to declare the timeout spurious in a case where data was lost.

 The TCP sender is allowed to send two new segments in algorithm
 branch (2b) because the conventional TCP sender would transmit two
 segments when the first new ACK arrives after the RTO retransmission.
 If sending new data is not possible in algorithm branch (2b), or if
 the receiver window limits the transmission, the TCP sender has to
 send something in order to prevent the TCP transfer from stalling.
 If no segments were sent, the pipe between sender and receiver might
 run out of segments, and no further acknowledgments would arrive.
 Therefore, in the window-limited case, the recommendation is to
 revert to the conventional RTO recovery with slow-start
 retransmissions. Appendix A discusses some alternative solutions for
 window-limited situations.

 If the retransmission timeout is declared spurious, the TCP sender
 sets the value of the "recover" variable to SND.UNA in order to allow
 fast retransmit [FHG04]. The "recover" variable was proposed for
 avoiding unnecessary, multiple fast retransmits when the
 retransmission timer expires during fast recovery with NewReno TCP.
 Because the F-RTO sender retransmits only the segment that triggered
 the timeout, the problem of unnecessary multiple fast retransmits
 [FHG04] cannot occur. Therefore, if three duplicate ACKs arrive at
 the sender after the timeout, they probably indicate a packet loss,
 and thus fast retransmit should be used to allow efficient recovery.
 If there are not enough duplicate ACKs arriving at the sender after a
 packet loss, the retransmission timer expires again and the sender
 enters step 1 of this algorithm.

 When the timeout is declared spurious, the TCP sender cannot detect
 whether the unnecessary RTO retransmission was lost. In principle,
 the loss of the RTO retransmission should be taken as a congestion
 signal. Thus, there is a small possibility that the F-RTO sender
 will violate the congestion control rules, if it chooses to fully
 revert congestion control parameters after detecting a spurious
 timeout. The Eifel Detection algorithm has a similar property, while
 the DSACK option can be used to detect whether the retransmitted
 segment was successfully delivered to the receiver.

Sarolahti, et al. Standards Track [Page 8]

RFC 5682 F-RTO September 2009

 The F-RTO algorithm has a side effect on the TCP round-trip time
 measurement. Because the TCP sender can avoid most of the
 unnecessary retransmissions after detecting a spurious timeout, the
 sender is able to take round-trip time samples on the delayed
 segments. If the regular RTO recovery was used without TCP
 timestamps, this would not be possible due to the retransmission
 ambiguity. As a result, the RTO is likely to have more accurate and
 larger values with F-RTO than with the regular TCP after a spurious
 timeout that was triggered due to delayed segments. We believe this
 is an advantage in networks that are prone to delay spikes.

 There are some situations where the F-RTO algorithm may not avoid
 unnecessary retransmissions after a spurious timeout. If packet
 reordering or packet duplication occurs on the segment that triggered
 the spurious timeout, the F-RTO algorithm may not detect the spurious
 timeout due to incoming duplicate ACKs. Additionally, if a spurious
 timeout occurs during fast recovery, the F-RTO algorithm often cannot
 detect the spurious timeout because the segments that were
 transmitted before the fast recovery trigger duplicate ACKs.
 However, we consider these cases rare, and note that in cases where
 F-RTO fails to detect the spurious timeout, it retransmits the
 unacknowledged segments in slow start, and thus performs the same as
 the regular RTO recovery.

3. SACK-Enhanced Version of the F-RTO Algorithm

 This section describes an alternative version of the F-RTO algorithm
 that uses the TCP Selective Acknowledgment Option [MMFR96]. By using
 the SACK option, the TCP sender detects spurious timeouts in most of
 the cases when packet reordering or packet duplication is present.
 If the SACK information acknowledges new data that was not
 transmitted after the RTO retransmission, the sender may declare the
 timeout spurious, even when duplicate ACKs follow the RTO.

3.1. The Algorithm

 Given that the TCP Selective Acknowledgment Option [MMFR96] is
 enabled for a TCP connection, a TCP sender MAY apply the SACK-
 enhanced F-RTO algorithm. If the sender applies the SACK-enhanced
 F-RTO algorithm, it MUST follow the steps below. This algorithm
 SHOULD NOT be applied if the TCP sender is already in loss recovery
 when a retransmission timeout occurs.

 The steps of the SACK-enhanced version of the F-RTO algorithm are as
 follows. If the retransmission timer expires again during the
 execution of the SACK-enhanced F-RTO algorithm, the TCP sender MUST
 re-start the algorithm processing from step 1.

Sarolahti, et al. Standards Track [Page 9]

RFC 5682 F-RTO September 2009

 1) When the retransmission timer expires, retransmit the first
 unacknowledged segment and set SpuriousRecovery to FALSE.
 Following the recommendation in the SACK specification [MMFR96],
 reset the SACK scoreboard. If "RecoveryPoint" is larger than or
 equal to SND.UNA, do not enter step 2 of this algorithm. Instead,
 set variable "RecoveryPoint" to indicate the highest sequence
 number transmitted so far and continue with slow-start
 retransmissions following the conventional RTO recovery algorithm.

 2) Wait until the acknowledgment of the data retransmitted due to the
 timeout arrives at the sender. If duplicate ACKs arrive before
 the cumulative acknowledgment for retransmitted data, adjust the
 scoreboard according to the incoming SACK information. Stay in
 step 2 and wait for the next new acknowledgment. If the
 retransmission timeout expires again, go to step 1 of the
 algorithm. When a new acknowledgment arrives, set variable
 "RecoveryPoint" to indicate the highest sequence number
 transmitted so far.

 a) If the Cumulative Acknowledgment field covers "RecoveryPoint"
 but not more than "RecoveryPoint", revert to the conventional
 RTO recovery and set the congestion window to no more than 2 *
 MSS, like a regular TCP would do. Do not enter step 3 of this
 algorithm.

 b) Else, if the Cumulative Acknowledgment field does not cover
 "RecoveryPoint" but is larger than SND.UNA, transmit up to two
 new (previously unsent) segments and proceed to step 3. If the
 TCP sender is not able to transmit any previously unsent data
 -- either due to receiver window limitation or because it does
 not have any new data to send -- the recommended action is to
 refrain from entering step 3 of this algorithm. Rather,
 continue with slow-start retransmissions following the
 conventional RTO recovery algorithm.

 It is also possible to apply some of the alternatives for
 handling window-limited cases discussed in Appendix A.

 3) The next acknowledgment arrives at the sender. Either a duplicate
 ACK or a new cumulative ACK (advancing the window) applies in this
 step. Other types of ACKs are ignored without any action.

 a) If the Cumulative Acknowledgment field or the SACK information
 covers more than "RecoveryPoint", set the congestion window to
 no more than 3 * MSS and proceed with the conventional RTO
 recovery, retransmitting unacknowledged segments. Take this
 branch also when the acknowledgment is a duplicate ACK and it
 does not acknowledge any new, previously unacknowledged data

Sarolahti, et al. Standards Track [Page 10]

RFC 5682 F-RTO September 2009

 below "RecoveryPoint" in the SACK information. Leave
 SpuriousRecovery set to FALSE.

 b) If the Cumulative Acknowledgment field or a SACK information in
 the ACK does not cover more than "RecoveryPoint" AND it
 acknowledges data that was not acknowledged earlier (either
 with cumulative acknowledgment or using SACK information),
 declare the timeout spurious and set SpuriousRecovery to
 SPUR_TO. The retransmission timeout can be declared spurious,
 because the segment acknowledged with this ACK was transmitted
 before the timeout.

 If there are unacknowledged holes between the received SACK
 information, those segments are retransmitted similarly to the
 conventional SACK recovery algorithm [BAFW03]. If the algorithm
 exits with SpuriousRecovery set to SPUR_TO, "RecoveryPoint" is set to
 SND.UNA, thus allowing fast recovery on incoming duplicate
 acknowledgments.

3.2. Discussion

 The SACK-enhanced algorithm works on the same principle as the basic
 algorithm, but by utilizing the additional information from the SACK
 option. When a genuine retransmission timeout occurs during a steady
 state of a connection, it can be assumed that there are no segments
 left in the pipe. Otherwise, the acknowledgments triggered by these
 segments would have triggered the SACK loss recovery or transmission
 of new segments. Therefore, if the F-RTO sender receives
 acknowledgments for segments transmitted before the retransmission
 timeout in response to the two new segments sent at the algorithm
 step 2, the normal operation of TCP has been just delayed, and the
 retransmission timeout is considered spurious. Note that this
 reasoning works only when the TCP sender is not in loss recovery at
 the time the retransmission timeout occurs. The condition in step 1
 checking that "RecoveryPoint" is larger than or equal to SND.UNA
 prevents the execution of the F-RTO algorithm in case a previous loss
 recovery, either RTO recovery or SACK loss recovery, is underway when
 the retransmission timer expires. It, however, allows the execution
 of the F-RTO algorithm, if the retransmission timer expires multiple
 times for the same segment.

4. Taking Actions after Detecting Spurious RTO

 Upon a retransmission timeout, a conventional TCP sender assumes that
 outstanding segments are lost and starts retransmitting the
 unacknowledged segments. When the retransmission timeout is detected
 to be spurious, the TCP sender should not continue retransmitting
 based on the timeout. For example, if the sender was in congestion

Sarolahti, et al. Standards Track [Page 11]

RFC 5682 F-RTO September 2009

 avoidance phase transmitting new, previously unsent segments, it
 should continue transmitting previously unsent segments in congestion
 avoidance.

 There are currently two alternatives specified for a spurious timeout
 response algorithm, the Eifel Response Algorithm [LG05], and an
 algorithm for adapting the retransmission timeout after a spurious
 RTO [BBA06]. If no specific response algorithm is implemented, the
 TCP SHOULD respond to spurious timeout conservatively, applying the
 TCP congestion control specification [APB09]. Different response
 algorithms for spurious retransmission timeouts have been analyzed in
 some research papers [GL03, Sar03] and IETF documents [SL03].

5. Evaluation of RFC 4138

 F-RTO was first specified in an Experimental RFC (RFC 4138) that has
 been implemented in a number of operating systems since it was
 published. Gained experience has been documented in a separate
 document [KYHS07], and can be summarized as follows.

 If the TCP sender employs F-RTO, it is able to detect spurious RTOs
 and avoid the unnecessary retransmission of the whole window of data.
 Because F-RTO avoids the unnecessary retransmissions after a spurious
 RTO, it is able to adhere to the packet conservation principle,
 unlike a regular TCP that enters the slow-start recovery
 unnecessarily and inappropriately restarts the ACK clock while there
 are segments outstanding in the network. When a spurious RTO has
 been detected, a sender can select an appropriate congestion control
 response instead of setting the congestion window to one segment.
 Because F-RTO avoids unnecessary retransmissions, it is able to take
 the round-trip time of the delayed segments into account when
 calculating the RTO estimate, which may help in avoiding further
 spurious retransmission timeouts.

 Experimental results with the basic F-RTO have been reported in an
 emulated network using a Linux implementation [SKR03]. Also,
 different congestion control responses along with the SACK-enhanced
 version of F-RTO were tested in a similar environment [Sar03]. There
 are publications analyzing F-RTO performance over commercial Wideband
 Code Division Multiple Access (W-CDMA) networks, and in an emulated
 High-Speed Downlink Packet Access (HSDPA) network [Yam05, Hok05].
 Also, Microsoft reported positive experiences with their
 implementation of F-RTO at the IETF-68 meeting.

 It is known that some spurious RTOs may remain undetected by F-RTO if
 duplicate acknowledgments arrive at the sender immediately after the
 spurious RTO, for example due to packet reordering or packet loss.
 There are rare corner cases where F-RTO could "hide" a packet loss

Sarolahti, et al. Standards Track [Page 12]

RFC 5682 F-RTO September 2009

 and therefore lead to inappropriate behavior with non-conservative
 congestion control response: first, if a massive packet reordering
 occurred so that the acknowledgment of RTO retransmission arrived at
 the sender before the acknowledgments of original transmissions, the
 sender might not detect the loss of the segment that triggered the
 RTO. Second, a malicious receiver could lead F-RTO to make a wrong
 conclusion after an RTO by acknowledging segments it has not
 received. Such a receiver would, however, risk breaking the
 consistency of the TCP state between the sender and receiver, causing
 the connection to become unusable, which cannot be of any benefit to
 the receiver. Therefore, we believe it is not likely that receivers
 would start employing such tricks on a significant scale. Finally,
 loss of the unnecessary RTO retransmission cannot be detected without
 using some explicit acknowledgment scheme such as DSACK. This is
 common to the other mechanisms for detecting spurious RTO, as well as
 to regular TCP that does not use DSACK. We note that if the
 congestion control response to spurious RTO is conservative enough,
 the above corner cases do not cause problems due to increased
 congestion.

6. Security Considerations

 The main security threat regarding F-RTO is the possibility that a
 receiver could mislead the sender into setting too large a congestion
 window after an RTO. There are two possible ways a malicious
 receiver could trigger a wrong output from the F-RTO algorithm.
 First, the receiver can acknowledge data that it has not received.
 Second, it can delay acknowledgment of a segment it has received
 earlier, and acknowledge the segment after the TCP sender has been
 deluded to enter algorithm step 3.

 If the receiver acknowledges a segment it has not really received,
 the sender can be led to declare spurious timeout in the F-RTO
 algorithm, step 3. However, because the sender will have an
 incorrect state, it cannot retransmit the segment that has never
 reached the receiver. Therefore, this attack is unlikely to be
 useful for the receiver to maliciously gain a larger congestion
 window.

 A common case for a retransmission timeout is that a fast
 retransmission of a segment is lost. If all other segments have been
 received, the RTO retransmission causes the whole window to be
 acknowledged at once. This case is recognized in F-RTO algorithm
 branch (2a). However, if the receiver only acknowledges one segment
 after receiving the RTO retransmission, and then the rest of the
 segments, it could cause the timeout to be declared spurious when it
 is not. Therefore, it is suggested that, when an RTO occurs during

Sarolahti, et al. Standards Track [Page 13]

RFC 5682 F-RTO September 2009

 the fast recovery phase, the sender would not fully revert the
 congestion window even if the timeout was declared spurious.
 Instead, the sender would reduce the congestion window to 1.

 If there is more than one segment missing at the time of a
 retransmission timeout, the receiver does not benefit from misleading
 the sender to declare a spurious timeout because the sender would
 have to go through another recovery period to retransmit the missing
 segments, usually after an RTO has elapsed.

7. Acknowledgments

 The authors would like to thank Alfred Hoenes, Ilpo Jarvinen, and
 Murari Sridharan for the comments on this document.

 We are also thankful to Reiner Ludwig, Andrei Gurtov, Josh Blanton,
 Mark Allman, Sally Floyd, Yogesh Swami, Mika Liljeberg, Ivan Arias
 Rodriguez, Sourabh Ladha, Martin Duke, Motoharu Miyake, Ted Faber,
 Samu Kontinen, and Kostas Pentikousis who gave valuable feedback
 during the preparation of RFC 4138, the precursor of this document.

Sarolahti, et al. Standards Track [Page 14]

RFC 5682 F-RTO September 2009

Appendix A. Discussion of Window-Limited Cases

 When the advertised window limits the transmission of two new
 previously unsent segments, or there are no new data to send, it is
 recommended in F-RTO algorithm step (2b) that the TCP sender continue
 with the conventional RTO recovery algorithm. The disadvantage is
 that the sender may continue unnecessary retransmissions due to
 possible spurious timeout. This section briefly discusses the
 options that can potentially improve performance when transmitting
 previously unsent data is not possible.

 - The TCP sender could reserve an unused space of a size of one or
 two segments in the advertised window to ensure the use of
 algorithms such as F-RTO or Limited Transmit [ABF01] in receiver
 window-limited situations. On the other hand, while doing this,
 the TCP sender should ensure that the window of outstanding
 segments is large enough for proper utilization of the available
 pipe.

 - Use additional information if available, e.g., TCP timestamps with
 the Eifel Detection algorithm, for detecting a spurious timeout.
 However, Eifel detection may yield different results from F-RTO
 when ACK losses and an RTO occur within the same round-trip time
 [SKR03].

 - Retransmit data from the tail of the retransmission queue and
 continue with step 3 of the F-RTO algorithm. It is possible that
 the retransmission will be made unnecessarily. Furthermore, the
 operation of the SACK-based F-RTO algorithm would need to consider
 this case separately, to not use the retransmitted segment to
 indicate spurious timeout. Given these considerations, this option
 is not recommended.

 - Send a zero-sized segment below SND.UNA, similar to a TCP Keep-
 Alive probe, and continue with step 3 of the F-RTO algorithm.
 Because the receiver replies with a duplicate ACK, the sender is
 able to detect whether the timeout was spurious from the incoming
 acknowledgment. This method does not send data unnecessarily, but
 it delays the recovery by one round-trip time in cases where the
 timeout was not spurious. Therefore, this method is not
 encouraged.

 - In receiver-limited cases, send one octet of new data, regardless
 of the advertised window limit, and continue with step 3 of the
 F-RTO algorithm. It is possible that the receiver will have free
 buffer space to receive the data by the time the segment has

Sarolahti, et al. Standards Track [Page 15]

RFC 5682 F-RTO September 2009

 propagated through the network, in which case no harm is done. If
 the receiver is not capable of receiving the segment, it rejects
 the segment and sends a duplicate ACK.

Appendix B. Changes since RFC 4138

 Changes from RFC 4138 are summarized below, apart from minor
 editing and language improvements.

 * Modified the basic F-RTO algorithm and the SACK-enhanced F-RTO
 algorithm to prevent the TCP sender from applying the F-RTO
 algorithm if the retransmission timer expires when an earlier RTO
 recovery is underway, except when the retransmission timer expires
 multiple times for the same segment.

 * Clarified behavior on multiple timeouts.

 * Added a paragraph on acknowledgments that do not acknowledge new
 data but are not duplicate acknowledgments.

 * Clarified the SACK-algorithm a bit, and added one paragraph of
 description of the basic idea of the algorithm.

 * Removed SCTP considerations.

 * Removed earlier Appendix sections, except Appendix C from RFC 4138,
 which is now Appendix A.

 * Clarified text about the possible response algorithms.

 * Added section that summarizes the evaluation of RFC 4138.

References

Normative References

 [APB09] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [BAFW03] Blanton, E., Allman, M., Fall, K., and L. Wang, "A
 Conservative Selective Acknowledgment (SACK)-based Loss
 Recovery Algorithm for TCP", RFC 3517, April 2003.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Sarolahti, et al. Standards Track [Page 16]

RFC 5682 F-RTO September 2009

 [FHG04] Floyd, S., Henderson, T., and A. Gurtov, "The NewReno
 Modification to TCP’s Fast Recovery Algorithm", RFC 3782,
 April 2004.

 [MMFR96] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [PA00] Paxson, V. and M. Allman, "Computing TCP’s Retransmission
 Timer", RFC 2988, November 2000.

 [Pos81] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

Informative References

 [ABF01] Allman, M., Balakrishnan, H., and S. Floyd, "Enhancing
 TCP’s Loss Recovery Using Limited Transmit", RFC 3042,
 January 2001.

 [BA04] Blanton, E. and M. Allman, "Using TCP Duplicate Selective
 Acknowledgement (DSACKs) and Stream Control Transmission
 Protocol (SCTP) Duplicate Transmission Sequence Numbers
 (TSNs) to Detect Spurious Retransmissions", RFC 3708,
 February 2004.

 [BBA06] Blanton, J., Blanton, E., and M. Allman, "Using Spurious
 Retransmissions to Adapt the Retransmission Timeout", Work
 in Progress, December 2006.

 [BBJ92] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [FMMP00] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

 [GL02] Gurtov A. and R. Ludwig, "Evaluating the Eifel Algorithm
 for TCP in a GPRS Network", In Proc. European Wireless,
 Florence, Italy, February 2002.

 [GL03] Gurtov A. and R. Ludwig, "Responding to Spurious Timeouts
 in TCP", In Proc. IEEE INFOCOM 03, San Francisco, CA, USA,
 March 2003.

 [Jac88] Jacobson, V., "Congestion Avoidance and Control", In Proc.
 ACM SIGCOMM 88.

Sarolahti, et al. Standards Track [Page 17]

RFC 5682 F-RTO September 2009

 [Hok05] Hokamura, A., et al., "Performance Evaluation of F-RTO and
 Eifel Response Algorithms over W-CDMA packet network", In
 Proc. Wireless Personal Multimedia Communications
 (WPMC’05), Sept. 2005.

 [KYHS07] Kojo, M., Yamamoto, K., Hata, M., and P. Sarolahti,
 "Evaluation of RFC 4138", Work in Progress, November 2007.

 [LG05] Ludwig, R. and A. Gurtov, "The Eifel Response Algorithm for
 TCP", RFC 4015, February 2005.

 [LK00] Ludwig R. and R.H. Katz, "The Eifel Algorithm: Making TCP
 Robust Against Spurious Retransmissions", ACM SIGCOMM
 Computer Communication Review, 30(1), January 2000.

 [LM03] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm for
 TCP", RFC 3522, April 2003.

 [Nag84] Nagle, J., "Congestion control in IP/TCP internetworks",
 RFC 896, January 1984.

 [SK05] Sarolahti, P. and M. Kojo, "Forward RTO-Recovery (F-RTO):
 An Algorithm for Detecting Spurious Retransmission Timeouts
 with TCP and the Stream Control Transmission Protocol
 (SCTP)", RFC 4138, August 2005.

 [SKR03] Sarolahti, P., Kojo, M., and K. Raatikainen, "F-RTO: An
 Enhanced Recovery Algorithm for TCP Retransmission
 Timeouts", ACM SIGCOMM Computer Communication Review,
 33(2), April 2003.

 [Sar03] Sarolahti, P., "Congestion Control on Spurious TCP
 Retransmission Timeouts", In Proc. of IEEE Globecom 2003,
 San Francisco, CA, USA. December 2003.

 [SL03] Swami Y. and K. Le, "DCLOR: De-correlated Loss Recovery
 using SACK Option for spurious timeouts", Work in Progress,
 September 2003.

 [Ste07] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, September 2007.

 [Yam05] Yamamoto, K., et al., "Effects of F-RTO and Eifel Response
 Algorithms for W-CDMA and HSDPA networks", In Proc.
 Wireless Personal Multimedia Communications (WPMC’05),
 September 2005.

Sarolahti, et al. Standards Track [Page 18]

RFC 5682 F-RTO September 2009

Authors’ Addresses

 Pasi Sarolahti
 Nokia Research Center
 P.O. Box 407
 FI-00045 NOKIA GROUP
 Finland
 Phone: +358 50 4876607
 EMail: pasi.sarolahti@iki.fi

 Markku Kojo
 University of Helsinki
 P.O. Box 68
 FI-00014 UNIVERSITY OF HELSINKI
 Finland
 Phone: +358 9 19151305
 EMail: kojo@cs.helsinki.fi

 Kazunori Yamamoto
 NTT Docomo, Inc.
 3-5 Hikarinooka, Yokosuka, Kanagawa, 239-8536, Japan
 Phone: +81-46-840-3812
 EMail: yamamotokaz@nttdocomo.co.jp

 Max Hata
 NTT Docomo, Inc.
 3-5 Hikarinooka, Yokosuka, Kanagawa, 239-8536, Japan
 Phone: +81-46-840-3812
 EMail: hatama@s1.nttdocomo.co.jp

Sarolahti, et al. Standards Track [Page 19]

