
Network Working Group G. Camarillo, Ed.
Request for Comments: 5694 For the IAB
Category: Informational November 2009

 Peer-to-Peer (P2P) Architecture:
 Definition, Taxonomies, Examples, and Applicability

Abstract

 In this document, we provide a survey of P2P (Peer-to-Peer) systems.
 The survey includes a definition and several taxonomies of P2P
 systems. This survey also includes a description of which types of
 applications can be built with P2P technologies and examples of P2P
 applications that are currently in use on the Internet. Finally, we
 discuss architectural trade-offs and provide guidelines for deciding
 whether or not a P2P architecture would be suitable to meet the
 requirements of a given application.

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

Camarillo & Informational [Page 1]

RFC 5694 P2P Architectures November 2009

Table of Contents

 1. Introduction ..3
 2. Definition of a P2P System3
 2.1. Applying the P2P Definition to the DNS5
 2.2. Applying the P2P Definition to SIP5
 2.3. Applying the P2P Definition to P2PSIP6
 2.4. Applying the P2P Definition to BitTorrent7
 3. Functions in a P2P System7
 4. Taxonomies for P2P Systems8
 5. P2P Applications ...10
 5.1. Content Distribution10
 5.2. Distributed Computing12
 5.3. Collaboration ...13
 5.4. Platforms ...14
 6. Architectural Trade-Offs and Guidance14
 7. Security Considerations ..16
 8. Acknowledgements ...19
 9. IAB Members at the Time of This Writing19
 10. Informative References ..19
 Appendix A. Historical Background on Distributed Architectures ...25

Camarillo & Informational [Page 2]

RFC 5694 P2P Architectures November 2009

1. Introduction

 P2P (Peer-to-peer) systems have received a great deal of attention in
 the last few years. A large number of scientific publications
 investigate different aspects of P2P systems, several scientific
 conferences explicitly focus on P2P networking, and there is an
 Internet Research Task Force (IRTF) Research Group (RG) on P2P
 systems (the Peer-to-Peer RG). There are also several commercial and
 non-commercial applications that use P2P principles running on the
 Internet. Some of these P2P applications are among the most widely
 used applications on the Internet at present.

 However, despite all the above, engineers designing systems or
 developing protocol specifications do not have a common understanding
 of P2P systems. More alarming is the fact that many people in the
 telecom and datacom industries believe that P2P is synonymous with
 illegal activity, such as the illegal exchange of content over the
 Internet or P2P botnets.

 The goal of this document is to discuss the trade-offs involved in
 deciding whether a particular application can be best designed and
 implemented using a P2P paradigm or a different model (e.g., a
 client-server paradigm). The document also aims to provide
 architectural guidelines to assist in making such decisions. This
 document provides engineers with a high-level understanding of what
 defines a P2P system, what types of P2P systems exist, the
 characteristics that can be expected from such systems, and what
 types of applications can be implemented using P2P technologies.
 Such understanding is essential in order to appreciate the trade-offs
 referred to above. In addition, we stress the importance of the fact
 that P2P systems can be used to implement perfectly legitimate
 applications and business models by providing several examples
 throughout the document.

2. Definition of a P2P System

 In order to discuss P2P systems, we first need a working definition
 of a P2P system. In this section, we provide such a definition. All
 discussions in this document apply to systems that comply with that
 definition. In addition to providing examples of P2P systems, we
 provide a few examples of systems that comply only partially with the
 definition and, thus, cannot be strictly considered P2P systems.
 Since these systems are not fully P2P compliant, some of the
 discussions in this document may apply to them while others may not.
 We have chosen to include those examples anyway to stress the fact
 that P2P and centralized architectures are not completely disjoint

Camarillo & Informational [Page 3]

RFC 5694 P2P Architectures November 2009

 alternatives. There are many examples of systems that fall, for
 instance, somewhere in between a pure P2P system and a centralized
 one.

 P2P is a term used in many contexts, sometimes with slightly
 different meanings. It is possible to find several alternative
 definitions, which are not all fully equivalent, in the existing
 scientific literature. If we include other material (e.g., marketing
 material) in our search for a definition on P2P, the diversity of
 definitions is even higher.

 The issue is that there is no clear border between a P2P paradigm and
 other supposedly opposite paradigms such as client-server
 [Milojicic2002]. In the extremes, some architectures are clearly P2P
 while others are clearly client-server. However, there are
 architectures that can be considered to be either or both, depending
 on the definition for P2P being considered. Consequently, it is
 important to understand what is common to all definitions of P2P and
 what are the non-common traits some authors include in their own
 definitions.

 We consider a system to be P2P if the elements that form the system
 share their resources in order to provide the service the system has
 been designed to provide. The elements in the system both provide
 services to other elements and request services from other elements.

 In principle, all the elements in the system should meet the previous
 criteria for the system to be considered P2P. However, in practice,
 a system can have a few exceptions (i.e., a few nodes that do not
 meet the criteria) and still be considered P2P. For example, a P2P
 system can still be considered P2P even if it has a centralized
 enrollment server. On the other hand, some systems divide endpoints
 between peers and clients. Peers both request and provide services
 while clients generally only request services. A system where most
 endpoints behaved as clients could not strictly be considered P2P.

 Although most definitions do not state it explicitly, many implicitly
 assume that for a system to be P2P, its nodes need to be involved in
 transactions that are related to services that do not directly
 benefit the nodes.

 Some authors add that the elements that form the P2P system, which
 unsurprisingly are called peers, should be able to communicate
 directly between themselves without passing intermediaries
 [Schollmeier2001]. Other authors add that the system should be self
 organizing and have decentralized control [Roussopoulus2004].

Camarillo & Informational [Page 4]

RFC 5694 P2P Architectures November 2009

 Note that the previous definitions are given within the context of a
 single individual service. A complex service can be made up of
 several individual services. Some of these individual services can
 consist of P2P services and some of them can consist of client-server
 services. For example, a file sharing client may include a P2P
 client to perform the actual file sharing and a web browser to access
 additional information on a centralized web server. Additionally,
 there are architectures where a client-server system can serve as a
 fallback for a service normally provided by a P2P system, or vice
 versa.

 Providing a service typically involves processing or storing data.
 According to our definition, in a P2P system, peers share their
 processing and storage capacity (i.e., their hardware and software
 resources) so that the system can provide a service. For example, if
 the service to be provided is a file distribution service, different
 peers within the system will store different files. When a given
 peer wants to get a particular file, the peer will first discover
 which peer or peers have that file and then obtain the file from
 those peers.

 The definition for P2P provides us with a criterion to decide whether
 or not a system is P2P. As examples, in the following sections we
 apply the definition to the DNS, SIP, P2PSIP, and BitTorrent and
 discuss which of these systems are P2P.

2.1. Applying the P2P Definition to the DNS

 The DNS is a hierarchical distributed system that has sometimes been
 classified as a hierarchical client-server system and sometimes as a
 P2P system [Milojicic2002]. According to our definition, the DNS is
 not a P2P system because DNS resolvers are service requesters but not
 service providers. The elements in a system need to be both service
 requesters and service providers for the system to be considered P2P.

2.2. Applying the P2P Definition to SIP

 SIP [RFC3261] is a rendezvous protocol that allows a user to locate a
 remote user and establish a communication session with that remote
 user. Once the remote user is located, sessions are established in a
 similar way in all SIP systems: directly between the nodes involved
 in the session. However, the rendezvous function can be implemented
 in different ways: the traditional SIP way and the P2P way. This
 section discusses the former. Section 2.3 discusses the latter.

 In traditional SIP, a central server is typically responsible for a
 DNS domain. User agents in the domain register with the server.
 This way, when a user agent wants to communicate with a remote user

Camarillo & Informational [Page 5]

RFC 5694 P2P Architectures November 2009

 agent in the same domain, the user agent consults the server, which
 returns the contact information of the remote user agent. Session
 establishment occurs directly between the user agents, without the
 involvement of the server.

 Inter-domain communications in SIP are implemented using server
 federations. The servers responsible for each domain form a
 federation in which they can communicate with each other. This way,
 when a user agent wants to communicate with a remote user agent in a
 different domain, the user agent consults its local server, which in
 turn consults the server responsible for the remote user agent’s
 domain.

 SIP user agents act as both clients and servers. A given user agent
 can act as a client in a particular transaction and as a server in a
 subsequent transaction. However, traditional SIP cannot be
 considered a P2P system because user agents only share their
 resources for their own benefit. That is, a given user agent is only
 involved in transactions related to a service that benefits (somehow)
 the user agent itself. For example, any given user agent is only
 involved in SIP INVITE transactions intended to establish sessions
 that involve the user agent. For a system to be P2P, its nodes need
 to be involved in transactions that benefit others, that is,
 transactions that are related to services that do not benefit the
 nodes directly.

2.3. Applying the P2P Definition to P2PSIP

 In addition to the traditional way of using SIP, SIP can also be used
 in a way that is generally referred to as P2PSIP (P2PSIP is the name
 of the IETF working group developing the technology). In P2PSIP,
 user agents do not register their contact information with a central
 server. Instead, they register it with an overlay formed by the user
 agents in the system. This way, when a user agent wants to
 communicate with a remote user agent, the user agent consults the
 overlay, which returns the contact information of the remote user
 agent. Session establishment occurs, as usual, directly between the
 user agents. P2PSIP is a P2P system because nodes share their
 resources by storing data that is not related to them (i.e., contact
 information of different user agents) and are involved in
 transactions that are related to services that do not revert directly
 to the nodes themselves (e.g., the rendezvous of two remote user
 agents).

Camarillo & Informational [Page 6]

RFC 5694 P2P Architectures November 2009

2.4. Applying the P2P Definition to BitTorrent

 BitTorrent [BitTorrent] is a protocol used to distribute files. The
 group of endpoints involved in the distribution of a particular file
 is called a swarm. The file is divided into several pieces. An
 endpoint interested in the file needs to download all the pieces of
 the file from other endpoints in the swarm. Endpoints downloading
 pieces of the file also upload pieces they already have to other
 endpoints in the swarm. An endpoint that both downloads (because it
 does not have the complete file yet) and uploads pieces is called a
 leecher (note that this definition is counterintuitive because, in
 other contexts, a leecher normally means someone that takes but does
 not give). When an endpoint has the whole file (i.e., it has all the
 pieces of the file), it does not need to download any pieces any
 longer. Therefore, it only uploads pieces to other endpoints. Such
 an endpoint is called a seeder.

 BitTorrent systems are P2P systems because endpoints request services
 from other endpoints (i.e., download pieces from other endpoints) and
 provide services to other endpoints (i.e., upload pieces to other
 endpoints). Note, however, that a particular swarm where most
 endpoints were infrastructure nodes that had the complete file from
 the beginning and, thus, acted all the time as seeders could not be
 strictly considered a P2P system because most endpoints would only be
 providing services, not requesting them.

3. Functions in a P2P System

 P2P systems include several functions. The following functions are
 independent of the service provided by the P2P system. They handle
 how peers connect to the system.

 o Enrollment function: nodes joining a P2P system need to obtain
 valid credentials to join the system. The enrollment function
 handles node authentication and authorization.

 o Peer discovery function: in order to join a P2P system (i.e., to
 become a peer), a node needs to establish a connection with one or
 more peers that are already part of the system. The peer
 discovery function allows nodes to discover peers in the system in
 order to connect to them.

 The functions above are provided in a centralized way in some P2P
 systems (e.g., through a central enrollment server and a central peer
 discovery server, which is sometimes called a bootstrap server).
 Taxonomies for P2P systems, which will be discussed in Section 4, do

Camarillo & Informational [Page 7]

RFC 5694 P2P Architectures November 2009

 not consider these functions when classifying P2P systems. Instead,
 they classify P2P systems based on how the following set of functions
 are implemented.

 The following functions depend on the service provided by the P2P
 system. That is, not all P2P systems implement all functions. For
 example, a P2P system used only for storing data may not implement
 the computing function. In another example, a P2P system used only
 for computing may not implement the data storage function. Also,
 some of these functions are implemented in a centralized way in some
 P2P systems.

 o Data indexing function: it deals with indexing the data stored in
 the system.

 o Data storage function: it deals with storing and retrieving data
 from the system.

 o Computation function: it deals with the computing performed by the
 system. Such computing can be related to, among other things,
 data processing or real-time media processing.

 o Message transport function: it deals with message exchanges
 between peers. Depending on how this function is implemented,
 peers can exchange protocol messages through a central server,
 directly between themselves, or through peers that provide overlay
 routing.

 Depending on the service being provided, some of the functions above
 may not be needed. Section 5 discusses different types of P2P
 applications, which implement different services.

4. Taxonomies for P2P Systems

 Taxonomies classify elements into groups so that they can be studied
 more easily. People studying similar elements can focus on common
 problem sets. Taxonomies also provide common terminology that is
 useful when discussing issues related to individual elements and
 groups of elements within a given taxonomy. In this section, we
 provide a few taxonomies for P2P systems in order to facilitate their
 study and to present such a common terminology.

 Given that different authors cannot seem to agree on a single common
 definition for P2P, the fact that there are also many different
 taxonomies of P2P systems should not come as a surprise. While
 classifying P2P systems according to different traits is something

Camarillo & Informational [Page 8]

RFC 5694 P2P Architectures November 2009

 normal, the fact that different authors use the same term to indicate
 different things (e.g., first and second generation P2P systems mean
 different things for different authors) sometimes confuses readers.

 Arguably, the most useful classification of P2P systems has to do
 with the way data is indexed. That is, how the data indexing
 function is implemented. A P2P index can be centralized, local, or
 distributed [RFC4981]. With a centralized index, a central server
 keeps references to the data in all peers. With a local index, each
 peer only keeps references to its own data. With a distributed
 index, references to data reside at several nodes. Napster, early
 versions of Gnutella (up to version 0.4), and Distributed Hash Table
 (DHT)-based systems are examples of centralized, local, and
 distributed indexes, respectively.

 Indexes can also be classified into semantic and semantic-free. A
 semantic index can capture relationships between documents and their
 metadata whereas a semantic-free index cannot [RFC4981]. While
 semantic indexes allow for richer searches, they sometimes (depending
 on their implementation) fail to find the data even if it is actually
 in the system.

 Some authors classify P2P systems by their level of decentralization.
 Hybrid P2P systems need a central entity to provide their services
 while pure P2P systems can continue to provide their services even if
 any single peer is removed from the system [Schollmeier2001].
 According to this definition, P2P systems with a centralized index
 are hybrid P2P systems while systems with local and distributed
 indexes are pure P2P systems.

 Still, some authors classify pure P2P systems by the level of
 structure they show [Alima2005]. In unstructured systems, peers join
 the system by connecting themselves to any other existing peers. In
 structured systems, peers join the system by connecting themselves to
 well-defined peers based on their logical identifiers. The
 distinction between early unstructured systems (e.g., early versions
 of Gnutella), which used local indexes and had no structure at all,
 and structured systems (e.g., the DHT-based systems), which used
 distributed indexes and had a well-defined structure, was fairly
 clear. However, unstructured systems have evolved and now show a
 certain level of structure (e.g., some systems have special nodes
 with more functionality) and use distributed indexes. Therefore, the
 border between unstructured and structured is somewhat blurry.

 Some authors refer to different generations of P2P systems. For
 some, the first, second, and third generations consist of P2P systems
 using centralized indexes, flooding-based searches (i.e., using local
 indexes), and DHTs (i.e., DHT-based distributed indexes),

Camarillo & Informational [Page 9]

RFC 5694 P2P Architectures November 2009

 respectively [Foster2003]. Other authors consider that second
 generation systems can also have non-DHT-based distributed indexes
 [Zhang2006]. Yet for other authors, the first and second generations
 consist of P2P systems using unstructured (typically using flooding-
 based searched) and structured (e.g., DHT-based) routing,
 respectively [RFC4981]. Talking about generations of P2P systems in
 a technical context is not useful (as stated previously, it is more
 useful to classify systems based on how they index data) because
 different generations are defined in different ways depending on the
 author and because talking about generations gives the impression
 that later generations are better than earlier ones. Depending on
 the application to be implemented, a P2P system of an earlier
 generation may meet the application’s requirements in a better way
 than a system of a later generation.

 As discussed in Section 3, the previous taxonomies do not consider
 the enrollment and the peer discovery functions. For example, a pure
 P2P system would still be considered pure even if it had centralized
 enrollment and peer discovery servers.

5. P2P Applications

 P2P applications developed so far can be classified into the
 following domains [Pourebrahimi2005] [Milojicic2002]: content
 distribution, distributed computing, collaboration, and platforms.

5.1. Content Distribution

 When most people think of P2P, they think of file sharing. Moreover,
 they think of illegal file sharing where users exchange material
 (e.g., songs, movies, and software in digital format) they are not
 legally authorized to distribute. However, despite people’s
 perception, P2P file sharing systems are not intrinsically illegal.

 P2P file sharing applications provide one out of many means to store
 and distribute content on the Internet. HTTP [RFC2616] and FTP
 [RFC0959] servers are examples of other content distribution
 mechanisms. People would not claim that HTTP is an illegal mechanism
 just because a number of users upload material that cannot be legally
 distributed to an HTTP server where other users can download it. The
 same way, it is misleading to claim that P2P is illegal just because
 some users use it for illegal purposes.

 P2P content distribution systems are used to implement legitimate
 applications and business models that take advantage of the
 characteristics of these P2P systems. Examples of legitimate uses of
 these systems include the distribution of pre-recorded TV programs

Camarillo & Informational [Page 10]

RFC 5694 P2P Architectures November 2009

 [Rodriguez2005], Linux distributions [Rodriguez2005], game updates
 [WoW], and live TV [Peltotalo2008] [Octoshape] by parties legally
 authorized to distribute that content (e.g., the content owner).

 The main advantage of P2P content distribution systems is their
 scalability. In general, the more popular the content handled, the
 more scalable the P2P system is. The peer that has the original
 content (i.e., the owner of a file or the source of an audio or video
 stream) distributes it to a fraction of the peers interested in the
 content, and these peers in turn distribute it to other peers also
 interested in the content. Note that, in general, there is no
 requirement for peers distributing content to be able to access it
 (e.g., the content may be encrypted so that peers without the
 decryption key are content distributors but not content consumers).
 Peers can distribute content to other peers in different ways. For
 example, they can distribute the whole content, pieces of the content
 (i.e., swarming), or linear combinations of pieces of content
 [Gkantsidis2005]. In any case, the end result is that the peer with
 the original content does not need to distribute the whole content to
 all the peers interested in it, as it would be the case when using a
 centralized server. Therefore, the capacity of the system is not
 limited by the processing capacity and the bandwidth of the peer with
 the original content and, thus, the quality of the whole service
 increases.

 An important area that determines the characteristics of a P2P
 distribution system is its peer selection process. Interestingly,
 the different parties involved in the distribution have different
 views on how peers should be selected. Users are interested in
 connecting to peers that have the content they want and also have
 high bandwidth and processing capacity, and low latency so that
 transfers are faster. The Content Delivery Network (CDN) operator
 wants peers to connect first to the peers who have the rarest pieces
 of the content being distributed in order to improve the reliability
 of the system (in case those peers with the rare pieces of content
 leave the system). Network operators prefer peers to perform local
 transfers within their network so that their peering and transit
 agreements are not negatively affected (i.e., by downloading content
 from a remote network despite of the content being available
 locally). Sometimes, all these requirements can be met at the same
 time (e.g., a peer with a rare piece of content has high bandwidth
 and processing capacity and is in the local network). However, other
 times the system can just try and reach acceptable trade-offs when
 selecting peers. These issues were the subject of the IETF P2P
 Infrastructure (P2PI) workshop held in 2008.

Camarillo & Informational [Page 11]

RFC 5694 P2P Architectures November 2009

 Network operators also find that, depending on the dimensioning of
 their networks (e.g., where the bottlenecks are), the different
 traffic patterns generated by P2P or centralized CDNs can be more or
 less easily accommodated by the network [Huang2007].

 An example of a sensor network based on P2P content distribution and
 Delay-tolerant Networking (DTL) is ZebraNet [Juang2002]. ZebraNet is
 a network used to track zebras in the wild. Each zebra carries a
 tracking collar that gathers data about the zebra (e.g., its
 position) at different times. Mobile stations communicate wirelessly
 with the collars in order to gather and consolidate data from
 different zebras. Since not all the zebras get close enough to a
 mobile station for their collars to be able to communicate with the
 station, the collars communicate among them exchanging the data they
 have gathered. In this way, a given collar provides the mobile
 station with data from different zebras, some of which may never get
 close enough to the mobile station. P2P networks are especially
 useful in situations where it is impossible to deploy a communication
 infrastructure (e.g., due to national park regulations or potential
 vandalism) such as in the previous example or when tracking reindeers
 in Lapland [SNC] (this project has focused on DTNs more than on P2P
 so far, but some of its main constraints are similar to the ones in
 ZebraNet). Note however that sensor networks such as ZebraNet cannot
 be strictly considered P2P because the only node issuing service
 requests (i.e., the only node interested in receiving data) is a
 central node (i.e., the mobile station).

5.2. Distributed Computing

 In P2P distributed computing, each task is divided into independent
 subtasks that can be completed in parallel (i.e., no inter-task
 communication) and delivered to a peer. The peer completes the
 subtask using its resources and returns the result. When all the
 subtasks are completed, their results are combined to obtain the
 result of the original task.

 Peers in P2P distributed computing systems are typically distributed
 geographically and are connected among them through wide-area
 networks. Conversely, in cluster computing, nodes in a cluster are
 typically physically close to each other (often in the same room) and
 have excellent communication capabilities among themselves.
 Consequently, computer clusters can divide tasks into subtasks that
 are not completely independent from one another and that cannot be
 completed in parallel. The excellent communication capabilities
 among the nodes in the cluster make it possible to synchronize the
 completion of such tasks. Since computers in a cluster are so
 tightly integrated, cluster computing techniques are not typically
 considered P2P networking.

Camarillo & Informational [Page 12]

RFC 5694 P2P Architectures November 2009

 The main advantage of P2P distributed computing systems is that a
 number of regular computers can deliver the performance of a much
 more powerful (and typically expensive) computer. Nevertheless, at
 present, P2P distributed computing can only be applied to tasks that
 can be divided into independent subtasks that can be completed in
 parallel. Tasks that do not show this characteristic are better
 performed by a single powerful computer.

 Note that even though distributed computing, in general, can be
 considered P2P (which is why we have included it in this section as
 an example of a P2P application), most current systems whose main
 focus is distributed computing do not fully comply with the
 definition for P2P provided in Section 2. The reason is that, in
 those systems, service requests are typically generated only by a
 central node. That is, most nodes do not generate service requests
 (i.e., create tasks). This is why Grid computing [Foster1999] cannot
 be strictly considered P2P [Lua2005]. Another well-known example
 that cannot strictly be considered P2P either is SETI@home (Search
 for Extra-Terrestrial Intelligence) [Seti], where the resources of
 many computers are used to analyze radio telescope data. MapReduce
 [Dean2004], a programming model for processing large data sets,
 cannot strictly be considered P2P either, for the same reason. On
 the other hand, a number of collaboration applications implement
 distributed computing functions in a P2P way (see Section 5.3).

 Another form of distributed computing that cannot be strictly
 considered P2P (despite its name) are P2P botnets [Grizzard2007]. In
 P2P botnets, service requests, which usually consist of generating
 spam or launching Distributed Denial-of-Service (DDoS) attacks, are
 typically generated by a central node (or a few central nodes); that
 is why they cannot be strictly considered P2P. An example of this
 type of P2P botnet that propagates using a DHT-based overlay is the
 Storm botnet [Kanich2008]. In addition to their distributed
 propagation techniques, some P2P botnets also use a distributed
 command and control channel, which makes it more difficult to combat
 them than traditional botnets using centralized channels [Cooke2005].
 DHT-based overlays can also be used to support the configuration of
 different types of radio access networks [Oechsner2006].

5.3. Collaboration

 P2P collaboration applications include communication applications
 such as Voice over IP (VoIP) and Instant Messaging (IM) applications.
 Section 2.3 included discussions on P2PSIP systems, which are an
 example of a standard-based P2P collaboration application. There are
 also proprietary P2P collaboration applications on the Internet
 [Skype]. Collaboration applications typically provide rendezvous,
 Network Address Translators (NAT) traversal, and a set of media-

Camarillo & Informational [Page 13]

RFC 5694 P2P Architectures November 2009

 related functions (e.g., media mixing or media transcoding). Note
 that some of these functions (e.g., media transcoding) are,
 effectively, a form of distributed computing.

 P2P rendezvous systems are especially useful in situations where
 there is no infrastructure. A few people with no Internet
 connectivity setting up an ad hoc system to exchange documents or the
 members of a recovery team communicating among themselves in a
 disaster area are examples of such situations. P2PSIP is sometimes
 referred to as infrastructureless SIP to distinguish it from
 traditional SIP, which relies on a rendezvous server infrastructure.

5.4. Platforms

 P2P platforms can be used to build applications on top of them. They
 provide functionality the applications on top of them can use. An
 example of such a platform is JXTA [Gong2001]. JXTA provides peer
 discovery, grouping of peers, and communication between peers. The
 goal with these types of P2P platforms is that they become the
 preferred environment for application developers. They take
 advantage of the good scalability properties of P2P systems.

6. Architectural Trade-Offs and Guidance

 In this document, we have provided a brief overview of P2P
 technologies. In order to dispel the notion that P2P technologies
 can only be used for illegal purposes, we have discussed a number of
 perfectly legitimate applications that have been implemented using
 P2P. Examples of these applications include video conferencing
 applications [Skype], the distribution of pre-recorded TV programs
 [Rodriguez2005], Linux distributions [Rodriguez2005], game updates
 [WoW], and live TV [Peltotalo2008] [Octoshape] by parties legally
 authorized to distribute that content.

 When deciding whether or not to use a P2P architecture to implement a
 given application, it is important to consider the general
 characteristics of P2P systems and evaluate them against the
 application’s requirements. It is not possible to provide any
 definitive rule to decide whether or not a particular application
 would be implemented best using P2P. Instead, we discuss a set of
 trade-offs to be considered when making architectural decisions and
 provide guidance on which types of requirements are better met by a
 P2P architecture (security-related aspects are discussed in
 Section 7). Ultimately, applications’ operational requirements need
 to be analyzed on a case-by-case basis in order to decide the most
 suitable architecture.

Camarillo & Informational [Page 14]

RFC 5694 P2P Architectures November 2009

 P2P systems are a good option when there is no existing
 infrastructure and deploying it is difficult for some reason. Ad hoc
 systems are usually good candidates to use P2P architectures.
 Disaster areas where existing infrastructures have been destroyed or
 rendered unusable can also benefit from P2P systems.

 One of the main features of P2P systems is their scalability. Since
 the system can leverage the processing and storage capacity of all
 the peers in the system, increases in the system’s load are tackled
 by having the peers use more of their processing or storage capacity.
 Adding new peers generally increases the system’s load but also
 increases the system’s processing and storage capacity. That is,
 there is no typical need to update any central servers to be able to
 deal with more users or more load [Leibniz2007]. Adaptive P2P
 systems tune themselves in order to operate in the best possible mode
 when conditions such as number of peers or churn rate change
 [Mahajan2003]. In any case, at present, maintaining a running DHT
 requires nontrivial operational efforts [Rhea2005].

 Robustness and reliability are important features in many systems.
 For many applications to be useful, it is essential that they are
 dependable [RFC4981]. While there are many techniques to make
 centralized servers highly available, peers in a P2P system are not
 generally expected to be highly available (of course, it is also
 possible to build a more expensive P2P system with only highly
 available peers). P2P systems are designed to cope with peers
 leaving the system ungracefully (e.g., by crashing). P2P systems use
 techniques such as data replication and redundant routing table
 entries to improve the system’s reliability. This way, if a peer
 crashes, the data it stored is not lost and can still be found in the
 system.

 The performance of a P2P system when compared to a server-based
 system depends on many factors (e.g., the dimensioning of the server-
 based system). One of the most important factors is the type of task
 to be performed. As we discussed in Section 5.2, if the task that
 needs to be computed can be divided into independent subtasks that
 can be completed in parallel, a P2P distributed computing system made
 up of regular computers may be able to perform better than even a
 super computer. If the task at hand consists of completing database
 queries, a well-dimensioned centralized database may be faster than a
 DHT.

 The performance of a P2P system can be negatively affected by a lack
 of cooperation between the peers in the system. It is important to
 have incentives in place in order to minimize the number of free
 riders in the system. Incentive systems generally aim to take the
 P2P system to optimal levels of cooperation [Feldman2004].

Camarillo & Informational [Page 15]

RFC 5694 P2P Architectures November 2009

 There are trade-offs between the scalability, robustness, and
 performance of a particular P2P system that can be influenced through
 the configuration of the system. For example, a P2P database system
 where each peer stored all the information in the system would be
 robust and have a high performance (i.e., queries would be completed
 quickly) but would not be efficient or scalable. If the system
 needed to grow, it could be configured so that each node stored only
 a part of the information of the whole system in order to increase
 its efficiency and scalability at the expense of its robustness and
 performance.

 Energy consumption is another important property of a system. Even
 though the overall consumption of a client-server system is generally
 lower than that of a P2P system providing the same service, P2P
 systems avoid central servers (e.g., server farms) that can
 potentially concentrate the consumption of high amounts of energy in
 a single geographical location. When the nodes in a system need to
 be up and running all the time anyway, it is possible to use those
 nodes to perform tasks in a P2P way. However, using battery-powered
 devices as peers in a P2P system presents some challenges because a
 peer typically consumes more energy than a client in a client-server
 architecture where they can go into sleep mode more often
 [Kelenyi2008]. Energy-aware P2P protocols may be the solution to
 these challenges [Gurun2006].

 This section has discussed a set of important system properties and
 compared P2P and centralized systems with respect to those
 properties. However, the most important factor to take into
 consideration is often cost. Both capital and operating costs need
 to be taken into account when evaluating the scalability,
 reliability, and performance of a system. If updating a server so
 that it can tackle more load is inexpensive, a server-based
 architecture may be the best option. If a highly available server is
 expensive, a P2P system may be the best choice. With respect to
 operating costs, as previously stated, at present, maintaining a
 running DHT requires nontrivial operational efforts [Rhea2005].

 In short, even though understanding the general properties of P2P and
 server-based systems is important, deciding which architecture best
 fits a particular application involves obtaining detailed information
 about the application and its context. In most scenarios, there are
 no easy rules that tell us when to use which architecture.

7. Security Considerations

 Security is an important issue that needs to be considered when
 choosing an architecture to design a system. The first issue that
 needs to be considered is to which extent the nodes in the system can

Camarillo & Informational [Page 16]

RFC 5694 P2P Architectures November 2009

 be trusted. If all the nodes in the system are fully trusted (e.g.,
 all the nodes are under the full control of the operator of the
 system and will never act in a malicious or otherwise incorrect way),
 a P2P architecture can achieve a high level of security. However, if
 nodes are not fully trusted and can be expected to behave in
 malicious ways (e.g., launching active attacks), providing an
 acceptable level of security in a P2P environment becomes
 significantly more challenging than in a non-P2P environment because
 of its distributed ownership and lack of centralized control and
 global knowledge [Mondal2006]. Ultimately, the level of security
 provided by a P2P system largely depends on the proportion of its
 nodes that behave maliciously. Providing an acceptable level of
 security in a P2P system with a large number of malicious nodes can
 easily become impossible.

 P2P systems can be used by attackers to harvest IP addresses in use.
 Attackers can passively obtain valid IP addresses of potential
 victims without performing active scans because a given peer is
 typically connected to multiple peers. In addition to being passive,
 this attack is much more efficient than performing scans when the
 address space to be scanned is large and sparsely populated (e.g.,
 the current IPv6 address space). Additionally, in many cases there
 is a high correlation between a particular application and a
 particular operating system. In this way, an attacker can harvest IP
 addresses suitable to launch attacks that exploit vulnerabilities
 that are specific to a given operating system.

 Central elements in centralized architectures become an obvious
 target for attacks. P2P systems minimize the amount of central
 elements and, thus, are more resilient against attacks targeted only
 at a few elements.

 When designing a P2P system, it is important to consider a number of
 threats that are specific to P2P systems. Additionally, more general
 threats that apply to other architectures as well are sometimes
 bigger in a P2P environment. P2P-specific threats mainly focus on
 the data storage functions and the routing of P2P systems.

 In a P2P system, messages (e.g., service requests) between two given
 peers generally traverse a set of intermediate peers that help route
 messages between the two peers. Those intermediate peers can attempt
 to launch on-path attacks they would not be able to launch if they
 were not on the path between the two given peers. An attacker can
 attempt to choose a logical location in the P2P overlay that allows
 it to launch on-path attacks against a particular victim or a set of
 victims. The Sybil [Douceur2002] attack is an example of such an
 attack. The attacker chooses its overlay identifier so that it

Camarillo & Informational [Page 17]

RFC 5694 P2P Architectures November 2009

 allows the attacker to launch future attacks. This type of attack
 can be mitigated by controlling how peers obtain their identifiers
 (e.g., by having a central authority).

 A trivial passive attack by peers routing messages consists of trying
 to access the contents of those messages. Encrypting message parts
 that are not required for routing is an obvious defense against this
 type of attack.

 An attacker can create a message and claim that it was actually
 created by another peer. The attacker can even take a legitimate
 message as a base and modify it to launch the attack. Peer and
 message authentication techniques can be used to avoid this type of
 attack.

 Attackers can attempt to launch a set of attacks against the storage
 function of the P2P system. The following are generic (i.e., non-
 P2P-specific) attacks. Even if they are generic attacks, the way to
 avoid or mitigate them in a P2P system can be more challenging than
 in other architectures.

 An attacker can attempt to store too much data in the system. A
 quota system that can be enforced can be used to mitigate this
 attack.

 Unauthorized peers can attempt to perform operations on data objects.
 Peer authorization in conjunction with peer authentication avoids
 unauthorized operations.

 A peer can return forged data objects claiming they are legitimate.
 Data object authentication prevents this attack. However, a peer can
 return a previous version of a data object and claim it is the
 current version. The use of lifetimes can mitigate this type of
 attack.

 The following are P2P-specific attacks against the data storage
 function of a P2P system. An attacker can refuse to store a
 particular data object. An attacker can also claim a particular data
 object does not exist even if another peer created it and stored it
 on the attacker. These DoS (Denial-of-Service) attacks can be
 mitigated by using data replication techniques and performing
 multiple, typically parallel, searches.

 Attackers can attempt to launch a set of attacks against the routing
 of the P2P system. An attacker can attempt to modify the routing of
 the system in order to be able to launch on-path attacks. Attackers
 can use forged routing maintenance messages for this purpose. The
 Eclipse attack [Singh2006] is an example of such an attack.

Camarillo & Informational [Page 18]

RFC 5694 P2P Architectures November 2009

 Enforcing structural constraints or enforcing node degree bounds can
 mitigate this type of attack.

 It is possible to launch DoS attacks by modifying or dropping routing
 maintenance messages or by creating forged ones. Having nodes get
 routing tables from multiple peers can help mitigate this type of
 attack.

 Attackers can launch a DoS attack by creating churn. By leaving and
 joining a P2P overlay rapidly many times, a set of attackers can
 create large amounts of maintenance traffic and make the routing
 structure of the overlay unstable. Limiting the amount of churn per
 node is a possible defense against this attack.

8. Acknowledgements

 Jouni Maenpaa and Jani Hautakorpi helped with the literature review.
 Henning Schulzrinne provided useful ideas on how to define P2P
 systems. Bruce Lowekamp, Dan Wing, Dan York, Enrico Marocco, Cullen
 Jennings, and Frank Uwe Andersen provided useful comments on this
 document. Loa Andersson, Aaron Falk, Barry Leiba, Kurtis Lindqvist,
 Dow Street, and Lixia Zhang participated in the IAB discussions on
 this document.

9. IAB Members at the Time of This Writing

 Marcelo Bagnulo
 Gonzalo Camarillo
 Stuart Cheshire
 Vijay Gill
 Russ Housley
 John Klensin
 Olaf Kolkman
 Gregory Lebovitz
 Andrew Malis
 Danny McPherson
 David Oran
 Jon Peterson
 Dave Thaler

10. Informative References

 [Alima2005] Alima, L., Ghodsi, A., and S. Haridi, "A
 Framework for Structured Peer-to-peer Overlay
 Networks", Global Computing, vol. 3267, Lecture
 Notes in Computer Science: Springer Berlin /
 Heidelberg, pp. 223-249, 2005.

Camarillo & Informational [Page 19]

RFC 5694 P2P Architectures November 2009

 [BitTorrent] Cohen, B., "The BitTorrent Protocol Specification
 Version 11031", February 2008.

 [Cooke2005] Cooke, E., Jahanian, F., and D. McPherson, "The
 Zombie roundup: understanding, detecting, and
 disrupting botnets", Proceedings of the Steps to
 Reducing Unwanted Traffic on the Internet
 Workshop, 2005.

 [Dean2004] Dean, J. and S. Ghemawat, "MapReduce: Simplified
 Data Processing on Large Clusters", Sixth
 Symposium on Operating System Design and
 Implementation (OSDI ’04), December 2004.

 [Douceur2002] Douceur, J., "The Sybil Attack", IPTPS 02,
 March 2002.

 [Farber1972] Farber, D. and K. Larson, "The Structure of a
 Distributed Computer System - The Communications
 System", Proceedings Symposium on Computer-
 Communications Networks and Teletraffic,
 Microwave Research Institute of Polytechnic
 Institute of Brooklyn pp. 21-27, 1972.

 [Feldman2004] Feldman, M., Lai, K., Stoica, I., and J. Chuang,
 "Robust Incentive Techniques for Peer-to-peer
 Networks", Proceedings of the 5th ACM Conference
 on Electronic Commerce, 2004.

 [Foster1999] Foster, I., "Computational Grids", Chapter 2 of
 The Grid: Blueprint for a New
 Computing Infrastructure, 1999.

 [Foster2003] Foster, I. and A. Iamnitchi, "On Death, Taxes,
 and the Convergence of Peer-to-Peer and Grid
 Computing", 2nd International Workshop in Peer-
 to-Peer Systems IPTPS ’02, 2003.

 [Gkantsidis2005] Gkantsidis, C. and P. Rodriguez, "Network Coding
 for Large Scale Content Distribution", IEEE
 INFOCOM 2005, vol. 4, March 2005.

 [Gong2001] Gong, L., "JXTA: A Network Programming
 Environment", IEEE Internet Computing, vol. 5,
 no. 3, pp. 88-95, 2001.

Camarillo & Informational [Page 20]

RFC 5694 P2P Architectures November 2009

 [Gray1983] Gray, J. and S. Metz, "Solving the Problems of
 Distributed Databases", Data Communications, pp.
 183-192, 1983.

 [Gray1986A] Gray, J., "An Approach to Decentralized Computer
 Systems", IEEE Transactions on Software
 Engineering, V 12.6, pp. 684-689, 1986.

 [Gray1986B] Gray, J. and M. Anderton, "Distributed Systems:
 Four Case Studies", IEEE Transactions on
 Computers and Tandem Technical Report 85.5, 1986.

 [Grizzard2007] Grizzard, J., Sharma, V., Nunnery, C., Kang, B.,
 and D. Dragon, "Peer-to-peer botnets: overview
 and case study", Proceedings of Hot Topics in
 Understanding Botnets (HotBots ’07), 2007.

 [Gurun2006] Gurun, S., Nagpurkar, P., and B. Zhao, "Energy
 Consumption and Conservation in Mobile Peer-to-
 Peer Systems", First International Workshop on
 Decentralized Resource Sharing in Mobile
 Computing and Networking (MobiShare 2006), 2006.

 [Huang2007] Huang, Y., Rabinovich, M., and Z. Xiao,
 "Challenges of P2P Streaming Technologies for
 IPTV Services", IPTC Workshop International World
 Wide Web Conference, Edinburgh, Scotland, United
 Kingdom, May 2006.

 [Juang2002] Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh,
 L., and D. Rubenstein, "Energy-efficient
 computing for wildlife tracking: design tradeoffs
 and early experiences with ZebraNet", Proceedings
 of Conference on Computer and Communications
 Security (CCS), ACM, 2002.

 [Kanich2008] Kanich, C., Levchenko, K., Enright, B., Voelker,
 G., Paxson, V., and S. Savage, "Spamalytics: An
 Empirical Analysis of Spam Marketing Conversion",
 Proceedings of Conference on Computer and
 Communications Security (CCS) (ACM),
 October 2008.

Camarillo & Informational [Page 21]

RFC 5694 P2P Architectures November 2009

 [Kelenyi2008] Kelenyi, I. and J. Nurminen, "Energy Aspects of
 Peer Cooperation - Measurements with a Mobile DHT
 System", in Proc. of Cognitive and Cooperative
 Wireless Networks Workshop in the IEEE
 International Conference on Communications 2008,
 Beijing, China, pp. 164-168, 2008.

 [Leibniz2007] Leibniz, K., Hobfeld, T., Wakamiya, N., and M.
 Murata, "Peer-to-Peer vs. Client/Server:
 Reliability and Efficiency of a Content
 Distribution Service", Lecture Notes in Computer
 Science, LNCS 4516, pp. 1161-1172, 2007.

 [Lua2005] Keong Lua, E., Crowcroft, J., Pias, M., Sharma,
 R., and S. Lim, "A Survey and Comparison of Peer-
 to-peer Overlay Network Schemes", IEEE
 Communications Surveys & Tutorials, vol. 7, no.
 2, Second Quarter 2005, pp. 72-93, 2005.

 [MMUSIC-ICE] Rosenberg, J., "Interactive Connectivity
 Establishment (ICE): A Protocol for Network
 Address Translator (NAT) Traversal for Offer/
 Answer Protocols", Work in Progress,
 October 2007.

 [Mahajan2003] Mahajan, R., Castro, M., and A. Rowstron,
 "Controlling the Cost of Reliability in Peer-to-
 Peer Overlays", Proceedings of the 2nd
 International Workshop on Peer-to-Peer
 Systems (IPTPS ’03), 2003.

 [Milojicic2002] Milojicic, D., Kalogeraki, V., Lukose, R.,
 Nagaraja, K., Pruyne, J., Richard, B., Rollins,
 S., and Z. Xu, "Peer-to-Peer Computing",
 Technical Report HP, March 2002.

 [Mondal2006] Mondal, A. and M. Kitsuregawa, "Privacy, Security
 and Trust in P2P environments: A Perspective",
 17th International Conference on Database and
 Expert Systems Applications 2006 (DEXA ’06),
 September 2006.

 [Octoshape] "Octoshape - Large Scale Live Streaming
 Solutions", <http://www.octoshape.com>.

Camarillo & Informational [Page 22]

RFC 5694 P2P Architectures November 2009

 [Oechsner2006] Oechsner, S., Hobfeld, T., Tutschku, K.,
 Andersen, F., and L. Caviglione, "Using Kademlia
 for the Configuration of B3G Radio Access Nodes",
 Proceedings of the Fourth Annual IEEE
 International Conference on Pervasive Computing
 and Communications Workshops (PERCOMW ’06), 2006.

 [Peltotalo2008] Peltotalo, J., Harju, J., Jantunen, A., Saukko,
 M., and L. Vaatamoinen, "Peer-to-Peer Streaming
 Technology Survey", Seventh International
 Conference on Networking, Cancun, Mexico, pp.
 342-350, April 2008.

 [Pourebrahimi2005] Pourebrahimi, B., Bertels, K., and S.
 Vassiliadis, "A Survey of Peer-to-Peer Networks",
 Proceedings of the 16th Annual Workshop on
 Circuits, Systems, and Signal Processing, ProRisc
 2005, November 2005.

 [RFC0959] Postel, J. and J. Reynolds, "File Transfer
 Protocol", STD 9, RFC 959, October 1985.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee,
 "Hypertext Transfer Protocol -- HTTP/1.1",
 RFC 2616, June 1999.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G.,
 Johnston, A., Peterson, J., Sparks, R., Handley,
 M., and E. Schooler, "SIP: Session Initiation
 Protocol", RFC 3261, June 2002.

 [RFC4981] Risson, J. and T. Moors, "Survey of Research
 towards Robust Peer-to-Peer Networks: Search
 Methods", RFC 4981, September 2007.

 [RFC5128] Srisuresh, P., Ford, B., and D. Kegel, "State of
 Peer-to-Peer (P2P) Communication across Network
 Address Translators (NATs)", RFC 5128,
 March 2008.

 [Rhea2005] Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J.,
 Ratnasamy, S., Shenker, S., Stoica, I., and H.
 Yu, "Open DHT: A Public DHT Service and Its
 Uses", ACM/SIGCOMM CCR’05, vol. 35, Issue 4,
 October 2005.

Camarillo & Informational [Page 23]

RFC 5694 P2P Architectures November 2009

 [Rodriguez2005] Rodriguez, P., Tan, S., and C. Gkantsidis, "On
 the Feasibility of Commercial Legal P2P Content
 Distribution", ACM/SIGCOMM CCR’06, January 2006.

 [Roussopoulus2004] Roussopoulus, M., Baker, M., Rosenthal, D.,
 Guili, T., Maniatis, P., and J. Mogul, "2 P2P or
 Not 2 P2P", Workshop on Peer-to-Peer Systems,
 February 2004.

 [SNC] "http://www.snc.sapmi.net".

 [Schollmeier2001] Schollmeier, R., "A Definition of Peer-to-Peer
 Networking for the Classification of Peer-to-Peer
 Architectures and Applications", In Proceedings
 of the First International Conference on Peer-to-
 Peer Computing P2P ’01, 2001.

 [Seti] "SETI@home", <http://setiathome.berkeley.edu>.

 [Singh2006] Singh, A., Ngan, T., Druschel, T., and D.
 Wallach, "Eclipse Attacks on Overlay Networks:
 Threats and Defences", INFOCOM 2006, April 2006.

 [Skype] "Skype", <http://www.skype.com>.

 [Tanenbaum1981] Tanenbaum, A. and S. Mullender, "An Overview of
 the Amoeba Distributed Operating System", ACM
 SIGOPS Operating Systems Review, 1981.

 [WoW] "World of Warcraft Community Site",
 <http://www.worldofwarcraft.com>.

 [Zhang2006] Zhang, Y., Chen, C., and X. Wang, "Recent
 Advances in Research on P2P Networks", In
 Proceedings of the Seventh International
 Conference on Parallel and Distributed Computing,
 Applications, and Technologies PDCAT ’06, 2006.

Camarillo & Informational [Page 24]

RFC 5694 P2P Architectures November 2009

Appendix A. Historical Background on Distributed Architectures

 In this appendix, we briefly provide historical background on
 distributed architectures. Distributed architectures are relevant to
 P2P because P2P architectures are a type of distributed architecture.
 That is, a distributed architecture is considered P2P if it meets a
 set of requirements, which are discussed in Section 2.

 In centralized architectures (e.g., client-server architectures), a
 central server (or very few central servers) undertakes most of the
 system’s processing and storage. Conversely, decentralized
 architectures contain no (or very few) centralized elements.

 The increasing spread of packet-switched network technologies in the
 1970s made it possible to develop operational distributed computer
 systems [Farber1972]. Distributed computer systems received a lot of
 attention within the research community. Research focused on
 distributing the different parts of a computer system, such as its
 operating system [Tanenbaum1981] or its databases [Gray1983]. The
 idea was to hide from the user the fact that the system was
 distributed. That is, the user did not have to worry or even be
 aware of the fact that his or her files were stored in different
 computers or the fact that his or her tasks were processed also in a
 distributed way. Actions such as file transfers and task allocations
 were taken care of by the system in an automated fashion and were
 transparent to the user.

 In the middle of the 1980s, building distributed computer systems
 using general-purpose off-the-shelf hardware and software was
 believed to be not much harder than building large centralized
 applications [Gray1986A]. It was understood that distributed systems
 had both advantages and disadvantages when compared to centralized
 systems. Choosing which type of system to use for a particular
 application was a trade-off that depended on the characteristics and
 requirements of the application [Gray1986B].

 The client-server paradigm, where a client makes a request to a
 server that processes the request and returns the result to the
 client, was and is used by many Internet applications. In fact,
 client-server architectures were so ubiquitous on the Internet that,
 unfortunately, the Internet itself evolved as if the majority of the
 endpoints on the Internet were only interested in applications
 following the client-server model. With the appearance of Network
 Address Translators (NATs) and stateful firewalls, most Internet
 endpoints lost the ability to receive connections from remote
 endpoints unless they first initiated a connection towards those
 nodes. While NATs were designed not to disrupt client-server
 applications, distributed applications that relied on nodes receiving

Camarillo & Informational [Page 25]

RFC 5694 P2P Architectures November 2009

 connections were disrupted. In a network full of NATs, these types
 of distributed applications could only be run among nodes with public
 IP addresses. Of course, most users did not like applications that
 only worked some of the time (i.e., when their endpoint happened to
 have a public IP address). Therefore, the loss of global
 connectivity caused by NATs was one of the reasons why applications
 that did not follow the client-server paradigm (e.g., P2P
 applications) took a relatively long time to be widely deployed on
 the public Internet.

 The design of NAT traversal mechanisms has made it possible to deploy
 all types of distributed applications over a network without global
 connectivity. While the first NAT traversal mechanisms used by P2P
 applications were proprietary [RFC5128], nowadays there are standard
 NAT traversal mechanisms such as Interactive Connectivity
 Establishment (ICE) [MMUSIC-ICE]. ICE makes it possible for
 endpoints to establish connections among themselves in the presence
 of NATs. The recovery of global connectivity among Internet
 endpoints has made it possible to deploy many P2P applications on the
 public Internet (unfortunately, the fact that global connectivity is
 not supported natively at the network layer makes it necessary for
 applications to deal with NATs, which can result in highly complex
 systems). Some of these P2P applications have been very successful
 and are currently used by a large number of users.

 Another factor that made it possible to deploy distributed
 applications was the continuous significant advances in terms of
 processing power and storage capacity of personal computers and
 networked devices. Eventually, most endpoints on the Internet had
 capabilities that previously were exclusively within the reach of
 high-end servers. The natural next step was to design distributed
 applications that took advantage of all that distributed available
 capacity.

Authors’ Addresses

 Gonzalo Camarillo (editor)
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Gonzalo.Camarillo@ericsson.com

 Internet Architecture Board

 EMail: iab@iab.org

Camarillo & Informational [Page 26]

