
Internet Engineering Task Force (IETF) S. Turner
Request for Comments: 5753 IECA
Obsoletes: 3278 D. Brown
Category: Informational Certicom
ISSN: 2070-1721 January 2010

 Use of Elliptic Curve Cryptography (ECC) Algorithms
 in Cryptographic Message Syntax (CMS)

Abstract

 This document describes how to use Elliptic Curve Cryptography (ECC)
 public key algorithms in the Cryptographic Message Syntax (CMS). The
 ECC algorithms support the creation of digital signatures and the
 exchange of keys to encrypt or authenticate content. The definition
 of the algorithm processing is based on the NIST FIPS 186-3 for
 digital signature, NIST SP800-56A and SEC1 for key agreement, RFC
 3370 and RFC 3565 for key wrap and content encryption, NIST FIPS
 180-3 for message digest, SEC1 for key derivation, and RFC 2104 and
 RFC 4231 for message authentication code standards. This document
 obsoletes RFC 3278.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5753.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Turner & Brown Informational [Page 1]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction ..3
 1.1. Requirements Terminology3
 2. SignedData Using ECC ..3
 2.1. SignedData Using ECDSA4
 3. EnvelopedData Using ECC Algorithms5
 3.1. EnvelopedData Using (ephemeral-static) ECDH5
 3.2. EnvelopedData Using 1-Pass ECMQV8
 4. AuthenticatedData and AuthEnvelopedData Using ECC11
 4.1. AuthenticatedData Using 1-Pass ECMQV11
 4.2. AuthEnvelopedData Using 1-Pass ECMQV12
 5. Certificates Using ECC ...13
 6. SMIMECapabilities Attribute and ECC13
 7. ASN.1 Syntax ...21
 7.1. Algorithm Identifiers21
 7.2. Other Syntax ..24
 8. Recommended Algorithms and Elliptic Curves26
 9. Security Considerations ..28
 10. IANA Considerations ...33
 11. References ..33
 11.1. Normative References33
 11.2. Informative References35
 Appendix A. ASN.1 Modules...37
 A.1. 1988 ASN.1 Module...37
 A.2. 2004 ASN.1 Module...45
 Appendix B. Changes since RFC 3278.................................59
 Acknowledgements...61

Turner & Brown Informational [Page 2]

RFC 5753 Use of ECC Algorithms in CMS January 2010

1. Introduction

 The Cryptographic Message Syntax (CMS) is cryptographic algorithm
 independent. This specification defines a profile for the use of
 Elliptic Curve Cryptography (ECC) public key algorithms in the CMS.
 The ECC algorithms are incorporated into the following CMS content
 types:

 - ’SignedData’ to support ECC-based digital signature methods
 (ECDSA) to sign content;

 - ’EnvelopedData’ to support ECC-based public key agreement methods
 (ECDH and ECMQV) to generate pairwise key-encryption keys to
 encrypt content-encryption keys used for content encryption;

 - ’AuthenticatedData’ to support ECC-based public key agreement
 methods (ECMQV) to generate pairwise key-encryption keys to
 encrypt message-authentication keys used for content
 authentication and integrity; and

 - ’AuthEnvelopedData’ to support ECC-based public key agreement
 methods (ECMQV) to generate pairwise key-encryption keys to
 encrypt message-authentication and content-encryption keys used
 for content authentication, integrity, and encryption.

 Certification of EC public keys is also described to provide public
 key distribution in support of the specified techniques.

 The document will obsolete [CMS-ECC]. The technical changes
 performed since RFC 3278 are detailed in Appendix B.

1.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [MUST].

2. SignedData Using ECC

 This section describes how to use ECC algorithms with the CMS
 SignedData format to sign data.

Turner & Brown Informational [Page 3]

RFC 5753 Use of ECC Algorithms in CMS January 2010

2.1. SignedData Using ECDSA

 This section describes how to use the Elliptic Curve Digital
 Signature Algorithm (ECDSA) with SignedData. ECDSA is specified in
 [FIPS186-3]. The method is the elliptic curve analog of the Digital
 Signature Algorithm (DSA) [FIPS186-3]. ECDSA is used with the Secure
 Hash Algorithm (SHA) [FIPS180-3].

 In an implementation that uses ECDSA with CMS SignedData, the
 following techniques and formats MUST be used.

2.1.1. Fields of the SignedData

 When using ECDSA with SignedData, the fields of SignerInfo are as in
 [CMS], but with the following restrictions:

 - digestAlgorithm MUST contain the algorithm identifier of the hash
 algorithm (see Section 7.1.1), which MUST be one of the following:
 id-sha1, id-sha224, id-sha256, id-sha384, or id-sha512.

 - signatureAlgorithm contains the signature algorithm identifier
 (see Section 7.1.3): ecdsa-with-SHA1, ecdsa-with-SHA224, ecdsa-
 with-SHA256, ecdsa-with-SHA384, or ecdsa-with-SHA512. The hash
 algorithm identified in the name of the signature algorithm MUST
 be the same as the digestAlgorithm (e.g., digestAlgorithm is id-
 sha256 therefore signatureAlgorithm is ecdsa-with-SHA256).

 - signature MUST contain the DER encoding (as an octet string) of a
 value of the ASN.1 type ECDSA-Sig-Value (see Section 7.2).

 When using ECDSA, the SignedData certificates field MAY include the
 certificate(s) for the EC public key(s) used in the generation of the
 ECDSA signatures in SignedData. ECC certificates are discussed in
 Section 5.

2.1.2. Actions of the Sending Agent

 When using ECDSA with SignedData, the sending agent uses the message
 digest calculation process and signature generation process for
 SignedData that are specified in [CMS]. To sign data, the sending
 agent uses the signature method specified in [FIPS186-3].

 The sending agent encodes the resulting signature using the ECDSA-
 Sig-Value syntax (see Section 7.2) and places it in the SignerInfo
 signature field.

Turner & Brown Informational [Page 4]

RFC 5753 Use of ECC Algorithms in CMS January 2010

2.1.3. Actions of the Receiving Agent

 When using ECDSA with SignedData, the receiving agent uses the
 message digest calculation process and signature verification process
 for SignedData that are specified in [CMS]. To verify SignedData,
 the receiving agent uses the signature verification method specified
 in [FIPS186-3].

 In order to verify the signature, the receiving agent retrieves the
 integers r and s from the SignerInfo signature field of the received
 message.

3. EnvelopedData Using ECC Algorithms

 This section describes how to use ECC algorithms with the CMS
 EnvelopedData format.

 This document does not specify the static-static ECDH, method C(0,2,
 ECC CDH) from [SP800-56A]. Static-static ECDH is analogous to
 static-static DH, which is specified in [CMS-ALG]. Ephemeral-static
 ECDH and 1-Pass ECMQV were specified because they provide better
 security due to the originator’s ephemeral contribution to the key
 agreement scheme.

3.1. EnvelopedData Using (ephemeral-static) ECDH

 This section describes how to use the ephemeral-static Elliptic Curve
 Diffie-Hellman (ECDH) key agreement algorithm with EnvelopedData.
 This algorithm has two variations:

 - ’Standard’ ECDH, described as the ’Elliptic Curve Diffie-Hellman
 Scheme’ with the ’Elliptic Curve Diffie-Hellman Primitive’ in
 [SEC1], and

 - ’Co-factor’ ECDH, described as the ’One-Pass Diffie-Hellman scheme’
 (method C(1, 1, ECC CDH)) in [SP800-56A].

 Both variations of ephemeral-static ECDH are elliptic curve analogs
 of the ephemeral-static Diffie-Hellman key agreement algorithm
 specified jointly in the documents [CMS-ALG] and [CMS-DH].

 If an implementation uses ECDH with CMS EnvelopedData, then the
 following techniques and formats MUST be used.

 The fields of EnvelopedData are as in [CMS]; as ECDH is a key
 agreement algorithm, the RecipientInfo kari choice is used.

Turner & Brown Informational [Page 5]

RFC 5753 Use of ECC Algorithms in CMS January 2010

3.1.1. Fields of KeyAgreeRecipientInfo

 When using ephemeral-static ECDH with EnvelopedData, the fields of
 KeyAgreeRecipientInfo are as follows:

 - version MUST be 3.

 - originator MUST be the alternative originatorKey. The
 originatorKey algorithm field MUST contain the id-ecPublicKey
 object identifier (see Section 7.1.2). The parameters associated
 with id-ecPublicKey MUST be absent, ECParameters, or NULL. The
 parameters associated with id-ecPublicKey SHOULD be absent or
 ECParameters, and NULL is allowed to support legacy
 implementations. The previous version of this document required
 NULL to be present. If the parameters are ECParameters, then they
 MUST be namedCurve. The originatorKey publicKey field MUST
 contain the DER encoding of the value of the ASN.1 type ECPoint
 (see Section 7.2), which represents the sending agent’s ephemeral
 EC public key. The ECPoint in uncompressed form MUST be
 supported.

 - ukm MAY be present or absent. However, message originators SHOULD
 include the ukm. As specified in RFC 3852 [CMS], implementations
 MUST support ukm message recipient processing, so interoperability
 is not a concern if the ukm is present or absent. The ukm is
 placed in the entityUInfo field of the ECC-CMS-SharedInfo
 structure. When present, the ukm is used to ensure that a
 different key-encryption key is generated, even when the ephemeral
 private key is improperly used more than once, by using the ECC-
 CMS-SharedInfo as an input to the key derivation function (see
 Section 7.2).

 - keyEncryptionAlgorithm MUST contain the object identifier of the
 key-encryption algorithm, which in this case is a key agreement
 algorithm (see Section 7.1.4). The parameters field contains
 KeyWrapAlgorithm. The KeyWrapAlgorithm is the algorithm
 identifier that indicates the symmetric encryption algorithm used
 to encrypt the content-encryption key (CEK) with the key-
 encryption key (KEK) and any associated parameters (see Section
 7.1.5). Algorithm requirements are found in Section 8.

 - recipientEncryptedKeys contains an identifier and an encrypted key
 for each recipient. The RecipientEncryptedKey
 KeyAgreeRecipientIdentifier MUST contain either the
 issuerAndSerialNumber identifying the recipient’s certificate or
 the RecipientKeyIdentifier containing the subject key identifier
 from the recipient’s certificate. In both cases, the recipient’s
 certificate contains the recipient’s static ECDH public key.

Turner & Brown Informational [Page 6]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 RecipientEncryptedKey EncryptedKey MUST contain the content-
 encryption key encrypted with the ephemeral-static, ECDH-generated
 pairwise key-encryption key using the algorithm specified by the
 KeyWrapAlgorithm.

3.1.2. Actions of the Sending Agent

 When using ephemeral-static ECDH with EnvelopedData, the sending
 agent first obtains the recipient’s EC public key and domain
 parameters (e.g., from the recipient’s certificate). The sending
 agent then performs one of the two ECDH variations mentioned above:

 - If the value of keyEncryptionAlgorithm indicates the use of
 ’standard’ Diffie-Hellman, then the sending agent performs the
 ’Elliptic Curve Diffie-Hellman Scheme’ with the ’Elliptic Curve
 Diffie-Hellman Primitive’ in [SEC1].

 - If the value of keyEncryptionAlgorithm indicates the use of ’co-
 factor’ Diffie-Hellman, then the sending agent performs the ’One-
 Pass Diffie-Hellman scheme’ (method C(1, 1, ECC CDH)) in
 [SP800-56A].

 In both of these cases, the sending agent uses the KDF defined in
 Section 3.6.1 of [SEC1] with the hash algorithm identified by the
 value of keyEncryptionAlgorithm. As a result, the sending agent
 obtains:

 - an ephemeral public key, which is represented as a value of the
 type ECPoint (see Section 7.2), encapsulated in a bit string and
 placed in the KeyAgreeRecipientInfo originator originatorKey
 publicKey field, and

 - a shared secret bit string "K", which is used as the pairwise key-
 encryption key for that recipient, as specified in [CMS].

 In a single message, if there are multiple layers for a recipient,
 then the ephemeral public key can be reused by the originator for
 that recipient in each of the different layers.

3.1.3. Actions of the Receiving Agent

 When using ephemeral-static ECDH with EnvelopedData, the receiving
 agent determines the bit string "SharedInfo", which is the DER
 encoding of ECC-CMS-SharedInfo (see Section 7.2), and the integer
 "keydatalen" from the key size, in bits, of the KeyWrapAlgorithm.
 The receiving agent retrieves the ephemeral EC public key from the
 bit string KeyAgreeRecipientInfo originator, with a value of the type
 ECPoint (see Section 7.2) encapsulated as a bit string, and if

Turner & Brown Informational [Page 7]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 present, originally supplied additional user key material from the
 ukm field. The receiving agent then performs one of the two ECDH
 variations mentioned above:

 - If the value of keyEncryptionAlgorithm indicates the use of
 ’standard’ Diffie-Hellman, then the receiving agent performs the
 ’Elliptic Curve Diffie-Hellman Scheme’ with the ’Elliptic Curve
 Diffie-Hellman Primitive’ in [SEC1].

 - If the value of keyEncryptionAlgorithm indicates the use of ’co-
 factor’ Diffie-Hellman, then the receiving agent performs the ’One-
 Pass Diffie-Hellman scheme’ (method C(1, 1, ECC CDH)) in
 [SP800-56A].

 In both of these cases, the receiving agent uses the KDF defined in
 Section 3.6.1 of [SEC1] with the hash algorithm identified by the
 value of keyEncryptionAlgorithm. As a result, the receiving agent
 obtains a shared secret bit string "K", which is used as the pairwise
 key-encryption key to unwrap the CEK.

3.2. EnvelopedData Using 1-Pass ECMQV

 This section describes how to use the 1-Pass Elliptic Curve Menezes-
 Qu-Vanstone (ECMQV) key agreement algorithm with EnvelopedData,
 method C(1, 2, ECC MQV) from [SP800-56A]. Like the KEA algorithm
 [CMS-KEA], 1-Pass ECMQV uses three key pairs: an ephemeral key pair,
 a static key pair of the sending agent, and a static key pair of the
 receiving agent. Using an algorithm with the sender static key pair
 allows for knowledge of the message creator; this means that
 authentication can, in some circumstances, be obtained for
 AuthEnvelopedData and AuthenticatedData. This means that 1-Pass
 ECMQV can be a common algorithm for EnvelopedData, AuthenticatedData,
 and AuthEnvelopedData, while ECDH can only be used in EnvelopedData.

 If an implementation uses 1-Pass ECMQV with CMS EnvelopedData, then
 the following techniques and formats MUST be used.

 The fields of EnvelopedData are as in [CMS]; as 1-Pass ECMQV is a key
 agreement algorithm, the RecipientInfo kari choice is used. When
 using 1-Pass ECMQV, the EnvelopedData originatorInfo field MAY
 include the certificate(s) for the EC public key(s) used in the
 formation of the pairwise key. ECC certificates are discussed in
 Section 5.

Turner & Brown Informational [Page 8]

RFC 5753 Use of ECC Algorithms in CMS January 2010

3.2.1. Fields of KeyAgreeRecipientInfo

 When using 1-Pass ECMQV with EnvelopedData, the fields of
 KeyAgreeRecipientInfo are as follows:

 - version MUST be 3.

 - originator identifies the static EC public key of the sender. It
 SHOULD be one of the alternatives, issuerAndSerialNumber or
 subjectKeyIdentifier, and point to one of the sending agent’s
 certificates.

 - ukm MUST be present. The ukm field is an octet string that MUST
 contain the DER encoding of the type MQVuserKeyingMaterial (see
 Section 7.2). The MQVuserKeyingMaterial ephemeralPublicKey
 algorithm field MUST contain the id-ecPublicKey object identifier
 (see Section 7.1.2). The parameters associated with id-
 ecPublicKey MUST be absent, ECParameters, or NULL. The parameters
 associated with id-ecPublicKey SHOULD be absent or ECParameters,
 as NULL is allowed to support legacy implementations. The
 previous version of this document required NULL to be present. If
 the parameters are ECParameters, then they MUST be namedCurve.
 The MQVuserKeyingMaterial ephemeralPublicKey publicKey field MUST
 contain the DER encoding of the ASN.1 type ECPoint (see Section
 7.2) representing the sending agent’s ephemeral EC public key.
 The MQVuserKeyingMaterial addedukm field, if present, contains
 additional user keying material from the sending agent.

 - keyEncryptionAlgorithm MUST contain the object identifier of the
 key-encryption algorithm, which in this case is a key agreement
 algorithm (see Section 7.1.4). The parameters field contains
 KeyWrapAlgorithm. The KeyWrapAlgorithm indicates the symmetric
 encryption algorithm used to encrypt the CEK with the KEK
 generated using the 1-Pass ECMQV algorithm and any associated
 parameters (see Section 7.1.5). Algorithm requirements are found
 in Section 8.

 - recipientEncryptedKeys contains an identifier and an encrypted key
 for each recipient. The RecipientEncryptedKey
 KeyAgreeRecipientIdentifier MUST contain either the
 issuerAndSerialNumber identifying the recipient’s certificate or
 the RecipientKeyIdentifier containing the subject key identifier
 from the recipient’s certificate. In both cases, the recipient’s
 certificate contains the recipient’s static ECMQV public key.
 RecipientEncryptedKey EncryptedKey MUST contain the content-
 encryption key encrypted with the 1-Pass ECMQV-generated pairwise
 key-encryption key using the algorithm specified by the
 KeyWrapAlgorithm.

Turner & Brown Informational [Page 9]

RFC 5753 Use of ECC Algorithms in CMS January 2010

3.2.2. Actions of the Sending Agent

 When using 1-Pass ECMQV with EnvelopedData, the sending agent first
 obtains the recipient’s EC public key and domain parameters (e.g.,
 from the recipient’s certificate), and checks that the domain
 parameters are the same as the sender’s domain parameters. The
 sending agent then determines an integer "keydatalen", which is the
 KeyWrapAlgorithm symmetric key size in bits, and also a bit string
 "SharedInfo", which is the DER encoding of ECC-CMS-SharedInfo (see
 Section 7.2). The sending agent then performs the key deployment and
 key agreement operations of the Elliptic Curve MQV Scheme specified
 in [SP800-56A], but uses the KDF defined in Section 3.6.1 of [SEC1].
 As a result, the sending agent obtains:

 - an ephemeral public key, which is represented as a value of type
 ECPoint (see Section 7.2), encapsulated in a bit string, placed in
 an MQVuserKeyingMaterial ephemeralPublicKey publicKey field (see
 Section 7.2), and

 - a shared secret bit string "K", which is used as the pairwise key-
 encryption key for that recipient, as specified in [CMS].

 In a single message, if there are multiple layers for a recipient,
 then the ephemeral public key can be reused by the originator for
 that recipient in each of the different layers.

3.2.3. Actions of the Receiving Agent

 When using 1-Pass ECMQV with EnvelopedData, the receiving agent
 determines the bit string "SharedInfo", which is the DER encoding of
 ECC-CMS-SharedInfo (see Section 7.2), and the integer "keydatalen"
 from the key size, in bits, of the KeyWrapAlgorithm. The receiving
 agent then retrieves the static and ephemeral EC public keys of the
 originator, from the originator and ukm fields as described in
 Section 3.2.1, and its static EC public key identified in the rid
 field and checks that the originator’s domain parameters are the same
 as the recipient’s domain parameters. The receiving agent then
 performs the key agreement operation of the Elliptic Curve MQV Scheme
 [SP800-56A], but uses the KDF defined in Section 3.6.1 of [SEC1]. As
 a result, the receiving agent obtains a shared secret bit string "K",
 which is used as the pairwise key-encryption key to unwrap the CEK.

Turner & Brown Informational [Page 10]

RFC 5753 Use of ECC Algorithms in CMS January 2010

4. AuthenticatedData and AuthEnvelopedData Using ECC

 This section describes how to use ECC algorithms with the CMS
 AuthenticatedData format. AuthenticatedData lacks non-repudiation,
 and so in some instances is preferable to SignedData. (For example,
 the sending agent might not want the message to be authenticated when
 forwarded.)

 This section also describes how to use ECC algorithms with the CMS
 AuthEnvelopedData format [CMS-AUTHENV]. AuthEnvelopedData supports
 authentication and encryption, and in some instances is preferable to
 signing and then encrypting data.

 For both AuthenticatedData and AuthEnvelopedData, data origin
 authentication with 1-Pass ECMQV can only be provided when there is
 one and only one recipient. When there are multiple recipients, an
 attack is possible where one recipient modifies the content without
 other recipients noticing [BON]. A sending agent who is concerned
 with such an attack SHOULD use a separate AuthenticatedData or
 AuthEnvelopedData for each recipient.

 Using an algorithm with the sender static key pair allows for
 knowledge of the message creator; this means that authentication can,
 in some circumstances, be obtained for AuthEnvelopedData and
 AuthenticatedData. This means that 1-Pass ECMQV can be a common
 algorithm for EnvelopedData, AuthenticatedData, and AuthEnvelopedData
 while ECDH can only be used in EnvelopedData.

4.1. AuthenticatedData Using 1-Pass ECMQV

 This section describes how to use the 1-Pass ECMQV key agreement
 algorithm with AuthenticatedData. ECMQV is method C(1, 2, ECC MQV)
 from [SP800-56A].

 When using ECMQV with AuthenticatedData, the fields of
 AuthenticatedData are as in [CMS], but with the following
 restrictions:

 - macAlgorithm MUST contain the algorithm identifier of the message
 authentication code (MAC) algorithm (see Section 7.1.7), which MUST
 be one of the following: hmac-SHA1, id-hmacWITHSHA224, id-
 hmacWITHSHA256, id-hmacWITHSHA384, or id-hmacWITHSHA512.

 - digestAlgorithm MUST contain the algorithm identifier of the hash
 algorithm (see Section 7.1.1), which MUST be one of the following:
 id-sha1, id-sha224, id-sha256, id-sha384, or id-sha512.

Turner & Brown Informational [Page 11]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 As 1-Pass ECMQV is a key agreement algorithm, the RecipientInfo kari
 choice is used in the AuthenticatedData. When using 1-Pass ECMQV,
 the AuthenticatedData originatorInfo field MAY include the
 certificate(s) for the EC public key(s) used in the formation of the
 pairwise key. ECC certificates are discussed in Section 5.

4.1.1. Fields of the KeyAgreeRecipientInfo

 The AuthenticatedData KeyAgreeRecipientInfo fields are used in the
 same manner as the fields for the corresponding EnvelopedData
 KeyAgreeRecipientInfo fields of Section 3.2.1 of this document.

4.1.2. Actions of the Sending Agent

 The sending agent uses the same actions as for EnvelopedData with
 1-Pass ECMQV, as specified in Section 3.2.2 of this document.

 In a single message, if there are multiple layers for a recipient,
 then the ephemeral public key can be reused by the originator for
 that recipient in each of the different layers.

4.1.3. Actions of the Receiving Agent

 The receiving agent uses the same actions as for EnvelopedData with
 1-Pass ECMQV, as specified in Section 3.2.3 of this document.

4.2. AuthEnvelopedData Using 1-Pass ECMQV

 This section describes how to use the 1-Pass ECMQV key agreement
 algorithm with AuthEnvelopedData. ECMQV is method C(1, 2, ECC MQV)
 from [SP800-56A].

 When using ECMQV with AuthEnvelopedData, the fields of
 AuthEnvelopedData are as in [CMS-AUTHENV].

 As 1-Pass ECMQV is a key agreement algorithm, the RecipientInfo kari
 choice is used. When using 1-Pass ECMQV, the AuthEnvelopedData
 originatorInfo field MAY include the certificate(s) for the EC public
 key used in the formation of the pairwise key. ECC certificates are
 discussed in Section 5.

4.2.1. Fields of the KeyAgreeRecipientInfo

 The AuthEnvelopedData KeyAgreeRecipientInfo fields are used in the
 same manner as the fields for the corresponding EnvelopedData
 KeyAgreeRecipientInfo fields of Section 3.2.1 of this document.

Turner & Brown Informational [Page 12]

RFC 5753 Use of ECC Algorithms in CMS January 2010

4.2.2. Actions of the Sending Agent

 The sending agent uses the same actions as for EnvelopedData with
 1-Pass ECMQV, as specified in Section 3.2.2 of this document.

 In a single message, if there are multiple layers for a recipient,
 then the ephemeral public key can be reused by the originator for
 that recipient in each of the different layers.

4.2.3. Actions of the Receiving Agent

 The receiving agent uses the same actions as for EnvelopedData with
 1-Pass ECMQV, as specified in Section 3.2.3 of this document.

5. Certificates Using ECC

 Internet X.509 certificates [PKI] can be used in conjunction with
 this specification to distribute agents’ public keys. The use of ECC
 algorithms and keys within X.509 certificates is specified in
 [PKI-ALG].

6. SMIMECapabilities Attribute and ECC

 A sending agent MAY announce to receiving agents that it supports one
 or more of the ECC algorithms specified in this document by using the
 SMIMECapabilities signed attribute [MSG] in either a signed message
 or a certificate [CERTCAP].

 The SMIMECapabilities attribute value indicates support for one of
 the ECDSA signature algorithms in a SEQUENCE with the capabilityID
 field containing the object identifier ecdsa-with-SHA1 with NULL
 parameters and ecdsa-with-SHA* (where * is 224, 256, 384, or 512)
 with absent parameters. The DER encodings are:

 ecdsa-with-SHA1: 30 0b 06 07 2a 86 48 ce 3d 04 01 05 00

 ecdsa-with-SHA224: 30 0a 06 08 2a 86 48 ce 3d 04 03 01

 ecdsa-with-SHA256: 30 0a 06 08 2a 86 48 ce 3d 04 03 02

 ecdsa-with-SHA384: 30 0a 06 08 2a 86 48 ce 3d 04 03 03

 ecdsa-with-SHA512: 30 0a 06 08 2a 86 48 ce 3d 04 03 04

 NOTE: The SMIMECapabilities attribute indicates that parameters for
 ECDSA with SHA-1 are NULL; however, the parameters are absent when
 used to generate a digital signature.

Turner & Brown Informational [Page 13]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 The SMIMECapabilities attribute value indicates support for

 a) the standard ECDH key agreement algorithm,
 b) the cofactor ECDH key agreement algorithm, or
 c) the 1-Pass ECMQV key agreement algorithm and

 is a SEQUENCE with the capabilityID field containing the object
 identifier

 a) dhSinglePass-stdDH-sha*kdf-scheme,
 b) dhSinglePass-cofactorDH-sha*kdf-scheme, or
 c) mqvSinglePass-sha*kdf-scheme

 respectively (where * is 1, 224, 256, 384, or 512) with the
 parameters present. The parameters indicate the supported key-
 encryption algorithm with the KeyWrapAlgorithm algorithm identifier.

 The DER encodings that indicate capabilities are as follows (KA is
 key agreement, KDF is key derivation function, and Wrap is key wrap
 algorithm):

 KA=ECDH standard KDF=SHA-1 Wrap=Triple-DES

 30 1c 06 09 2b 81 05 10 86 48 3f 00 02 30 0f 06 0b 2a 86 48 86
 f7 0d 01 09 10 03 06 05 00

 KA=ECDH standard KDF=SHA-224 Wrap=Triple-DES

 30 17 06 06 2b 81 04 01 0B 00 30 0d 06 0b 2a 86 48 86 f7 0d 01
 09 10 03 06

 KA=ECDH standard KDF=SHA-256 Wrap=Triple-DES

 30 17 06 06 2b 81 04 01 0B 01 30 0d 06 0b 2a 86 48 86 f7 0d 01
 09 10 03 06

 KA=ECDH standard KDF=SHA-384 Wrap=Triple-DES

 30 17 06 06 2b 81 04 01 0B 02 30 0d 06 0b 2a 86 48 86 f7 0d 01
 09 10 03 06

 KA=ECDH standard KDF=SHA-512 Wrap=Triple-DES

 30 17 06 06 2b 81 04 01 0B 03 30 0d 06 0b 2a 86 48 86 f7 0d 01
 09 10 03 06

Turner & Brown Informational [Page 14]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 KA=ECDH standard KDF=SHA-1 Wrap=AES-128

 30 18 06 09 2b 81 05 10 86 48 3f 00 02 30 0b 06 09 60 86 48 01
 65 03 04 01 05

 KA=ECDH standard KDF=SHA-224 Wrap=AES-128

 30 15 06 06 2b 81 04 01 0B 00 30 0b 06 09 60 86 48 01 65 03 04
 01 05

 KA=ECDH standard KDF=SHA-256 Wrap=AES-128

 30 15 06 06 2b 81 04 01 0B 01 30 0b 06 09 60 86 48 01 65 03 04
 01 05

 KA=ECDH standard KDF=SHA-384 Wrap=AES-128

 30 15 06 06 2b 81 04 01 0B 02 30 0b 06 09 60 86 48 01 65 03 04
 01 05

 KA=ECDH standard KDF=SHA-512 Wrap=AES-128

 30 15 06 06 2b 81 04 01 0B 03 30 0b 06 09 60 86 48 01 65 03 04
 01 05

 KA=ECDH standard KDF=SHA-1 Wrap=AES-192

 30 18 06 09 2b 81 05 10 86 48 3f 00 02 30 0b 06 09 60 86 48 01
 65 03 04 01 19

 KA=ECDH standard KDF=SHA-224 Wrap=AES-192

 30 15 06 06 2b 81 04 01 0B 00 30 0b 06 09 60 86 48 01 65 03 04
 01 19

 KA=ECDH standard KDF=SHA-256 Wrap=AES-192

 30 15 06 06 2b 81 04 01 0B 01 30 0b 06 09 60 86 48 01 65 03 04
 01 19

 KA=ECDH standard KDF=SHA-384 Wrap=AES-192

 30 15 06 06 2b 81 04 01 0B 02 30 0b 06 09 60 86 48 01 65 03 04
 01 19

Turner & Brown Informational [Page 15]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 KA=ECDH standard KDF=SHA-512 Wrap=AES-192

 30 15 06 06 2b 81 04 01 0B 03 30 0b 06 09 60 86 48 01 65 03 04
 01 19

 KA=ECDH standard KDF=SHA-1 Wrap=AES-256

 30 18 06 09 2b 81 05 10 86 48 3f 00 02 30 0b 06 09 60 86 48 01
 65 03 04 01 2D

 KA=ECDH standard KDF=SHA-224 Wrap=AES-256

 30 15 06 06 2b 81 04 01 0B 00 30 0b 06 09 60 86 48 01 65 03 04
 01 2D

 KA=ECDH standard KDF=SHA-256 Wrap=AES-256

 30 15 06 06 2b 81 04 01 0B 01 30 0b 06 09 60 86 48 01 65 03 04
 01 2D

 KA=ECDH standard KDF=SHA-384 Wrap=AES-256

 30 15 06 06 2b 81 04 01 0B 02 30 0b 06 09 60 86 48 01 65 03 04
 01 2D 05 00

 KA=ECDH standard KDF=SHA-512 Wrap=AES-256

 30 15 06 06 2b 81 04 01 0B 03 30 0b 06 09 60 86 48 01 65 03 04
 01 2D

 KA=ECDH cofactor KDF=SHA-1 Wrap=Triple-DES

 30 1c 06 09 2b 81 05 10 86 48 3f 00 03 30 0f 06 0b 2a 86 48 86
 f7 0d 01 09 10 03 06 05 00

 KA=ECDH cofactor KDF=SHA-224 Wrap=Triple-DES

 30 17 06 06 2b 81 04 01 0E 00 30 0d 06 0b 2a 86 48 86 f7 0d 01
 09 10 03 06

 KA=ECDH cofactor KDF=SHA-256 Wrap=Triple-DES

 30 17 06 06 2b 81 04 01 0E 01 30 0d 06 0b 2a 86 48 86 f7 0d 01
 09 10 03 06

Turner & Brown Informational [Page 16]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 KA=ECDH cofactor KDF=SHA-384 Wrap=Triple-DES

 30 17 06 06 2b 81 04 01 0E 02 30 0d 06 0b 2a 86 48 86 f7 0d 01
 09 10 03 06

 KA=ECDH cofactor KDF=SHA-512 Wrap=Triple-DES

 30 17 06 06 2b 81 04 01 0E 03 30 0d 06 0b 2a 86 48 86 f7 0d 01
 09 10 03 06

 KA=ECDH cofactor KDF=SHA-1 Wrap=AES-128

 30 18 06 09 2b 81 05 10 86 48 3f 00 03 30 0b 06 09 60 86 48 01
 65 03 04 01 05

 KA=ECDH cofactor KDF=SHA-224 Wrap=AES-128

 30 15 06 06 2b 81 04 01 0E 00 30 0b 06 09 60 86 48 01 65 03 04
 01 05

 KA=ECDH cofactor KDF=SHA-256 Wrap=AES-128

 30 15 06 06 2b 81 04 01 0E 01 30 0b 06 09 60 86 48 01 65 03 04
 01 05

 KA=ECDH cofactor KDF=SHA-384 Wrap=AES-128

 30 15 06 06 2b 81 04 01 0E 02 30 0b 06 09 60 86 48 01 65 03 04
 01 05

 KA=ECDH cofactor KDF=SHA-512 Wrap=AES-128

 30 17 06 06 2b 81 04 01 0E 03 30 0b 06 09 60 86 48 01 65 03 04
 01 05

 KA=ECDH cofactor KDF=SHA-1 Wrap=AES-192

 30 18 06 09 2b 81 05 10 86 48 3f 00 03 30 0b 06 09 60 86 48 01
 65 03 04 01 19

 KA=ECDH cofactor KDF=SHA-224 Wrap=AES-192

 30 15 06 06 2b 81 04 01 0E 00 30 0b 06 09 60 86 48 01 65 03 04
 01 19

Turner & Brown Informational [Page 17]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 KA=ECDH cofactor KDF=SHA-256 Wrap=AES-192

 30 15 06 06 2b 81 04 01 0E 01 30 0b 06 09 60 86 48 01 65 03 04
 01 19

 KA=ECDH cofactor KDF=SHA-384 Wrap=AES-192

 30 15 06 06 2b 81 04 01 0E 02 30 0b 06 09 60 86 48 01 65 03 04
 01 19

 KA=ECDH cofactor KDF=SHA-512 Wrap=AES-192

 30 15 06 06 2b 81 04 01 0E 03 30 0b 06 09 60 86 48 01 65 03 04
 01 19

 KA=ECDH cofactor KDF=SHA-1 Wrap=AES-256

 30 15 06 09 2b 81 05 10 86 48 3f 00 03 30 0b 06 09 60 86 48 01
 65 03 04 01 2D

 KA=ECDH cofactor KDF=SHA-224 Wrap=AES-256

 30 15 06 06 2b 81 04 01 0E 00 30 0b 06 09 60 86 48 01 65 03 04
 01 2D

 KA=ECDH cofactor KDF=SHA-256 Wrap=AES-256

 30 15 06 06 2b 81 04 01 0E 01 30 0b 06 09 60 86 48 01 65 03 04
 01 2D

 KA=ECDH cofactor KDF=SHA-384 Wrap=AES-256

 30 15 06 06 2b 81 04 01 0E 02 30 0b 06 09 60 86 48 01 65 03 04
 01 2D

 KA=ECDH cofactor KDF=SHA-512 Wrap=AES-256

 30 15 06 06 2b 81 04 01 0E 03 30 0b 06 09 60 86 48 01 65 03 04
 01 2D

 KA=ECMQV 1-Pass KDF=SHA-1 Wrap=Triple-DES

 30 1c 06 09 2b 81 05 10 86 48 3f 00 10 30 0f 06 0b 2a 86 48 86
 f7 0d 01 09 10 03 06 05 00

Turner & Brown Informational [Page 18]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 KA=ECMQV 1-Pass KDF=SHA-224 Wrap=Triple-DES

 30 17 06 06 2b 81 04 01 0F 00 30 0d 06 0b 2a 86 48 86 f7 0d 01
 09 10 03 06

 KA=ECMQV 1-Pass KDF=SHA-256 Wrap=Triple-DES

 30 17 06 06 2b 81 04 01 0F 01 30 0d 06 0b 2a 86 48 86 f7 0d 01
 09 10 03 06

 KA=ECMQV 1-Pass KDF=SHA-384 Wrap=Triple-DES

 30 17 06 06 2b 81 04 01 0F 02 30 0d 06 0b 2a 86 48 86 f7 0d 01
 09 10 03 06

 KA=ECMQV 1-Pass KDF=SHA-512 Wrap=Triple-DES

 30 17 06 06 2b 81 04 01 0F 03 30 0d 06 0b 2a 86 48 86 f7 0d 01
 09 10 03 06

 KA=ECMQV 1-Pass KDF=SHA-1 Wrap=AES-128

 30 18 06 09 2b 81 05 10 86 48 3f 00 10 30 0b 06 09 60 86 48 01
 65 03 04 01 05

 KA=ECMQV 1-Pass KDF=SHA-224 Wrap=AES-128

 30 15 06 06 2b 81 04 01 0F 00 30 0b 06 09 60 86 48 01 65 03 04
 01 05

 KA=ECMQV 1-Pass KDF=SHA-256 Wrap=AES-128

 30 15 06 06 2b 81 04 01 0F 01 30 0b 06 09 60 86 48 01 65 03 04
 01 05

 KA=ECMQV 1-Pass KDF=SHA-384 Wrap=AES-128

 30 15 06 06 2b 81 04 01 0F 02 30 0b 06 09 60 86 48 01 65 03 04
 01 05

 KA=ECMQV 1-Pass KDF=SHA-512 Wrap=AES-128

 30 15 06 06 2b 81 04 01 0F 03 30 0b 06 09 60 86 48 01 65 03 04
 01 05

Turner & Brown Informational [Page 19]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 KA=ECMQV 1-Pass KDF=SHA-1 Wrap=AES-192

 30 18 06 09 2b 81 05 10 86 48 3f 00 10 30 0b 06 09 60 86 48 01
 65 03 04 01 19

 KA=ECMQV 1-Pass KDF=SHA-224 Wrap=AES-192

 30 15 06 06 2b 81 04 01 0F 00 30 0b 06 09 60 86 48 01 65 03 04
 01 19

 KA=ECMQV 1-Pass KDF=SHA-256 Wrap=AES-192

 30 15 06 06 2b 81 04 01 0F 01 30 0b 06 09 60 86 48 01 65 03 04
 01 19

 KA=ECMQV 1-Pass KDF=SHA-384 Wrap=AES-192

 30 15 06 06 2b 81 04 01 0F 02 30 0b 06 09 60 86 48 01 65 03 04
 01 19

 KA=ECMQV 1-Pass KDF=SHA-512 Wrap=AES-192

 30 15 06 06 2b 81 04 01 0F 03 30 0b 06 09 60 86 48 01 65 03 04
 01 19

 KA=ECMQV 1-Pass KDF=SHA-1 Wrap=AES-256

 30 18 06 09 2b 81 05 10 86 48 3f 00 10 30 0b 06 09 60 86 48 01
 65 03 04 01 2D

 KA=ECMQV 1-Pass KDF=SHA-224 Wrap=AES-256

 30 15 06 06 2b 81 04 01 0F 00 30 0b 06 09 60 86 48 01 65 03 04
 01 2D

 KA=ECMQV 1-Pass KDF=SHA-256 Wrap=AES-256

 30 15 06 06 2b 81 04 01 0F 01 30 0b 06 09 60 86 48 01 65 03 04
 01 2D

 KA=ECMQV 1-Pass KDF=SHA-384 Wrap=AES-256

 30 15 06 06 2b 81 04 01 0F 02 30 0b 06 09 60 86 48 01 65 03 04
 01 2D

Turner & Brown Informational [Page 20]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 KA=ECMQV 1-Pass KDF=SHA-512 Wrap=AES-256

 30 15 06 06 2b 81 04 01 0F 03 30 0b 06 09 60 86 48 01 65 03 04
 01 2D

 NOTE: The S/MIME Capabilities for the supported AES content-
 encryption key sizes are defined in [CMS-AES].

 NOTE: The S/MIME Capabilities for the supported MAC algorithms are
 defined in [CMS-ASN].

7. ASN.1 Syntax

 The ASN.1 syntax [X.680], [X.681], [X.682], [X.683] used in this
 document is gathered in this section for reference purposes.

7.1. Algorithm Identifiers

 This section provides the object identifiers for the algorithms used
 in this document along with any associated parameters.

7.1.1. Digest Algorithms

 Digest algorithm object identifiers are used in the SignedData
 digestAlgorithms and digestAlgorithm fields and the AuthenticatedData
 digestAlgorithm field. The digest algorithms used in this document
 are SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512. The object
 identifiers and parameters associated with these algorithms are found
 in [CMS-ALG] and [CMS-SHA2].

7.1.2. Originator Public Key

 The KeyAgreeRecipientInfo originator field uses the following object
 identifier to indicate an elliptic curve public key:

 id-ecPublicKey OBJECT IDENTIFIER ::= {
 ansi-x9-62 keyType(2) 1 }

 where

 ansi-x9-62 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) 10045 }

 When the object identifier id-ecPublicKey is used here with an
 algorithm identifier, the associated parameters MUST be either absent
 or ECParameters. Implementations MUST accept id-ecPublicKey with
 absent and ECParameters parameters. If ECParameters is present, its

Turner & Brown Informational [Page 21]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 value MUST match the recipient’s ECParameters. Implementations
 SHOULD generate absent parameters for the id-ecPublicKey object
 identifier in the KeyAgreeRecipientInfo originator field.

 [CMS-ECC] indicated the parameters were NULL. Support for this
 legacy form is OPTIONAL.

7.1.3. Signature Algorithms

 Signature algorithm identifiers are used in the SignedData
 signatureAlgorithm and signature fields. The signature algorithms
 used in this document are ECDSA with SHA-1, ECDSA with SHA-224, ECDSA
 with SHA-256, ECDSA with SHA-384, and ECDSA with SHA-512. The object
 identifiers and parameters associated with these algorithms are found
 in [PKI-ALG].

 [CMS-ECC] indicated the parameters were NULL. Support for this
 legacy form is OPTIONAL.

7.1.4. Key Agreement Algorithms

 Key agreement algorithms are used in EnvelopedData,
 AuthenticatedData, and AuthEnvelopedData in the KeyAgreeRecipientInfo
 keyEncryptionAlgorithm field. The following object identifiers
 indicate the key agreement algorithms used in this document
 [SP800-56A], [SEC1]:

 dhSinglePass-stdDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
 x9-63-scheme 2 }

 dhSinglePass-stdDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 0 }

 dhSinglePass-stdDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 1 }

 dhSinglePass-stdDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 2 }

 dhSinglePass-stdDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 3 }

 dhSinglePass-cofactorDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
 x9-63-scheme 3 }

 dhSinglePass-cofactorDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 14 0 }

Turner & Brown Informational [Page 22]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 dhSinglePass-cofactorDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 14 1 }

 dhSinglePass-cofactorDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 14 2 }

 dhSinglePass-cofactorDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 14 3 }

 mqvSinglePass-sha1kdf-scheme OBJECT IDENTIFIER ::= {
 x9-63-scheme 16 }

 mqvSinglePass-sha224kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 15 0 }

 mqvSinglePass-sha256kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 15 1 }

 mqvSinglePass-sha384kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 15 2 }

 mqvSinglePass-sha512kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 15 3 }

 where

 x9-63-scheme OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) tc68(133) country(16)
 x9(840) x9-63(63) schemes(0) }

 and

 secg-scheme OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) certicom(132) schemes(1) }

 When the object identifiers are used here within an algorithm
 identifier, the associated parameters field contains KeyWrapAlgorithm
 to indicate the key wrap algorithm and any associated parameters.

7.1.5. Key Wrap Algorithms

 Key wrap algorithms are used as part of the parameters in the key
 agreement algorithm. The key wrap algorithms used in this document
 are Triple-DES, AES-128, AES-192, and AES-256. The object
 identifiers and parameters for these algorithms are found in
 [CMS-ALG] and [CMS-AES].

Turner & Brown Informational [Page 23]

RFC 5753 Use of ECC Algorithms in CMS January 2010

7.1.6. Content Encryption Algorithms

 Content encryption algorithms are used in EnvelopedData and
 AuthEnvelopedData in the EncryptedContentInfo
 contentEncryptionAlgorithm field. The content encryption algorithms
 used with EnvelopedData in this document are 3-Key Triple DES in CBC
 mode, AES-128 in CBC mode, AES-192 in CBC mode, and AES-256 in CBC
 mode. The object identifiers and parameters associated with these
 algorithms are found in [CMS-ALG] and [CMS-AES]. The content
 encryption algorithms used with AuthEnvelopedData in this document
 are AES-128 in CCM mode, AES-192 in CCM mode, AES-256 in CCM mode,
 AES-128 in GCM mode, AES-192 in GCM mode, and AES-256 in GCM mode.
 The object identifiers and parameters associated with these
 algorithms are found in [CMS-AESCG].

7.1.7. Message Authentication Code Algorithms

 Message authentication code algorithms are used in AuthenticatedData
 in the macAlgorithm field. The message authentication code
 algorithms used in this document are HMAC with SHA-1, HMAC with
 SHA-224, HMAC with SHA-256, HMAC with SHA-384, and HMAC with SHA-512.
 The object identifiers and parameters associated with these
 algorithms are found in [CMS-ALG] and [HMAC-SHA2].

 NOTE: [HMAC-SHA2] defines the object identifiers for HMAC with
 SHA-224, HMAC with SHA-256, HMAC with SHA-384, and HMAC with SHA-512,
 but there is no ASN.1 module from which to import these object
 identifiers. Therefore, the object identifiers for these algorithms
 are included in the ASN.1 modules defined in Appendix A.

7.1.8. Key Derivation Algorithm

 The KDF used in this document is as specified in Section 3.6.1 of
 [SEC1]. The hash algorithm is identified in the key agreement
 algorithm. For example, dhSinglePass-stdDH-sha256kdf-scheme uses the
 KDF from [SEC1] but uses SHA-256 instead of SHA-1.

7.2. Other Syntax

 The following additional syntax is used here.

 When using ECDSA with SignedData, ECDSA signatures are encoded using
 the type:

 ECDSA-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

Turner & Brown Informational [Page 24]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 ECDSA-Sig-Value is specified in [PKI-ALG]. Within CMS, ECDSA-Sig-
 Value is DER-encoded and placed within a signature field of
 SignedData.

 When using ECDH and ECMQV with EnvelopedData, AuthenticatedData, and
 AuthEnvelopedData, ephemeral and static public keys are encoded using
 the type ECPoint. Implementations MUST support uncompressed keys,
 MAY support compressed keys, and MUST NOT support hybrid keys.

 ECPoint ::= OCTET STRING

 When using ECMQV with EnvelopedData, AuthenticatedData, and
 AuthEnvelopedData, the sending agent’s ephemeral public key and
 additional keying material are encoded using the type:

 MQVuserKeyingMaterial ::= SEQUENCE {
 ephemeralPublicKey OriginatorPublicKey,
 addedukm [0] EXPLICIT UserKeyingMaterial OPTIONAL }

 The ECPoint syntax is used to represent the ephemeral public key and
 is placed in the ephemeralPublicKey publicKey field. The additional
 user keying material is placed in the addedukm field. Then the
 MQVuserKeyingMaterial value is DER-encoded and placed within the ukm
 field of EnvelopedData, AuthenticatedData, or AuthEnvelopedData.

 When using ECDH or ECMQV with EnvelopedData, AuthenticatedData, or
 AuthEnvelopedData, the key-encryption keys are derived by using the
 type:

 ECC-CMS-SharedInfo ::= SEQUENCE {
 keyInfo AlgorithmIdentifier,
 entityUInfo [0] EXPLICIT OCTET STRING OPTIONAL,
 suppPubInfo [2] EXPLICIT OCTET STRING }

 The fields of ECC-CMS-SharedInfo are as follows:

 keyInfo contains the object identifier of the key-encryption
 algorithm (used to wrap the CEK) and associated parameters. In
 this specification, 3DES wrap has NULL parameters while the AES
 wraps have absent parameters.

 entityUInfo optionally contains additional keying material
 supplied by the sending agent. When used with ECDH and CMS, the
 entityUInfo field contains the octet string ukm. When used with
 ECMQV and CMS, the entityUInfo contains the octet string addedukm
 (encoded in MQVuserKeyingMaterial).

Turner & Brown Informational [Page 25]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 suppPubInfo contains the length of the generated KEK, in bits,
 represented as a 32-bit number, as in [CMS-DH] and [CMS-AES].
 (For example, for AES-256 it would be 00 00 01 00.)

 Within CMS, ECC-CMS-SharedInfo is DER-encoded and used as input to
 the key derivation function, as specified in Section 3.6.1 of [SEC1].

 NOTE: ECC-CMS-SharedInfo differs from the OtherInfo specified in
 [CMS-DH]. Here, a counter value is not included in the keyInfo field
 because the key derivation function specified in Section 3.6.1 of
 [SEC1] ensures that sufficient keying data is provided.

8. Recommended Algorithms and Elliptic Curves

 It is RECOMMENDED that implementations of this specification support
 SignedData and EnvelopedData. Support for AuthenticatedData and
 AuthEnvelopedData is OPTIONAL.

 In order to encourage interoperability, implementations SHOULD use
 the elliptic curve domain parameters specified by [PKI-ALG].

 Implementations that support SignedData with ECDSA:

 - MUST support ECDSA with SHA-256; and

 - MAY support ECDSA with SHA-1, ECDSA with SHA-224, ECDSA with
 SHA-384, and ECDSA with SHA-512; other digital signature
 algorithms MAY also be supported.

 When using ECDSA, to promote interoperability it is RECOMMENDED that
 the P-192, P-224, and P-256 curves be used with SHA-256; the P-384
 curve be used with SHA-384; and the P-521 curve be used with SHA-512.

 If EnvelopedData is supported, then ephemeral-static ECDH standard
 primitive MUST be supported. Support for ephemeral-static ECDH co-
 factor is OPTIONAL, and support for 1-Pass ECMQV is also OPTIONAL.

 Implementations that support EnvelopedData with the ephemeral-static
 ECDH standard primitive:

 - MUST support the dhSinglePass-stdDH-sha256kdf-scheme key
 agreement algorithm, the id-aes128-wrap key wrap algorithm, and
 the id-aes128-cbc content encryption algorithm; and

Turner & Brown Informational [Page 26]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 - MAY support the dhSinglePass-stdDH-sha1kdf-scheme, dhSinglePass-
 stdDH-sha224kdf-scheme, dhSinglePass-stdDH-sha384kdf-scheme, and
 dhSinglePass-stdDH-sha512kdf-scheme key agreement algorithms;
 the id-alg-CMS3DESwrap, id-aes192-wrap, and id-aes256-wrap key
 wrap algorithms; and the des-ede3-cbc, id-aes192-cbc, and id-
 aes256-cbc content encryption algorithms; other algorithms MAY
 also be supported.

 Implementations that support EnvelopedData with the ephemeral-static
 ECDH cofactor primitive:

 - MUST support the dhSinglePass-cofactorDH-sha256kdf-scheme key
 agreement algorithm, the id-aes128-wrap key wrap algorithm, and
 the id-aes128-cbc content encryption algorithm; and

 - MAY support the dhSinglePass-cofactorDH-sha1kdf-scheme,
 dhSinglePass-cofactorDH-sha224kdf-scheme, dhSinglePass-
 cofactorDH-sha384kdf-scheme, and dhSinglePass-cofactorDH-
 sha512kdf-scheme key agreement; the id-alg-CMS3DESwrap, id-
 aes192-wrap, and id-aes256-wrap key wrap algorithms; and the
 des-ede3-cbc, id-aes192-cbc, and id-aes256-cbc content
 encryption algorithms; other algorithms MAY also be supported.

 Implementations that support EnvelopedData with 1-Pass ECMQV:

 - MUST support the mqvSinglePass-sha256kdf-scheme key agreement
 algorithm, the id-aes128-wrap key wrap algorithm, and the id-
 aes128-cbc content encryption algorithm; and

 - MAY support the mqvSinglePass-sha1kdf-scheme, mqvSinglePass-
 sha224kdf-scheme, mqvSinglePass-sha384kdf-scheme, and
 mqvSinglePass-sha512kdf-scheme key agreement algorithms; the id-
 alg-CMS3DESwrap, id-aes192-wrap, and id-aes256-wrap key wrap
 algorithms; and the des-ede3-cbc, id-aes192-cbc, and id-
 aes256-cbc content encryption algorithms; other algorithms MAY
 also be supported.

 Implementations that support AuthenticatedData with 1-Pass ECMQV:

 - MUST support the mqvSinglePass-sha256kdf-scheme key agreement,
 the id-aes128-wrap key wrap, the id-sha256 message digest, and
 id-hmacWithSHA256 message authentication code algorithms; and

 - MAY support the mqvSinglePass-sha1kdf-scheme, mqvSinglePass-
 sha224kdf-scheme, mqvSinglePass-sha384kdf-scheme, mqvSinglePass-
 sha512kdf-scheme key agreement algorithms; the id-alg-
 CMS3DESwrap, id-aes192-wrap, and id-aes256-wrap key wrap
 algorithms; the id-sha1, id-sha224, id-sha384, and id-sha512,

Turner & Brown Informational [Page 27]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 message digest algorithms; and the hmac-SHA1, id-hmacWithSHA224,
 id-hmacWithSHA384, and id-hmacWithSHA512 message authentication
 code algorithms; other algorithms MAY also be supported.

 Implementations that support AuthEnvelopedData with 1-Pass ECMQV:

 - MUST support the mqvSinglePass-sha256kdf-scheme key agreement,
 the id-aes128-wrap key wrap, and the id-aes128-ccm
 authenticated-content encryption; and

 - MAY support the mqvSinglePass-sha1kdf-scheme, mqvSinglePass-
 sha224kdf-scheme, mqvSinglePass-sha384kdf-scheme, and
 mqvSinglePass-sha512kdf-scheme key agreement algorithms; the id-
 alg-CMS3DESwrap, id-aes192-wrap, and id-aes256-wrap key wrap
 algorithms; and the id-aes192-ccm, id-aes256-ccm, id-aes128-gcm,
 id-aes192-gcm, and id-aes256-ccm authenticated-content
 encryption algorithms; other algorithms MAY also be supported.

9. Security Considerations

 Cryptographic algorithms will be broken or weakened over time.
 Implementers and users need to check that the cryptographic
 algorithms listed in this document continue to provide the expected
 level of security. The IETF from time to time may issue documents
 dealing with the current state of the art.

 Cryptographic algorithms rely on random numbers. See [RANDOM] for
 guidance on generation of random numbers.

 Receiving agents that validate signatures and sending agents that
 encrypt messages need to be cautious of cryptographic processing
 usage when validating signatures and encrypting messages using keys
 larger than those mandated in this specification. An attacker could
 send keys and/or certificates with keys that would result in
 excessive cryptographic processing, for example, keys larger than
 those mandated in this specification, which could swamp the
 processing element. Agents that use such keys without first
 validating the certificate to a trust anchor are advised to have some
 sort of cryptographic resource management system to prevent such
 attacks.

 Using secret keys of an appropriate size is crucial to the security
 of a Diffie-Hellman exchange. For elliptic curve groups, the size of
 the secret key must be equal to the size of n (the order of the group
 generated by the point g). Using larger secret keys provides
 absolutely no additional security, and using smaller secret keys is
 likely to result in dramatically less security. (See [SP800-56A] for
 more information on selecting secret keys.)

Turner & Brown Informational [Page 28]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 This specification is based on [CMS], [CMS-AES], [CMS-AESCG],
 [CMS-ALG], [CMS-AUTHENV], [CMS-DH], [CMS-SHA2], [FIPS180-3],
 [FIPS186-3], and [HMAC-SHA2], and the appropriate security
 considerations of those documents apply.

 In addition, implementers of AuthenticatedData and AuthEnvelopedData
 should be aware of the concerns expressed in [BON] when using
 AuthenticatedData and AuthEnvelopedData to send messages to more than
 one recipient. Also, users of MQV should be aware of the
 vulnerability described in [K].

 When implementing EnvelopedData, AuthenticatedData, and
 AuthEnvelopedData, there are five algorithm-related choices that need
 to be made:

 1) What is the public key size?
 2) What is the KDF?
 3) What is the key wrap algorithm?
 4) What is the content encryption algorithm?
 5) What is the curve?

 Consideration must be given to the strength of the security provided
 by each of these choices. Security algorithm strength is measured in
 bits, where bits is measured in equivalence to a symmetric cipher
 algorithm. Thus, a strong symmetric cipher algorithm with a key of X
 bits is said to provide X bits of security. For other algorithms,
 the key size is mapped to an equivalent symmetric cipher strength.
 It is recommended that the bits of security provided by each are
 roughly equivalent. The following table provides comparable minimum
 bits of security [SP800-57] for the ECDH/ECMQV key sizes, KDFs, key
 wrapping algorithms, and content encryption algorithms. It also
 lists curves [PKI-ALG] for the key sizes.

Turner & Brown Informational [Page 29]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 Minimum | ECDH or | Key | Key | Content | Curves
 Bits of | ECMQV | Derivation | Wrap | Encryption |
 Security | Key Size | Function | Alg. | Alg. |
 ---------+----------+------------+----------+-------------+----------
 80 | 160-223 | SHA-1 | 3DES | 3DES CBC | sect163k1
 | | SHA-224 | AES-128 | AES-128 CBC | secp163r2
 | | SHA-256 | AES-192 | AES-192 CBC | secp192r1
 | | SHA-384 | AES-256 | AES-256 CBC |
 | | SHA-512 | | |
 ---------+----------+------------+----------+-------------+---------
 112 | 224-255 | SHA-1 | 3DES | 3DES CBC | secp224r1
 | | SHA-224 | AES-128 | AES-128 CBC | sect233k1
 | | SHA-256 | AES-192 | AES-192 CBC | sect233r1
 | | SHA-384 | AES-256 | AES-256 CBC |
 | | SHA-512 | | |
 ---------+----------+------------+----------+-------------+---------
 128 | 256-383 | SHA-1 | AES-128 | AES-128 CBC | secp256r1
 | | SHA-224 | AES-192 | AES-192 CBC | sect283k1
 | | SHA-256 | AES-256 | AES-256 CBC | sect283r1
 | | SHA-384 | | |
 | | SHA-512 | | |
 ---------+----------+------------+----------+-------------+---------
 192 | 384-511 | SHA-224 | AES-192 | AES-192 CBC | secp384r1
 | | SHA-256 | AES-256 | AES-256 CBC | sect409k1
 | | SHA-384 | | | sect409r1
 | | SHA-512 | | |
 ---------+----------+------------+----------+-------------+---------
 256 | 512+ | SHA-256 | AES-256 | AES-256 CBC | secp521r1
 | | SHA-384 | | | sect571k1
 | | SHA-512 | | | sect571r1
 ---------+----------+------------+----------+-------------+---------

Turner & Brown Informational [Page 30]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 To promote interoperability, the following choices are RECOMMENDED:

 Minimum | ECDH or | Key | Key | Content | Curve
 Bits of | ECMQV | Derivation | Wrap | Encryption |
 Security | Key Size | Function | Alg. | Alg. |
 ---------+----------+------------+----------+-------------+----------
 80 | 192 | SHA-256 | 3DES | 3DES CBC | secp192r1
 ---------+----------+------------+----------+-------------+----------
 112 | 224 | SHA-256 | 3DES | 3DES CBC | secp224r1
 ---------+----------+------------+----------+-------------+----------
 128 | 256 | SHA-256 | AES-128 | AES-128 CBC | secp256r1
 ---------+----------+------------+----------+-------------+----------
 192 | 384 | SHA-384 | AES-256 | AES-256 CBC | secp384r1
 ---------+----------+------------+----------+-------------+----------
 256 | 512+ | SHA-512 | AES-256 | AES-256 CBC | secp521r1
 ---------+----------+------------+----------+-------------+----------

 When implementing SignedData, there are three algorithm-related
 choices that need to be made:

 1) What is the public key size?
 2) What is the hash algorithm?
 3) What is the curve?

 Consideration must be given to the bits of security provided by each
 of these choices. Security is measured in bits, where a strong
 symmetric cipher with a key of X bits is said to provide X bits of
 security. It is recommended that the bits of security provided by
 each choice are roughly equivalent. The following table provides
 comparable minimum bits of security [SP800-57] for the ECDSA key
 sizes and message digest algorithms. It also lists curves [PKI-ALG]
 for the key sizes.

Turner & Brown Informational [Page 31]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 Minimum | ECDSA | Message | Curve
 Bits of | Key Size | Digest |
 Security | | Algorithm |
 ---------+----------+-----------+-----------
 80 | 160-223 | SHA-1 | sect163k1
 | | SHA-224 | secp163r2
 | | SHA-256 | secp192r1
 | | SHA-384 |
 | | SHA-512 |
 ---------+----------+-----------+-----------
 112 | 224-255 | SHA-224 | secp224r1
 | | SHA-256 | sect233k1
 | | SHA-384 | sect233r1
 | | SHA-512 |
 ---------+----------+-----------+-----------
 128 | 256-383 | SHA-256 | secp256r1
 | | SHA-384 | sect283k1
 | | SHA-512 | sect283r1
 ---------+----------+-----------+-----------
 192 | 384-511 | SHA-384 | secp384r1
 | | SHA-512 | sect409k1
 | | | sect409r1
 ---------+----------+-----------+-----------
 256 | 512+ | SHA-512 | secp521r1
 | | | sect571k1
 | | | sect571r1
 ---------+----------+-----------+-----------

 To promote interoperability, the following choices are RECOMMENDED:

 Minimum | ECDSA | Message | Curve
 Bits of | Key Size | Digest |
 Security | | Algorithm |
 ---------+----------+-----------+-----------
 80 | 192 | SHA-256 | sect192r1
 ---------+----------+-----------+-----------
 112 | 224 | SHA-256 | secp224r1
 ---------+----------+-----------+-----------
 128 | 256 | SHA-256 | secp256r1
 ---------+----------+-----------+-----------
 192 | 384 | SHA-384 | secp384r1
 ---------+----------+-----------+-----------
 256 | 512+ | SHA-512 | secp521r1
 ---------+----------+-----------+-----------

Turner & Brown Informational [Page 32]

RFC 5753 Use of ECC Algorithms in CMS January 2010

10. IANA Considerations

 This document makes extensive use of object identifiers to register
 originator public key types and algorithms. The algorithm object
 identifiers are registered in the ANSI X9.62, ANSI X9.63, NIST, RSA,
 and SECG arcs. Additionally, object identifiers are used to identify
 the ASN.1 modules found in Appendix A (there are two). These are
 defined by the SMIME WG Registrar in an arc delegated by RSA to the
 SMIME Working Group: iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0). No action by IANA is
 necessary for this document or any anticipated updates.

11. References

11.1. Normative References

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)", RFC
 5652, September 2009.

 [CMS-AES] Schaad, J., "Use of the Advanced Encryption Standard
 (AES) Encryption Algorithm in Cryptographic Message
 Syntax (CMS)", RFC 3565, July 2003.

 [CMS-AESCG] Housley, R., "Using AES-CCM and AES-GCM Authenticated
 Encryption in the Cryptographic Message Syntax (CMS)",
 RFC 5084, December 2007.

 [CMS-ALG] Housley, R., "Cryptographic Message Syntax (CMS)
 Algorithms", RFC 3370, August 2002.

 [CMS-AUTHENV] Housley, R., "Cryptographic Message Syntax (CMS)
 Authenticated-Enveloped-Data Content Type", RFC 5083,
 November 2007.

 [CMS-DH] Rescorla, E., "Diffie-Hellman Key Agreement Method",
 RFC 2631, June 1999.

 [CMS-SHA2] Turner, S., "Using SHA2 Algorithms with Cryptographic
 Message Syntax", RFC 5754, January 2010.

 [FIPS180-3] National Institute of Standards and Technology (NIST),
 FIPS Publication 180-3: Secure Hash Standard, October
 2008.

 [FIPS186-3] National Institute of Standards and Technology (NIST),
 FIPS Publication 186-3: Digital Signature Standard,
 June 2009.

Turner & Brown Informational [Page 33]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 [HMAC-SHA2] Nystrom, M., "Identifiers and Test Vectors for HMAC-
 SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-
 SHA-512", RFC 4231, December 2005.

 [MUST] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [MSG] Ramsdell, B. and S. Turner, "Secure/Multipurpose
 Internet Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

 [PKI] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation
 List (CRL) Profile", RFC 5280, May 2008.

 [PKI-ALG] Turner, S., Brown, D., Yiu, K., Housley, R., and T.
 Polk, "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, March 2009.

 [RANDOM] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC
 4086, June 2005.

 [RSAOAEP] Schaad, J., Kaliski, B., and R. Housley, "Additional
 Algorithms and Identifiers for RSA Cryptography for
 use in the Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL)
 Profile", RFC 4055, June 2005.

 [SEC1] Standards for Efficient Cryptography Group, "SEC 1:
 Elliptic Curve Cryptography", version 2.0, May 2009,
 available from www.secg.org.

 [SP800-56A] National Institute of Standards and Technology (NIST),
 Special Publication 800-56A: Recommendation Pair-Wise
 Key Establishment Schemes Using Discrete Logarithm
 Cryptography (Revised), March 2007.

 [X.680] ITU-T Recommendation X.680 (2002) | ISO/IEC
 8824-1:2002. Information Technology - Abstract Syntax
 Notation One.

Turner & Brown Informational [Page 34]

RFC 5753 Use of ECC Algorithms in CMS January 2010

11.2. Informative References

 [BON] D. Boneh, "The Security of Multicast MAC",
 Presentation at Selected Areas of Cryptography 2000,
 Center for Applied Cryptographic Research, University
 of Waterloo, 2000. Paper version available from
 http://crypto.stanford.edu/˜dabo/papers/mmac.ps

 [CERTCAP] Santesson, S., "X.509 Certificate Extension for
 Secure/Multipurpose Internet Mail Extensions (S/MIME)
 Capabilities", RFC 4262, December 2005.

 [CMS-ASN] Hoffman, P. and J. Schaad, "New ASN.1 Modules for CMS
 and S/MIME", Work in Progress, August 2009.

 [CMS-ECC] Blake-Wilson, S., Brown, D., and P. Lambert, "Use of
 Elliptic Curve Cryptography (ECC) Algorithms in
 Cryptographic Message Syntax (CMS)", RFC 3278, April
 2002.

 [CMS-KEA] Pawling, J., "Use of the KEA and SKIPJACK Algorithms
 in CMS", RFC 2876, July 2000.

 [K] B. Kaliski, "MQV Vulnerability", Posting to ANSI X9F1
 and IEEE P1363 newsgroups, 1998.

 [PKI-ASN] Hoffman, P. and J. Schaad, "New ASN.1 Modules for
 PKIX", Work in Progress, August 2009.

 [SP800-57] National Institute of Standards and Technology (NIST),
 Special Publication 800-57: Recommendation for Key
 Management - Part 1 (Revised), March 2007.

 [X.681] ITU-T Recommendation X.681 (2002) | ISO/IEC
 8824-2:2002. Information Technology - Abstract Syntax
 Notation One: Information Object Specification.

 [X.682] ITU-T Recommendation X.682 (2002) | ISO/IEC
 8824-3:2002. Information Technology - Abstract Syntax
 Notation One: Constraint Specification.

 [X.683] ITU-T Recommendation X.683 (2002) | ISO/IEC
 8824-4:2002. Information Technology - Abstract Syntax
 Notation One: Parameterization of ASN.1
 Specifications, 2002.

Turner & Brown Informational [Page 35]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 [X9.62] X9.62-2005, "Public Key Cryptography for the Financial
 Services Industry: The Elliptic Curve Digital
 Signature Standard (ECDSA)", November, 2005.

Turner & Brown Informational [Page 36]

RFC 5753 Use of ECC Algorithms in CMS January 2010

Appendix A. ASN.1 Modules

 Appendix A.1 provides the normative ASN.1 definitions for the
 structures described in this specification using ASN.1 as defined in
 [X.680] for compilers that support the 1988 ASN.1.

 Appendix A.2 provides informative ASN.1 definitions for the
 structures described in this specification using ASN.1 as defined in
 [X.680], [X.681], [X.682], and [X.683] for compilers that support the
 2002 ASN.1. This appendix contains the same information as Appendix
 A.1 in a more recent (and precise) ASN.1 notation; however, Appendix
 A.1 takes precedence in case of conflict.

A.1. 1988 ASN.1 Module

 CMSECCAlgs-2009-88
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-cms-ecc-alg-2009-88(45) }

 DEFINITIONS IMPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL

 IMPORTS

 -- From [PKI]

 AlgorithmIdentifier
 FROM PKIX1Explicit88
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) mod(0)
 pkix1-explicit(18) }

 -- From [RSAOAEP]

 id-sha224, id-sha256, id-sha384, id-sha512
 FROM PKIX1-PSS-OAEP-Algorithms
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-rsa-pkalgs(33) }

Turner & Brown Informational [Page 37]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 -- From [PKI-ALG]

 id-sha1, ecdsa-with-SHA1, ecdsa-with-SHA224,
 ecdsa-with-SHA256, ecdsa-with-SHA384, ecdsa-with-SHA512,
 id-ecPublicKey, ECDSA-Sig-Value, ECPoint, ECParameters
 FROM PKIX1Algorithms2008
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0) 45 }

 -- From [CMS]

 OriginatorPublicKey, UserKeyingMaterial
 FROM CryptographicMessageSyntax2004
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) cms-2004(24) }

 -- From [CMS-ALG]

 hMAC-SHA1, des-ede3-cbc, id-alg-CMS3DESwrap, CBCParameter
 FROM CryptographicMessageSyntaxAlgorithms
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) cmsalg-2001(16) }

 -- From [CMS-AES]

 id-aes128-CBC, id-aes192-CBC, id-aes256-CBC, AES-IV,
 id-aes128-wrap, id-aes192-wrap, id-aes256-wrap
 FROM CMSAesRsaesOaep
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-cms-aes(19) }

 -- From [CMS-AESCG]

 id-aes128-CCM, id-aes192-CCM, id-aes256-CCM, CCMParameters
 id-aes128-GCM, id-aes192-GCM, id-aes256-GCM, GCMParameters
 FROM CMS-AES-CCM-and-AES-GCM
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-cms-aes(32) }

 ;

 --
 -- Message Digest Algorithms: Imported from [PKI-ALG] and [RSAOAEP]
 --

 -- id-sha1 Parameters are preferred absent
 -- id-sha224 Parameters are preferred absent
 -- id-sha256 Parameters are preferred absent

Turner & Brown Informational [Page 38]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 -- id-sha384 Parameters are preferred absent
 -- id-sha512 Parameters are preferred absent

 --
 -- Signature Algorithms: Imported from [PKI-ALG]
 --

 -- ecdsa-with-SHA1 Parameters are NULL
 -- ecdsa-with-SHA224 Parameters are absent
 -- ecdsa-with-SHA256 Parameters are absent
 -- ecdsa-with-SHA384 Parameters are absent
 -- ecdsa-with-SHA512 Parameters are absent

 -- ECDSA Signature Value
 -- Contents of SignatureValue OCTET STRING

 -- ECDSA-Sig-Value ::= SEQUENCE {
 -- r INTEGER,
 -- s INTEGER
 -- }

 --
 -- Key Agreement Algorithms
 --

 x9-63-scheme OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) tc68(133) country(16) x9(840)
 x9-63(63) schemes(0) }
 secg-scheme OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) certicom(132) schemes(1) }

 --
 -- Diffie-Hellman Single Pass, Standard, with KDFs
 --

 -- Parameters are always present and indicate the key wrap algorithm
 -- with KeyWrapAlgorithm.

 dhSinglePass-stdDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
 x9-63-scheme 2 }

 dhSinglePass-stdDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 0 }

 dhSinglePass-stdDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 1 }

Turner & Brown Informational [Page 39]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 dhSinglePass-stdDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 2 }

 dhSinglePass-stdDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 3 }

 --
 -- Diffie-Hellman Single Pass, Cofactor, with KDFs
 --

 dhSinglePass-cofactorDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
 x9-63-scheme 3 }

 dhSinglePass-cofactorDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 14 0 }

 dhSinglePass-cofactorDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 14 1 }

 dhSinglePass-cofactorDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 14 2 }

 dhSinglePass-cofactorDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 14 3 }

 --
 -- MQV Single Pass, Cofactor, with KDFs
 --

 mqvSinglePass-sha1kdf-scheme OBJECT IDENTIFIER ::= {
 x9-63-scheme 16 }

 mqvSinglePass-sha224kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 15 0 }

 mqvSinglePass-sha256kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 15 1 }

 mqvSinglePass-sha384kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 15 2 }

 mqvSinglePass-sha512kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 15 3 }

 --
 -- Key Wrap Algorithms: Imported from [CMS-ALG] and [CMS-AES]
 --

Turner & Brown Informational [Page 40]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 KeyWrapAlgorithm ::= AlgorithmIdentifier

 -- id-alg-CMS3DESwrap Parameters are NULL
 -- id-aes128-wrap Parameters are absent
 -- id-aes192-wrap Parameters are absent
 -- id-aes256-wrap Parameters are absent

 --
 -- Content Encryption Algorithms: Imported from [CMS-ALG]
 -- and [CMS-AES]
 --

 -- des-ede3-cbc Parameters are CBCParameter
 -- id-aes128-CBC Parameters are AES-IV
 -- id-aes192-CBC Parameters are AES-IV
 -- id-aes256-CBC Parameters are AES-IV
 -- id-aes128-CCM Parameters are CCMParameters
 -- id-aes192-CCM Parameters are CCMParameters
 -- id-aes256-CCM Parameters are CCMParameters
 -- id-aes128-GCM Parameters are GCMParameters
 -- id-aes192-GCM Parameters are GCMParameters
 -- id-aes256-GCM Parameters are GCMParameters

 --
 -- Message Authentication Code Algorithms
 --

 -- hMAC-SHA1 Parameters are preferred absent

 -- HMAC with SHA-224, SHA-256, SHA_384, and SHA-512 Parameters are
 -- absent

 id-hmacWithSHA224 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 digestAlgorithm(2) 8 }

 id-hmacWithSHA256 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 digestAlgorithm(2) 9 }

 id-hmacWithSHA384 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 digestAlgorithm(2) 10 }

 id-hmacWithSHA512 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 digestAlgorithm(2) 11 }

Turner & Brown Informational [Page 41]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 --
 -- Originator Public Key Algorithms: Imported from [PKI-ALG]
 --

 -- id-ecPublicKey Parameters are absent, NULL, or ECParameters

 -- Format for both ephemeral and static public keys: Imported from
 -- [PKI-ALG]

 -- ECPoint ::= OCTET STRING

 -- ECParameters ::= CHOICE {
 -- namedCurve OBJECT IDENTIFIER
 -- commented out in [PKI-ALG] implicitCurve NULL
 -- commented out in [PKI-ALG] specifiedCurve SpecifiedECDomain
 -- commented out in [PKI-ALG] ...
 -- }
 -- implicitCurve and specifiedCurve MUST NOT be used in PKIX.
 -- Details for SpecifiedECDomain can be found in [X9.62].
 -- Any future additions to this CHOICE should be coordinated
 -- with ANSI X9.

 -- Format of KeyAgreeRecipientInfo ukm field when used with
 -- ECMQV

 MQVuserKeyingMaterial ::= SEQUENCE {
 ephemeralPublicKey OriginatorPublicKey,
 addedukm [0] EXPLICIT UserKeyingMaterial OPTIONAL
 }

 -- ’SharedInfo’ for input to KDF when using ECDH and ECMQV with
 -- EnvelopedData, AuthenticatedData, or AuthEnvelopedData

 ECC-CMS-SharedInfo ::= SEQUENCE {
 keyInfo AlgorithmIdentifier,
 entityUInfo [0] EXPLICIT OCTET STRING OPTIONAL,
 suppPubInfo [2] EXPLICIT OCTET STRING
 }

 --
 -- S/MIME Capabilities
 -- An identifier followed by type.
 --

Turner & Brown Informational [Page 42]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 --
 -- S/MIME Capabilities: Message Digest Algorithms
 --

 -- Found in [CMS-SHA2].

 --
 -- S/MIME Capabilities: Signature Algorithms
 --

 -- ecdsa-with-SHA1 Type NULL
 -- ecdsa-with-SHA224 Type absent
 -- ecdsa-with-SHA256 Type absent
 -- ecdsa-with-SHA384 Type absent
 -- ecdsa-with-SHA512 Type absent

 --
 -- S/MIME Capabilities: ECDH, Single Pass, Standard
 --

 -- dhSinglePass-stdDH-sha1kdf Type is the KeyWrapAlgorithm
 -- dhSinglePass-stdDH-sha224kdf Type is the KeyWrapAlgorithm
 -- dhSinglePass-stdDH-sha256kdf Type is the KeyWrapAlgorithm
 -- dhSinglePass-stdDH-sha384kdf Type is the KeyWrapAlgorithm
 -- dhSinglePass-stdDH-sha512kdf Type is the KeyWrapAlgorithm

 --
 -- S/MIME Capabilities: ECDH, Single Pass, Cofactor
 --

 -- dhSinglePass-cofactorDH-sha1kdf Type is the KeyWrapAlgorithm
 -- dhSinglePass-cofactorDH-sha224kdf Type is the KeyWrapAlgorithm
 -- dhSinglePass-cofactorDH-sha256kdf Type is the KeyWrapAlgorithm
 -- dhSinglePass-cofactorDH-sha384kdf Type is the KeyWrapAlgorithm
 -- dhSinglePass-cofactorDH-sha512kdf Type is the KeyWrapAlgorithm

 --
 -- S/MIME Capabilities: ECMQV, Single Pass, Standard
 --

 -- mqvSinglePass-sha1kdf Type is the KeyWrapAlgorithm
 -- mqvSinglePass-sha224kdf Type is the KeyWrapAlgorithm
 -- mqvSinglePass-sha256kdf Type is the KeyWrapAlgorithm
 -- mqvSinglePass-sha384kdf Type is the KeyWrapAlgorithm
 -- mqvSinglePass-sha512kdf Type is the KeyWrapAlgorithm

Turner & Brown Informational [Page 43]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 --
 -- S/MIME Capabilities: Message Authentication Code Algorithms
 --

 -- hMACSHA1 Type is preferred absent
 -- id-hmacWithSHA224 Type is absent
 -- if-hmacWithSHA256 Type is absent
 -- id-hmacWithSHA384 Type is absent
 -- id-hmacWithSHA512 Type is absent

 END

Turner & Brown Informational [Page 44]

RFC 5753 Use of ECC Algorithms in CMS January 2010

A.2. 2004 ASN.1 Module

CMSECCAlgs-2009-02
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-cms-ecc-alg-2009-02(46) }

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS ALL

IMPORTS

-- From [PKI-ASN]

mda-sha1, sa-ecdsaWithSHA1, sa-ecdsaWithSHA224, sa-ecdsaWithSHA256,
sa-ecdsaWithSHA384, sa-ecdsaWithSHA512, id-ecPublicKey,
ECDSA-Sig-Value, ECPoint, ECParameters
 FROM PKIXAlgs-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-algorithms2008-02(56) }

-- From [PKI-ASN]

mda-sha224, mda-sha256, mda-sha384, mda-sha512
 FROM PKIX1-PSS-OAEP-Algorithms-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-rsa-pkalgs-02(54) }

-- FROM [CMS-ASN]

KEY-WRAP, SIGNATURE-ALGORITHM, DIGEST-ALGORITHM, ALGORITHM,
PUBLIC-KEY, MAC-ALGORITHM, CONTENT-ENCRYPTION, KEY-AGREE, SMIME-CAPS,
AlgorithmIdentifier{}
 FROM AlgorithmInformation-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) }

-- From [CMS-ASN]

OriginatorPublicKey, UserKeyingMaterial
 FROM CryptographicMessageSyntax-2009
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-cms-2004-02(41) }

Turner & Brown Informational [Page 45]

RFC 5753 Use of ECC Algorithms in CMS January 2010

-- From [CMS-ASN]

maca-hMAC-SHA1, cea-3DES-cbc, kwa-3DESWrap, CBCParameter
 FROM CryptographicMessageSyntaxAlgorithms-2009
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-cmsalg-2001-02(37) }

-- From [CMS-ASN]

cea-aes128-cbc, cea-aes192-cbc, cea-aes256-cbc, kwa-aes128-wrap,
kwa-aes192-wrap, kwa-aes256-wrap
 FROM CMSAesRsaesOaep-2009
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-cms-aes-02(38) }

-- From [CMS-ASN]

cea-aes128-CCM, cea-aes192-CCM, cea-aes256-CCM, cea-aes128-GCM,
cea-aes192-GCM, cea-aes256-GCM
 FROM CMS-AES-CCM-and-AES-GCM-2009
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-cms-aes-ccm-gcm-02(44) }

;

-- Constrains the SignedData digestAlgorithms field
-- Constrains the SignedData SignerInfo digestAlgorithm field
-- Constrains the AuthenticatedData digestAlgorithm field

-- Message Digest Algorithms: Imported from [PKI-ASN]

-- MessageDigestAlgs DIGEST-ALGORITHM ::= {
-- mda-sha1 |
-- mda-sha224 |
-- mda-sha256 |
-- mda-sha384 |
-- mda-sha512,
-- ...
-- }

-- Constrains the SignedData SignerInfo signatureAlgorithm field

-- Signature Algorithms: Imported from [PKI-ASN]

-- SignatureAlgs SIGNATURE-ALGORITHM ::= {
-- sa-ecdsaWithSHA1 |
-- sa-ecdsaWithSHA224 |
-- sa-ecdsaWithSHA256 |

Turner & Brown Informational [Page 46]

RFC 5753 Use of ECC Algorithms in CMS January 2010

-- sa-ecdsaWithSHA384 |
-- sa-ecdsaWithSHA512,
-- ...
-- }

-- ECDSA Signature Value: Imported from [PKI-ALG]
-- Contents of SignatureValue OCTET STRING

-- ECDSA-Sig-Value ::= SEQUENCE {
-- r INTEGER,
-- s INTEGER
-- }

--
-- Key Agreement Algorithms
--

-- Constrains the EnvelopedData RecipientInfo KeyAgreeRecipientInfo
-- keyEncryption Algorithm field
-- Constrains the AuthenticatedData RecipientInfo
-- KeyAgreeRecipientInfo keyEncryption Algorithm field
-- Constrains the AuthEnvelopedData RecipientInfo
-- KeyAgreeRecipientInfo keyEncryption Algorithm field

-- DH variants are not used with AuthenticatedData or
-- AuthEnvelopedData

KeyAgreementAlgs KEY-AGREE ::= {
 kaa-dhSinglePass-stdDH-sha1kdf-scheme |
 kaa-dhSinglePass-stdDH-sha224kdf-scheme |
 kaa-dhSinglePass-stdDH-sha256kdf-scheme |
 kaa-dhSinglePass-stdDH-sha384kdf-scheme |
 kaa-dhSinglePass-stdDH-sha512kdf-scheme |
 kaa-dhSinglePass-cofactorDH-sha1kdf-scheme |
 kaa-dhSinglePass-cofactorDH-sha224kdf-scheme |
 kaa-dhSinglePass-cofactorDH-sha256kdf-scheme |
 kaa-dhSinglePass-cofactorDH-sha384kdf-scheme |
 kaa-dhSinglePass-cofactorDH-sha512kdf-scheme |
 kaa-mqvSinglePass-sha1kdf-scheme |
 kaa-mqvSinglePass-sha224kdf-scheme |
 kaa-mqvSinglePass-sha256kdf-scheme |
 kaa-mqvSinglePass-sha384kdf-scheme |
 kaa-mqvSinglePass-sha512kdf-scheme,
 ...
}

Turner & Brown Informational [Page 47]

RFC 5753 Use of ECC Algorithms in CMS January 2010

x9-63-scheme OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) tc68(133) country(16) x9(840)
 x9-63(63) schemes(0) }

secg-scheme OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) certicom(132) schemes(1) }

--
-- Diffie-Hellman Single Pass, Standard, with KDFs
--

-- Parameters are always present and indicate the Key Wrap Algorithm

kaa-dhSinglePass-stdDH-sha1kdf-scheme KEY-AGREE ::= {
 IDENTIFIER dhSinglePass-stdDH-sha1kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha1kdf-scheme
}

dhSinglePass-stdDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
 x9-63-scheme 2 }

kaa-dhSinglePass-stdDH-sha224kdf-scheme KEY-AGREE ::= {
 IDENTIFIER dhSinglePass-stdDH-sha224kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha224kdf-scheme
}

dhSinglePass-stdDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 0 }

kaa-dhSinglePass-stdDH-sha256kdf-scheme KEY-AGREE ::= {
 IDENTIFIER dhSinglePass-stdDH-sha256kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha256kdf-scheme
}

dhSinglePass-stdDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 1 }

Turner & Brown Informational [Page 48]

RFC 5753 Use of ECC Algorithms in CMS January 2010

kaa-dhSinglePass-stdDH-sha384kdf-scheme KEY-AGREE ::= {
 IDENTIFIER dhSinglePass-stdDH-sha384kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha384kdf-scheme
}

dhSinglePass-stdDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 2 }

kaa-dhSinglePass-stdDH-sha512kdf-scheme KEY-AGREE ::= {
 IDENTIFIER dhSinglePass-stdDH-sha512kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha512kdf-scheme
}

dhSinglePass-stdDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 11 3 }

--
-- Diffie-Hellman Single Pass, Cofactor, with KDFs
--

kaa-dhSinglePass-cofactorDH-sha1kdf-scheme KEY-AGREE ::= {
 IDENTIFIER dhSinglePass-cofactorDH-sha1kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha1kdf-scheme
}

dhSinglePass-cofactorDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
 x9-63-scheme 3 }

kaa-dhSinglePass-cofactorDH-sha224kdf-scheme KEY-AGREE ::= {
 IDENTIFIER dhSinglePass-cofactorDH-sha224kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha224kdf-scheme
}

dhSinglePass-cofactorDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 14 0 }

Turner & Brown Informational [Page 49]

RFC 5753 Use of ECC Algorithms in CMS January 2010

kaa-dhSinglePass-cofactorDH-sha256kdf-scheme KEY-AGREE ::= {
 IDENTIFIER dhSinglePass-cofactorDH-sha256kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha256kdf-scheme
}

dhSinglePass-cofactorDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 14 1 }

kaa-dhSinglePass-cofactorDH-sha384kdf-scheme KEY-AGREE ::= {
 IDENTIFIER dhSinglePass-cofactorDH-sha384kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha384kdf-scheme
}

dhSinglePass-cofactorDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 14 2 }

kaa-dhSinglePass-cofactorDH-sha512kdf-scheme KEY-AGREE ::= {
 IDENTIFIER dhSinglePass-cofactorDH-sha512kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha512kdf-scheme
}

dhSinglePass-cofactorDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 14 3 }

--
-- MQV Single Pass, Cofactor, with KDFs
--

kaa-mqvSinglePass-sha1kdf-scheme KEY-AGREE ::= {
 IDENTIFIER mqvSinglePass-sha1kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-mqvSinglePass-sha1kdf-scheme
}

mqvSinglePass-sha1kdf-scheme OBJECT IDENTIFIER ::= {
 x9-63-scheme 16 }

Turner & Brown Informational [Page 50]

RFC 5753 Use of ECC Algorithms in CMS January 2010

kaa-mqvSinglePass-sha224kdf-scheme KEY-AGREE ::= {
 IDENTIFIER mqvSinglePass-sha224kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-mqvSinglePass-sha224kdf-scheme
}

mqvSinglePass-sha224kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 15 0 }

kaa-mqvSinglePass-sha256kdf-scheme KEY-AGREE ::= {
 IDENTIFIER mqvSinglePass-sha256kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-mqvSinglePass-sha256kdf-scheme
}

mqvSinglePass-sha256kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 15 1 }

kaa-mqvSinglePass-sha384kdf-scheme KEY-AGREE ::= {
 IDENTIFIER mqvSinglePass-sha384kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-mqvSinglePass-sha384kdf-scheme
}

mqvSinglePass-sha384kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 15 2 }

kaa-mqvSinglePass-sha512kdf-scheme KEY-AGREE ::= {
 IDENTIFIER mqvSinglePass-sha512kdf-scheme
 PARAMS TYPE KeyWrapAlgorithm ARE required
 UKM -- TYPE unencoded data -- ARE preferredPresent
 SMIME-CAPS cap-kaa-mqvSinglePass-sha512kdf-scheme
}

mqvSinglePass-sha512kdf-scheme OBJECT IDENTIFIER ::= {
 secg-scheme 15 3 }

--
-- Key Wrap Algorithms: Imported from [CMS-ASN]
--

Turner & Brown Informational [Page 51]

RFC 5753 Use of ECC Algorithms in CMS January 2010

KeyWrapAlgorithm ::= AlgorithmIdentifier { KEY-WRAP, { KeyWrapAlgs } }

KeyWrapAlgs KEY-WRAP ::= {
 kwa-3DESWrap |
 kwa-aes128-wrap |
 kwa-aes192-wrap |
 kwa-aes256-wrap,
 ...
}

--
-- Content Encryption Algorithms: Imported from [CMS-ASN]
--

-- Constrains the EnvelopedData EncryptedContentInfo encryptedContent
-- field and the AuthEnvelopedData EncryptedContentInfo
-- contentEncryptionAlgorithm field

-- ContentEncryptionAlgs CONTENT-ENCRYPTION ::= {
-- cea-3DES-cbc |
-- cea-aes128-cbc |
-- cea-aes192-cbc |
-- cea-aes256-cbc |
-- cea-aes128-ccm |
-- cea-aes192-ccm |
-- cea-aes256-ccm |
-- cea-aes128-gcm |
-- cea-aes192-gcm |
-- cea-aes256-gcm,
-- ...
-- }

-- des-ede3-cbc and aes*-cbc are used with EnvelopedData and
-- EncryptedData
-- aes*-ccm are used with AuthEnvelopedData
-- aes*-gcm are used with AuthEnvelopedData
-- (where * is 128, 192, and 256)

--
-- Message Authentication Code Algorithms
--

-- Constrains the AuthenticatedData
-- MessageAuthenticationCodeAlgorithm field
--

Turner & Brown Informational [Page 52]

RFC 5753 Use of ECC Algorithms in CMS January 2010

MessageAuthAlgs MAC-ALGORITHM ::= {
-- maca-hMAC-SHA1 |
 maca-hMAC-SHA224 |
 maca-hMAC-SHA256 |
 maca-hMAC-SHA384 |
 maca-hMAC-SHA512,
 ...
}

maca-hMAC-SHA224 MAC-ALGORITHM ::= {
 IDENTIFIER id-hmacWithSHA224
 PARAMS ARE absent
 IS-KEYED-MAC TRUE
 SMIME-CAPS cap-hMAC-SHA224
}

id-hmacWithSHA224 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 digestAlgorithm(2) 8 }

maca-hMAC-SHA256 MAC-ALGORITHM ::= {
 IDENTIFIER id-hmacWithSHA256
 PARAMS ARE absent
 IS-KEYED-MAC TRUE
 SMIME-CAPS cap-hMAC-SHA256
}

id-hmacWithSHA256 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 digestAlgorithm(2) 9 }

maca-hMAC-SHA384 MAC-ALGORITHM ::= {
 IDENTIFIER id-hmacWithSHA384
 PARAMS ARE absent
 IS-KEYED-MAC TRUE
 SMIME-CAPS cap-hMAC-SHA384
}

id-hmacWithSHA384 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 digestAlgorithm(2) 10 }

maca-hMAC-SHA512 MAC-ALGORITHM ::= {
 IDENTIFIER id-hmacWithSHA512
 PARAMS ARE absent
 IS-KEYED-MAC TRUE
 SMIME-CAPS cap-hMAC-SHA512
}

Turner & Brown Informational [Page 53]

RFC 5753 Use of ECC Algorithms in CMS January 2010

id-hmacWithSHA512 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 digestAlgorithm(2) 11 }

--
-- Originator Public Key Algorithms
--

-- Constraints on KeyAgreeRecipientInfo OriginatorIdentifierOrKey
-- OriginatorPublicKey algorithm field

OriginatorPKAlgorithms PUBLIC-KEY ::= {
 opka-ec,
 ...
}

opka-ec PUBLIC-KEY ::={
 IDENTIFIER id-ecPublicKey
 KEY ECPoint
 PARAMS TYPE CHOICE { n NULL, p ECParameters } ARE preferredAbsent
}

-- Format for both ephemeral and static public keys: Imported from
-- [PKI-ALG]

-- ECPoint ::= OCTET STRING

-- ECParameters ::= CHOICE {
-- namedCurve CURVE.&id({NamedCurve})
-- commented out in [PKI-ALG] implicitCurve NULL
-- commented out in [PKI-ALG] specifiedCurve SpecifiedECDomain
-- commented out in [PKI-ALG] ...
-- }
 -- implicitCurve and specifiedCurve MUST NOT be used in PKIX.
 -- Details for SpecifiedECDomain can be found in [X9.62].
 -- Any future additions to this CHOICE should be coordinated
 -- with ANSI X.9.

-- Format of KeyAgreeRecipientInfo ukm field when used with
-- ECMQV

MQVuserKeyingMaterial ::= SEQUENCE {
 ephemeralPublicKey OriginatorPublicKey,
 addedukm [0] EXPLICIT UserKeyingMaterial OPTIONAL
}

Turner & Brown Informational [Page 54]

RFC 5753 Use of ECC Algorithms in CMS January 2010

-- ’SharedInfo’ for input to KDF when using ECDH and ECMQV with
-- EnvelopedData, AuthenticatedData, or AuthEnvelopedData

ECC-CMS-SharedInfo ::= SEQUENCE {
 keyInfo KeyWrapAlgorithm,
 entityUInfo [0] EXPLICIT OCTET STRING OPTIONAL,
 suppPubInfo [2] EXPLICIT OCTET STRING
}

--
-- S/MIME CAPS for algorithms in this document
--

Turner & Brown Informational [Page 55]

RFC 5753 Use of ECC Algorithms in CMS January 2010

SMimeCAPS SMIME-CAPS ::= {
-- mda-sha1.&smimeCaps |
-- mda-sha224.&smimeCaps |
-- mda-sha256.&smimeCaps |
-- mda-sha384.&smimeCaps |
-- mda-sha512.&smimeCaps |
-- sa-ecdsaWithSHA1.&smimeCaps |
-- sa-ecdsaWithSHA224.&smimeCaps |
-- sa-ecdsaWithSHA256.&smimeCaps |
-- sa-ecdsaWithSHA384.&smimeCaps |
-- sa-ecdsaWithSHA512.&smimeCaps |
 kaa-dhSinglePass-stdDH-sha1kdf-scheme.&smimeCaps |
 kaa-dhSinglePass-stdDH-sha224kdf-scheme.&smimeCaps |
 kaa-dhSinglePass-stdDH-sha256kdf-scheme.&smimeCaps |
 kaa-dhSinglePass-stdDH-sha384kdf-scheme.&smimeCaps |
 kaa-dhSinglePass-stdDH-sha512kdf-scheme.&smimeCaps |
 kaa-dhSinglePass-cofactorDH-sha1kdf-scheme.&smimeCaps |
 kaa-dhSinglePass-cofactorDH-sha224kdf-scheme.&smimeCaps |
 kaa-dhSinglePass-cofactorDH-sha256kdf-scheme.&smimeCaps |
 kaa-dhSinglePass-cofactorDH-sha384kdf-scheme.&smimeCaps |
 kaa-dhSinglePass-cofactorDH-sha512kdf-scheme.&smimeCaps |
 kaa-mqvSinglePass-sha1kdf-scheme.&smimeCaps |
 kaa-mqvSinglePass-sha224kdf-scheme.&smimeCaps |
 kaa-mqvSinglePass-sha256kdf-scheme.&smimeCaps |
 kaa-mqvSinglePass-sha384kdf-scheme.&smimeCaps |
 kaa-mqvSinglePass-sha512kdf-scheme.&smimeCaps |
-- kwa-3des.&smimeCaps |
-- kwa-aes128.&smimeCaps |
-- kwa-aes192.&smimeCaps |
-- kwa-aes256.&smimeCaps |
-- cea-3DES-cbc.&smimeCaps |
-- cea-aes128-cbc.&smimeCaps |
-- cea-aes192-cbc.&smimeCaps |
-- cea-aes256-cbc.&smimeCaps |
-- cea-aes128-ccm.&smimeCaps |
-- cea-aes192-ccm.&smimeCaps |
-- cea-aes256-ccm.&smimeCaps |
-- cea-aes128-gcm.&smimeCaps |
-- cea-aes192-gcm.&smimeCaps |
-- cea-aes256-gcm.&smimeCaps |
-- maca-hMAC-SHA1.&smimeCaps |
 maca-hMAC-SHA224.&smimeCaps |
 maca-hMAC-SHA256.&smimeCaps |
 maca-hMAC-SHA384.&smimeCaps |
 maca-hMAC-SHA512.&smimeCaps,
 ...
}

Turner & Brown Informational [Page 56]

RFC 5753 Use of ECC Algorithms in CMS January 2010

cap-kaa-dhSinglePass-stdDH-sha1kdf-scheme SMIME-CAPS ::= {
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY dhSinglePass-stdDH-sha1kdf-scheme
}

cap-kaa-dhSinglePass-stdDH-sha224kdf-scheme SMIME-CAPS ::= {
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY dhSinglePass-stdDH-sha224kdf-scheme
}

cap-kaa-dhSinglePass-stdDH-sha256kdf-scheme SMIME-CAPS ::= {
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY dhSinglePass-stdDH-sha256kdf-scheme
}

cap-kaa-dhSinglePass-stdDH-sha384kdf-scheme SMIME-CAPS ::= {
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY dhSinglePass-stdDH-sha384kdf-scheme
}

cap-kaa-dhSinglePass-stdDH-sha512kdf-scheme SMIME-CAPS ::= {
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY dhSinglePass-stdDH-sha512kdf-scheme
}

cap-kaa-dhSinglePass-cofactorDH-sha1kdf-scheme SMIME-CAPS ::={
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY dhSinglePass-cofactorDH-sha1kdf-scheme
}

cap-kaa-dhSinglePass-cofactorDH-sha224kdf-scheme SMIME-CAPS ::={
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY dhSinglePass-cofactorDH-sha224kdf-scheme
}

cap-kaa-dhSinglePass-cofactorDH-sha256kdf-scheme SMIME-CAPS ::={
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY dhSinglePass-cofactorDH-sha256kdf-scheme
}

cap-kaa-dhSinglePass-cofactorDH-sha384kdf-scheme SMIME-CAPS ::={
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY dhSinglePass-cofactorDH-sha384kdf-scheme
}

Turner & Brown Informational [Page 57]

RFC 5753 Use of ECC Algorithms in CMS January 2010

cap-kaa-dhSinglePass-cofactorDH-sha512kdf-scheme SMIME-CAPS ::={
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY dhSinglePass-cofactorDH-sha512kdf-scheme
}

cap-kaa-mqvSinglePass-sha1kdf-scheme SMIME-CAPS ::={
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY mqvSinglePass-sha1kdf-scheme
}

cap-kaa-mqvSinglePass-sha224kdf-scheme SMIME-CAPS ::={
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY mqvSinglePass-sha224kdf-scheme
}

cap-kaa-mqvSinglePass-sha256kdf-scheme SMIME-CAPS ::={
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY mqvSinglePass-sha256kdf-scheme
}

cap-kaa-mqvSinglePass-sha384kdf-scheme SMIME-CAPS ::={
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY mqvSinglePass-sha384kdf-scheme
}

cap-kaa-mqvSinglePass-sha512kdf-scheme SMIME-CAPS ::={
 TYPE KeyWrapAlgorithm
 IDENTIFIED BY mqvSinglePass-sha512kdf-scheme
}

cap-hMAC-SHA224 SMIME-CAPS ::={ IDENTIFIED BY id-hmacWithSHA224 }

cap-hMAC-SHA256 SMIME-CAPS ::={ IDENTIFIED BY id-hmacWithSHA256 }

cap-hMAC-SHA384 SMIME-CAPS ::={ IDENTIFIED BY id-hmacWithSHA384 }

cap-hMAC-SHA512 SMIME-CAPS ::={ IDENTIFIED BY id-hmacWithSHA512 }

END

Turner & Brown Informational [Page 58]

RFC 5753 Use of ECC Algorithms in CMS January 2010

Appendix B. Changes since RFC 3278

 The following summarizes the changes:

 - Abstract: The basis of the document was changed to refer to NIST
 FIPS 186-3 and SP800-56A. However, to maintain backwards
 compatibility the Key Derivation Function from ANSI/SEC1 is
 retained.

 - Section 1: A bullet was added to address AuthEnvelopedData.

 - Section 2.1: A sentence was added to indicate FIPS180-3 is used
 with ECDSA. Replaced reference to ANSI X9.62 with FIPS186-3.

 - Section 2.1.1: The permitted digest algorithms were expanded from
 SHA-1 to SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512.

 - Section 2.1.2 and 2.1.3: The bullet addressing integer "e" was
 deleted.

 - Section 3: Added explanation of why static-static ECDH is not
 included.

 - Section 3.1: The reference for DH was changed from RFC 3852 to RFC
 3370. Provided text to indicate fields of EnvelopedData are as in
 CMS.

 - Section 3.1.1: The text was updated to include description of all
 KeyAgreeRecipientInfo fields. Parameters for id-ecPublicKey field
 changed from NULL to absent or ECParameter. Additional information
 about ukm was added.

 - Section 3.2: The sentence describing the advantages of 1-Pass ECMQV
 was rewritten.

 - Section 3.2.1: The text was updated to include description of all
 fields. Parameters for id-ecPublicKey field changed from NULL to
 absent or ECParameters.

 - Sections 3.2.2 and 4.1.2: The re-use of ephemeral keys paragraph
 was reworded.

 - Section 4.1: The sentences describing the advantages of 1-Pass
 ECMQV was moved to Section 4.

 - Section 4.1.2: The note about the attack was moved to Section 4.

Turner & Brown Informational [Page 59]

RFC 5753 Use of ECC Algorithms in CMS January 2010

 - Section 4.2: This section was added to address AuthEnvelopedData
 with ECMQV.

 - Section 5: This section was moved to Section 8. The 1st paragraph
 was modified to recommend both SignedData and EnvelopedData. The
 requirements were updated for hash algorithms and recommendations
 for matching curves and hash algorithms. Also, the requirements
 were expanded to indicate which ECDH and ECMQV variants, key wrap
 algorithms, and content encryption algorithms are required for each
 of the content types used in this document. The permitted digest
 algorithms used in KDFs were expanded from SHA-1 to SHA-1, SHA-224,
 SHA-256, SHA-384, and SHA-512.

 - Section 6 (formerly 7): This section was updated to allow for
 SMIMECapabilities to be present in certificates. The S/MIME
 capabilities for ECDSA with SHA-224, SHA-256, SHA-384, and SHA-512
 were added to the list of S/MIME Capabilities. Also, updated to
 include S/MIME capabilities for ECDH and ECMQV using the SHA-224,
 SHA-256, SHA-384, and SHA-512 algorithms as the KDF.

 - Section 7.1 (formerly 8.1): Added sub-sections for digest,
 signature, originator public key, key agreement, content
 encryption, key wrap, and message authentication code algorithms.
 Pointed to algorithms and parameters in appropriate documents for:
 SHA-224, SHA-256, SHA-384, and SHA-512 as well as SHA-224, SHA-256,
 SHA-384, and SHA-512 with ECDSA. Also, added algorithm identifiers
 for ECDH std, ECDH cofactor, and ECMQV with SHA-224, SHA-256,
 SHA-384, and SHA-512 algorithms as the KDF. Changed id-ecPublicKey
 parameters to be absent, NULL, or ECParameters, and if present the
 originator’s ECParameters must match the recipient’s ECParameters.

 - Section 7.2 (formerly 8.2): Updated to include AuthEnvelopedData.
 Also, added text to address support requirement for compressed,
 uncompressed, and hybrid keys; changed pointers from ANSI X9.61 to
 PKIX (where ECDSA-Sig-Value is imported); changed pointers from
 SECG to NIST specs; and updated example of suppPubInfo to be
 AES-256. keyInfo’s parameters changed from NULL to any associated
 parameters (AES wraps have absent parameters).

 - Section 9: Replaced text, which was a summary paragraph, with an
 updated security considerations section. Paragraph referring to
 definitions of SHA-224, SHA-256, SHA-384, and SHA-512 is deleted.

 - Updated references.

 - Added ASN.1 modules.

 - Updated acknowledgements section.

Turner & Brown Informational [Page 60]

RFC 5753 Use of ECC Algorithms in CMS January 2010

Acknowledgements

 The methods described in this document are based on work done by the
 ANSI X9F1 working group. The authors wish to extend their thanks to
 ANSI X9F1 for their assistance. The authors also wish to thank Peter
 de Rooij for his patient assistance. The technical comments of
 Francois Rousseau were valuable contributions.

 Many thanks go out to the other authors of RFC 3278: Simon Blake-
 Wilson and Paul Lambert. Without RFC 3278, this version wouldn’t
 exist.

 The authors also wish to thank Alfred Hoenes, Jonathan Herzog, Paul
 Hoffman, Russ Housley, and Jim Schaad for their valuable input.

Authors’ Addresses

 Sean Turner
 IECA, Inc.
 3057 Nutley Street, Suite 106
 Fairfax, VA 22031
 USA

 EMail: turners@ieca.com

 Daniel R. L. Brown
 Certicom Corp
 5520 Explorer Drive #400
 Mississauga, ON L4W 5L1
 Canada

 EMail: dbrown@certicom.com

Turner & Brown Informational [Page 61]

