I nt ernet Engi neering Task Force (I ETF) R Mahy

Request for Comments: 5766 Unaffiliated
Cat egory: Standards Track P. Matthews
| SSN: 2070-1721 Al cat el - Lucent

J. Rosenberg
j drosen. net
April 2010

Traversal Using Relays around NAT (TURN):
Rel ay Extensions to Session Traversal Wilities for NAT (STUN)

Abst ract

If a host is |ocated behind a NAT, then in certain situations it can
be i npossible for that host to communicate directly with other hosts
(peers). In these situations, it is necessary for the host to use
the services of an intermedi ate node that acts as a conmuni cation
relay. This specification defines a protocol, called TURN (Traversa
Usi ng Rel ays around NAT), that allows the host to control the
operation of the relay and to exchange packets with its peers using
the relay. TURN differs fromsone other relay control protocols in
that it allows a client to comunicate with nultiple peers using a
single relay address.

The TURN protocol was designed to be used as part of the |ICE
(I'nteractive Connectivity Establishment) approach to NAT traversal
though it also can be used wi thout |ICE

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/info/rfc5766

Mahy, et al. St andards Track [Page 1]

RFC 5766 TURN

Copyright Notice

April 2010

Copyright (c) 2010 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent

Provisions Relating to | ETF Docunents

(http://trustee.ietf.org/license-info)
publication of this docunent.
careful ly,
to this document.

is subject to BCP 78 and the I ETF Trust’s Legal

in effect on the date of

Pl ease revi ew these docunents

as they describe your rights and restrictions with respect
Code Conponents extracted fromthis docunent nust

include Sinplified BSD License text as described in Section 4.e of

the Trust Legal

described in the Sinplified BSD License.

Tabl e of Contents

1.
2.

ourw

o000

~N N~

9.
9.
9.

10.

Mahy,

1
1

NNNNNNNNN
CONOORLONE

I ntroduction .

Overvi ew of Operat| on

Transports .

Al l ocati ons

Per nmi ssi ons

Send Mechani sm .

Channels . . .
Unprivil eged TURN Servers

Avoi ding | P Fragnmentation

RTP Support . .
Anycast Di scovery of Ser vers .
Term nol ogy

Gener al Behavi or

Al l ocati ons .

Creating an All ocatl on .

1. Sending an Allocate Request
.2. Receiving an All ocat e Request

.4. Receiving an Allocate Error Response .
Ref reshing an Al location . .

.1. Sending a Refresh Request

.2. Receiving a Refresh Request

.3. Receiving a Refresh Response .

Per m ssi ons .

Cr eat ePer mi ssi on .o

1. Forming a CreatePerm SSI on Request

2. Receiving a CreatePerm ssion Request

3. Receiving a CreatePermi ssion Response

Send and Data Met hods

0.1. Forming a Send Indicati on

0.2. Receiving a Send Indication

et al. St andards Track

.3. Receiving an All ocate Success Response .

Provi sions and are provided wi thout warranty as

RFC 5766 TURN April 2010

10.3. Receiving a UDP Datagram. 36
10. 4. Receiving a Data Indication 37
11. Channels 3T
11.1. Sending a ChannelBind Request 39
11.2. Receiving a ChannelBind Request 39
11.3. Receiving a ChannelBind Response 40
11. 4. The Channel Data Message . . N
11.5. Sendi ng a Channel Dat a Nessage O 4
11. 6. Receiving a Channel Data Message 42
11.7. Relaying Data fromthe Peer 43
12. IP Header Fields .43
13. New STUN Methods . 45
14. New STUN Attributes . 45
14.1. CHANNEL-NUMBER . 45
14.2. LIFETIME . . . e X
14.3. XORPEER-ADDRESS « v i i it a8
14. 4. DATA . . . -]
14.5. XOR- RELAYED—ADDRESS <]
14.6. EVEN- PORT . . < 1]
14. 7. RECUESTED—TRANSPCRT e
14.8. DONT-FRAGMENT o4r
14.9. RESERVATIONNTOKEN . 48
15. New STUN Error Response Codes 48
16. Detailed Exanple 48
17. Security Considerations 5b
17.1. CQutsider Attacks« 55
17.1.1. Ontaining Unauthorlzed Allocatlons 55
17.1.2. Ofline Dictionary Attacks 56
17.1.3. Faked Refreshes and Permssions 56
17.1.4. Fake Data e e e b6
17.1.5. Inpersonating a Server - Y 4
17.1.6. Eavesdropping Traffic 58
17.1.7. TURN Loop Attack b8
17.2. Firewall Considerations 59
17.2.1. Faked Pernmissions . . e < 1)
17.2.2. Blacklisted IP Addresses .o A <10
17.2.3. Running Servers on Wl | -Known Ports 60
17.3. Insider Attacks . . e
17.3.1. DoS agai nst TURN Server S 60
17.3.2. Anonynous Rel ayi ng of NhllClous Trafflc o A
17.3.3. Manipulating Gher Alocations 61
17.4. Other Considerations61
18. | ANA Considerations61
19. I AB Considerations62
20. Acknowl edgements .. . 63
21. References . . e o7
21.1. Normative References e o 7
21.2. Informative References 64

Mahy, et al. St andards Track [Page 3]

RFC 5766 TURN April 2010

1

I ntroduction

A host behind a NAT may wi sh to exchange packets with other hosts,
some of which may al so be behind NATs. To do this, the hosts

i nvol ved can use "hol e punchi ng" techni ques (see [RFC5128]) in an
attenpt discover a direct conmunication path; that is, a

communi cati on path that goes fromone host to another through

i ntervening NATs and routers, but does not traverse any rel ays.

As described in [RFC5128] and [RFCA787], hol e punchi ng techni ques
will fail if both hosts are behind NATs that are not well behaved.
For exanple, if both hosts are behind NATs that have a napping
behavi or of "address-dependent napping" or "address- and port-
dependent mappi ng", then hol e punching techni ques generally fail

When a direct conmuni cation path cannot be found, it is necessary to
use the services of an internediate host that acts as a relay for the
packets. This relay typically sits in the public Internet and rel ays
packets between two hosts that both sit behind NATs.

This specification defines a protocol, called TURN, that allows a
host behind a NAT (called the TURN client) to request that another
host (called the TURN server) act as a relay. The client can arrange
for the server to relay packets to and fromcertain other hosts
(call ed peers) and can control aspects of how the relaying is done.
The client does this by obtaining an | P address and port on the
server, called the relayed transport address. Wen a peer sends a
packet to the relayed transport address, the server relays the packet
to the client. Wen the client sends a data packet to the server

the server relays it to the appropriate peer using the rel ayed
transport address as the source.

A client using TURN nust have sone way to comuni cate the rel ayed
transport address to its peers, and to |learn each peer’s |P address
and port (more precisely, each peer’s server-reflexive transport
address, see Section 2). Howthis is done is out of the scope of the
TURN protocol. One way this mght be done is for the client and
peers to exchange enmil nessages. Another way is for the client and
its peers to use a special-purpose "introduction" or "rendezvous"
protocol (see [RFC5128] for nore details).

If TURN is used with | CE [RFC5245], then the rel ayed transport
address and the | P addresses and ports of the peers are included in
the I CE candidate information that the rendezvous protocol nust

carry. For exanple, if TURN and I CE are used as part of a multinedia
solution using SIP [RFC3261], then SIP serves the role of the
rendezvous protocol, carrying the I CE candidate information inside
the body of SIP nessages. |If TURN and ICE are used with sone ot her

Mahy, et al. St andards Track [Page 4]

RFC 5766 TURN April 2010

rendezvous protocol, then [MVSI C | CE- NONSI P] provi des gui dance on
the services the rendezvous protocol nust perform

Though the use of a TURN server to enable comunication between two
hosts behind NATs is very likely to work, it comes at a high cost to
the provider of the TURN server, since the server typically needs a
hi gh- bandwi dt h connection to the Internet. As a consequence, it is
best to use a TURN server only when a direct conmunication path
cannot be found. Wen the client and a peer use I CE to deternmine the
communi cati on path, I1CE will use hol e punching techniques to search
for a direct path first and only use a TURN server when a direct path
cannot be found.

TURN was originally invented to support nultinedia sessions signaled
using SIP. Since SIP supports forking, TURN supports multiple peers
per relayed transport address; a feature not supported by other
approaches (e.g., SOCKS [RFC1928]). However, care has been taken to
make sure that TURN is suitable for other types of applications.

TURN was designed as one piece in the larger | CE approach to NAT
traversal. Inplementors of TURN are urged to investigate |ICE and
seriously consider using it for their application. However, it is
possi ble to use TURN wi t hout | CE

TURN is an extension to the STUN (Session Traversal Utilities for
NAT) protocol [RFC5389]. Mst, though not all, TURN nessages are
STUN-formatted nessages. A reader of this docunment should be
famliar with STUN

2. Overview of Qperation

This section gives an overview of the operation of TURN. It is non-
nor mati ve.

In a typical configuration, a TURN client is connected to a private
networ k [RFC1918] and through one or nore NATs to the public
Internet. On the public Internet is a TURN server. Elsewhere in the
Internet are one or nore peers with which the TURN client w shes to
communi cate. These peers nmay or nmay not be behind one or nore NATs.
The client uses the server as a relay to send packets to these peers
and to receive packets fromthese peers.

Mahy, et al. St andards Track [Page 5]

RFC 5766 TURN April 2010

Peer A
Server - Ref | exi ve Fommme e - +
Transport Address
192. 0. 2. 150: 32102

| |

| |

/' |
/ ™| Peer A

| | |

| | |

TURN |
Cient’'s Server | /
Host Transport Transport | /1
Addr ess Addr ess | /1 [+--------- +
10.1.1.2:49721 192. 0. 2. 15: 3478 | +-+ [/ Peer A
| | [N / Host Transport
| +- + | [A/ Addr ess
| | | | v| T 192. 168. 100. 2: 49582
[| [+-+
Fommmm e oo - +| | | [+--------- + / Fommmm e oo - +
| [l IN N | /1 | |
| TURN | v | | v| TURN |/ |
| dient |----|A---------- | Server |--------------o--- | Peer B
| | | |” | |~ a |
| | | T | | | | |
Fomm e - - + | | Fomm e - - +| [+--------- +
| | | |
1] | |
+- 4 | |
| | |
| | |
Cient’s | Peer B
Server - Ref | exi ve Rel ayed Transport
Transport Address Transport Address Addr ess
192. 0. 2. 1: 7000 192. 0. 2. 15: 50000 192. 0. 2. 210: 49191
Figure 1
Figure 1 shows a typical deploynent. |In this figure, the TURN client

and the TURN server are separated by a NAT, with the client on the
private side and the server on the public side of the NAT. This NAT
is assuned to be a "bad" NAT; for exanple, it m ght have a napping
property of "address-and-port-dependent mapping" (see [RFC4787]).

The client talks to the server froma (IP address, port) conbination
called the client’s HOST TRANSPORT ADDRESS. (The conbi nation of an
| P address and port is called a TRANSPORT ADDRESS.)

The client sends TURN nessages fromits host transport address to a
transport address on the TURN server that is known as the TURN SERVER
TRANSPORT ADDRESS. The client learns the TURN server transport
address through some unspecified neans (e.g., configuration), and
this address is typically used by many clients sinmultaneously.

Mahy, et al. St andards Track [Page 6]

RFC 5766 TURN April 2010

Since the client is behind a NAT, the server sees packets fromthe
client as coning froma transport address on the NAT itself. This
address is known as the client’s SERVER- REFLEXI VE transport address;
packets sent by the server to the client’s server-reflexive transport
address will be forwarded by the NAT to the client’s host transport
addr ess.

The client uses TURN commands to create and mani pul ate an ALLOCATI ON
on the server. An allocation is a data structure on the server

This data structure contains, anongst other things, the RELAYED
TRANSPORT ADDRESS for the allocation. The relayed transport address
is the transport address on the server that peers can use to have the
server relay data to the client. An allocation is uniquely
identified by its relayed transport address.

Once an allocation is created, the client can send application data
to the server along with an indication of to which peer the data is
to be sent, and the server will relay this data to the appropriate
peer. The client sends the application data to the server inside a
TURN nessage; at the server, the data is extracted fromthe TURN
nmessage and sent to the peer in a UDP datagram In the reverse
direction, a peer can send application data in a UDP datagramto the
rel ayed transport address for the allocation; the server will then
encapsul ate this data inside a TURN nessage and send it to the client
along with an indication of which peer sent the data. Since the TURN
nmessage al ways contains an indication of which peer the client is
conmuni cating with, the client can use a single allocation to

communi cate with nultiple peers.

When the peer is behind a NAT, then the client nust identify the peer
using its server-reflexive transport address rather than its host
transport address. For exanple, to send application data to Peer A
in the exanpl e above, the client nust specify 192.0.2.150: 32102 (Peer
A's server-reflexive transport address) rather than 192.168. 100. 2:
49582 (Peer A s host transport address).

Each allocation on the server belongs to a single client and has
exactly one relayed transport address that is used only by that

al l ocation. Thus, when a packet arrives at a relayed transport
address on the server, the server knows for which client the data is
i nt ended.

The client nmay have nultiple allocations on a server at the sane
tinme.

Mahy, et al. St andards Track [Page 7]

RFC 5766 TURN April 2010

2.1. Transports

TURN, as defined in this specification, always uses UDP between the
server and the peer. However, this specification allows the use of
any one of UDP, TCP, or Transport Layer Security (TLS) over TCP to
carry the TURN nessages between the client and the server.

Fom e e e e e e ee e Fom e e e ek +
| TURN client to TURN server | TURN server to peer |
Fom e e e e e e e e e m o o e e e e e e e ea oo +
| uDP | uDP |
| TCP | UDP |
| TLS over TCP | ubP

Fom e e e e e e ee e Fom e e e ek +

If TCP or TLS-over-TCP is used between the client and the server,
then the server will convert between these transports and UDP
transport when relaying data to/fromthe peer

Since this version of TURN only supports UDP between the server and
the peer, it is expected that nost clients will prefer to use UDP
between the client and the server as well. That being the case, sone
readers may wonder: Wiy al so support TCP and TLS-over- TCP?

TURN supports TCP transport between the client and the server because
sone firewalls are configured to block UDP entirely. These firewalls
bl ock UDP but not TCP, in part because TCP has properties that make
the intention of the nodes being protected by the firewall nore
obvious to the firewall. For exanple, TCP has a three-way handshake
that makes in clearer that the protected node really w shes to have
that particul ar connection established, while for UDP the best the
firewall can do is guess which flows are desired by using filtering
rules. Also, TCP has explicit connection teardown; while for UDP
the firewall has to use timers to guess when the flow is finished.

TURN supports TLS-over-TCP transport between the client and the
server because TLS provides additional security properties not
provided by TURN s default digest authentication; properties that
sonme clients may wish to take advantage of. In particular, TLS
provides a way for the client to ascertain that it is talking to the
correct server, and provides for confidentiality of TURN control
messages. TURN does not require TLS because the overhead of using
TLS is higher than that of digest authentication; for exanple, using
TLS likely neans that nost application data will be doubly encrypted
(once by TLS and once to ensure it is still encrypted in the UDP

dat agran .

Mahy, et al. St andards Track [Page 8]

RFC 5766 TURN April 2010

There is a planned extension to TURN to add support for TCP between
the server and the peers [TURN-TCP]. For this reason, allocations
that use UDP between the server and the peers are known as UDP

al l ocations, while allocations that use TCP between the server and
the peers are known as TCP allocations. This specification describes
only UDP all ocations.

TURN, as defined in this specification, only supports IPv4. Al IP
addresses in this specification nust be | Pv4 addresses. There is a
pl anned extension to TURN to add support for IPv6 and for relaying
between 1 Pv4 and | Pv6 [TURN-I Pv6].

In sone applications for TURN, the client nay send and receive
packets other than TURN packets on the host transport address it uses
to conmunicate with the server. This can happen, for exanple, when
using TURN with ICE. In these cases, the client can distinguish TURN
packets from ot her packets by exam ning the source address of the
arriving packet: those arriving fromthe TURN server will be TURN
packets.

2.2. Allocations

To create an allocation on the server, the client uses an Allocate
transaction. The client sends an Al locate request to the server, and
the server replies with an All ocate success response containing the
al l ocated relayed transport address. The client can include
attributes in the Allocate request that describe the type of
allocation it desires (e.g., the lifetime of the allocation). Since
rel aying data has security inplications, the server requires that the
client authenticate itself, typically using STUN s |ong-term
credential mechanism to show that it is authorized to use the
server.

Once a relayed transport address is allocated, a client nust keep the
all ocation alive. To do this, the client periodically sends a
Refresh request to the server. TURN deliberately uses a different
met hod (Refresh rather than Allocate) for refreshes to ensure that
the client is informed if the allocation vani shes for some reason

The frequency of the Refresh transaction is deternined by the
lifetime of the allocation. The default lifetime of an allocation is
10 minutes -- this value was chosen to be | ong enough so that
refreshing is not typically a burden on the client, while expiring

al |l ocations where the client has unexpectedly quit in a tinely
manner. However, the client can request a longer lifetime in the

Al'l ocate request and may nodify its request in a Refresh request, and
the server always indicates the actual lifetine in the response. The
client nmust issue a new Refresh transaction within "lifetine" seconds

Mahy, et al. St andards Track [Page 9]

RFC 5766 TURN April 2010

of the previous Allocate or Refresh transaction. Once a client no
| onger wishes to use an allocation, it should delete the allocation
using a Refresh request with a requested lifetinme of O.

Both the server and client keep track of a value known as the
5-TUPLE. At the client, the 5-tuple consists of the client’s host
transport address, the server transport address, and the transport
protocol used by the client to communicate with the server. At the
server, the 5-tuple value is the sane except that the client’s host
transport address is replaced by the client’s server-reflexive
address, since that is the client’s address as seen by the server.

Both the client and the server renenber the 5-tuple used in the

Al'l ocate request. Subsequent nessages between the client and the
server use the sane 5-tuple. In this way, the client and server know
which allocation is being referred to. |If the client wishes to

all ocate a second relayed transport address, it nust create a second
all ocation using a different 5-tuple (e.g., by using a different
client host address or port).

NOTE: Wile the terminology used in this docunent refers to
5-tuples, the TURN server can store whatever identifier it |ikes
that yields identical results. Specifically, an inplenentation
may use a file-descriptor in place of a 5-tuple to represent a TCP
connecti on.

TURN TURN Peer Peer
client server A B
|-- Allocate request --------------- >
S LR Al locate failure --

(401 Unaut hori zed)

-- Allocate request --------------- >		
T All ocate success resp --		
(192. 0. 2. 15: 50000)	I	
11 11 11 11		
-- Refresh request ---------------- >		
IO — Refresh success resp --		

Figure 2

Mahy, et al. St andards Track [Page 10]

RFC 5766 TURN April 2010

In Figure 2, the client sends an Al locate request to the server

wi thout credentials. Since the server requires that all requests be
aut henticated using STUN s | ong-term credential nechanism the server
rejects the request with a 401 (Unauthorized) error code. The client
then tries again, this time including credentials (not shown). This
tinme, the server accepts the Allocate request and returns an Allocate
success response containi ng (anongst other things) the rel ayed
transport address assigned to the allocation. Sonetine |ater, the
client decides to refresh the allocation and thus sends a Refresh
request to the server. The refresh is accepted and the server
replies with a Refresh success response.

2.3. Perm ssions

To ease concerns anongst enterprise | T adnministrators that TURN coul d
be used to bypass corporate firewall security, TURN includes the

noti on of perm ssions. TURN perm ssions mmc the address-restricted
filtering mechani smof NATs that conply with [RFC4787].

An allocation can have zero or nore perm ssions. Each perm ssion
consists of an IP address and a lifetine. Wen the server receives a
UDP datagramon the allocation's relayed transport address, it first
checks the list of permissions. |If the source |IP address of the

dat agram mat ches a permission, the application data is relayed to the
client, otherwise the UDP datagramis silently discarded.

A permission expires after 5 minutes if it is not refreshed, and
there is no way to explicitly delete a perm ssion. This behavior was
selected to match the behavior of a NAT that conplies with [RFC4787].

The client can install or refresh a permi ssion using either a

Creat ePermi ssion request or a Channel Bind request. Using the

Creat ePerm ssion request, multiple pernissions can be installed or
refreshed with a single request -- this is inportant for applications
that use ICE. For security reasons, pernissions can only be
installed or refreshed by transactions that can be authenti cat ed;
thus, Send indications and Channel Data nessages (which are used to
send data to peers) do not install or refresh any perni ssions.

Note that perm ssions are within the context of an allocation, so

addi ng or expiring a permission in one allocation does not affect
ot her allocations.

Mahy, et al. St andards Track [Page 11]

RFC 5766 TURN April 2010

2.4. Send Mechani sm

There are two nechanisns for the client and peers to exchange
application data using the TURN server. The first nmechani smuses the
Send and Data nethods, the second way uses channels. Conmon to both
ways is the ability of the client to communicate with nultiple peers
using a single allocated relayed transport address; thus, both ways
include a neans for the client to indicate to the server which peer
shoul d receive the data, and for the server to indicate to the client
whi ch peer sent the data.

The Send nechani sm uses Send and Data indications. Send indications
are used to send application data fromthe client to the server,
whil e Data indications are used to send application data fromthe
server to the client.

When using the Send mechanism the client sends a Send indication to
the TURN server containing (a) an XOR- PEER- ADDRESS attri bute
specifying the (server-reflexive) transport address of the peer and
(b) a DATA attribute holding the application data. Wen the TURN
server receives the Send indication, it extracts the application data
fromthe DATA attribute and sends it in a UDP datagramto the peer,
using the allocated relay address as the source address. Note that
there is no need to specify the relayed transport address, since it
is inplied by the 5-tuple used for the Send indication

In the reverse direction, UDP datagrans arriving at the rel ayed
transport address on the TURN server are converted into Data

i ndi cations and sent to the client, with the server-reflexive
transport address of the peer included in an XOR- PEER- ADDRESS
attribute and the data itself in a DATA attribute. Since the relayed
transport address uniquely identified the allocation, the server
knows which client should receive the data.

Send and Data indications cannot be authenticated, since the |ong-
term credential nechani sm of STUN does not support authenticating
indications. This is not as big an issue as it might first appear
since the client-to-server leg is only half of the total path to the
peer. Applications that want proper security should encrypt the data
sent between the client and a peer.

Because Send indications are not authenticated, it is possible for an
attacker to send bogus Send indications to the server, which will
then relay these to a peer. To partly mitigate this attack, TURN
requires that the client install a perm ssion towards a peer before
sending data to it using a Send indication

Mahy, et al. St andards Track [Page 12]

RFC 5766 TURN April 2010
TURN TURN Peer Peer
client server A B

|
-- CreatePermi ssion req (Peer A) -->
<-- CreatePerm ssion success resp --|
|
|

|
| |
| |
--- Send ind (Peer A)-------------- >		
	=== dat a :::>	
	<== data ====	
<-------mmm--- Data ind (Peer A) --		
_		
--- Send ind (Peer B)-------------- >		
I I dr opped I		
	<== data	
dropped		

Figure 3

In Figure 3, the client has already created an allocation and now

wi shes to send data to its peers. The client first creates a

permi ssion by sending the server a CreatePernission request
specifying Peer A's (server-reflexive) IP address in the XOR- PEER-
ADDRESS attribute; if this was not done, the server would not relay
data between the client and the server. The client then sends data
to Peer A using a Send indication; at the server, the application
data is extracted and forwarded in a UDP datagramto Peer A, using
the relayed transport address as the source transport address. Wen
a UDP datagram from Peer A is received at the relayed transport
address, the contents are placed into a Data indication and forwarded
to the client. Later, the client attenpts to exchange data with Peer
B; however, no perm ssion has been installed for Peer B, so the Send
i ndication fromthe client and the UDP datagram fromthe peer are
bot h dropped by the server

2.5. Channel s

For some applications (e.g., Voice over IP), the 36 bytes of overhead
that a Send indication or Data indication adds to the application
data can substantially increase the bandw dth required between the
client and the server. To renmedy this, TURN offers a second way for
the client and server to associate data with a specific peer

This second way uses an alternate packet format known as the
Channel Dat a nessage. The Channel Data nessage does not use the STUN

Mahy, et al. St andards Track [Page 13]

RFC 5766 TURN April 2010

header used by other TURN nessages, but instead has a 4-byte header
that includes a nunmber known as a channel nunber. Each channe
nunber in use is bound to a specific peer and thus serves as a
shorthand for the peer’s host transport address.

To bind a channel to a peer, the client sends a Channel Bi nd request
to the server, and includes an unbound channel nunber and the
transport address of the peer. Once the channel is bound, the client
can use a Channel Data nessage to send the server data destined for
the peer. Simlarly, the server can relay data fromthat peer
towards the client using a Channel Data nessage.

Channel bindings last for 10 minutes unless refreshed -- this
lifetinme was chosen to be longer than the pernission lifetine.
Channel bindings are refreshed by sending anot her Channel Bi nd request
rebi nding the channel to the peer. Like pernissions (but unlike

all ocations), there is no way to explicitly delete a channel binding;
the client nust sinply wait for it to tine out.

TURN TURN Peer Peer
client server A B
| |
-- ChannelBind req ---------------- >

—~ 1

Peer A to 0x4001)

I
I I I
I I I
| _ | |
| <---------- Channel Bi nd succ resp --|
I I I
| -- [0x4001] data ------------------ >| |
| | === dat a :::>| |
I I I I
| | <== data ==== |
[<--memmm e [0x4001] data --| |
I I I I
|--- Send ind (Peer A)-------------- >| |
| | === dat a :::>| |
I I I I
| | <== data ==== |
[<--memmm e [0x4001] data --| |
I I I I
Figure 4

Fi gure 4 shows the channel mechanismin use. The client has already
created an allocation and now wi shes to bind a channel to Peer A To
do this, the client sends a Channel Bind request to the server
specifying the transport address of Peer A and a channel nunber
(0x4001). After that, the client can send application data
encapsul at ed i nsi de Channel Data nessages to Peer A: this is shown as

Mahy, et al. St andards Track [Page 14]

RFC 5766 TURN April 2010

"[0x4001] data" where 0x4001 is the channel nunber. When the
Channel Dat a nessage arrives at the server, the server transfers the
data to a UDP datagram and sends it to Peer A (which is the peer
bound to channel nunber 0x4001).

In the reverse direction, when Peer A sends a UDP datagramto the

rel ayed transport address, this UDP datagram arrives at the server on
the relayed transport address assigned to the allocation. Since the
UDP dat agram was received from Peer A which has a channel nunber
assigned to it, the server encapsul ates the data into a Channel Dat a
message when sending the data to the client.

Once a channel has been bound, the client is free to intermx
Channel Dat a nmessages and Send indications. |In the figure, the client
| ater decides to use a Send indication rather than a Channel Data
nmessage to send additional data to Peer A. The client might decide
to do this, for exanple, so it can use the DONT- FRAGVENT attri bute
(see the next section). However, once a channel is bound, the server
will always use a Channel Data nmessage, as shown in the call flow

Not e that Channel Data nessages can only be used for peers to which
the client has bound a channel. 1In the exanple above, Peer A has
been bound to a channel, but Peer B has not, so application data to
and from Peer B would use the Send nechani sm

2.6. Unprivileged TURN Servers

This version of TURN i s designed so that the server can be

i npl emented as an application that runs in user space under conmonly
avai | abl e operating systens w thout requiring special privileges.
Thi s design decision was nmade to nmake it easy to deploy a TURN
server: for exanple, to allow a TURN server to be integrated into a
peer-to-peer application so that one peer can offer NAT traversa
services to anot her peer.

Thi s design decision has the following inplications for data rel ayed
by a TURN server:

o0 The value of the Diffserv field may not be preserved across the
server;

0o The Tine to Live (TTL) field may be reset, rather than
decrenented, across the server;

0 The Explicit Congestion Notification (ECN) field rmay be reset by
the server;

o | CWP nessages are not relayed by the server

Mahy, et al. St andards Track [Page 15]

RFC 5766 TURN April 2010

o0 There is no end-to-end fragnentation, since the packet is re-
assenbl ed at the server.

Future work may specify alternate TURN semantics that address these
limtations.

2.7. Avoiding IP Fragnentation

For reasons described in [Frag-Harnful], applications, especially
those sending | arge volunes of data, should try hard to avoid having
their packets fragnented. Applications using TCP can nore or |ess
ignore this issue because fragnentation avoi dance is now a standard
part of TCP, but applications using UDP (and thus any application
using this version of TURN) nust handl e fragnentati on avoi dance

t henmsel ves

The application running on the client and the peer can take one of
two approaches to avoid IP fragnentation.

The first approach is to avoid sending | arge amounts of application
data in the TURN nessages/ UDP dat agrams exchanged between the client
and the peer. This is the approach taken by nost Vol P

(Voi ce-over-1P) applications. In this approach, the application
exploits the fact that the I P specification [RFC0791] specifies that
| P packets up to 576 bytes should never need to be fragnented.

The exact anount of application data that can be included while
avoi di ng fragnmentati on depends on the details of the TURN session
between the client and the server: whether UDP, TCP, or TLS transport
i s used, whether Channel Data nessages or Send/Data indications are
used, and whether any additional attributes (such as the DONT-
FRAGMVENT attribute) are included. Another factor, which is hard to
determine, is whether the MIU is reduced sonewhere along the path for
ot her reasons, such as the use of IP-in-1P tunneling.

As a guideline, sending a maxi mum of 500 bytes of application data in
a single TURN nessage (by the client on the client-to-server |leg) or
a UDP datagram (by the peer on the peer-to-server leg) will generally
avoid I P fragmentation. To further reduce the chance of
fragmentation, it is recommended that the client use Channel Dat a
messages when transferring significant volunmes of data, since the
over head of the Channel Data nessage is | ess than Send and Data

i ndi cations.

The second approach the client and peer can take to avoid
fragmentation is to use a path MIU di scovery algorithmto determ ne
t he maxi num amount of application data that can be sent w thout
fragment ati on.

Mahy, et al. St andards Track [Page 16]

RFC 5766 TURN April 2010

Unfortunately, because servers inplenenting this version of TURN do
not relay |ICMP nessages, the classic path MIU di scovery al gorithm
defined in [RFC1191] is not able to discover the MU of the

transm ssion path between the client and the peer. (Even if they did
relay |1 CMP nessages, the al gorithmwould not always work since | CW
messages are often filtered out by conbi ned NAT/firewall devices).

So the client and server need to use a path MIU di scovery al gorithm
that does not require | CMP nessages. The Packetized Path MIu
Di scovery algorithmdefined in [RFC4821] is one such al gorithm

The details of how to use the algorithmof [RFC4821] with TURN are
still under investigation. However, as a step towards this goal

this version of TURN supports a DONT- FRAGVENT attribute. Wen the
client includes this attribute in a Send indication, this tells the
server to set the DF bit in the resulting UDP datagramthat it sends
to the peer. Since sone servers may be unable to set the DF bit, the
client should also include this attribute in the Allocate request --
any server that does not support the DONT- FRAGVENT attribute will
indicate this by rejecting the Allocate request.

2.8. RITP Support

One of the envisioned uses of TURNis as a relay for clients and
peers w shing to exchange real -tine data (e.g., voice or video) using
RTP. To facilitate the use of TURN for this purpose, TURN incl udes
some special support for ol der versions of RTP

ad versions of RTP [RFC3550] required that the RTP stream be on an
even port nunber and the associated RTP Control Protocol (RTCP)
stream if present, be on the next highest port. To allowclients to
work with peers that still require this, TURN allows the client to
request that the server allocate a relayed transport address with an
even port nunber, and to optionally request the server reserve the
next - hi ghest port nunber for a subsequent all ocation

2.9. Anycast Discovery of Servers

This version of TURN has been designed to pernit the future
specification of a method of doing anycast discovery of a TURN server
over UDP

Specifically, a TURN server can reject an Allocate request with the
suggestion that the client try an alternate server. To avoid certain
types of attacks, the client nust use the sane credentials with the
alternate server as it would have with the initial server.

Mahy, et al. St andards Track [Page 17]

RFC 5766 TURN April 2010

3.

Ter m nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

Readers are expected to be fanmliar with [RFC5389] and the terns
defined there.

The following ternms are used in this docunent:

TURN. The protocol spoken between a TURN client and a TURN server
It is an extension to the STUN protocol [RFC5389]. The protoco
allows a client to allocate and use a relayed transport address.

TURN client: A STUN client that inplements this specification.

TURN server: A STUN server that inplenents this specification. It
rel ays data between a TURN client and its peer(s).

Peer: A host with which the TURN client w shes to communicate. The
TURN server relays traffic between the TURN client and its
peer(s). The peer does not interact with the TURN server using
the protocol defined in this docunent; rather, the peer receives
data sent by the TURN server and the peer sends data towards the
TURN server.

Transport Address: The conbination of an I P address and a port.
Host Transport Address: A transport address on a client or a peer

Server-Refl exi ve Transport Address: A transport address on the
"public side" of a NAT. This address is allocated by the NAT to
correspond to a specific host transport address.

Rel ayed Transport Address: A transport address on the TURN server
that is used for rel aying packets between the client and a peer
A peer sends to this address on the TURN server, and the packet is
then relayed to the client.

TURN Server Transport Address: A transport address on the TURN
server that is used for sending TURN nessages to the server. This
is the transport address that the client uses to comunicate with
t he server.

Peer Transport Address: The transport address of the peer as seen by
the server. \When the peer is behind a NAT, this is the peer’s
server-reflexive transport address.

Mahy, et al. St andards Track [Page 18]

RFC 5766 TURN April 2010

Al'location: The relayed transport address granted to a client
through an Allocate request, along with related state, such as
perm ssions and expiration tinmers.

5-tuple: The conbination (client |IP address and port, server IP
address and port, and transport protocol (currently one of UDP
TCP, or TLS)) used to conmuni cate between the client and the
server. The 5-tuple uniquely identifies this communication
stream The 5-tuple also uniquely identifies the Allocation on
the server.

Channel : A channel nunber and associ ated peer transport address.
Once a channel nunber is bound to a peer’s transport address, the
client and server can use the nore bandw dt h-efficient Channel Data
nmessage to exchange data.

Perm ssion: The |IP address and transport protocol (but not the port)
of a peer that is pernmitted to send traffic to the TURN server and
have that traffic relayed to the TURN client. The TURN server
will only forward traffic to its client frompeers that match an
exi sting pernission.

Realm A string used to describe the server or a context within the
server. The realmtells the client which usernane and password
conbination to use to authenticate requests.

Nonce: A string chosen at random by the server and included in the
message-digest. To prevent reply attacks, the server should
change the nonce regul arly.

4. Ceneral Behavi or

This section contains general TURN processing rules that apply to all
TURN nessages.

TURN is an extension to STUN. Al TURN nessages, with the exception
of the Channel Data nessage, are STUN-formatted nessages. All the
base processing rules described in [RFC5389] apply to STUN-fornatted
messages. This nmeans that all the nessage-form ng and nessage-
processing descriptions in this docunent are inplicitly prefixed with
the rules of [RFC5389].

[RFC5389] specifies an authentication nechanismcalled the |ong-term
credential mechanism TURN servers and clients MJUST inplenent this
mechani sm The server MJST demand that all requests fromthe client
be aut henticated using this nechanism or that a equally strong or
stronger nechanismfor client authentication is used.

Mahy, et al. St andards Track [Page 19]

RFC 5766 TURN April 2010

Note that the |long-termcredential nechani smapplies only to requests
and cannot be used to authenticate indications; thus, indications in
TURN are never authenticated. |f the server requires requests to be
aut henticated, then the server’s adm ni strator MJST choose a realm
value that will uniquely identify the usernane and password
conbination that the client nust use, even if the client uses

mul tiple servers under different administrations. The server’'s

adm ni strator MAY choose to allocate a uni que usernane to each
client, or MAY choose to allocate the same usernane to nore than one
client (for exanmple, to all clients fromthe sanme departnent or
company). For each allocation, the server SHOULD generate a new
random nonce when the allocation is first attenpted foll owi ng the
randommess reconmendations in [RFC4086] and SHOULD expire the nonce
at least once every hour during the lifetinme of the allocation.

Al'l requests after the initial Allocate nust use the sane username as
that used to create the allocation, to prevent attackers from
hijacking the client’s allocation. Specifically, if the server
requires the use of the long-termcredential nechanism and if a non-
Al'l ocat e request passes authentication under this nechanism and if
the 5-tuple identifies an existing allocation, but the request does
not use the same usernane as used to create the allocation, then the
request MJST be rejected with a 441 (Wong Credentials) error

When a TURN nessage arrives at the server fromthe client, the server
uses the 5-tuple in the nessage to identify the associated

all ocation. For all TURN nessages (including Channel Data) EXCEPT an
Al'l ocate request, if the 5-tuple does not identify an existing

al l ocation, then the nmessage MJST either be rejected with a 437
Al'location Msnmatch error (if it is a request) or silently ignored
(if it is an indication or a Channel Data nessage). A client
receiving a 437 error response to a request other than Allocate MJST
assume the allocation no | onger exists.

[RFC5389] defines a nunmber of attributes, including the SOFTWARE and
FI NGERPRI NT attributes. The client SHOULD i nclude the SOFTWARE
attribute in all Allocate and Refresh requests and MAY include it in
any other requests or indications. The server SHOULD i nclude the
SOFTWARE attribute in all Allocate and Refresh responses (either
success or failure) and MAY include it in other responses or

i ndications. The client and the server MAY include the FI NGERPRI NT
attribute in any STUN-fornatted nessages defined in this docunent.

TURN does not use the backwards-conpatibility mechani sm described in
[RFC5389] .

Mahy, et al. St andards Track [Page 20]

RFC 5766 TURN April 2010

TURN, as defined in this specification, only supports |Pv4. The
client’s IP address, the server’'s |P address, and all | P addresses
appearing in a relayed transport address MJST be | Pv4 addresses.

By default, TURN runs on the sane ports as STUN: 3478 for TURN over
UDP and TCP, and 5349 for TURN over TLS. However, TURN has its own
set of Service Record (SRV) nanes: "turn" for UDP and TCP, and
"turns" for TLS. Either the SRV procedures or the ALTERNATE- SERVER
procedures, both described in Section 6, can be used to run TURN on a
different port.

To ensure interoperability, a TURN server MJST support the use of UDP
transport between the client and the server, and SHOULD support the
use of TCP and TLS transport.

When UDP transport is used between the client and the server, the
client will retransmt a request if it does not receive a response
within a certain tinmeout period. Because of this, the server may
receive two (or nore) requests with the sane 5-tuple and sane
transaction id. STUN requires that the server recognize this case
and treat the request as idenpotent (see [RFC5389]). Sone

i npl ement ati ons may choose to neet this requirement by renmenbering
all received requests and the correspondi ng responses for 40 seconds.
O her inplenentations nmay choose to reprocess the request and arrange
that such reprocessing returns essentially the same response. To aid
i mpl enent ors who choose the | atter approach (the so-called "statel ess
stack approach"), this specification includes sone inplenentation

notes on how this night be done. Inplenentations are free to choose
ei t her approach or choose sone ot her approach that gives the sane
results.

When TCP transport is used between the client and the server, it is
possible that a bit error will cause a length field in a TURN packet
to become corrupted, causing the receiver to | ose synchronization
with the incoming streamof TURN nessages. A client or server that
detects a | ong sequence of invalid TURN nessages over TCP transport
SHOULD cl ose the correspondi ng TCP connection to help the other end
detect this situation nore rapidly.

To mtigate either intentional or unintentional denial-of-service
attacks against the server by clients with valid usernanes and
passwords, it is RECOMVENDED that the server inpose linits on both

t he nunber of allocations active at one tine for a given usernane and
on the amount of bandw dth those allocations can use. The server
shoul d reject new allocations that would exceed the linmt on the

al | owed number of allocations active at one tine with a 486

(Al'l ocati on Quota Exceeded) (see Section 6.2), and should discard
application data traffic that exceeds the bandw dth quota.

Mahy, et al. St andards Track [Page 21]

RFC 5766 TURN April 2010

5.

Al | ocati ons

Al'l TURN operations revolve around allocations, and all TURN nessages
are associated with an allocation. An allocation conceptually
consists of the follow ng state data:

o the relayed transport address;

o the 5-tuple: (client’s I P address, client’'s port, server |P
address, server port, transport protocol);

o the authentication information

o the tine-to-expiry;

o a list of perm ssions;

o0 a list of channel to peer bindings.

The rel ayed transport address is the transport address allocated by
the server for communicating with peers, while the 5-tuple describes
t he conmuni cation path between the client and the server. On the
client, the 5-tuple uses the client’s host transport address; on the
server, the 5-tuple uses the client’s server-reflexive transport
addr ess.

Both the relayed transport address and the 5-tuple MJST be uni que
across all allocations, so either one can be used to uniquely
identify the allocation.

The aut hentication information (e.g., usernane, password, realm and
nonce) is used to both verify subsequent requests and to conpute the
nmessage integrity of responses. The usernanme, realm and nonce
values are initially those used in the authenticated All ocate request
that creates the allocation, though the server can change the nonce
value during the lifetinme of the allocation using a 438 (Stal e Nonce)
reply. Note that, rather than storing the password explicitly, for
security reasons, it may be desirable for the server to store the key
val ue, which is an MD5 hash over the usernane, realm and password
(see [RFC5389]).

The tine-to-expiry is the tine in seconds left until the allocation
expires. Each Allocate or Refresh transaction sets this tiner, which
then ticks down towards 0. By default, each Allocate or Refresh
transaction resets this timer to the default lifetinme value of 600
seconds (10 minutes), but the client can request a different value in
the Allocate and Refresh request. Allocations can only be refreshed
usi ng the Refresh request; sending data to a peer does not refresh an

Mahy, et al. St andards Track [Page 22]

RFC 5766 TURN April 2010

al l ocation. Wen an allocation expires, the state data associ ated
with the allocation can be freed.

The list of permissions is described in Section 8 and the |ist of
channel s is described in Section 11

6. Creating an Allocation

An allocation on the server is created using an Allocate transaction
6.1. Sending an All ocate Request

The client forns an Allocate request as foll ows.

The client first picks a host transport address. It is RECOVMMENDED
that the client pick a currently unused transport address, typically
by allowi ng the underlying OS to pick a currently unused port for a
new socket .

The client then picks a transport protocol to use between the client
and the server. The transport protocol MJST be one of UDP, TCP, or
TLS-over-TCP. Since this specification only allows UDP between the
server and the peers, it is RECOWENDED that the client pick UDP
unless it has a reason to use a different transport. One reason to
pick a different transport would be that the client believes, either
t hrough configuration or by experiment, that it is unable to contact
any TURN server using UDP. See Section 2.1 for nore discussion

The client also picks a server transport address, which SHOULD be
done as follows. The client receives (perhaps through configuration)
a domain nanme for a TURN server. The client then uses the DNS
procedures described in [RFC5389], but using an SRV service nane of
"turn" (or "turns" for TURN over TLS) instead of "stun" (or "stuns").
For exanple, to find servers in the exanple.comdomain, the client
perfornms a | ookup for ’ _turn._udp. exanple.conm,

" turn. _tcp.exanple.com, and ' _turns. _tcp.exanple.com if the client
wants to conmuni cate with the server using UDP, TCP, or TLS-over-TCP
respectively.

The client MJST include a REQUESTED- TRANSPORT attribute in the
request. This attribute specifies the transport protocol between the
server and the peers (note that this is NOT the transport protoco
that appears in the 5-tuple). |In this specification, the REQJESTED
TRANSPORT type is always UDP. This attribute is included to allow
future extensions to specify other protocols.

If the client wishes the server to initialize the tine-to-expiry
field of the allocation to sone value other than the default

Mahy, et al. St andards Track [Page 23]

RFC 5766 TURN April 2010

lifetinme, then it MAY include a LIFETIME attribute specifying its
desired value. This is just a request, and the server nmay elect to
use a different value. Note that the server will ignore requests to
initialize the field to less than the default val ue.

If the client wishes to later use the DONT- FRAGVENT attribute in one
or nore Send indications on this allocation, then the client SHOULD
i nclude the DONT- FRAGVENT attribute in the Allocate request. This
allows the client to test whether this attribute is supported by the
server.

If the client requires the port nunber of the relayed transport
address be even, the client includes the EVEN-PORT attribute. |If
this attribute is not included, then the port can be even or odd. By
setting the Rbit in the EVEN-PORT attribute to 1, the client can
request that the server reserve the next highest port nunber (on the
same | P address) for a subsequent allocation. |If the Rbit is 0, no
such request is made.

The client MAY al so include a RESERVATI ON- TOKEN attribute in the
request to ask the server to use a previously reserved port for the
all ocation. |If the RESERVATI ON- TOKEN attribute is included, then the
client MUST onmit the EVEN-PORT attribute.

Once constructed, the client sends the Al ocate request on the
5-tuple.

6.2. Receiving an All ocate Request

When the server receives an Allocate request, it perforns the
foll owi ng checks:

1. The server MJST require that the request be authenticated. This
aut henti cati on MJST be done using the |ong-term credenti al
mechani sm of [RFC5389] unless the client and server agree to use
anot her nechani smthrough sonme procedure outside the scope of
t hi s docunent.

2. The server checks if the 5-tuple is currently in use by an
existing allocation. |If yes, the server rejects the request with
a 437 (Allocation M smatch) error

3. The server checks if the request contains a REQUESTED TRANSPORT
attribute. |If the REQUESTED- TRANSPORT attribute is not included
or is mal forned, the server rejects the request with a 400 (Bad
Request) error. Oherwise, if the attribute is included but
specifies a protocol other that UDP, the server rejects the
request with a 442 (Unsupported Transport Protocol) error

Mahy, et al. St andards Track [Page 24]

RFC 5766 TURN April 2010

The request nmay contain a DONT- FRAGVENT attribute. |If it does,
but the server does not support sending UDP datagrans with the DF
bit set to 1 (see Section 12), then the server treats the DONT-
FRAGVENT attribute in the Allocate request as an unknown

conpr ehensi on-required attri bute.

The server checks if the request contains a RESERVATI ON- TOKEN
attribute. If yes, and the request al so contains an EVEN PORT
attribute, then the server rejects the request with a 400 (Bad
Request) error. Oherwise, it checks to see if the token is
valid (i.e., the token is in range and has not expired and the
correspondi ng rel ayed transport address is still available). |If
the token is not valid for sone reason, the server rejects the
request with a 508 (Insufficient Capacity) error

The server checks if the request contains an EVEN PORT attri bute.
If yes, then the server checks that it can satisfy the request
(i.e., can allocate a relayed transport address as descri bed
below). |f the server cannot satisfy the request, then the
server rejects the request with a 508 (lInsufficient Capacity)
error.

At any point, the server MAY choose to reject the request with a
486 (Allocation Quota Reached) error if it feels the client is
trying to exceed sone locally defined allocation quota. The
server is free to define this allocation quota any way it wi shes,
but SHOULD define it based on the username used to authenticate
the request, and not on the client’s transport address.

Al so at any point, the server MAY choose to reject the request
with a 300 (Try Alternate) error if it wishes to redirect the
client to a different server. The use of this error code and
attribute follow the specification in [RFC5389].

If all the checks pass, the server creates the allocation. The
b-tuple is set to the 5-tuple fromthe Allocate request, while the
list of pernissions and the list of channels are initially enpty.

The server chooses a relayed transport address for the allocation as
fol |l ows:

(0]

Mahy,

If the request contains a RESERVATI ON- TOKEN, the server uses the
previously reserved transport address corresponding to the
included token (if it is still available). Note that the
reservation is a server-w de reservation and is not specific to a
particul ar allocation, since the Allocate request containing the
RESERVATI ON- TOKEN uses a different 5-tuple than the All ocate
request that nmade the reservation. The 5-tuple for the Allocate

et al. St andards Track [Page 25]

RFC 5766 TURN April 2010

request containing the RESERVATI ON TOKEN attri bute can be any
allowed 5-tuple; it can use a different client |IP address and
port, a different transport protocol, and even different server |IP
address and port (provided, of course, that the server |P address
and port are ones on which the server is listening for TURN
requests).

o |If the request contains an EVEN-PORT attribute with the R bit set
to 0, then the server allocates a relayed transport address with
an even port nunber.

o |If the request contains an EVEN-PORT attribute with the R bit set
to 1, then the server | ooks for a pair of port numbers N and N+1
on the sane I P address, where Nis even. Port Nis used in the
current allocation, while the relayed transport address with port
N+1 is assigned a token and reserved for a future allocation. The
server MJUST hold this reservation for at |east 30 seconds, and NAY
choose to hold longer (e.g., until the allocation with port N
expires). The server then includes the token in a RESERVATI O\
TOKEN attribute in the success response.

0 Oherw se, the server allocates any avail able rel ayed transport
address.

In all cases, the server SHOULD only allocate ports fromthe range
49152 - 65535 (the Dynamic and/or Private Port range [Port-Nunbers]),
unl ess the TURN server application knows, through sone neans not
specified here, that other applications running on the same host as
the TURN server application will not be inpacted by allocating ports
outside this range. This condition can often be satisfied by running
the TURN server application on a dedi cated nachi ne and/ or by
arrangi ng that any other applications on the machine allocate ports
before the TURN server application starts. 1In any case, the TURN
server SHOULD NOT allocate ports in the range 0 - 1023 (the Wl -
Known Port range) to discourage clients fromusing TURN to run
standard servi ces.

NOTE: The IETF is currently investigating the topic of randonized
port assignnments to avoid certain types of attacks (see

[TSVWWG PORT]). It is strongly recommended that a TURN i npl enent or
keep abreast of this topic and, if appropriate, inplenent a
randoni zed port assignment algorithm This is especially
applicable to servers that choose to pre-allocate a nunber of
ports fromthe underlying OS and then later assign themto

al l ocations; for exanple, a server nmay choose this technique to

i mpl ement the EVEN-PORT attri bute.

Mahy, et al. St andards Track [Page 26]

RFC 5766 TURN April 2010

The server determines the initial value of the tinme-to-expiry field

as follows. |If the request contains a LIFETIME attribute, then the
server conputes the mininmumof the client’s proposed lifetinme and the
server’s maximum allowed lifetime. |If this conputed value is greater

than the default lifetinme, then the server uses the conmputed lifetinme
as the initial value of the tine-to-expiry field. Oherw se, the
server uses the default lifetine. It is RECOMENDED that the server
use a maxi mum allowed lifetime value of no nore than 3600 seconds (1
hour). Servers that inplenment allocation quotas or charge users for
all ocations in sone way may wi sh to use a snaller maxi num al | owed
lifetime (perhaps as small as the default lifetime) to nore quickly
renove or phaned allocations (that is, allocations where the
correspondi ng client has crashed or ternminated or the client
connection has been lost for sonme reason). Also, note that the tine-
to-expiry is reconmputed with each successful Refresh request, and
thus the value conmputed here applies only until the first refresh

Once the allocation is created, the server replies with a success
response. The success response contains:

0 An XOR- RELAYED- ADDRESS attribute containing the relayed transport
addr ess.

0 A LIFETIME attribute containing the current value of the tine-to-
expiry tiner.

0 A RESERVATI ON- TOKEN attribute (if a second rel ayed transport
address was reserved).

0 An XOR- MAPPED- ADDRESS attribute containing the client’s |IP address
and port (fromthe 5-tuple).

NOTE: The XOR- MAPPED- ADDRESS attribute is included in the response
as a convenience to the client. TURN itself does not make use of
this value, but clients running I CE can often need this value and
can thus avoid having to do an extra Binding transaction with sone
STUN server to learn it

The response (either success or error) is sent back to the client on
the 5-tuple.

NOTE: When the Allocate request is sent over UDP, section 7.3.1 of
[RFC5389] requires that the server handl e the possible

retransm ssions of the request so that retransm ssions do not
cause nultiple allocations to be created. |nplenentations may
achieve this using the so-called "statel ess stack approach" as
follows. To detect retransnmi ssions when the original request was
successful in creating an allocation, the server can store the

Mahy, et al. St andards Track [Page 27]

RFC 5766 TURN April 2010

transaction id that created the request with the allocation data
and conpare it with incomng Allocate requests on the sane
5-tuple. Once such a request is detected, the server can stop
parsing the request and i medi ately generate a success response.
When building this response, the value of the LIFETIME attribute
can be taken fromthe tinme-to-expiry field in the allocate state
data, even though this value may differ slightly fromthe LIFETI ME
value originally returned. |In addition, the server may need to
store an indication of any reservation token returned in the
original response, so that this may be returned in any
retransmtted responses.

For the case where the original request was unsuccessful in
creating an allocation, the server may choose to do not hing
special. Note, however, that there is a rare case where the
server rejects the original request but accepts the retransnitted
request (because conditions have changed in the brief intervening
tinme period). |If the client receives the first failure response,
it will ignore the second (success) response and believe that an
al l ocation was not created. An allocation created in this matter
will eventually timeout, since the client will not refresh it.
Furthermore, if the client later retries with the sane 5-tuple but
different transaction id, it will receive a 437 (Allocation

M smatch), which will cause it to retry with a different 5-tuple.
The server may use a snaller maximumlifetine value to mninze
the lifetime of allocations "orphaned" in this manner.

6.3. Receiving an All ocate Success Response

If the client receives an Allocate success response, then it MJST
check that the mapped address and the relayed transport address are
in an address fanmily that the client understands and is prepared to
handl e. This specification only covers the case where these two
addresses are | Pv4 addresses. |f these two addresses are not in an
address famly which the client is prepared to handle, then the
client MIUST delete the allocation (Section 7) and MJUST NOT attenpt to
create another allocation on that server until it believes the

m smat ch has been fixed

The 1ETF is currently considering nechanisns for transitioning
between 1 Pv4 and IPv6 that could result in a client originating an
Al l ocate request over |Pv6, but the request would arrive at the
server over |Pv4, or vice versa

O herwi se, the client creates its own copy of the allocation data

structure to track what is happening on the server. In particular,
the client needs to renmenber the actual lifetinme received back from
the server, rather than the value sent to the server in the request.

Mahy, et al. St andards Track [Page 28]

RFC 5766 TURN April 2010

The client nust also renenber the 5-tuple used for the request and

t he usernanme and password it used to authenticate the request to
ensure that it reuses themfor subsequent nessages. The client also
needs to track the channels and permissions it establishes on the
server.

The client will probably wish to send the relayed transport address
to peers (using sonme nethod not specified here) so the peers can
comrmuni cate with it. The client nay also wish to use the server-
reflexive address it receives in the XOR- MAPPED- ADDRESS attribute in
its I CE processing.

6.4. Receiving an Allocate Error Response

If the client receives an Allocate error response, then the
processi ng depends on the actual error code returned:

0 (Request tined out): There is either a problemw th the server, or
a problemreaching the server with the chosen transport. The
client considers the current transaction as having failed but MAY
choose to retry the Allocate request using a different transport
(e.g., TCP instead of UDP).

o 300 (Try Alternate): The server would like the client to use the
server specified in the ALTERNATE- SERVER attri bute instead. The
client considers the current transaction as having fail ed, but
SHOULD try the Allocate request with the alternate server before
trying any other servers (e.g., other servers discovered using the
SRV procedures). Wien trying the Allocate request with the
alternate server, the client follows the ALTERNATE- SERVER
procedures specified in [RFC5389].

0 400 (Bad Request): The server believes the client’s request is
mal formed for sone reason. The client considers the current
transaction as having failed. The client MAY notify the user or
operator and SHOULD NOT retry the request with this server unti
it believes the problem has been fixed.

0 401 (Unauthorized): If the client has followed the procedures of
the I ong-termcredential mechanismand still gets this error, then
the server is not accepting the client’s credentials. In this
case, the client considers the current transacti on as having
failed and SHOULD notify the user or operator. The client SHOULD
NOT send any further requests to this server until it believes the
probl em has been fi xed.

Mahy, et al. St andards Track [Page 29]

RFC 5766 TURN April 2010

Mahy,

403 (Forbi dden): The request is valid, but the server is refusing
to performit, likely due to adnministrative restrictions. The
client considers the current transaction as having failed. The
client MAY notify the user or operator and SHOULD NOT retry the
same request with this server until it believes the probl em has
been fi xed.

420 (Unknown Attribute): If the client included a DONT- FRAGVENT
attribute in the request and the server rejected the request with
a 420 error code and listed the DONT- FRAGVENT attribute in the
UNKNOAN- ATTRI BUTES attribute in the error response, then the
client now knows that the server does not support the DONT-
FRAGMVENT attribute. The client considers the current transaction
as having failed but MAY choose to retry the Allocate request

wi t hout the DONT- FRAGVENT attri bute.

437 (Al'location Msmatch): This indicates that the client has
picked a 5-tuple that the server sees as already in use. One way
this could happen is if an intervening NAT assi gned a nmapped
transport address that was used by another client that recently
crashed. The client considers the current transaction as having
failed. The client SHOULD pick another client transport address
and retry the Allocate request (using a different transaction id).
The client SHOULD try three different client transport addresses
before giving up on this server. Once the client gives up on the
server, it SHOULD NOT try to create another allocation on the
server for 2 mnutes.

438 (Stale Nonce): See the procedures for the |l ong-termcredentia
mechani sm [RFC5389] .

441 (Wong Credentials): The client should not receive this error
in response to a Allocate request. The client MAY notify the user
or operator and SHOULD NOT retry the same request with this server
until it believes the problemhas been fixed.

442 (Unsupported Transport Address): The client should not receive
this error in response to a request for a UDP allocation. The
client MAY notify the user or operator and SHOULD NOT reattenpt
the request with this server until it believes the probl em has
been fi xed.

486 (Allocation Quota Reached): The server is currently unable to
create any nore allocations with this username. The client
considers the current transaction as having failed. The client
SHOULD wait at least 1 minute before trying to create any nore

al I ocations on the server.

et al. St andards Track [Page 30]

RFC 5766 TURN April 2010

0 508 (Insufficient Capacity): The server has no nore rel ayed
transport addresses avail able, or has none with the requested
properties, or the one that was reserved is no | onger avail able.
The client considers the current operation as having failed. If
the client is using either the EVEN-PORT or the RESERVATI ON- TOKEN
attribute, then the client MAY choose to renove or nodify this
attribute and try again inmediately. Oherwi se, the client SHOULD
wait at least 1 minute before trying to create any nore
al l ocations on this server.

An unknown error response MJST be handl ed as described in [RFC5389].
7. Refreshing an Allocation

A Refresh transaction can be used to either (a) refresh an existing
al l ocation and update its tinme-to-expiry or (b) delete an existing
al | ocati on.

If a client wishes to continue using an allocation, then the client
MUST refresh it before it expires. It is suggested that the client
refresh the allocation roughly 1 minute before it expires. If a
client no | onger wishes to use an allocation, then it SHOULD
explicitly delete the allocation. A client MAY refresh an allocation
at any tine for other reasons.

7.1. Sending a Refresh Request

If the client wishes to imediately delete an existing allocation, it
includes a LIFETIME attribute with a value of 0. All other forms of
the request refresh the allocation

The Refresh transaction updates the tinme-to-expiry tinmer of an
allocation. |If the client wishes the server to set the tine-to-
expiry tiner to sonmething other than the default lifetime, it
includes a LIFETIME attribute with the requested value. The server
then conputes a new tinme-to-expiry value in the sane way as it does
for an Allocate transaction, with the exception that a requested
lifetime of O causes the server to inmediately delete the allocation

7.2. Receiving a Refresh Request

When the server receives a Refresh request, it processes as per
Section 4 plus the specific rules nentioned here.

The server conputes a value called the "desired lifetinme" as follows:
if the request contains a LIFETIME attribute and the attribute val ue
is 0, then the "desired lifetine" is 0. Oherwise, if the request
contains a LIFETIME attribute, then the server conputes the m ni num

Mahy, et al. St andards Track [Page 31]

RFC 5766 TURN April 2010

of the client’s requested lifetine and the server’s naxi num al | owed
lifetime. |If this conputed value is greater than the default
lifetime, then the "desired lifetime" is the conmputed val ue.

O herwi se, the "desired lifetine" is the default lifetine.

Subsequent processi ng depends on the "desired lifetine" val ue:

o If the "desired lifetine" is 0, then the request succeeds and the
al l ocation is del eted.

o If the "desired lifetinme" is non-zero, then the request succeeds
and the allocation's tinme-to-expiry is set to the "desired
lifetinme".

I f the request succeeds, then the server sends a success response
cont ai ni ng:

0 A LIFETIME attribute containing the current value of the tine-to-
expiry tiner.

NOTE: A server need not do anything special to inplenent

i dempot ency of Refresh requests over UDP using the "statel ess
stack approach”. Retransnmitted Refresh requests with a non-zero
"desired lifetime" will sinply refresh the allocation. A
retransmtted Refresh request with a zero "desired lifetinme" wll
cause a 437 (Allocation Msmatch) response if the allocation has
al ready been deleted, but the client will treat this as equival ent
to a success response (see bel ow).

7.3. Receiving a Refresh Response

If the client receives a success response to its Refresh request with
a non-zero lifetine, it updates its copy of the allocation data
structure with the time-to-expiry value contained in the response.

If the client receives a 437 (Al location Msmatch) error response to
a request to delete the allocation, then the allocation no |onger
exists and it should consider its request as having effectively
succeeded.

8. Perm ssions
For each allocation, the server keeps a list of zero or nore
perm ssions. Each permi ssion consists of an | P address and an

associated tinme-to-expiry. Wile a pernission exists, all peers
using the IP address in the pernission are allowed to send data to

Mahy, et al. St andards Track [Page 32]

RFC 5766 TURN April 2010

the client. The tine-to-expiry is the nunber of seconds until the
perm ssion expires. Wthin the context of an allocation, a
permission is uniquely identified by its associated | P address.

By sending either CreatePerm ssion requests or Channel Bind requests,
the client can cause the server to install or refresh a perm ssion
for a given | P address. This causes one of two things to happen

o If no permission for that |P address exists, then a pernmission is
created with the given IP address and a time-to-expiry equal to
Perm ssion Lifetine.

o If a permission for that | P address already exists, then the tine-
to-expiry for that permission is reset to Pernission Lifetine.

The Permi ssion Lifetinme MIUST be 300 seconds (= 5 minutes).

Each pernission’s tinme-to-expiry decreases down once per second unti
it reaches 0; at which point, the pernission expires and is del eted.

Creat ePermi ssion and Channel Bind requests may be freely intermnm xed on
a permssion. A given permission may be initially installed and/or
refreshed with a CreatePerm ssion request, and then later refreshed
wi th a Channel Bi nd request, or vice versa.

When a UDP datagram arrives at the relayed transport address for the
al l ocation, the server extracts the source |IP address fromthe IP
header. The server then conpares this address with the | P address
associated with each permission in the list of permissions for the
allocation. If no match is found, relaying is not permtted, and the
server silently discards the UDP datagram |If an exact match is
found, then the perm ssion check is considered to have succeeded and
the server continues to process the UDP datagram as specified

el sewhere (Section 10.3). Note that only addresses are conpared and
port nunbers are not considered.

The pernissions for one allocation are totally unrelated to the
permi ssions for a different allocation. |f an allocation expires,
all its pernmissions expire with it.

NOTE: Though TURN pernissions expire after 5 m nutes, many NATs
depl oyed at the tine of publication expire their UDP bindi ngs
considerably faster. Thus, an application using TURN wil |
probably wi sh to send sone sort of keep-alive traffic at a nuch
faster rate. Applications using |ICE should follow the keep-alive
gui del i nes of | CE [RFC5245], and applications not using |ICE are
advised to do sonething simlar.

Mahy, et al. St andards Track [Page 33]

RFC 5766 TURN April 2010

9. CreatePerm ssion

TURN supports two ways for the client to install or refresh
perm ssions on the server. This section describes one way: the
Cr eat ePer mi ssi on request.

A Creat ePerm ssion request nay be used in conjunction with either the
Send nmechanismin Section 10 or the Channel mechanismin Section 11

9.1. Forming a CreatePernission Request

The client who wishes to install or refresh one or nore pernissions
can send a CreatePernission request to the server

Wien forming a CreatePermission request, the client MJST include at
| east one XOR- PEER- ADDRESS attribute, and MAY include nore than one
such attribute. The IP address portion of each XOR- PEER- ADDRESS
attribute contains the I P address for which a perm ssion should be
installed or refreshed. The port portion of each XOR- PEER- ADDRESS
attribute will be ignored and can be any arbitrary value. The

vari ous XOR- PEER- ADDRESS attri butes can appear in any order

9.2. Receiving a CreatePerm ssion Request

When the server receives the CreatePernission request, it processes
as per Section 4 plus the specific rules nentioned here.

The message is checked for validity. The CreatePermn ssion request
MJUST contain at | east one XOR- PEER- ADDRESS attri bute and MAY contain

multiple such attributes. |f no such attribute exists, or if any of
these attributes are invalid, then a 400 (Bad Request) error is
returned. |If the request is valid, but the server is unable to

satisfy the request due to some capacity lint or simlar, then a 508
(I'nsufficient Capacity) error is returned.

The server MAY inpose restrictions on the IP address allowed in the
XOR- PEER- ADDRESS attribute -- if a value is not allowed, the server
rejects the request with a 403 (Forbidden) error

If the message is valid and the server is capable of carrying out the
request, then the server installs or refreshes a perm ssion for the

| P address contained in each XOR- PEER- ADDRESS attribute as described
in Section 8. The port portion of each attribute is ignored and nmay
be any arbitrary val ue.

The server then responds with a CreatePermn ssion success response.
There are no mandatory attributes in the success response.

Mahy, et al. St andards Track [Page 34]

RFC 5766 TURN April 2010

9. 3.

10.

10.

10.

Mah

NOTE: A server need not do anything special to inplenent

i denpot ency of CreatePernission requests over UDP using the
"statel ess stack approach". Retransnitted CreatePermni ssion
requests will sinply refresh the pernissions.

Recei ving a CreatePerm ssi on Response

If the client receives a valid CreatePerni ssion success response,
then the client updates its data structures to indicate that the
per m ssi ons have been installed or refreshed.

Send and Dat a Met hods

TURN supports two nechani sns for sending and receiving data from
peers. This section describes the use of the Send and Data
mechani snms, while Section 11 describes the use of the Channe
mechani sm

1. Forming a Send |ndication

The client can use a Send indication to pass data to the server for
relaying to a peer. A client may use a Send indication even if a
channel is bound to that peer. However, the client MJST ensure that
there is a pernission installed for the I P address of the peer to
which the Send indication is being sent; this prevents a third party
fromusing a TURN server to send data to arbitrary destinations

When formng a Send indication, the client MJST include an XOR- PEER-
ADDRESS attribute and a DATA attribute. The XOR- PEER- ADDRESS
attribute contains the transport address of the peer to which the
data is to be sent, and the DATA attribute contains the actua
application data to be sent to the peer

The client MAY include a DONT- FRAGVENT attribute in the Send
indication if it wishes the server to set the DF bit on the UDP
dat agram sent to the peer

2. Receiving a Send Indication

When the server receives a Send indication, it processes as per
Section 4 plus the specific rules nentioned here.

The nmessage is first checked for validity. The Send indication MJST
contain both an XOR- PEER- ADDRESS attri bute and a DATA attribute. |If
one of these attributes is mssing or invalid, then the nessage is
discarded. Note that the DATA attribute is allowed to contain zero
bytes of data.

, et al. St andards Track Page 35
y g

RFC 5766 TURN April 2010

The Send indication nmay al so contain the DONT- FRAGVENT attribute. |f
the server is unable to set the DF bit on outgoing UDP datagranms when
this attribute is present, then the server acts as if the DONT-
FRAGVENT attribute is an unknown conprehension-required attribute
(and thus the Send indication is discarded).

The server al so checks that there is a permission installed for the
| P address contained in the XOR- PEER- ADDRESS attribute. |If no such
perm ssion exists, the nessage is discarded. Note that a Send

i ndi cati on never causes the server to refresh the perm ssion

The server MAY inpose restrictions on the | P address and port val ues
all owed in the XOR- PEER- ADDRESS attribute -- if a value is not
al l owed, the server silently discards the Send indication

If everything is OK then the server fornms a UDP datagram as foll ows:

0 the source transport address is the relayed transport address of
the allocation, where the allocation is deternined by the 5-tuple
on which the Send indication arrived,

o the destination transport address is taken fromthe XOR PEER-
ADDRESS attri bute;

o the data following the UDP header is the contents of the val ue
field of the DATA attribute.

The handling of the DONT- FRAGVENT attribute (if present), is
described in Section 12.

The resulting UDP datagramis then sent to the peer
10.3. Receiving a UDP Datagram

When the server receives a UDP datagramat a currently allocated

rel ayed transport address, the server |ooks up the allocation
associated with the relayed transport address. The server then
checks to see whether the set of permnissions for the allocation allow
the relaying of the UDP datagram as described in Section 8.

If relaying is permtted, then the server checks if there is a
channel bound to the peer that sent the UDP datagram (see
Section 11). |If a channel is bound, then processing proceeds as
described in Section 11.7.

If relaying is permtted but no channel is bound to the peer, then

the server forns and sends a Data indication. The Data indication
MJUST contai n both an XOR- PEER- ADDRESS and a DATA attribute. The DATA

Mahy, et al. St andards Track [Page 36]

RFC 5766 TURN April 2010

10.

11.

attribute is set to the value of the 'data octets’ field fromthe
dat agram and the XOR- PEER- ADDRESS attribute is set to the source
transport address of the received UDP datagram The Data indication
is then sent on the 5-tuple associated with the allocation

4., Receiving a Data Indication

When the client receives a Data indication, it checks that the Data

i ndi cati on contains both an XOR- PEER- ADDRESS and a DATA attri bute,
and discards the indication if it does not. The client SHOULD al so
check that the XOR- PEER- ADDRESS attribute value contains an | P
address with which the client believes there is an active perm ssion,
and di scard the Data indication otherwise. Note that the DATA
attribute is allowed to contain zero bytes of data.

NOTE: The latter check protects the client against an attacker who
sonmehow nmanages to trick the server into installing perm ssions
not desired by the client.

If the Data indication passes the above checks, the client delivers
the data octets inside the DATA attribute to the application, along
with an indication that they were received fromthe peer whose
transport address is given by the XOR- PEER- ADDRESS attri bute.

Channel s

Channel s provide a way for the client and server to send application
dat a usi ng Channel Dat a nmessages, which have | ess overhead than Send
and Data indications.

The Channel Dat a nessage (see Section 11.4) starts with a two-byte
field that carries the channel nunber. The values of this field are
all ocated as foll ows:

0x0000 t hrough Ox3FFF: These val ues can never be used for channe
nunbers.

0x4000 t hrough Ox7FFF. These val ues are the all owed channe
nunbers (16, 383 possi bl e val ues).

0x8000 t hrough OxFFFF: These val ues are reserved for future use.
Because of this division, Channel Data nessages can be distingui shed
from STUN-formatted nessages (e.g., Allocate request, Send
i ndication, etc.) by exanmining the first two bits of the nessage:

0b00: STUN-formatted nessage (since the first two bits of a STUN
formatted nessage are al ways zero).

Mahy, et al. St andards Track [Page 37]

RFC 5766 TURN April 2010

0b01: Channel Data nessage (since the channel nunber is the first
field in the Channel Data nessage and channel nunbers fall in the
range 0x4000 - Ox7FFF).

0b10: Reserved
Ob11l: Reserved

The reserved values nmay be used in the future to extend the range of
channel numbers. Thus, an inplenmentati on MUST NOT assunme that a TURN
message al ways starts with a 0 bit.

Channel bindings are always initiated by the client. The client can
bind a channel to a peer at any time during the lifetine of the
allocation. The client may bind a channel to a peer before
exchanging data with it, or after exchanging data with it (using Send
and Data indications) for some time, or may choose never to bind a
channel to it. The client can also bind channels to sone peers while
not bi nding channels to other peers.

Channel bindings are specific to an allocation, so that the use of a
channel nunber or peer transport address in a channel binding in one
al l ocation has no inpact on their use in a different allocation. |If
an allocation expires, all its channel bindings expire with it.

A channel binding consists of:

o a channel nunber;

0 a transport address (of the peer); and
o Atinme-to-expiry tiner.

Wthin the context of an allocation, a channel binding is uniquely
identified either by the channel number or by the peer’s transport
address. Thus, the sane channel cannot be bound to two different
transport addresses, nor can the sane transport address be bound to
two different channels.

A channel binding lasts for 10 minutes unless refreshed. Refreshing
the binding (by the server receiving a Channel Bi nd request rebinding
the channel to the sane peer) resets the tine-to-expiry tiner back to
10 m nutes.

Wien the channel binding expires, the channel becones unbound. Once
unbound, the channel nunber can be bound to a different transport
address, and the transport address can be bound to a different
channel nunber. To prevent race conditions, the client MIST wait 5

Mahy, et al. St andards Track [Page 38]

RFC 5766 TURN April 2010

11.

11.

m nutes after the channel binding expires before attenpting to bind
t he channel nunber to a different transport address or the transport
address to a different channel nunber.

When binding a channel to a peer, the client SHOULD be prepared to
recei ve Channel Dat a nessages on the channel fromthe server as soon
as it has sent the Channel Bind request. Over UDP, it is possible for
the client to receive Channel Data nessages fromthe server before it
recei ves a Channel Bi nd success response.

In the other direction, the client MAY el ect to send Channel Data
nmessages before receiving the Channel Bi nd success response. Doing
so, however, runs the risk of having the Channel Data nessages dropped
by the server if the Channel Bind request does not succeed for sone
reason (e.g., packet lost if the request is sent over UDP, or the
server being unable to fulfill the request). A client that wi shes to
be safe should either queue the data or use Send indications unti

the channel binding is confirned.

1. Sending a Channel Bi nd Request

A channel binding is created or refreshed using a Channel Bi nd
transaction. A Channel Bind transaction also creates or refreshes a
perm ssion towards the peer (see Section 8).

To initiate the Channel Bind transaction, the client fornms a
Channel Bi nd request. The channel to be bound is specified in a
CHANNEL- NUMBER attribute, and the peer’s transport address is
specified in an XOR- PEER- ADDRESS attri bute. Section 11.2 describes
the restrictions on these attributes.

Rebi ndi ng a channel to the sane transport address that it is already
bound to provides a way to refresh a channel binding and the
correspondi ng pernission w thout sending data to the peer. Note
however, that perm ssions need to be refreshed nore frequently than
channel s.

2. Receiving a Channel Bi nd Request

When the server receives a Channel Bind request, it processes as per
Section 4 plus the specific rules nentioned here.

The server checks the foll ow ng:

0 The request contains both a CHANNEL- NUMBER and an XOR- PEER- ADDRESS
attribute

Mahy, et al. St andards Track [Page 39]

RFC 5766 TURN April 2010

11.

0 The channel nunber is in the range 0x4000 through OX7FFE
(i nclusive);

0 The channel nunber is not currently bound to a different transport
address (sanme transport address is OK);

0 The transport address is not currently bound to a different
channel nunber.

If any of these tests fail, the server replies with a 400 (Bad
Request) error.

The server MAY inpose restrictions on the | P address and port val ues
allowed in the XOR- PEER- ADDRESS attribute -- if a value is not
al l oned, the server rejects the request with a 403 (Forbidden) error

If the request is valid, but the server is unable to fulfill the
request due to sone capacity limt or simlar, the server replies
with a 508 (Insufficient Capacity) error.

O herwi se, the server replies with a Channel Bind success response.
There are no required attributes in a successful Channel Bi nd
response.

If the server can satisfy the request, then the server creates or
refreshes the channel binding using the channel nunber in the
CHANNEL- NUMBER attribute and the transport address in the XOR- PEER-
ADDRESS attribute. The server also installs or refreshes a

perm ssion for the I P address in the XOR PEER- ADDRESS attribute as
described in Section 8.

NOTE: A server need not do anything special to inplenent

i denpot ency of Channel Bi nd requests over UDP using the "statel ess
stack approach”. Retransnitted Channel Bind requests will sinply
refresh the channel binding and the correspondi ng perm ssion
Furthernore, the client nust wait 5 mnutes before binding a
previ ously bound channel nunber or peer address to a different
channel, elininating the possibility that the transaction would
initially fail but succeed on a retransm ssion

3. Receiving a Channel Bi nd Response

When the client receives a Channel Bi nd success response, it updates
its data structures to record that the channel binding is now active
It al so updates its data structures to record that the correspondi ng
perm ssion has been installed or refreshed.

Mahy, et al. St andards Track [Page 40]

RFC 5766 TURN April 2010

11.

11.

If the client receives a Channel Bind failure response that indicates
that the channel information is out-of-sync between the client and
the server (e.g., an unexpected 400 "Bad Request" response), then it
i's RECOWENDED that the client imediately delete the allocation and
start afresh with a new allocation

4. The Channel Data Message

The Channel Data nessage is used to carry application data between the
client and the server. It has the follow ng format:

0 1 2 3
01234567890123456789012345678901
B o T T S e i i Sl NI S e S et ol mt ST T S i S S
Channel Nunber | Length |

|

B s T s s e T o e S T ks et s oot ST S S S o S S 3
| |

/ Application Data /
/ /
| |

| T S +
|

+

The Channel Nunber field specifies the nunber of the channel on which
the data is traveling, and thus the address of the peer that is
sending or is to receive the data.

The Length field specifies the length in bytes of the application
data field (i.e., it does not include the size of the Channel Data
header). Note that 0 is a valid |ength.

The Application Data field carries the data the client is trying to
send to the peer, or that the peer is sending to the client.

5. Sending a Channel Data Message

Once a client has bound a channel to a peer, then when the client has
data to send to that peer it may use either a Channel Data nmessage or
a Send indication; that is, the client is not obligated to use the
channel when it exists and may freely interm x the two nessage types
when sending data to the peer. The server, on the other hand, MJST
use the Channel Data nessage if a channel has been bound to the peer

The fields of the Channel Data nessage are filled in as described in
Section 11.4.

Mahy, et al. St andards Track [Page 41]

RFC 5766 TURN April 2010

11.

Over TCP and TLS-over-TCP, the Channel Data nessage MUST be padded to
a multiple of four bytes in order to ensure the alignnent of
subsequent nmessages. The padding is not reflected in the length
field of the Channel Data nmessage, so the actual size of a Channel Data
message (including padding) is (4 + Length) rounded up to the nearest
multiple of 4. Over UDP, the padding is not required but MAY be

i ncl uded.

The Channel Data nmessage is then sent on the 5-tuple associated with
the all ocati on.

6. Receiving a Channel Data Message

The receiver of the Channel Data nessage uses the first two bits to
distinguish it from STUN-formatted nessages, as described above. |If
the message uses a value in the reserved range (0x8000 through
OxFFFF), then the nmessage is silently discarded.

I f the Channel Data nessage is received in a UDP datagram and if the
UDP datagramis too short to contain the clained | ength of the
Channel Dat a nmessage (i.e., the UDP header length field value is |less
than the Channel Data header length field value + 4 + 8), then the
message is silently discarded.

I f the Channel Data nessage is received over TCP or over TLS-over-TCP
then the actual length of the Channel Data nessage is as described in
Section 11.5.

If the Channel Data nmessage is received on a channel that is not bound
to any peer, then the nessage is silently discarded.

On the client, it is RECOWENDED that the client discard the
Channel Data nessage if the client believes there is no active
perm ssion towards the peer. On the server, the receipt of a
Channel Dat a nessage MJUST NOT refresh either the channel binding or
the pernission towards the peer

On the server, if no errors are detected, the server relays the
application data to the peer by form ng a UDP datagram as foll ows:

0 the source transport address is the relayed transport address of
the allocation, where the allocation is deternined by the 5-tuple
on whi ch the Channel Data nessage arrived;

o the destination transport address is the transport address to
whi ch the channel is bound;

Mahy, et al. St andards Track [Page 42]

RFC 5766 TURN April 2010

11.

12.

o the data followi ng the UDP header is the contents of the data
field of the Channel Data nessage.

The resulting UDP datagramis then sent to the peer. Note that if
the Length field in the Channel Data nessage is 0, then there will be
no data in the UDP datagram but the UDP datagramis still forned and
sent.

7. Relaying Data fromthe Peer

When the server receives a UDP datagramon the relayed transport
address associated with an allocation, the server processes it as
described in Section 10.3. |f that section indicates that a
Channel Dat a nessage shoul d be sent (because there is a channel bound
to the peer that sent to the UDP datagran), then the server forns and
sends a Channel Dat a nessage as described in Section 11.5.

| P Header Fields

Thi s section describes how the server sets various fields in the IP
header when rel ayi ng between the client and the peer or vice versa.
The descriptions in this section apply: (a) when the server sends a
UDP datagramto the peer, or (b) when the server sends a Data

i ndi cation or Channel Data nessage to the client over UDP transport.
The descriptions in this section do not apply to TURN nessages sent
over TCP or TLS transport fromthe server to the client.

The descriptions bel ow have two parts: a preferred behavior and an
alternate behavior. The server SHOULD inpl ement the preferred
behavior, but if that is not possible for a particular field, then it
SHOULD i npl enent the alternative behavior.

Time to Live (TTL) field

Preferred Behavior: If the incomng value is 0, then the drop the
i ncom ng packet. Oherw se, set the outgoing Tinme to Live/Hop
Count to one less than the inconing val ue.

Al ternate Behavior: Set the outgoing value to the default for
out goi ng packets.

Differentiated Services Code Point (DSCP) field [RFC2474]
Preferred Behavior: Set the outgoing value to the incom ng val ue,

unl ess the server includes a differentiated services classifier
and marker [RFC2474].

Mahy, et al. St andards Track [Page 43]

RFC 5766 TURN April 2010

Al ternate Behavior: Set the outgoing value to a fixed val ue, which
by default is Best Effort unless configured otherw se.

In both cases, if the server is imediately adjacent to a
differentiated services classifier and marker, then DSCP MAY be
set to any arbitrary value in the direction towards the
classifier.

Explicit Congestion Notification (ECN) field [RFC3168]

Preferred Behavior: Set the outgoing value to the incom ng val ue,
UNLESS the server is doing Active Queue Managenent, the inconing
ECN field is ECT(1) (=0b01) or ECT(0) (=0bl1l0), and the server

wi shes to indicate that congestion has been experienced, in which
case set the outgoing value to CE (=0bll).

Al ternate Behavior: Set the outgoing value to Not-ECT (=0b00).
| Pv4 Fragnentation fields

Preferred Behavi or: \Wen the server sends a packet to a peer in
response to a Send indication containing the DONT- FRAGVENT
attribute, then set the DF bit in the outgoing IP header to 1. In
all other cases when sendi ng an out goi ng packet containing
application data (e.g., Data indication, Channel Data nessage, or
DONT- FRAGVENT attribute not included in the Send indication), copy
the DF bit fromthe DF bit of the incom ng packet that contained
the application data.

Set the other fragnentation fields (ldentification, Mre
Fragnents, Fragnment Offset) as appropriate for a packet
originating fromthe server.

Al ternate Behavior: As described in the Preferred Behavior, except
al ways assunme the incomng DF bit is O.

In both the Preferred and Alternate Behaviors, the resulting
packet may be too large for the outgoing link. |If this is the
case, then the normal fragnentation rules apply [RFCl1122].

| Pv4 Options

Preferred Behavi or: The outgoing packet is sent wthout any |Pv4
options.

Al ternate Behavior: Sanme as preferred.

Mahy, et al. St andards Track [Page 44]

RFC 5766 TURN April 2010

13.

14.

14.

New STUN Met hods

This section lists the codepoints for the new STUN net hods defined in
this specification. See elsewhere in this docunent for the semantics
of these new net hods.

0x003 : Allocate (only request/response senmantics defined)
0x004 : Refresh (only request/response senmantics defined)
0x006 : Send (only indication semantics defined)
0x007 : Data (only indication semantics defined)
0x008 : CreatePermission (only request/response semantics defined
0x009 : Channel Bind (only request/response semantics defined)

New STUN Attri butes
This STUN ext ension defines the followi ng new attri butes:

0x000C: CHANNEL- NUVBER

0x000D: LI FETI ME

0x0010: Reserved (was BANDW DTH)
0x0012: XOR- PEER- ADDRESS

0x0013: DATA

0x0016: XOR- RELAYED- ADDRESS
0x0018: EVEN- PORT

0x0019: REQUESTED- TRANSPORT
O0x001A: DONT- FRAGVENT

0x0021: Reserved (was Tl MER-VAL)
0x0022: RESERVATI ON- TOKEN

Sonme of these attributes have | engths that are not nultiples of 4.

By the rules of STUN, any attribute whose length is not a nultiple of
4 bytes MJUST be imediately followed by 1 to 3 padding bytes to
ensure the next attribute (if any) would start on a 4-byte boundary
(see [RFC5389]).

1. CHANNEL- NUMBER

The CHANNEL- NUMBER attribute contains the number of the channel. The
val ue portion of this attribute is 4 bytes Iong and consists of a 16-
bit unsigned integer, followed by a two-octet RFFU (Reserved For
Future Use) field, which MIST be set to O on transm ssion and MJST be
i gnored on reception.

0 1 2 3
01234567890123456789012345678901
B T T T o o S S S e i S S Tk e e Y S
| Channel Nunber | RFFU = 0 |
B i ok it I I S e S e S ki ol ik i I TR SR i S S e S e e e e i i 5

Mahy, et al. St andards Track [Page 45]

RFC 5766 TURN April 2010

14.

14.

14.

14.

14.

2. LIFETIME

The LI FETIME attribute represents the duration for which the server
will maintain an allocation in the absence of a refresh. The val ue
portion of this attribute is 4-bytes long and consists of a 32-bit
unsi gned integral value representing the nunber of seconds remnaining
until expiration

3. XOR- PEER- ADDRESS

The XOR- PEER- ADDRESS specifies the address and port of the peer as
seen fromthe TURN server. (For exanple, the peer’s server-reflexive
transport address if the peer is behind a NAT.) It is encoded in the
sane way as XOR- MAPPED- ADDRESS [RFC5389] .

4. DATA

The DATA attribute is present in all Send and Data indications. The
val ue portion of this attribute is variable length and consists of
the application data (that is, the data that would i mediately foll ow
the UDP header if the data was been sent directly between the client
and the peer). |If the length of this attribute is not a multiple of
4, then paddi ng nust be added after this attribute.

5. XOR- RELAYED- ADDRESS

The XOR- RELAYED- ADDRESS is present in Allocate responses. It
specifies the address and port that the server allocated to the
client. It is encoded in the same way as XOR- MAPPED- ADDRESS

[RFC5389] .

6. EVEN PORT

This attribute allows the client to request that the port in the
rel ayed transport address be even, and (optionally) that the server
reserve the next-higher port nunber. The value portion of this
attribute is 1 byte long. |Its format is:

Mahy, et al. St andards Track [Page 46]

RFC 5766 TURN April 2010

14.

14.

0
01234567
T S N S
| R RFFU |
B s i SN SR S

The value contains a single 1-bit flag:

R If 1, the server is requested to reserve the next-higher port
nunber (on the same | P address) for a subsequent allocation. |If
0, no such reservation is requested.

The other 7 bits of the attribute’s value nust be set to zero on
transm ssion and ignored on reception

Since the length of this attribute is not a multiple of 4, padding
must i mediately follow this attribute.

7. REQUESTED- TRANSPORT

This attribute is used by the client to request a specific transport
protocol for the allocated transport address. The value of this
attribute is 4 bytes with the followi ng format:
0 1 2 3
01234567890123456789012345678901
T T R o o i e S E E e e s o i N SR
| Pr ot ocol | RFFU
B s T s s e T o e S T ks et s oot ST S S S o S S 3

The Protocol field specifies the desired protocol. The codepoints
used in this field are taken fromthose allowed in the Protocol field
in the | Pv4 header and the NextHeader field in the | Pv6 header

[Protocol - Nunbers]. This specification only allows the use of
codepoi nt 17 (User Datagram Protocol).

The RFFU field MJUST be set to zero on transnission and MJST be
i gnored on reception. It is reserved for future uses.

8. DONT- FRAGVENT

This attribute is used by the client to request that the server set
the DF (Don’t Fragnment) bit in the I P header when relaying the
application data onward to the peer. This attribute has no val ue
part and thus the attribute length field is O.

Mahy, et al. St andards Track [Page 47]

RFC 5766 TURN April 2010

14.

15.

16.

9. RESERVATI ON- TOKEN

The RESERVATI ON- TOKEN attri bute contains a token that uniquely
identifies a relayed transport address being held in reserve by the
server. The server includes this attribute in a success response to
tell the client about the token, and the client includes this
attribute in a subsequent Allocate request to request the server use
that relayed transport address for the allocation

The attribute value is 8 bytes and contains the token val ue.
New STUN Error Response Codes
Thi s docunent defines the follow ng new error response codes:

403 (Forbidden): The request was valid but cannot be performed due
to administrative or simlar restrictions.

437 (Allocation Msnmatch): A request was received by the server that
requires an allocation to be in place, but no allocation exists,
or a request was received that requires no allocation, but an
al l ocation exists.

441 (Wong Credentials): The credentials in the (non-All ocate)
request do not natch those used to create the allocation

442 (Unsupported Transport Protocol): The Allocate request asked the
server to use a transport protocol between the server and the peer
that the server does not support. NOTE: This does NOT refer to
the transport protocol used in the 5-tuple.

486 (Allocation Quota Reached): No nore allocations using this
usernanme can be created at the present tine.

508 (Insufficient Capacity): The server is unable to carry out the
request due to sone capacity lint being reached. In an Allocate
response, this could be due to the server having no nore rel ayed
transport addresses available at that time, having none with the
requested properties, or the one that corresponds to the specified
reservation token is not avail abl e.

Det ai | ed Exanpl e
This section gives an exanple of the use of TURN, showi ng in detai

the contents of the nessages exchanged. The exanple uses the network
di agram shown in the Overview (Figure 1).

Mahy, et al. St andards Track [Page 48]

RFC 5766 TURN April 2010

For each nessage, the attributes included in the nmessage and their
val ues are shown. For conveni ence, values are shown in a human-
readabl e format rather than showi ng the actual octets; for exanple,

" XOR- RELAYED- ADDRESS=192. 0. 2. 15: 9000" shows that the XOR- RELAYED-
ADDRESS attribute is included with an address of 192.0.2.15 and a
port of 9000, here the address and port are shown before the xor-ing
is done. For attributes with string-1ike values (e.qg.,
SOFTWARE="Exanpl e client, version 1.03" and

NONCE="adl 7W PeDU4hKE72j daQvbAMcr 6h39sm'), the value of the attribute
is shown in quotes for readability, but these quotes do not appear in
the actual val ue.

TURN TURN Peer Peer
client server A B
| |
--- Allocate request -------------- >|

Transacti on- |1 d=0xA56250D3F17ABE679422DE85
SOFTWARE="Exanpl e client, version 1.03"

LI FETI Me=3600 (1 hour) |
REQUESTED- TRANSPORT=17 (UDP) |

DONT- FRAGVENT |

<-- Allocate error response --------
Transacti on- | d=0xA56250D3F17ABE679422DE85
SOFTWARE=" Exanpl e server, version 1.17"
ERROR- CODE=401 (Unaut hori zed) |
REALM=" exanpl e. conf |
NONCE=" adl 7W PeDU4hKE72j daQvbAMcr 6h39snt

|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|--- Allocate request -------------- >| |
| Transacti on-1 d=0xC271E932AD7446A32C234492 |
SOFTWARE="Exanpl e client 1.03"	
LI FETI ME=3600 (1 hour)	
REQUESTED- TRANSPORT=17 (UDP)	
DONT- FRAGVENT	
USERNAME=" Geor ge"	
REALME=" exanpl e. cont'	
NONCE=" adl 7W PeDU4hKE72j daQvbANMcr 6h39snt	
MESSAGE-	NTEGRI TY=. ..

<-- All ocate success response ------
Transacti on- | d=0xC271E932AD7446A32C234492
SOFTWARE=" Exanpl e server, version 1.17"
LI FETI ME=1200 (20 m nutes) |
XOR- RELAYED- ADDRESS=192. 0. 2. 15: 50000
XOR- MAPPED- ADDRESS=192. 0. 2. 1: 7000
MESSAGE- | NTEGRI TY=. .. |

Mahy, et al. St andards Track [Page 49]

RFC 5766 TURN April 2010

The client begins by selecting a host transport address to use for
the TURN session; in this exanple, the client has selected 10.1.1.2:
49721 as shown in Figure 1. The client then sends an Allocate
request to the server at the server transport address. The client
randomy selects a 96-bit transaction id of
OxA56250D3F17ABE679422DE85 for this transaction; this is encoded in
the transaction id field in the fixed header. The client includes a
SOFTWARE attribute that gives information about the client’s
software; here the value is "Exanple client, version 1.03" to
indicate that this is version 1.03 of sonething called the Exanple
client. The client includes the LIFETIME attribute because it w shes
the allocation to have a longer lifetime than the default of 10

m nutes; the value of this attribute is 3600 seconds, which
corresponds to 1 hour. The client nust always include a REQUESTED
TRANSPORT attribute in an Allocate request and the only val ue all owed
by this specification is 17, which indicates UDP transport between
the server and the peers. The client also includes the DONT- FRAGVENT
attribute because it wi shes to use the DONT- FRAGVENT attribute |ater
in Send indications; this attribute consists of only an attribute
header, there is no value part. W assune the client has not
recently interacted with the server, thus the client does not include
USERNAME, REALM NONCE, or MESSAGE-| NTEGRITY attribute. Finally,
note that the order of attributes in a nmessage is arbitrary (except
for the MESSAGE-I NTEGRI TY and FI NGERPRI NT attributes) and the client
coul d have used a different order

Servers require any request to be authenticated. Thus, when the
server receives the initial Allocate request, it rejects the request
because the request does not contain the authentication attributes.
Fol I owi ng the procedures of the | ong-termcredential nechani sm of
STUN [RFC5389], the server includes an ERROR-CODE attribute with a
val ue of 401 (Unauthorized), a REALM attribute that specifies the
aut hentication real mused by the server (in this case, the server’'s
domai n "exanple.cont'), and a nonce value in a NONCE attribute. The
server also includes a SOFTWARE attribute that gives information
about the server’s software.

The client, upon receipt of the 401 error, re-attenpts the Allocate
request, this time including the authentication attributes. The
client selects a new transaction id, and then popul ates the new

Al'l ocate request with the sane attributes as before. The client

i ncludes a USERNAME attri bute and uses the real mval ue received from
the server to help it deternine which value to use; here the client
is configured to use the usernane "Ceorge" for the realm

"exanpl e.com'. The client also includes the REALM and NONCE
attributes, which are just copied fromthe 401 error response.
Finally, the client includes a MESSAGE-I NTEGRITY attribute as the

| ast attribute in the nessage, whose value is a Hashed Message

Mahy, et al. St andards Track [Page 50]

RFC 5766 TURN April 2010

Aut henti cation Code - Secure Hash Al gorithm 1 (HMAC- SHA1l) hash over
the contents of the nessage (shown as just "..." above); this HVAC
SHA1 conputation includes a password value. Thus, an attacker cannot
conmput e the nessage integrity value w thout sonmehow know ng the
secret password.

The server, upon receipt of the authenticated Allocate request,
checks that everything is OK then creates an allocation. The server
replies with an Allocate success response. The server includes a

LI FETI ME attribute giving the lifetine of the allocation; here, the
server has reduced the client’s requested 1-hour lifetinme to just 20
m nutes, because this particular server doesn't allow lifetines

| onger than 20 minutes. The server includes an XOR- RELAYED- ADDRESS
attribute whose value is the relayed transport address of the

al l ocation. The server includes an XOR- MAPPED- ADDRESS attri bute
whose value is the server-reflexive address of the client; this val ue
is not used otherwise in TURN but is returned as a convenience to the
client. The server includes a MESSAGE-I NTEGRITY attribute to

aut henticate the response and to ensure its integrity; note that the
response does not contain the USERNAVE, REALM and NONCE attri butes.
The server also includes a SOFTWARE attri bute.

TURN TURN Peer Peer
client server A B
| --- CreatePerm ssion request ------ >|

| |
| Transacti on- | d=0xE5913A8F460956CA277D3319 |

XOR- PEER- ADDRESS=192. 0. 2. 150: 0		
USERNAME=" Geor ge"		
REALME" exanpl e. cont		

NONCE=" adl 7W PeDU4hKE72j daQvbANMcr 6h39snd'			
MESSAGE-	NTEGRI TY=. ..		
<-- CreatePermn ssion success resp.--			
Transacti on-	1 d=0xE5913A8F460956CA277D3319		

| MESSAGE- | NTEGRI TY=. .. | | |

The client then creates a permi ssion towards Peer A in preparation
for sending it sone application data. This is done through a

Creat ePerm ssion request. The XOR- PEER- ADDRESS attribute contains
the I P address for which a permi ssion is established (the |IP address
of peer A); note that the port nunber in the attribute is ignored
when used in a CreatePerm ssion request, and here it has been set to
0; also, note how the client uses Peer A's server-reflexive IP
address and not its (private) host address. The client uses the same
username, realm and nonce values as in the previous request on the
all ocation. Though it is allowed to do so, the client has chosen not
to include a SOFTWARE attribute in this request.

Mahy, et al. St andards Track [Page 51]

RFC 5766 TURN April 2010

The server receives the CreatePernission request, creates the
correspondi ng perm ssion, and then replies with a CreatePerni ssion
success response. Like the client, the server chooses not to include
the SOFTWARE attribute in its reply. Again, note how success
responses contain a MESSAGE-I NTECGRITY attribute (assum ng the server
uses the long-termcredential nechanisnm, but no USERNAME, REALM and
NONCE attri butes

TURN TURN Peer Peer
client server A B
|--- Send indication --------------- >

Transact i on- | d=0x1278E9ACA2711637EF7D3328
XOR- PEER- ADDRESS=192. 0. 2. 150: 32102

DONT- FRAGVENT |

DATA=. . .

<-- Data indication ----------------
Transacti on- 1 d=0x8231AE8F9242DA9FF287FEFF
XOR- PEER- ADDRESS=192. 0. 2. 150: 32102

I

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
DATA=. .. | | |

The client now sends application data to Peer A using a Send

i ndi cation. Peer A's server-reflexive transport address is specified
in the XOR-PEER- ADDRESS attribute, and the application data (shown
here as just "...") is specified in the DATA attribute. The client
is doing a formof path MIU di scovery at the application |ayer and
thus specifies (by including the DONT- FRAGVENT attribute) that the
server should set the DF bit in the UDP datagramto send to the peer
I ndi cati ons cannot be authenticated using the |long-term credenti al
mechani sm of STUN, so no MESSAGE-I NTEGRITY attribute is included in
the message. An application wishing to ensure that its data is not
altered or forged nust integrity-protect its data at the application
| evel

Upon recei pt of the Send indication, the server extracts the
application data and sends it in a UDP datagramto Peer A, with the
rel ayed transport address as the source transport address of the
datagram and with the DF bit set as requested. Note that, had the
client not previously established a pernission for Peer A's server-
reflexive | P address, then the server would have silently discarded
the Send indication instead.

Mahy, et al. St andards Track [Page 52]

RFC 5766 TURN April 2010

Peer A then replies with its own UDP datagram containing application
data. The datagramis sent to the relayed transport address on the
server. \Wien this arrives, the server creates a Data indication
contai ning the source of the UDP datagramin the XOR- PEER- ADDRESS
attribute, and the data fromthe UDP datagramin the DATA attribute.
The resulting Data indication is then sent to the client.

TURN TURN Peer Peer
client server A B
| --- Channel Bind request ----------- >

| |
| Transacti on- 1 d=0x6490D3BC175AFF3D84513212 |

| CHANNEL - NUMBER=0x4000 | | |
| XOR- PEER- ADDRESS=192. 0. 2. 210: 49191 |

| USERNAME=" Geor ge" | | |
| REALM=" exanpl e. cont | |

NONCE=" adl 7W PeDU4hKE72j daQvbAMcr 6h39snt			
MESSAGE-	NTEGRI TY=. ..		
<-- Channel Bi nd success response ---			
Transacti on-	1 d=0x6490D3BC175AFF3D84513212		
MESSAGE-	NTEGRI TY=. ..		

The client now binds a channel to Peer B, specifying a free channe
nunber (0x4000) in the CHANNEL- NUMBER attribute, and Peer B's
transport address in the XOR-PEER- ADDRESS attribute. As before, the
client re-uses the usernane, realm and nonce fromits |ast request
in the nessage

Upon recei pt of the request, the server binds the channel nunber to
the peer, installs a permission for Peer B s | P address, and then
replies wth Channel Bi nd success response.

TURN TURN Peer Peer
client server A B
| --- ChannelData ------------------- >| |
Channel - nunber =0x4000 |--- UDP datagram--------- >|
Dat a=. .. | Dat a=. .. |

| | |
| <-- UDP datagram---------- |

|

|

|

|

| | Data=... | |
| <-- ChannelData -------------------- | |

| Channel - nunber =0x4000 | | |
| Dat a=. . . | | |

The client now sends a Channel Data nessage to the server with data
destined for Peer B. The Channel Data nessage is not a STUN nessage,
and thus has no transaction id. |Instead, it has only three fields: a
channel nunber, data, and data |length; here the channel nunber field

Mahy, et al. St andards Track [Page 53]

RFC 5766 TURN April 2010

is 0x4000 (the channel the client just bound to Peer B). Wen the
server receives the Channel Data nessage, it checks that the channe

is currently bound (which it is) and then sends the data onward to
Peer B in a UDP datagram using the relayed transport address as the
source transport address and 192.0.2.210: 49191 (the val ue of the XOR-
PEER- ADDRESS attribute in the Channel Bind request) as the destination
transport address.

Later, Peer B sends a UDP datagram back to the relayed transport
address. This causes the server to send a Channel Data nmessage to the
client containing the data fromthe UDP datagram The server knows
to which client to send the Channel Data nessage because of the

rel ayed transport address at which the UDP datagram arrived, and
knows to use channel 0x4000 because this is the channel bound to
192.0.2.210:49191. Note that if there had not been any channe

nunber bound to that address, the server would have used a Data

i ndi cation instead.

TURN TURN Peer Peer
client server A B
| --- Refresh request --------------- >

Transacti on- |1 d=0x0864B3C27ADE9354B4312414
SOFTWARE="Exanpl e client 1.03"
USERNAME=" Geor ge"

REALME=" exanpl e. cont' |
NONCE="adl 7W/' PeDU4hKE72j daQvbANMcr 6h39snt
MESSAGE- | NTEGRI TY=. ..

|
| |
| |
| |
| |
| |
| |
| |
| <-- Refresh error response ---------
| Transacti on- | d=0x0864B3C27ADE9354B4312414
| SOFTWARE=" Exanpl e server, version 1.17"
| ERROR- CODE=438 (Stal e Nonce) |
| REALM=" exanpl e. conf | |
| NONCE=" npSw1Xw239bBwGYhj NWjz2y H47sxB2j " |
| | |
|--- Refresh request --------------- >|
| Transacti on- | d=0x427BD3E625A85FC731DC4191
| SOFTWARE="Exanpl e client 1.03" |
| USERNAME=" Geor ge" | |
| REALME" exanpl e. cont' |
| NONCE=" npSw1Xw239bBwGYhj NWjz2y HA7sxB2j "
| MESSAGE- | NTEGRI TY=. ..
| |
| |
| |
| |
| |

<-- Refresh success response -------
Transacti on- | d=0x427BD3E625A85FC731DC4191
SOFTWARE=" Exanpl e server, version 1.17"
LI FETI ME=600 (10 mi nutes) |

Mahy, et al. St andards Track [Page 54]

RFC 5766 TURN April 2010

17.

17.

17.

Sonetine before the 20 minute lifetinme is up, the client refreshes
the allocation. This is done using a Refresh request. As before,
the client includes the | atest usernane, realm and nonce values in
the request. The client also includes the SOFTWARE attri bute,

foll owi ng the recormended practice of always including this attribute
in Allocate and Refresh nessages. When the server receives the
Refresh request, it notices that the nonce val ue has expired, and so
replies with 438 (Stale Nonce) error given a new nonce value. The
client then reattenpts the request, this tine with the new nonce
value. This second attenpt is accepted, and the server replies wth
a success response. Note that the client did not include a LIFETIME
attribute in the request, so the server refreshes the allocation for
the default lifetime of 10 ninutes (as can be seen by the LIFETI ME
attribute in the success response).

Security Considerations

This section considers attacks that are possible in a TURN
depl oynent, and di scusses how they are nitigated by nechanisns in the
protocol or recommended practices in the inplenentation

Most of the attacks on TURN are mitigated by the server requiring
requests be authenticated. Thus, this specification requires the use
of authentication. The mandatory-to-inplenent nechanismis the |ong-
termcredential mechani smof STUN. Oher authentication nechanisns
of equal or stronger security properties nmay be used. However, it is
i mportant to ensure that they can be invoked in an inter-operable
way.

1. CQutsider Attacks

Qutsi der attacks are ones where the attacker has no credentials in
the system and is attenpting to disrupt the service seen by the
client or the server.

1.1. btaining Unauthorized Al locations

An attacker might wish to obtain allocations on a TURN server for any
nunber of nefarious purposes. A TURN server provides a nechanism for
sendi ng and receiving packets while cloaking the actual |P address of
the client. This makes TURN servers an attractive target for
attackers who wish to use it to mask their true identity.

An attacker might also wish to sinply utilize the services of a TURN
server without paying for them Since TURN services require
resources fromthe provider, it is anticipated that their usage wll
cone with a cost.

Mahy, et al. St andards Track [Page 55]

RFC 5766 TURN April 2010

17.

17.

17.

These attacks are prevented using the I ong-termcredential mechani sm
whi ch allows the TURN server to determine the identity of the
requestor and whether the requestor is allowed to obtain the

al I ocati on.

1.2. COfline Dictionary Attacks

The | ong-term credential mechani smused by TURN is subject to offline
dictionary attacks. An attacker that is capable of eavesdropping on
a nmessage exchange between a client and server can determ ne the
password by trying a nunber of candi date passwords and seeing if one
of themis correct. This attack works when the passwords are | ow
entropy, such as a word fromthe dictionary. This attack can be
mtigated by using strong passwords with large entropy. In
situations where even stronger nitigation is required, TLS transport
between the client and the server can be used.

1.3. Faked Refreshes and Perm ssions

An attacker might wish to attack an active allocation by sending it a
Refresh request with an inmmedi ate expiration, in order to delete it
and disrupt service to the client. This is prevented by

aut hentication of refreshes. Simlarly, an attacker w shing to send
Creat ePermi ssion requests to create permi ssions to undesirable
destinations is prevented fromdoing so through authentication. The
notivations for such an attack are described in Section 17.2.

1. 4. Fake Data

An attacker might wish to send data to the client or the peer, as if
they cane fromthe peer or client, respectively. To do that, the
attacker can send the client a faked Data | ndication or Channel Data
nmessage, or send the TURN server a faked Send Indication or
Channel Dat a nessage.

Since indications and Channel Data nessages are not authenticated,
this attack is not prevented by TURN. However, this attack is
generally present in | P-based comuni cations and is not substantially
wor sened by TURN. Consider a normal, non-TURN | P session between
hosts A and B. An attacker can send packets to B as if they came
fromA by sending packets towards A with a spoofed |IP address of B
This attack requires the attacker to know the I P addresses of A and
B. Wth TURN, an attacker wi shing to send packets towards a client
using a Data indication needs to knowits IP address (and port), the
| P address and port of the TURN server, and the |IP address and port
of the peer (for inclusion in the XOR PEER- ADDRESS attribute). To
send a fake Channel Data nmessage to a client, an attacker needs to
know the | P address and port of the client, the I P address and port

Mahy, et al. St andards Track [Page 56]

RFC 5766 TURN April 2010

17.

of the TURN server, and the channel nunber. This particular
conmbination is mldly nore guessable than in the non- TURN case

These attacks are nore properly mitigated by application-Iayer
aut hentication techniques. 1In the case of real-tinme traffic, usage
of SRTP [RFC3711] prevents these attacks.

In sone situations, the TURN server may be situated in the network
such that it is able to send to hosts to which the client cannot
directly send. This can happen, for exanple, if the server is

| ocated behind a firewall that allows packets from outside the
firewall to be delivered to the server, but not to other hosts behind

the firewall. |In these situations, an attacker could send the server
a Send indication with an XOR- PEER- ADDRESS attri bute containing the
transport address of one of the other hosts behind the firewall. |If

the server was to allowrelaying of traffic to arbitrary peers, then
this would provide a way for the attacker to attack arbitrary hosts
behind the firewall.

To mitigate this attack, TURN requires that the client establish a
permi ssion to a host before sending it data. Thus, an attacker can
only attack hosts with which the client is already comunicating,

unl ess the attacker is able to create authenticated requests.

Furt hernmore, the server adm nistrator nmay configure the server to
restrict the range of | P addresses and ports to which it will relay
data. To provide even greater security, the server admnistrator can
require that the client use TLS for all communication between the
client and the server.

1.5. Inpersonating a Server

When a client learns a relayed address froma TURN server, it uses
that relayed address in application protocols to receive traffic.
Therefore, an attacker wishing to intercept or redirect that traffic
mght try to inpersonate a TURN server and provide the client with a
faked rel ayed address.

This attack is prevented through the |ong-term credential nechani sm
whi ch provides nessage integrity for responses in addition to
verifying that they cane fromthe server. Furthernore, an attacker
cannot replay old server responses as the transaction id in the STUN
header prevents this. Replay attacks are further thwarted through
frequent changes to the nonce val ue.

Mahy, et al. St andards Track [Page 57]

RFC 5766 TURN April 2010

17.

17.

1.6. Eavesdropping Traffic

TURN concerns itself primarily with authentication and nmessage
integrity. Confidentiality is only a secondary concern, as TURN
control nessages do not include information that is particularly
sensitive. The primary protocol content of the nessages is the IP
address of the peer. |If it is inportant to prevent an eavesdropper
on a TURN connection fromlearning this, TURN can be run over TLS.

Confidentiality for the application data relayed by TURN i s best
provi ded by the application protocol itself, since running TURN over
TLS does not protect application data between the server and the
peer. |If confidentiality of application data is inportant, then the
application should encrypt or otherwi se protect its data. For
exanple, for real-tinme nmedia, confidentiality can be provi ded by
usi ng SRTP.

1.7. TURN Loop Attack

An attacker might attenpt to cause data packets to loop indefinitely
between two TURN servers. The attack goes as follows. First, the
attacker sends an Allocate request to server A, using the source
address of server B. Server Awll send its response to server B
and for the attack to succeed, the attacker nmust have the ability to
either view or guess the contents of this response, so that the
attacker can learn the allocated relayed transport address. The
attacker then sends an Allocate request to server B, using the source
address of server A, Again, the attacker nust be able to view or
guess the contents of the response, so it can send |learn the

al l ocated relayed transport address. Using the sane spoofed source
address techni que, the attacker then binds a channel nunber on server
A to the relayed transport address on server B, and similarly binds

t he sane channel nunber on server B to the relayed transport address
on server A. Finally, the attacker sends a Channel Data nessage to
server A

The result is a data packet that |oops fromthe relayed transport
address on server Ato the relayed transport address on server B
then fromserver B s transport address to server A's transport
address, and then around the | oop again.

This attack is mtigated as follows. By requiring all requests to be
aut henti cated and/or by random zing the port nunber allocated for the
rel ayed transport address, the server forces the attacker to either

i ntercept or view responses sent to a third party (in this case, the
other server) so that the attacker can authenticate the requests and
learn the relayed transport address. Wthout one of these two
measures, an attacker can guess the contents of the responses without

Mahy, et al. St andards Track [Page 58]

RFC 5766 TURN April 2010

17.

17.

needi ng to see them which nakes the attack nuch easier to perform
Furthernmore, by requiring authenticated requests, the server forces
the attacker to have credentials acceptable to the server, which
turns this froman outsider attack into an insider attack and all ows
the attack to be traced back to the client initiating it.

The attack can be further mitigated by inposing a per-usernane |limt
on the bandwi dth used to relay data by allocations owned by that
usernanme, to linmt the inpact of this attack on other allocations.
More mtigation can be achi eved by decrenmenting the TTL when rel ayi ng
data packets (if the underlying OS allows this).

2. Firewall Considerations

A key security consideration of TURN is that TURN shoul d not weaken
the protections afforded by firewalls depl oyed between a client and a

TURN server. It is anticipated that TURN servers will often be
present on the public Internet, and clients nay often be inside
enterprise networks with corporate firewalls. |If TURN servers

provi de a 'backdoor’ for reaching into the enterprise, TURN will be
bl ocked by these firewalls.

TURN servers therefore enul ate the behavior of NAT devices that

i npl enent addr ess-dependent filtering [RFC4787], a property common in
many firewalls as well. When a NAT or firewall inplenents this

behavi or, packets froman outside |IP address are only allowed to be
sent to an internal |IP address and port if the internal |IP address
and port had recently sent a packet to that outside IP address. TURN
servers introduce the concept of perm ssions, which provide exactly
this same behavior on the TURN server. An attacker cannot send a
packet to a TURN server and expect it to be relayed towards the
client, unless the client has tried to contact the attacker first.

It is inmportant to note that sone firewalls have policies that are
even nore restrictive than address-dependent filtering. Firewalls
can al so be configured with address- and port-dependent filtering, or
can be configured to disallow inbound traffic entirely. 1In these
cases, if aclient is allowed to connect the TURN server,

conmuni cations to the client will be less restrictive than what the
firewall would normally all ow.

2.1. Faked Perm ssions

In firewalls and NAT devices, permissions are granted inplicitly
through the traversal of a packet fromthe inside of the network
towards the outside peer. Thus, a perm ssion cannot, by definition
be created by any entity except one inside the firewall or NAT. Wth
TURN, this restriction no longer holds. Since the TURN server sits

Mahy, et al. St andards Track [Page 59]

RFC 5766 TURN April 2010

17.

17.

17.

17.

outside the firewall, at attacker outside the firewall can now send a
message to the TURN server and try to create a permission for itself.

This attack is prevented because all nessages that create pernissions
(i.e., Channel Bind and CreatePerm ssion) are authenti cated.

2.2. Blacklisted | P Addresses

Many firewal | s can be configured with blacklists that prevent a
client behind the firewall from sending packets to, or receiving
packets from ranges of blacklisted IP addresses. This is
acconpl i shed by inspecting the source and destinati on addresses of
packets entering and exiting the firewall, respectively.

This feature is also present in TURN, since TURN servers are all owed
to arbitrarily restrict the range of addresses of peers that they
will relay to.

2.3. Running Servers on Wl Il -Known Ports

A malicious client behind a firewall mght try to connect to a TURN
server and obtain an allocation which it then uses to run a server.
For exanple, a client might try to run a DNS server or FTP server

This is not possible in TURN. A TURN server will never accept
traffic froma peer for which the client has not installed a

perm ssion. Thus, peers cannot just connect to the allocated port in
order to obtain the service

3. Insider Attacks

In insider attacks, a client has legitimte credentials but defies
the trust relationship that goes with those credentials. These
attacks cannot be prevented by cryptographi c means but need to be
considered in the design of the protocol

3.1. DoS agai nst TURN Server

A client wishing to disrupt service to other clients might obtain an
all ocation and then flood it with traffic, in an attenpt to swanp the
server and prevent it fromservicing other legitimate clients. This
is mtigated by the recommendation that the server linmt the anobunt
of bandwidth it will relay for a given usernane. This won't prevent
a client fromsending a |large anmount of traffic, but it allows the
server to imediately discard traffic in excess.

Since each allocation uses a port number on the I P address of the
TURN server, the nunber of allocations on a server is finite. An

Mahy, et al. St andards Track [Page 60]

RFC 5766 TURN April 2010

17.

17.

17.

18.

attacker mght attenpt to consunme all of them by requesting a | arge
nunber of allocations. This is prevented by the recommendati on t hat
the server inpose a lint of the nunber of allocations active at a
time for a given usernane.

3.2. Anonynous Relaying of Malicious Traffic

TURN servers provide a degree of anonynization. A client can send
data to peers without revealing its own I P address. TURN servers nmay
therefore becone attractive vehicles for attackers to |launch attacks
agai nst targets w thout fear of detection. Indeed, it is possible
for a client to chain together nmultiple TURN servers, such that any
nunber of relays can be used before a target receives a packet.

Admi ni strators who are worried about this attack can naintain |ogs
that capture the actual source IP and port of the client, and perhaps
even every permssion that client installs. This will allow for
forensic tracing to determ ne the original source, should it be

di scovered that an attack is being relayed through a TURN server

3.3. Manipulating Gther Allocations

An attacker mght attenpt to disrupt service to other users of the
TURN server by sending Refresh requests or CreatePerm ssion requests
that (through source address spoofing) appear to be coning from

anot her user of the TURN server. TURN prevents this by requiring
that the credentials used in CreatePernission, Refresh, and
Channel Bi nd nessages match those used to create the initia

al l ocation. Thus, the fake requests fromthe attacker will be

rej ected.

4. O her Considerations

Any relay addresses | earned through an Allocate request will not
operate properly with I Psec Authentication Header (AH) [RFC4302] in
transport or tunnel node. However, tunnel-node |Psec Encapsul ating
Security Payload (ESP) [RFC4303] should still operate.

| ANA Consi der ati ons

Since TURN is an extension to STUN [RFC5389], the nethods,
attributes, and error codes defined in this specification are new
nmet hods, attributes, and error codes for STUN. |ANA has added these
new protocol elenments to the 1 ANA registry of STUN protocol elenents.

The codepoints for the new STUN net hods defined in this specification
are listed in Section 13.

Mahy, et al. St andards Track [Page 61]

RFC 5766 TURN April 2010

19.

The codepoints for the new STUN attributes defined in this
specification are listed in Section 14.

The codepoints for the new STUN error codes defined in this
specification are listed in Section 15.

| ANA has all ocated the SRV service nane of "turn" for TURN over UDP
or TCP, and the service nane of "turns" for TURN over TLS

| ANA has created a registry for TURN channel nunbers, initially
popul ated as foll ows:

0x0000 t hrough Ox3FFF: Reserved and not avail able for use, since
they conflict with the STUN header

0x4000 t hrough Ox7FFF: A TURN i nplenentation is free to use
channel nunbers in this range.

0x8000 t hrough OxFFFF:. Unassi gned.

Any change to this registry nust be made through an | ETF St andards
Acti on.

| AB Consi der ati ons

The |1 AB has studied the problemof "Unilateral Self Address Fixing"
(UNSAF), which is the general process by which a client attenpts to
determine its address in another real mon the other side of a NAT
through a col |l aborative protocol -reflection nmechani sm|[RFC3424]. The
TURN extension is an exanple of a protocol that perforns this type of
function. The | AB has nmandated that any protocols devel oped for this
pur pose docunent a specific set of considerations. These

consi derations and the responses for TURN are docunented in this
section.

Consideration 1. Precise definition of a specific, |imted-scope
problemthat is to be solved with the UNSAF proposal. A short-term
fix should not be generalized to solve other problenms. Such
generalizations lead to the prol onged dependence on and usage of the
supposed short-termfix -- neaning that it is no | onger accurate to
call it "short-ternt.

Response: TURN is a protocol for conmunication between a relay (=
TURN server) and its client. The protocol allows a client that is
behind a NAT to obtain and use a public |IP address on the relay. As
a convenience to the client, TURN also allows the client to determnne
its server-reflexive transport address.

Mahy, et al. St andards Track [Page 62]

RFC 5766 TURN April 2010

20.

Consi deration 2: Description of an exit strategy/transition plan.
The better short-termfixes are the ones that will naturally see |ess
and | ess use as the appropriate technology is depl oyed.

Response: TURN will no | onger be needed once there are no | onger any
NATs. Unfortunately, as of the date of publication of this docunent,
it no longer seens very likely that NATs will go away any tinme soon.
However, the need for TURN will al so decrease as the nunber of NATs
with the mappi ng property of Endpoint-Independent Mapping [RFC4787]

i ncreases.

Consi deration 3: Discussion of specific issues that may render
systens nore "brittle". For exanple, approaches that involve using
data at multiple network | ayers create nore dependencies, increase
debuggi ng chal | enges, and nmeke it harder to transition

Response: TURN is "brittle" in that it requires the NAT bindings
between the client and the server to be maintained unchanged for the
lifetinme of the allocation. This is typically done using keep-
alives. |If this is not done, then the client will lose its

al l ocation and can no | onger exchange data with its peers.

Consi deration 4: ldentify requirements for |onger-term sound
technical solutions; contribute to the process of finding the right
| onger-term sol ution.

Response: The need for TURN will be reduced once NATs inplenment the
recomendat i ons for NAT UDP behavi or docunented in [RFC4787].
Applications are also strongly urged to use | CE [RFC5245] to
conmuni cate with peers; though I CE uses TURN, it does so only as a
| ast resort, and uses it in a controlled manner.

Consi deration 5: Discussion of the inpact of the noted practica
i ssues with existing depl oyed NATs and experience reports.

Response: Sonme NATs depl oyed today exhi bit a mappi ng behavi or ot her

t han Endpoi nt -1 ndependent mappi ng. These NATs are difficult to work
with, as they nake it difficult or inpossible for protocols like |ICE
to use server-reflexive transport addresses on those NATs. A client
behi nd such a NAT is often forced to use a relay protocol like TURN
because "UDP hol e punchi ng” techni ques [RFC5128] do not worKk.

Acknowl edgenent s

The authors would Iike to thank the various participants in the
BEHAVE wor ki ng group for their many comments on this document. Marc
Petit-Huguenin, Rem Denis-Cournont, Jason Fischl, Derek MacDonal d,
Scott Godin, Cullen Jennings, Lars Eggert, Magnus Westerlund, Benny

Mahy, et al. St andards Track [Page 63]

RFC 5766 TURN April 2010

21.

21.

21.

Prijono, and Eric Rescorla have been particularly helpful, with Eric
suggesting the channel allocation nechanism Cullen suggesting an
earlier version of the EVEN-PORT mechani sm and Marc spendi ng nany
hours inplenmenting the prelimnary versions to | ook for problens.
Christian Huitema was an early contributor to this docunent and was a
co-author on the first few versions. Finally, the authors would Iike
to thank Dan Wng for both his contributions to the text and his huge
help in restarting progress on this docunent after work had stall ed.

Ref er ences
1. Nornmtive References
[RFC5389] Rosenberg, J., Mahy, R, Matthews, P., and D.

Wng, "Session Traversal UWilities for NAT
(STUN)", RFC 5389, October 2008.

[RFC2119] Bradner, S., "Key words for use in RFCs to
I ndi cat e Requirenent Levels", BCP 14, RFC 2119,
March 1997.

[RFC2474] Ni chol s, K., Blake, S., Baker, F., and D. Bl ack,

"Definition of the Differentiated Services Field
(DS Field) in the IPv4 and | Pv6 Headers",
RFC 2474, Decenber 1998.

[RFC3168] Ramakri shnan, K., Floyd, S., and D. Black, "The
Addition of Explicit Congestion Notification
(ECN) to IP', RFC 3168, Septenber 2001.

[RFC1122] Braden, R, "Requirenments for Internet Hosts -
Communi cati on Layers", STD 3, RFC 1122,
Cct ober 1989.

2. Informative References

[RFC1191] Mogul, J. and S. Deering, "Path MU di scovery",
RFC 1191, Novenber 1990.

[RFCO791] Postel, J., "Internet Protocol"”, STD 5, RFC 791,
Sept ember 1981.

[RFC1918] Rekhter, Y., Mskowitz, R, Karrenberg, D.,

Goot, G, and E. Lear, "Address Allocation for
Private Internets", BCP 5, RFC 1918,
February 1996.

Mahy, et al. St andards Track [Page 64]

[RFC3424]

[RFCA787]

[RFC5245]

[TURN- TCP]

[TURN- | Pv6]

[TSV\G- PORT]

[RFC5128]

[RFC1928]

[RFC3550]

[RFC3711]

[RFC4302]

TURN April 2010

Daigle, L. and I AB, "I AB Considerations for
UN | ateral Sel f-Address Fixi ng (UNSAF) Across
Net wor k Address Transl ation", RFC 3424,
Novenber 2002.

Audet, F. and C. Jennings, "Network Address
Transl ati on (NAT) Behavioral Requirenments for
Uni cast UDP", BCP 127, RFC 4787, January 2007.

Rosenberg, J., "Interactive Connectivity
Establi shment (1 CE): A Protocol for Network
Address Transl ator (NAT) Traversal for

O fer/ Answer Protocol s", RFC 5245, April 2010.

Perreault, S. and J. Rosenberg, "Traversal Using
Rel ays around NAT (TURN) Extensions for TCP
Al'l ocations", Wrk in Progress, March 2010.

Perreault, S., Camarillo, G, and O Novo,
"Traversal Using Relays around NAT (TURN)
Extension for | Pv6", Wrk in Progress, March
2010.

Larsen, M and F. Gont, "Port Random zation",
Work in Progress, April 2010.

Srisuresh, P., Ford, B., and D. Kegel, "State of
Peer -t o- Peer (P2P) Conmuni cation across Network
Address Translators (NATs)", RFC 5128,

March 2008.

Leech, M, Ganis, M, Lee, Y., Kuris, R,
Koblas, D., and L. Jones, "SOCKS Prot ocol
Version 5", RFC 1928, March 1996.

Schul zrinne, H, Casner, S., Frederick, R, and
V. Jacobson, "RTP. A Transport Protocol for

Real - Time Applications", STD 64, RFC 3550,

July 2003.

Baugher, M, MGew, D., Naslund, M, Carrara,
E., and K. Norrman, "The Secure Real -tine
Transport Protocol (SRTP)", RFC 3711,

March 2004.

Kent, S., "IP Authentication Header", RFC 4302,
Decenber 2005.

St andards Track [Page 65]

RFC 5766

[RFC4303]

[RFC4821]

[RFC3261]

[MVUSI C- | CE- NONSI P]

[RFC4086]

[Frag- Har nf ul]

[Port - Nunber s]

[Prot ocol - Nunber s]

Mahy,

et al.

TURN April 2010

Kent, S., "IP Encapsul ating Security Payl oad
(ESP)", RFC 4303, Decenber 2005.

Mathis, M and J. Heffner, "Packetization Layer
Path MIU Di scovery”, RFC 4821, March 2007.

Rosenberg, J., Schul zrinne, H, Canarillo, G,
Johnston, A, Peterson, J., Sparks, R, Handl ey,
M, and E. Schooler, "SIP: Session Initiation
Protocol ", RFC 3261, June 2002.

Rosenberg, J., "Quidelines for Usage of
Interactive Connectivity Establishnent (I1CE) by
non Session Initiation Protocol (SIP)

Protocol s", Wrk in Progress, July 2008.

Eastl ake, D., Schiller, J., and S. Crocker,
"Randomess Requirenents for Security", BCP 106,
RFC 4086, June 2005.

Kent and Mogul, "Fragnentation Considered
Harnful ". Proc. SIGCOW ' 87, vol. 17, No. 5,
Cct ober 1987

"I ANA Port Nunbers Registry",
<http://ww. i ana. or g>.

"I ANA Protocol Nunbers Registry", 2005,
<htt p://ww. i ana. or g>.

St andards Track [Page 66]

RFC 5766 TURN April 2010

Aut hors’ Addr esses

Rohan Mahy
Unaffiliated

EMui | : rohan@kabal . com

Philip Matthews
Al cat el - Lucent
600 March Road
Otawa, Ontario
Canada

EMai | : philip_nmatthews@magna. ca
Jonat han Rosenberg

j drosen. net

Monmout h, NJ

USA

EMai | : jdrosen@ drosen. net
URI : http://ww. jdrosen. net

Mahy, et al. St andards Track [Page 67]

