
Internet Engineering Task Force (IETF) R. Mahy
Request for Comments: 5766 Unaffiliated
Category: Standards Track P. Matthews
ISSN: 2070-1721 Alcatel-Lucent
 J. Rosenberg
 jdrosen.net
 April 2010

 Traversal Using Relays around NAT (TURN):
 Relay Extensions to Session Traversal Utilities for NAT (STUN)

Abstract

 If a host is located behind a NAT, then in certain situations it can
 be impossible for that host to communicate directly with other hosts
 (peers). In these situations, it is necessary for the host to use
 the services of an intermediate node that acts as a communication
 relay. This specification defines a protocol, called TURN (Traversal
 Using Relays around NAT), that allows the host to control the
 operation of the relay and to exchange packets with its peers using
 the relay. TURN differs from some other relay control protocols in
 that it allows a client to communicate with multiple peers using a
 single relay address.

 The TURN protocol was designed to be used as part of the ICE
 (Interactive Connectivity Establishment) approach to NAT traversal,
 though it also can be used without ICE.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5766.

Mahy, et al. Standards Track [Page 1]

RFC 5766 TURN April 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 2. Overview of Operation . 5
 2.1. Transports . 8
 2.2. Allocations . 9
 2.3. Permissions . 11
 2.4. Send Mechanism . 12
 2.5. Channels . 13
 2.6. Unprivileged TURN Servers 15
 2.7. Avoiding IP Fragmentation 16
 2.8. RTP Support . 17
 2.9. Anycast Discovery of Servers 17
 3. Terminology . 18
 4. General Behavior . 19
 5. Allocations . 22
 6. Creating an Allocation . 23
 6.1. Sending an Allocate Request 23
 6.2. Receiving an Allocate Request 24
 6.3. Receiving an Allocate Success Response 28
 6.4. Receiving an Allocate Error Response 29
 7. Refreshing an Allocation 31
 7.1. Sending a Refresh Request 31
 7.2. Receiving a Refresh Request 31
 7.3. Receiving a Refresh Response 32
 8. Permissions . 32
 9. CreatePermission . 34
 9.1. Forming a CreatePermission Request 34
 9.2. Receiving a CreatePermission Request 34
 9.3. Receiving a CreatePermission Response 35
 10. Send and Data Methods . 35
 10.1. Forming a Send Indication 35
 10.2. Receiving a Send Indication 35

Mahy, et al. Standards Track [Page 2]

RFC 5766 TURN April 2010

 10.3. Receiving a UDP Datagram 36
 10.4. Receiving a Data Indication 37
 11. Channels . 37
 11.1. Sending a ChannelBind Request 39
 11.2. Receiving a ChannelBind Request 39
 11.3. Receiving a ChannelBind Response 40
 11.4. The ChannelData Message 41
 11.5. Sending a ChannelData Message 41
 11.6. Receiving a ChannelData Message 42
 11.7. Relaying Data from the Peer 43
 12. IP Header Fields . 43
 13. New STUN Methods . 45
 14. New STUN Attributes . 45
 14.1. CHANNEL-NUMBER . 45
 14.2. LIFETIME . 46
 14.3. XOR-PEER-ADDRESS . 46
 14.4. DATA . 46
 14.5. XOR-RELAYED-ADDRESS 46
 14.6. EVEN-PORT . 46
 14.7. REQUESTED-TRANSPORT 47
 14.8. DONT-FRAGMENT . 47
 14.9. RESERVATION-TOKEN . 48
 15. New STUN Error Response Codes 48
 16. Detailed Example . 48
 17. Security Considerations 55
 17.1. Outsider Attacks . 55
 17.1.1. Obtaining Unauthorized Allocations 55
 17.1.2. Offline Dictionary Attacks 56
 17.1.3. Faked Refreshes and Permissions 56
 17.1.4. Fake Data . 56
 17.1.5. Impersonating a Server 57
 17.1.6. Eavesdropping Traffic 58
 17.1.7. TURN Loop Attack 58
 17.2. Firewall Considerations 59
 17.2.1. Faked Permissions 59
 17.2.2. Blacklisted IP Addresses 60
 17.2.3. Running Servers on Well-Known Ports 60
 17.3. Insider Attacks . 60
 17.3.1. DoS against TURN Server 60
 17.3.2. Anonymous Relaying of Malicious Traffic 61
 17.3.3. Manipulating Other Allocations 61
 17.4. Other Considerations 61
 18. IANA Considerations . 61
 19. IAB Considerations . 62
 20. Acknowledgements . 63
 21. References . 64
 21.1. Normative References 64
 21.2. Informative References 64

Mahy, et al. Standards Track [Page 3]

RFC 5766 TURN April 2010

1. Introduction

 A host behind a NAT may wish to exchange packets with other hosts,
 some of which may also be behind NATs. To do this, the hosts
 involved can use "hole punching" techniques (see [RFC5128]) in an
 attempt discover a direct communication path; that is, a
 communication path that goes from one host to another through
 intervening NATs and routers, but does not traverse any relays.

 As described in [RFC5128] and [RFC4787], hole punching techniques
 will fail if both hosts are behind NATs that are not well behaved.
 For example, if both hosts are behind NATs that have a mapping
 behavior of "address-dependent mapping" or "address- and port-
 dependent mapping", then hole punching techniques generally fail.

 When a direct communication path cannot be found, it is necessary to
 use the services of an intermediate host that acts as a relay for the
 packets. This relay typically sits in the public Internet and relays
 packets between two hosts that both sit behind NATs.

 This specification defines a protocol, called TURN, that allows a
 host behind a NAT (called the TURN client) to request that another
 host (called the TURN server) act as a relay. The client can arrange
 for the server to relay packets to and from certain other hosts
 (called peers) and can control aspects of how the relaying is done.
 The client does this by obtaining an IP address and port on the
 server, called the relayed transport address. When a peer sends a
 packet to the relayed transport address, the server relays the packet
 to the client. When the client sends a data packet to the server,
 the server relays it to the appropriate peer using the relayed
 transport address as the source.

 A client using TURN must have some way to communicate the relayed
 transport address to its peers, and to learn each peer’s IP address
 and port (more precisely, each peer’s server-reflexive transport
 address, see Section 2). How this is done is out of the scope of the
 TURN protocol. One way this might be done is for the client and
 peers to exchange email messages. Another way is for the client and
 its peers to use a special-purpose "introduction" or "rendezvous"
 protocol (see [RFC5128] for more details).

 If TURN is used with ICE [RFC5245], then the relayed transport
 address and the IP addresses and ports of the peers are included in
 the ICE candidate information that the rendezvous protocol must
 carry. For example, if TURN and ICE are used as part of a multimedia
 solution using SIP [RFC3261], then SIP serves the role of the
 rendezvous protocol, carrying the ICE candidate information inside
 the body of SIP messages. If TURN and ICE are used with some other

Mahy, et al. Standards Track [Page 4]

RFC 5766 TURN April 2010

 rendezvous protocol, then [MMUSIC-ICE-NONSIP] provides guidance on
 the services the rendezvous protocol must perform.

 Though the use of a TURN server to enable communication between two
 hosts behind NATs is very likely to work, it comes at a high cost to
 the provider of the TURN server, since the server typically needs a
 high-bandwidth connection to the Internet. As a consequence, it is
 best to use a TURN server only when a direct communication path
 cannot be found. When the client and a peer use ICE to determine the
 communication path, ICE will use hole punching techniques to search
 for a direct path first and only use a TURN server when a direct path
 cannot be found.

 TURN was originally invented to support multimedia sessions signaled
 using SIP. Since SIP supports forking, TURN supports multiple peers
 per relayed transport address; a feature not supported by other
 approaches (e.g., SOCKS [RFC1928]). However, care has been taken to
 make sure that TURN is suitable for other types of applications.

 TURN was designed as one piece in the larger ICE approach to NAT
 traversal. Implementors of TURN are urged to investigate ICE and
 seriously consider using it for their application. However, it is
 possible to use TURN without ICE.

 TURN is an extension to the STUN (Session Traversal Utilities for
 NAT) protocol [RFC5389]. Most, though not all, TURN messages are
 STUN-formatted messages. A reader of this document should be
 familiar with STUN.

2. Overview of Operation

 This section gives an overview of the operation of TURN. It is non-
 normative.

 In a typical configuration, a TURN client is connected to a private
 network [RFC1918] and through one or more NATs to the public
 Internet. On the public Internet is a TURN server. Elsewhere in the
 Internet are one or more peers with which the TURN client wishes to
 communicate. These peers may or may not be behind one or more NATs.
 The client uses the server as a relay to send packets to these peers
 and to receive packets from these peers.

Mahy, et al. Standards Track [Page 5]

RFC 5766 TURN April 2010

 Peer A
 Server-Reflexive +---------+
 Transport Address | |
 192.0.2.150:32102 | |
 | /| |
 TURN | / ^| Peer A |
 Client’s Server | / || |
 Host Transport Transport | // || |
 Address Address | // |+---------+
 10.1.1.2:49721 192.0.2.15:3478 |+-+ // Peer A
 | | ||N| / Host Transport
 | +-+ | ||A|/ Address
 | | | | v|T| 192.168.100.2:49582
 | | | | /+-+
 +---------+| | | |+---------+ / +---------+
			N				//		
TURN	v		v	TURN	/				
Client	----	A	----------	Server	------------------	Peer B			
			^		^ ^				
		T							
 +---------+ | || +---------+| |+---------+
 | || | |
 | || | |
 +-+| | |
 | | |
 | | |
 Client’s | Peer B
 Server-Reflexive Relayed Transport
 Transport Address Transport Address Address
 192.0.2.1:7000 192.0.2.15:50000 192.0.2.210:49191

 Figure 1

 Figure 1 shows a typical deployment. In this figure, the TURN client
 and the TURN server are separated by a NAT, with the client on the
 private side and the server on the public side of the NAT. This NAT
 is assumed to be a "bad" NAT; for example, it might have a mapping
 property of "address-and-port-dependent mapping" (see [RFC4787]).

 The client talks to the server from a (IP address, port) combination
 called the client’s HOST TRANSPORT ADDRESS. (The combination of an
 IP address and port is called a TRANSPORT ADDRESS.)

 The client sends TURN messages from its host transport address to a
 transport address on the TURN server that is known as the TURN SERVER
 TRANSPORT ADDRESS. The client learns the TURN server transport
 address through some unspecified means (e.g., configuration), and
 this address is typically used by many clients simultaneously.

Mahy, et al. Standards Track [Page 6]

RFC 5766 TURN April 2010

 Since the client is behind a NAT, the server sees packets from the
 client as coming from a transport address on the NAT itself. This
 address is known as the client’s SERVER-REFLEXIVE transport address;
 packets sent by the server to the client’s server-reflexive transport
 address will be forwarded by the NAT to the client’s host transport
 address.

 The client uses TURN commands to create and manipulate an ALLOCATION
 on the server. An allocation is a data structure on the server.
 This data structure contains, amongst other things, the RELAYED
 TRANSPORT ADDRESS for the allocation. The relayed transport address
 is the transport address on the server that peers can use to have the
 server relay data to the client. An allocation is uniquely
 identified by its relayed transport address.

 Once an allocation is created, the client can send application data
 to the server along with an indication of to which peer the data is
 to be sent, and the server will relay this data to the appropriate
 peer. The client sends the application data to the server inside a
 TURN message; at the server, the data is extracted from the TURN
 message and sent to the peer in a UDP datagram. In the reverse
 direction, a peer can send application data in a UDP datagram to the
 relayed transport address for the allocation; the server will then
 encapsulate this data inside a TURN message and send it to the client
 along with an indication of which peer sent the data. Since the TURN
 message always contains an indication of which peer the client is
 communicating with, the client can use a single allocation to
 communicate with multiple peers.

 When the peer is behind a NAT, then the client must identify the peer
 using its server-reflexive transport address rather than its host
 transport address. For example, to send application data to Peer A
 in the example above, the client must specify 192.0.2.150:32102 (Peer
 A’s server-reflexive transport address) rather than 192.168.100.2:
 49582 (Peer A’s host transport address).

 Each allocation on the server belongs to a single client and has
 exactly one relayed transport address that is used only by that
 allocation. Thus, when a packet arrives at a relayed transport
 address on the server, the server knows for which client the data is
 intended.

 The client may have multiple allocations on a server at the same
 time.

Mahy, et al. Standards Track [Page 7]

RFC 5766 TURN April 2010

2.1. Transports

 TURN, as defined in this specification, always uses UDP between the
 server and the peer. However, this specification allows the use of
 any one of UDP, TCP, or Transport Layer Security (TLS) over TCP to
 carry the TURN messages between the client and the server.

 +----------------------------+---------------------+
 | TURN client to TURN server | TURN server to peer |
 +----------------------------+---------------------+
 | UDP | UDP |
 | TCP | UDP |
 | TLS over TCP | UDP |
 +----------------------------+---------------------+

 If TCP or TLS-over-TCP is used between the client and the server,
 then the server will convert between these transports and UDP
 transport when relaying data to/from the peer.

 Since this version of TURN only supports UDP between the server and
 the peer, it is expected that most clients will prefer to use UDP
 between the client and the server as well. That being the case, some
 readers may wonder: Why also support TCP and TLS-over-TCP?

 TURN supports TCP transport between the client and the server because
 some firewalls are configured to block UDP entirely. These firewalls
 block UDP but not TCP, in part because TCP has properties that make
 the intention of the nodes being protected by the firewall more
 obvious to the firewall. For example, TCP has a three-way handshake
 that makes in clearer that the protected node really wishes to have
 that particular connection established, while for UDP the best the
 firewall can do is guess which flows are desired by using filtering
 rules. Also, TCP has explicit connection teardown; while for UDP,
 the firewall has to use timers to guess when the flow is finished.

 TURN supports TLS-over-TCP transport between the client and the
 server because TLS provides additional security properties not
 provided by TURN’s default digest authentication; properties that
 some clients may wish to take advantage of. In particular, TLS
 provides a way for the client to ascertain that it is talking to the
 correct server, and provides for confidentiality of TURN control
 messages. TURN does not require TLS because the overhead of using
 TLS is higher than that of digest authentication; for example, using
 TLS likely means that most application data will be doubly encrypted
 (once by TLS and once to ensure it is still encrypted in the UDP
 datagram).

Mahy, et al. Standards Track [Page 8]

RFC 5766 TURN April 2010

 There is a planned extension to TURN to add support for TCP between
 the server and the peers [TURN-TCP]. For this reason, allocations
 that use UDP between the server and the peers are known as UDP
 allocations, while allocations that use TCP between the server and
 the peers are known as TCP allocations. This specification describes
 only UDP allocations.

 TURN, as defined in this specification, only supports IPv4. All IP
 addresses in this specification must be IPv4 addresses. There is a
 planned extension to TURN to add support for IPv6 and for relaying
 between IPv4 and IPv6 [TURN-IPv6].

 In some applications for TURN, the client may send and receive
 packets other than TURN packets on the host transport address it uses
 to communicate with the server. This can happen, for example, when
 using TURN with ICE. In these cases, the client can distinguish TURN
 packets from other packets by examining the source address of the
 arriving packet: those arriving from the TURN server will be TURN
 packets.

2.2. Allocations

 To create an allocation on the server, the client uses an Allocate
 transaction. The client sends an Allocate request to the server, and
 the server replies with an Allocate success response containing the
 allocated relayed transport address. The client can include
 attributes in the Allocate request that describe the type of
 allocation it desires (e.g., the lifetime of the allocation). Since
 relaying data has security implications, the server requires that the
 client authenticate itself, typically using STUN’s long-term
 credential mechanism, to show that it is authorized to use the
 server.

 Once a relayed transport address is allocated, a client must keep the
 allocation alive. To do this, the client periodically sends a
 Refresh request to the server. TURN deliberately uses a different
 method (Refresh rather than Allocate) for refreshes to ensure that
 the client is informed if the allocation vanishes for some reason.

 The frequency of the Refresh transaction is determined by the
 lifetime of the allocation. The default lifetime of an allocation is
 10 minutes -- this value was chosen to be long enough so that
 refreshing is not typically a burden on the client, while expiring
 allocations where the client has unexpectedly quit in a timely
 manner. However, the client can request a longer lifetime in the
 Allocate request and may modify its request in a Refresh request, and
 the server always indicates the actual lifetime in the response. The
 client must issue a new Refresh transaction within "lifetime" seconds

Mahy, et al. Standards Track [Page 9]

RFC 5766 TURN April 2010

 of the previous Allocate or Refresh transaction. Once a client no
 longer wishes to use an allocation, it should delete the allocation
 using a Refresh request with a requested lifetime of 0.

 Both the server and client keep track of a value known as the
 5-TUPLE. At the client, the 5-tuple consists of the client’s host
 transport address, the server transport address, and the transport
 protocol used by the client to communicate with the server. At the
 server, the 5-tuple value is the same except that the client’s host
 transport address is replaced by the client’s server-reflexive
 address, since that is the client’s address as seen by the server.

 Both the client and the server remember the 5-tuple used in the
 Allocate request. Subsequent messages between the client and the
 server use the same 5-tuple. In this way, the client and server know
 which allocation is being referred to. If the client wishes to
 allocate a second relayed transport address, it must create a second
 allocation using a different 5-tuple (e.g., by using a different
 client host address or port).

 NOTE: While the terminology used in this document refers to
 5-tuples, the TURN server can store whatever identifier it likes
 that yields identical results. Specifically, an implementation
 may use a file-descriptor in place of a 5-tuple to represent a TCP
 connection.

 TURN TURN Peer Peer
 client server A B
 |-- Allocate request --------------->| | |
 | | | |
 |<--------------- Allocate failure --| | |
 | (401 Unauthorized) | | |
 | | | |
 |-- Allocate request --------------->| | |
 | | | |
 |<---------- Allocate success resp --| | |
 | (192.0.2.15:50000) | | |
 // // // //
 | | | |
 |-- Refresh request ---------------->| | |
 | | | |
 |<----------- Refresh success resp --| | |
 | | | |

 Figure 2

Mahy, et al. Standards Track [Page 10]

RFC 5766 TURN April 2010

 In Figure 2, the client sends an Allocate request to the server
 without credentials. Since the server requires that all requests be
 authenticated using STUN’s long-term credential mechanism, the server
 rejects the request with a 401 (Unauthorized) error code. The client
 then tries again, this time including credentials (not shown). This
 time, the server accepts the Allocate request and returns an Allocate
 success response containing (amongst other things) the relayed
 transport address assigned to the allocation. Sometime later, the
 client decides to refresh the allocation and thus sends a Refresh
 request to the server. The refresh is accepted and the server
 replies with a Refresh success response.

2.3. Permissions

 To ease concerns amongst enterprise IT administrators that TURN could
 be used to bypass corporate firewall security, TURN includes the
 notion of permissions. TURN permissions mimic the address-restricted
 filtering mechanism of NATs that comply with [RFC4787].

 An allocation can have zero or more permissions. Each permission
 consists of an IP address and a lifetime. When the server receives a
 UDP datagram on the allocation’s relayed transport address, it first
 checks the list of permissions. If the source IP address of the
 datagram matches a permission, the application data is relayed to the
 client, otherwise the UDP datagram is silently discarded.

 A permission expires after 5 minutes if it is not refreshed, and
 there is no way to explicitly delete a permission. This behavior was
 selected to match the behavior of a NAT that complies with [RFC4787].

 The client can install or refresh a permission using either a
 CreatePermission request or a ChannelBind request. Using the
 CreatePermission request, multiple permissions can be installed or
 refreshed with a single request -- this is important for applications
 that use ICE. For security reasons, permissions can only be
 installed or refreshed by transactions that can be authenticated;
 thus, Send indications and ChannelData messages (which are used to
 send data to peers) do not install or refresh any permissions.

 Note that permissions are within the context of an allocation, so
 adding or expiring a permission in one allocation does not affect
 other allocations.

Mahy, et al. Standards Track [Page 11]

RFC 5766 TURN April 2010

2.4. Send Mechanism

 There are two mechanisms for the client and peers to exchange
 application data using the TURN server. The first mechanism uses the
 Send and Data methods, the second way uses channels. Common to both
 ways is the ability of the client to communicate with multiple peers
 using a single allocated relayed transport address; thus, both ways
 include a means for the client to indicate to the server which peer
 should receive the data, and for the server to indicate to the client
 which peer sent the data.

 The Send mechanism uses Send and Data indications. Send indications
 are used to send application data from the client to the server,
 while Data indications are used to send application data from the
 server to the client.

 When using the Send mechanism, the client sends a Send indication to
 the TURN server containing (a) an XOR-PEER-ADDRESS attribute
 specifying the (server-reflexive) transport address of the peer and
 (b) a DATA attribute holding the application data. When the TURN
 server receives the Send indication, it extracts the application data
 from the DATA attribute and sends it in a UDP datagram to the peer,
 using the allocated relay address as the source address. Note that
 there is no need to specify the relayed transport address, since it
 is implied by the 5-tuple used for the Send indication.

 In the reverse direction, UDP datagrams arriving at the relayed
 transport address on the TURN server are converted into Data
 indications and sent to the client, with the server-reflexive
 transport address of the peer included in an XOR-PEER-ADDRESS
 attribute and the data itself in a DATA attribute. Since the relayed
 transport address uniquely identified the allocation, the server
 knows which client should receive the data.

 Send and Data indications cannot be authenticated, since the long-
 term credential mechanism of STUN does not support authenticating
 indications. This is not as big an issue as it might first appear,
 since the client-to-server leg is only half of the total path to the
 peer. Applications that want proper security should encrypt the data
 sent between the client and a peer.

 Because Send indications are not authenticated, it is possible for an
 attacker to send bogus Send indications to the server, which will
 then relay these to a peer. To partly mitigate this attack, TURN
 requires that the client install a permission towards a peer before
 sending data to it using a Send indication.

Mahy, et al. Standards Track [Page 12]

RFC 5766 TURN April 2010

 TURN TURN Peer Peer
 client server A B
 | | | |
 |-- CreatePermission req (Peer A) -->| | |
 |<-- CreatePermission success resp --| | |
 | | | |
 |--- Send ind (Peer A)-------------->| | |
 | |=== data ===>| |
 | | | |
 | |<== data ====| |
 |<-------------- Data ind (Peer A) --| | |
 | | | |
 | | | |
 |--- Send ind (Peer B)-------------->| | |
 | | dropped | |
 | | | |
 | |<== data ==================|
 | dropped | | |
 | | | |

 Figure 3

 In Figure 3, the client has already created an allocation and now
 wishes to send data to its peers. The client first creates a
 permission by sending the server a CreatePermission request
 specifying Peer A’s (server-reflexive) IP address in the XOR-PEER-
 ADDRESS attribute; if this was not done, the server would not relay
 data between the client and the server. The client then sends data
 to Peer A using a Send indication; at the server, the application
 data is extracted and forwarded in a UDP datagram to Peer A, using
 the relayed transport address as the source transport address. When
 a UDP datagram from Peer A is received at the relayed transport
 address, the contents are placed into a Data indication and forwarded
 to the client. Later, the client attempts to exchange data with Peer
 B; however, no permission has been installed for Peer B, so the Send
 indication from the client and the UDP datagram from the peer are
 both dropped by the server.

2.5. Channels

 For some applications (e.g., Voice over IP), the 36 bytes of overhead
 that a Send indication or Data indication adds to the application
 data can substantially increase the bandwidth required between the
 client and the server. To remedy this, TURN offers a second way for
 the client and server to associate data with a specific peer.

 This second way uses an alternate packet format known as the
 ChannelData message. The ChannelData message does not use the STUN

Mahy, et al. Standards Track [Page 13]

RFC 5766 TURN April 2010

 header used by other TURN messages, but instead has a 4-byte header
 that includes a number known as a channel number. Each channel
 number in use is bound to a specific peer and thus serves as a
 shorthand for the peer’s host transport address.

 To bind a channel to a peer, the client sends a ChannelBind request
 to the server, and includes an unbound channel number and the
 transport address of the peer. Once the channel is bound, the client
 can use a ChannelData message to send the server data destined for
 the peer. Similarly, the server can relay data from that peer
 towards the client using a ChannelData message.

 Channel bindings last for 10 minutes unless refreshed -- this
 lifetime was chosen to be longer than the permission lifetime.
 Channel bindings are refreshed by sending another ChannelBind request
 rebinding the channel to the peer. Like permissions (but unlike
 allocations), there is no way to explicitly delete a channel binding;
 the client must simply wait for it to time out.

 TURN TURN Peer Peer
 client server A B
 | | | |
 |-- ChannelBind req ---------------->| | |
 | (Peer A to 0x4001) | | |
 | | | |
 |<---------- ChannelBind succ resp --| | |
 | | | |
 |-- [0x4001] data ------------------>| | |
 | |=== data ===>| |
 | | | |
 | |<== data ====| |
 |<------------------ [0x4001] data --| | |
 | | | |
 |--- Send ind (Peer A)-------------->| | |
 | |=== data ===>| |
 | | | |
 | |<== data ====| |
 |<------------------ [0x4001] data --| | |
 | | | |

 Figure 4

 Figure 4 shows the channel mechanism in use. The client has already
 created an allocation and now wishes to bind a channel to Peer A. To
 do this, the client sends a ChannelBind request to the server,
 specifying the transport address of Peer A and a channel number
 (0x4001). After that, the client can send application data
 encapsulated inside ChannelData messages to Peer A: this is shown as

Mahy, et al. Standards Track [Page 14]

RFC 5766 TURN April 2010

 "[0x4001] data" where 0x4001 is the channel number. When the
 ChannelData message arrives at the server, the server transfers the
 data to a UDP datagram and sends it to Peer A (which is the peer
 bound to channel number 0x4001).

 In the reverse direction, when Peer A sends a UDP datagram to the
 relayed transport address, this UDP datagram arrives at the server on
 the relayed transport address assigned to the allocation. Since the
 UDP datagram was received from Peer A, which has a channel number
 assigned to it, the server encapsulates the data into a ChannelData
 message when sending the data to the client.

 Once a channel has been bound, the client is free to intermix
 ChannelData messages and Send indications. In the figure, the client
 later decides to use a Send indication rather than a ChannelData
 message to send additional data to Peer A. The client might decide
 to do this, for example, so it can use the DONT-FRAGMENT attribute
 (see the next section). However, once a channel is bound, the server
 will always use a ChannelData message, as shown in the call flow.

 Note that ChannelData messages can only be used for peers to which
 the client has bound a channel. In the example above, Peer A has
 been bound to a channel, but Peer B has not, so application data to
 and from Peer B would use the Send mechanism.

2.6. Unprivileged TURN Servers

 This version of TURN is designed so that the server can be
 implemented as an application that runs in user space under commonly
 available operating systems without requiring special privileges.
 This design decision was made to make it easy to deploy a TURN
 server: for example, to allow a TURN server to be integrated into a
 peer-to-peer application so that one peer can offer NAT traversal
 services to another peer.

 This design decision has the following implications for data relayed
 by a TURN server:

 o The value of the Diffserv field may not be preserved across the
 server;

 o The Time to Live (TTL) field may be reset, rather than
 decremented, across the server;

 o The Explicit Congestion Notification (ECN) field may be reset by
 the server;

 o ICMP messages are not relayed by the server;

Mahy, et al. Standards Track [Page 15]

RFC 5766 TURN April 2010

 o There is no end-to-end fragmentation, since the packet is re-
 assembled at the server.

 Future work may specify alternate TURN semantics that address these
 limitations.

2.7. Avoiding IP Fragmentation

 For reasons described in [Frag-Harmful], applications, especially
 those sending large volumes of data, should try hard to avoid having
 their packets fragmented. Applications using TCP can more or less
 ignore this issue because fragmentation avoidance is now a standard
 part of TCP, but applications using UDP (and thus any application
 using this version of TURN) must handle fragmentation avoidance
 themselves.

 The application running on the client and the peer can take one of
 two approaches to avoid IP fragmentation.

 The first approach is to avoid sending large amounts of application
 data in the TURN messages/UDP datagrams exchanged between the client
 and the peer. This is the approach taken by most VoIP
 (Voice-over-IP) applications. In this approach, the application
 exploits the fact that the IP specification [RFC0791] specifies that
 IP packets up to 576 bytes should never need to be fragmented.

 The exact amount of application data that can be included while
 avoiding fragmentation depends on the details of the TURN session
 between the client and the server: whether UDP, TCP, or TLS transport
 is used, whether ChannelData messages or Send/Data indications are
 used, and whether any additional attributes (such as the DONT-
 FRAGMENT attribute) are included. Another factor, which is hard to
 determine, is whether the MTU is reduced somewhere along the path for
 other reasons, such as the use of IP-in-IP tunneling.

 As a guideline, sending a maximum of 500 bytes of application data in
 a single TURN message (by the client on the client-to-server leg) or
 a UDP datagram (by the peer on the peer-to-server leg) will generally
 avoid IP fragmentation. To further reduce the chance of
 fragmentation, it is recommended that the client use ChannelData
 messages when transferring significant volumes of data, since the
 overhead of the ChannelData message is less than Send and Data
 indications.

 The second approach the client and peer can take to avoid
 fragmentation is to use a path MTU discovery algorithm to determine
 the maximum amount of application data that can be sent without
 fragmentation.

Mahy, et al. Standards Track [Page 16]

RFC 5766 TURN April 2010

 Unfortunately, because servers implementing this version of TURN do
 not relay ICMP messages, the classic path MTU discovery algorithm
 defined in [RFC1191] is not able to discover the MTU of the
 transmission path between the client and the peer. (Even if they did
 relay ICMP messages, the algorithm would not always work since ICMP
 messages are often filtered out by combined NAT/firewall devices).

 So the client and server need to use a path MTU discovery algorithm
 that does not require ICMP messages. The Packetized Path MTU
 Discovery algorithm defined in [RFC4821] is one such algorithm.

 The details of how to use the algorithm of [RFC4821] with TURN are
 still under investigation. However, as a step towards this goal,
 this version of TURN supports a DONT-FRAGMENT attribute. When the
 client includes this attribute in a Send indication, this tells the
 server to set the DF bit in the resulting UDP datagram that it sends
 to the peer. Since some servers may be unable to set the DF bit, the
 client should also include this attribute in the Allocate request --
 any server that does not support the DONT-FRAGMENT attribute will
 indicate this by rejecting the Allocate request.

2.8. RTP Support

 One of the envisioned uses of TURN is as a relay for clients and
 peers wishing to exchange real-time data (e.g., voice or video) using
 RTP. To facilitate the use of TURN for this purpose, TURN includes
 some special support for older versions of RTP.

 Old versions of RTP [RFC3550] required that the RTP stream be on an
 even port number and the associated RTP Control Protocol (RTCP)
 stream, if present, be on the next highest port. To allow clients to
 work with peers that still require this, TURN allows the client to
 request that the server allocate a relayed transport address with an
 even port number, and to optionally request the server reserve the
 next-highest port number for a subsequent allocation.

2.9. Anycast Discovery of Servers

 This version of TURN has been designed to permit the future
 specification of a method of doing anycast discovery of a TURN server
 over UDP.

 Specifically, a TURN server can reject an Allocate request with the
 suggestion that the client try an alternate server. To avoid certain
 types of attacks, the client must use the same credentials with the
 alternate server as it would have with the initial server.

Mahy, et al. Standards Track [Page 17]

RFC 5766 TURN April 2010

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Readers are expected to be familiar with [RFC5389] and the terms
 defined there.

 The following terms are used in this document:

 TURN: The protocol spoken between a TURN client and a TURN server.
 It is an extension to the STUN protocol [RFC5389]. The protocol
 allows a client to allocate and use a relayed transport address.

 TURN client: A STUN client that implements this specification.

 TURN server: A STUN server that implements this specification. It
 relays data between a TURN client and its peer(s).

 Peer: A host with which the TURN client wishes to communicate. The
 TURN server relays traffic between the TURN client and its
 peer(s). The peer does not interact with the TURN server using
 the protocol defined in this document; rather, the peer receives
 data sent by the TURN server and the peer sends data towards the
 TURN server.

 Transport Address: The combination of an IP address and a port.

 Host Transport Address: A transport address on a client or a peer.

 Server-Reflexive Transport Address: A transport address on the
 "public side" of a NAT. This address is allocated by the NAT to
 correspond to a specific host transport address.

 Relayed Transport Address: A transport address on the TURN server
 that is used for relaying packets between the client and a peer.
 A peer sends to this address on the TURN server, and the packet is
 then relayed to the client.

 TURN Server Transport Address: A transport address on the TURN
 server that is used for sending TURN messages to the server. This
 is the transport address that the client uses to communicate with
 the server.

 Peer Transport Address: The transport address of the peer as seen by
 the server. When the peer is behind a NAT, this is the peer’s
 server-reflexive transport address.

Mahy, et al. Standards Track [Page 18]

RFC 5766 TURN April 2010

 Allocation: The relayed transport address granted to a client
 through an Allocate request, along with related state, such as
 permissions and expiration timers.

 5-tuple: The combination (client IP address and port, server IP
 address and port, and transport protocol (currently one of UDP,
 TCP, or TLS)) used to communicate between the client and the
 server. The 5-tuple uniquely identifies this communication
 stream. The 5-tuple also uniquely identifies the Allocation on
 the server.

 Channel: A channel number and associated peer transport address.
 Once a channel number is bound to a peer’s transport address, the
 client and server can use the more bandwidth-efficient ChannelData
 message to exchange data.

 Permission: The IP address and transport protocol (but not the port)
 of a peer that is permitted to send traffic to the TURN server and
 have that traffic relayed to the TURN client. The TURN server
 will only forward traffic to its client from peers that match an
 existing permission.

 Realm: A string used to describe the server or a context within the
 server. The realm tells the client which username and password
 combination to use to authenticate requests.

 Nonce: A string chosen at random by the server and included in the
 message-digest. To prevent reply attacks, the server should
 change the nonce regularly.

4. General Behavior

 This section contains general TURN processing rules that apply to all
 TURN messages.

 TURN is an extension to STUN. All TURN messages, with the exception
 of the ChannelData message, are STUN-formatted messages. All the
 base processing rules described in [RFC5389] apply to STUN-formatted
 messages. This means that all the message-forming and message-
 processing descriptions in this document are implicitly prefixed with
 the rules of [RFC5389].

 [RFC5389] specifies an authentication mechanism called the long-term
 credential mechanism. TURN servers and clients MUST implement this
 mechanism. The server MUST demand that all requests from the client
 be authenticated using this mechanism, or that a equally strong or
 stronger mechanism for client authentication is used.

Mahy, et al. Standards Track [Page 19]

RFC 5766 TURN April 2010

 Note that the long-term credential mechanism applies only to requests
 and cannot be used to authenticate indications; thus, indications in
 TURN are never authenticated. If the server requires requests to be
 authenticated, then the server’s administrator MUST choose a realm
 value that will uniquely identify the username and password
 combination that the client must use, even if the client uses
 multiple servers under different administrations. The server’s
 administrator MAY choose to allocate a unique username to each
 client, or MAY choose to allocate the same username to more than one
 client (for example, to all clients from the same department or
 company). For each allocation, the server SHOULD generate a new
 random nonce when the allocation is first attempted following the
 randomness recommendations in [RFC4086] and SHOULD expire the nonce
 at least once every hour during the lifetime of the allocation.

 All requests after the initial Allocate must use the same username as
 that used to create the allocation, to prevent attackers from
 hijacking the client’s allocation. Specifically, if the server
 requires the use of the long-term credential mechanism, and if a non-
 Allocate request passes authentication under this mechanism, and if
 the 5-tuple identifies an existing allocation, but the request does
 not use the same username as used to create the allocation, then the
 request MUST be rejected with a 441 (Wrong Credentials) error.

 When a TURN message arrives at the server from the client, the server
 uses the 5-tuple in the message to identify the associated
 allocation. For all TURN messages (including ChannelData) EXCEPT an
 Allocate request, if the 5-tuple does not identify an existing
 allocation, then the message MUST either be rejected with a 437
 Allocation Mismatch error (if it is a request) or silently ignored
 (if it is an indication or a ChannelData message). A client
 receiving a 437 error response to a request other than Allocate MUST
 assume the allocation no longer exists.

 [RFC5389] defines a number of attributes, including the SOFTWARE and
 FINGERPRINT attributes. The client SHOULD include the SOFTWARE
 attribute in all Allocate and Refresh requests and MAY include it in
 any other requests or indications. The server SHOULD include the
 SOFTWARE attribute in all Allocate and Refresh responses (either
 success or failure) and MAY include it in other responses or
 indications. The client and the server MAY include the FINGERPRINT
 attribute in any STUN-formatted messages defined in this document.

 TURN does not use the backwards-compatibility mechanism described in
 [RFC5389].

Mahy, et al. Standards Track [Page 20]

RFC 5766 TURN April 2010

 TURN, as defined in this specification, only supports IPv4. The
 client’s IP address, the server’s IP address, and all IP addresses
 appearing in a relayed transport address MUST be IPv4 addresses.

 By default, TURN runs on the same ports as STUN: 3478 for TURN over
 UDP and TCP, and 5349 for TURN over TLS. However, TURN has its own
 set of Service Record (SRV) names: "turn" for UDP and TCP, and
 "turns" for TLS. Either the SRV procedures or the ALTERNATE-SERVER
 procedures, both described in Section 6, can be used to run TURN on a
 different port.

 To ensure interoperability, a TURN server MUST support the use of UDP
 transport between the client and the server, and SHOULD support the
 use of TCP and TLS transport.

 When UDP transport is used between the client and the server, the
 client will retransmit a request if it does not receive a response
 within a certain timeout period. Because of this, the server may
 receive two (or more) requests with the same 5-tuple and same
 transaction id. STUN requires that the server recognize this case
 and treat the request as idempotent (see [RFC5389]). Some
 implementations may choose to meet this requirement by remembering
 all received requests and the corresponding responses for 40 seconds.
 Other implementations may choose to reprocess the request and arrange
 that such reprocessing returns essentially the same response. To aid
 implementors who choose the latter approach (the so-called "stateless
 stack approach"), this specification includes some implementation
 notes on how this might be done. Implementations are free to choose
 either approach or choose some other approach that gives the same
 results.

 When TCP transport is used between the client and the server, it is
 possible that a bit error will cause a length field in a TURN packet
 to become corrupted, causing the receiver to lose synchronization
 with the incoming stream of TURN messages. A client or server that
 detects a long sequence of invalid TURN messages over TCP transport
 SHOULD close the corresponding TCP connection to help the other end
 detect this situation more rapidly.

 To mitigate either intentional or unintentional denial-of-service
 attacks against the server by clients with valid usernames and
 passwords, it is RECOMMENDED that the server impose limits on both
 the number of allocations active at one time for a given username and
 on the amount of bandwidth those allocations can use. The server
 should reject new allocations that would exceed the limit on the
 allowed number of allocations active at one time with a 486
 (Allocation Quota Exceeded) (see Section 6.2), and should discard
 application data traffic that exceeds the bandwidth quota.

Mahy, et al. Standards Track [Page 21]

RFC 5766 TURN April 2010

5. Allocations

 All TURN operations revolve around allocations, and all TURN messages
 are associated with an allocation. An allocation conceptually
 consists of the following state data:

 o the relayed transport address;

 o the 5-tuple: (client’s IP address, client’s port, server IP
 address, server port, transport protocol);

 o the authentication information;

 o the time-to-expiry;

 o a list of permissions;

 o a list of channel to peer bindings.

 The relayed transport address is the transport address allocated by
 the server for communicating with peers, while the 5-tuple describes
 the communication path between the client and the server. On the
 client, the 5-tuple uses the client’s host transport address; on the
 server, the 5-tuple uses the client’s server-reflexive transport
 address.

 Both the relayed transport address and the 5-tuple MUST be unique
 across all allocations, so either one can be used to uniquely
 identify the allocation.

 The authentication information (e.g., username, password, realm, and
 nonce) is used to both verify subsequent requests and to compute the
 message integrity of responses. The username, realm, and nonce
 values are initially those used in the authenticated Allocate request
 that creates the allocation, though the server can change the nonce
 value during the lifetime of the allocation using a 438 (Stale Nonce)
 reply. Note that, rather than storing the password explicitly, for
 security reasons, it may be desirable for the server to store the key
 value, which is an MD5 hash over the username, realm, and password
 (see [RFC5389]).

 The time-to-expiry is the time in seconds left until the allocation
 expires. Each Allocate or Refresh transaction sets this timer, which
 then ticks down towards 0. By default, each Allocate or Refresh
 transaction resets this timer to the default lifetime value of 600
 seconds (10 minutes), but the client can request a different value in
 the Allocate and Refresh request. Allocations can only be refreshed
 using the Refresh request; sending data to a peer does not refresh an

Mahy, et al. Standards Track [Page 22]

RFC 5766 TURN April 2010

 allocation. When an allocation expires, the state data associated
 with the allocation can be freed.

 The list of permissions is described in Section 8 and the list of
 channels is described in Section 11.

6. Creating an Allocation

 An allocation on the server is created using an Allocate transaction.

6.1. Sending an Allocate Request

 The client forms an Allocate request as follows.

 The client first picks a host transport address. It is RECOMMENDED
 that the client pick a currently unused transport address, typically
 by allowing the underlying OS to pick a currently unused port for a
 new socket.

 The client then picks a transport protocol to use between the client
 and the server. The transport protocol MUST be one of UDP, TCP, or
 TLS-over-TCP. Since this specification only allows UDP between the
 server and the peers, it is RECOMMENDED that the client pick UDP
 unless it has a reason to use a different transport. One reason to
 pick a different transport would be that the client believes, either
 through configuration or by experiment, that it is unable to contact
 any TURN server using UDP. See Section 2.1 for more discussion.

 The client also picks a server transport address, which SHOULD be
 done as follows. The client receives (perhaps through configuration)
 a domain name for a TURN server. The client then uses the DNS
 procedures described in [RFC5389], but using an SRV service name of
 "turn" (or "turns" for TURN over TLS) instead of "stun" (or "stuns").
 For example, to find servers in the example.com domain, the client
 performs a lookup for ’_turn._udp.example.com’,
 ’_turn._tcp.example.com’, and ’_turns._tcp.example.com’ if the client
 wants to communicate with the server using UDP, TCP, or TLS-over-TCP,
 respectively.

 The client MUST include a REQUESTED-TRANSPORT attribute in the
 request. This attribute specifies the transport protocol between the
 server and the peers (note that this is NOT the transport protocol
 that appears in the 5-tuple). In this specification, the REQUESTED-
 TRANSPORT type is always UDP. This attribute is included to allow
 future extensions to specify other protocols.

 If the client wishes the server to initialize the time-to-expiry
 field of the allocation to some value other than the default

Mahy, et al. Standards Track [Page 23]

RFC 5766 TURN April 2010

 lifetime, then it MAY include a LIFETIME attribute specifying its
 desired value. This is just a request, and the server may elect to
 use a different value. Note that the server will ignore requests to
 initialize the field to less than the default value.

 If the client wishes to later use the DONT-FRAGMENT attribute in one
 or more Send indications on this allocation, then the client SHOULD
 include the DONT-FRAGMENT attribute in the Allocate request. This
 allows the client to test whether this attribute is supported by the
 server.

 If the client requires the port number of the relayed transport
 address be even, the client includes the EVEN-PORT attribute. If
 this attribute is not included, then the port can be even or odd. By
 setting the R bit in the EVEN-PORT attribute to 1, the client can
 request that the server reserve the next highest port number (on the
 same IP address) for a subsequent allocation. If the R bit is 0, no
 such request is made.

 The client MAY also include a RESERVATION-TOKEN attribute in the
 request to ask the server to use a previously reserved port for the
 allocation. If the RESERVATION-TOKEN attribute is included, then the
 client MUST omit the EVEN-PORT attribute.

 Once constructed, the client sends the Allocate request on the
 5-tuple.

6.2. Receiving an Allocate Request

 When the server receives an Allocate request, it performs the
 following checks:

 1. The server MUST require that the request be authenticated. This
 authentication MUST be done using the long-term credential
 mechanism of [RFC5389] unless the client and server agree to use
 another mechanism through some procedure outside the scope of
 this document.

 2. The server checks if the 5-tuple is currently in use by an
 existing allocation. If yes, the server rejects the request with
 a 437 (Allocation Mismatch) error.

 3. The server checks if the request contains a REQUESTED-TRANSPORT
 attribute. If the REQUESTED-TRANSPORT attribute is not included
 or is malformed, the server rejects the request with a 400 (Bad
 Request) error. Otherwise, if the attribute is included but
 specifies a protocol other that UDP, the server rejects the
 request with a 442 (Unsupported Transport Protocol) error.

Mahy, et al. Standards Track [Page 24]

RFC 5766 TURN April 2010

 4. The request may contain a DONT-FRAGMENT attribute. If it does,
 but the server does not support sending UDP datagrams with the DF
 bit set to 1 (see Section 12), then the server treats the DONT-
 FRAGMENT attribute in the Allocate request as an unknown
 comprehension-required attribute.

 5. The server checks if the request contains a RESERVATION-TOKEN
 attribute. If yes, and the request also contains an EVEN-PORT
 attribute, then the server rejects the request with a 400 (Bad
 Request) error. Otherwise, it checks to see if the token is
 valid (i.e., the token is in range and has not expired and the
 corresponding relayed transport address is still available). If
 the token is not valid for some reason, the server rejects the
 request with a 508 (Insufficient Capacity) error.

 6. The server checks if the request contains an EVEN-PORT attribute.
 If yes, then the server checks that it can satisfy the request
 (i.e., can allocate a relayed transport address as described
 below). If the server cannot satisfy the request, then the
 server rejects the request with a 508 (Insufficient Capacity)
 error.

 7. At any point, the server MAY choose to reject the request with a
 486 (Allocation Quota Reached) error if it feels the client is
 trying to exceed some locally defined allocation quota. The
 server is free to define this allocation quota any way it wishes,
 but SHOULD define it based on the username used to authenticate
 the request, and not on the client’s transport address.

 8. Also at any point, the server MAY choose to reject the request
 with a 300 (Try Alternate) error if it wishes to redirect the
 client to a different server. The use of this error code and
 attribute follow the specification in [RFC5389].

 If all the checks pass, the server creates the allocation. The
 5-tuple is set to the 5-tuple from the Allocate request, while the
 list of permissions and the list of channels are initially empty.

 The server chooses a relayed transport address for the allocation as
 follows:

 o If the request contains a RESERVATION-TOKEN, the server uses the
 previously reserved transport address corresponding to the
 included token (if it is still available). Note that the
 reservation is a server-wide reservation and is not specific to a
 particular allocation, since the Allocate request containing the
 RESERVATION-TOKEN uses a different 5-tuple than the Allocate
 request that made the reservation. The 5-tuple for the Allocate

Mahy, et al. Standards Track [Page 25]

RFC 5766 TURN April 2010

 request containing the RESERVATION-TOKEN attribute can be any
 allowed 5-tuple; it can use a different client IP address and
 port, a different transport protocol, and even different server IP
 address and port (provided, of course, that the server IP address
 and port are ones on which the server is listening for TURN
 requests).

 o If the request contains an EVEN-PORT attribute with the R bit set
 to 0, then the server allocates a relayed transport address with
 an even port number.

 o If the request contains an EVEN-PORT attribute with the R bit set
 to 1, then the server looks for a pair of port numbers N and N+1
 on the same IP address, where N is even. Port N is used in the
 current allocation, while the relayed transport address with port
 N+1 is assigned a token and reserved for a future allocation. The
 server MUST hold this reservation for at least 30 seconds, and MAY
 choose to hold longer (e.g., until the allocation with port N
 expires). The server then includes the token in a RESERVATION-
 TOKEN attribute in the success response.

 o Otherwise, the server allocates any available relayed transport
 address.

 In all cases, the server SHOULD only allocate ports from the range
 49152 - 65535 (the Dynamic and/or Private Port range [Port-Numbers]),
 unless the TURN server application knows, through some means not
 specified here, that other applications running on the same host as
 the TURN server application will not be impacted by allocating ports
 outside this range. This condition can often be satisfied by running
 the TURN server application on a dedicated machine and/or by
 arranging that any other applications on the machine allocate ports
 before the TURN server application starts. In any case, the TURN
 server SHOULD NOT allocate ports in the range 0 - 1023 (the Well-
 Known Port range) to discourage clients from using TURN to run
 standard services.

 NOTE: The IETF is currently investigating the topic of randomized
 port assignments to avoid certain types of attacks (see
 [TSVWG-PORT]). It is strongly recommended that a TURN implementor
 keep abreast of this topic and, if appropriate, implement a
 randomized port assignment algorithm. This is especially
 applicable to servers that choose to pre-allocate a number of
 ports from the underlying OS and then later assign them to
 allocations; for example, a server may choose this technique to
 implement the EVEN-PORT attribute.

Mahy, et al. Standards Track [Page 26]

RFC 5766 TURN April 2010

 The server determines the initial value of the time-to-expiry field
 as follows. If the request contains a LIFETIME attribute, then the
 server computes the minimum of the client’s proposed lifetime and the
 server’s maximum allowed lifetime. If this computed value is greater
 than the default lifetime, then the server uses the computed lifetime
 as the initial value of the time-to-expiry field. Otherwise, the
 server uses the default lifetime. It is RECOMMENDED that the server
 use a maximum allowed lifetime value of no more than 3600 seconds (1
 hour). Servers that implement allocation quotas or charge users for
 allocations in some way may wish to use a smaller maximum allowed
 lifetime (perhaps as small as the default lifetime) to more quickly
 remove orphaned allocations (that is, allocations where the
 corresponding client has crashed or terminated or the client
 connection has been lost for some reason). Also, note that the time-
 to-expiry is recomputed with each successful Refresh request, and
 thus the value computed here applies only until the first refresh.

 Once the allocation is created, the server replies with a success
 response. The success response contains:

 o An XOR-RELAYED-ADDRESS attribute containing the relayed transport
 address.

 o A LIFETIME attribute containing the current value of the time-to-
 expiry timer.

 o A RESERVATION-TOKEN attribute (if a second relayed transport
 address was reserved).

 o An XOR-MAPPED-ADDRESS attribute containing the client’s IP address
 and port (from the 5-tuple).

 NOTE: The XOR-MAPPED-ADDRESS attribute is included in the response
 as a convenience to the client. TURN itself does not make use of
 this value, but clients running ICE can often need this value and
 can thus avoid having to do an extra Binding transaction with some
 STUN server to learn it.

 The response (either success or error) is sent back to the client on
 the 5-tuple.

 NOTE: When the Allocate request is sent over UDP, section 7.3.1 of
 [RFC5389] requires that the server handle the possible
 retransmissions of the request so that retransmissions do not
 cause multiple allocations to be created. Implementations may
 achieve this using the so-called "stateless stack approach" as
 follows. To detect retransmissions when the original request was
 successful in creating an allocation, the server can store the

Mahy, et al. Standards Track [Page 27]

RFC 5766 TURN April 2010

 transaction id that created the request with the allocation data
 and compare it with incoming Allocate requests on the same
 5-tuple. Once such a request is detected, the server can stop
 parsing the request and immediately generate a success response.
 When building this response, the value of the LIFETIME attribute
 can be taken from the time-to-expiry field in the allocate state
 data, even though this value may differ slightly from the LIFETIME
 value originally returned. In addition, the server may need to
 store an indication of any reservation token returned in the
 original response, so that this may be returned in any
 retransmitted responses.

 For the case where the original request was unsuccessful in
 creating an allocation, the server may choose to do nothing
 special. Note, however, that there is a rare case where the
 server rejects the original request but accepts the retransmitted
 request (because conditions have changed in the brief intervening
 time period). If the client receives the first failure response,
 it will ignore the second (success) response and believe that an
 allocation was not created. An allocation created in this matter
 will eventually timeout, since the client will not refresh it.
 Furthermore, if the client later retries with the same 5-tuple but
 different transaction id, it will receive a 437 (Allocation
 Mismatch), which will cause it to retry with a different 5-tuple.
 The server may use a smaller maximum lifetime value to minimize
 the lifetime of allocations "orphaned" in this manner.

6.3. Receiving an Allocate Success Response

 If the client receives an Allocate success response, then it MUST
 check that the mapped address and the relayed transport address are
 in an address family that the client understands and is prepared to
 handle. This specification only covers the case where these two
 addresses are IPv4 addresses. If these two addresses are not in an
 address family which the client is prepared to handle, then the
 client MUST delete the allocation (Section 7) and MUST NOT attempt to
 create another allocation on that server until it believes the
 mismatch has been fixed.

 The IETF is currently considering mechanisms for transitioning
 between IPv4 and IPv6 that could result in a client originating an
 Allocate request over IPv6, but the request would arrive at the
 server over IPv4, or vice versa.

 Otherwise, the client creates its own copy of the allocation data
 structure to track what is happening on the server. In particular,
 the client needs to remember the actual lifetime received back from
 the server, rather than the value sent to the server in the request.

Mahy, et al. Standards Track [Page 28]

RFC 5766 TURN April 2010

 The client must also remember the 5-tuple used for the request and
 the username and password it used to authenticate the request to
 ensure that it reuses them for subsequent messages. The client also
 needs to track the channels and permissions it establishes on the
 server.

 The client will probably wish to send the relayed transport address
 to peers (using some method not specified here) so the peers can
 communicate with it. The client may also wish to use the server-
 reflexive address it receives in the XOR-MAPPED-ADDRESS attribute in
 its ICE processing.

6.4. Receiving an Allocate Error Response

 If the client receives an Allocate error response, then the
 processing depends on the actual error code returned:

 o (Request timed out): There is either a problem with the server, or
 a problem reaching the server with the chosen transport. The
 client considers the current transaction as having failed but MAY
 choose to retry the Allocate request using a different transport
 (e.g., TCP instead of UDP).

 o 300 (Try Alternate): The server would like the client to use the
 server specified in the ALTERNATE-SERVER attribute instead. The
 client considers the current transaction as having failed, but
 SHOULD try the Allocate request with the alternate server before
 trying any other servers (e.g., other servers discovered using the
 SRV procedures). When trying the Allocate request with the
 alternate server, the client follows the ALTERNATE-SERVER
 procedures specified in [RFC5389].

 o 400 (Bad Request): The server believes the client’s request is
 malformed for some reason. The client considers the current
 transaction as having failed. The client MAY notify the user or
 operator and SHOULD NOT retry the request with this server until
 it believes the problem has been fixed.

 o 401 (Unauthorized): If the client has followed the procedures of
 the long-term credential mechanism and still gets this error, then
 the server is not accepting the client’s credentials. In this
 case, the client considers the current transaction as having
 failed and SHOULD notify the user or operator. The client SHOULD
 NOT send any further requests to this server until it believes the
 problem has been fixed.

Mahy, et al. Standards Track [Page 29]

RFC 5766 TURN April 2010

 o 403 (Forbidden): The request is valid, but the server is refusing
 to perform it, likely due to administrative restrictions. The
 client considers the current transaction as having failed. The
 client MAY notify the user or operator and SHOULD NOT retry the
 same request with this server until it believes the problem has
 been fixed.

 o 420 (Unknown Attribute): If the client included a DONT-FRAGMENT
 attribute in the request and the server rejected the request with
 a 420 error code and listed the DONT-FRAGMENT attribute in the
 UNKNOWN-ATTRIBUTES attribute in the error response, then the
 client now knows that the server does not support the DONT-
 FRAGMENT attribute. The client considers the current transaction
 as having failed but MAY choose to retry the Allocate request
 without the DONT-FRAGMENT attribute.

 o 437 (Allocation Mismatch): This indicates that the client has
 picked a 5-tuple that the server sees as already in use. One way
 this could happen is if an intervening NAT assigned a mapped
 transport address that was used by another client that recently
 crashed. The client considers the current transaction as having
 failed. The client SHOULD pick another client transport address
 and retry the Allocate request (using a different transaction id).
 The client SHOULD try three different client transport addresses
 before giving up on this server. Once the client gives up on the
 server, it SHOULD NOT try to create another allocation on the
 server for 2 minutes.

 o 438 (Stale Nonce): See the procedures for the long-term credential
 mechanism [RFC5389].

 o 441 (Wrong Credentials): The client should not receive this error
 in response to a Allocate request. The client MAY notify the user
 or operator and SHOULD NOT retry the same request with this server
 until it believes the problem has been fixed.

 o 442 (Unsupported Transport Address): The client should not receive
 this error in response to a request for a UDP allocation. The
 client MAY notify the user or operator and SHOULD NOT reattempt
 the request with this server until it believes the problem has
 been fixed.

 o 486 (Allocation Quota Reached): The server is currently unable to
 create any more allocations with this username. The client
 considers the current transaction as having failed. The client
 SHOULD wait at least 1 minute before trying to create any more
 allocations on the server.

Mahy, et al. Standards Track [Page 30]

RFC 5766 TURN April 2010

 o 508 (Insufficient Capacity): The server has no more relayed
 transport addresses available, or has none with the requested
 properties, or the one that was reserved is no longer available.
 The client considers the current operation as having failed. If
 the client is using either the EVEN-PORT or the RESERVATION-TOKEN
 attribute, then the client MAY choose to remove or modify this
 attribute and try again immediately. Otherwise, the client SHOULD
 wait at least 1 minute before trying to create any more
 allocations on this server.

 An unknown error response MUST be handled as described in [RFC5389].

7. Refreshing an Allocation

 A Refresh transaction can be used to either (a) refresh an existing
 allocation and update its time-to-expiry or (b) delete an existing
 allocation.

 If a client wishes to continue using an allocation, then the client
 MUST refresh it before it expires. It is suggested that the client
 refresh the allocation roughly 1 minute before it expires. If a
 client no longer wishes to use an allocation, then it SHOULD
 explicitly delete the allocation. A client MAY refresh an allocation
 at any time for other reasons.

7.1. Sending a Refresh Request

 If the client wishes to immediately delete an existing allocation, it
 includes a LIFETIME attribute with a value of 0. All other forms of
 the request refresh the allocation.

 The Refresh transaction updates the time-to-expiry timer of an
 allocation. If the client wishes the server to set the time-to-
 expiry timer to something other than the default lifetime, it
 includes a LIFETIME attribute with the requested value. The server
 then computes a new time-to-expiry value in the same way as it does
 for an Allocate transaction, with the exception that a requested
 lifetime of 0 causes the server to immediately delete the allocation.

7.2. Receiving a Refresh Request

 When the server receives a Refresh request, it processes as per
 Section 4 plus the specific rules mentioned here.

 The server computes a value called the "desired lifetime" as follows:
 if the request contains a LIFETIME attribute and the attribute value
 is 0, then the "desired lifetime" is 0. Otherwise, if the request
 contains a LIFETIME attribute, then the server computes the minimum

Mahy, et al. Standards Track [Page 31]

RFC 5766 TURN April 2010

 of the client’s requested lifetime and the server’s maximum allowed
 lifetime. If this computed value is greater than the default
 lifetime, then the "desired lifetime" is the computed value.
 Otherwise, the "desired lifetime" is the default lifetime.

 Subsequent processing depends on the "desired lifetime" value:

 o If the "desired lifetime" is 0, then the request succeeds and the
 allocation is deleted.

 o If the "desired lifetime" is non-zero, then the request succeeds
 and the allocation’s time-to-expiry is set to the "desired
 lifetime".

 If the request succeeds, then the server sends a success response
 containing:

 o A LIFETIME attribute containing the current value of the time-to-
 expiry timer.

 NOTE: A server need not do anything special to implement
 idempotency of Refresh requests over UDP using the "stateless
 stack approach". Retransmitted Refresh requests with a non-zero
 "desired lifetime" will simply refresh the allocation. A
 retransmitted Refresh request with a zero "desired lifetime" will
 cause a 437 (Allocation Mismatch) response if the allocation has
 already been deleted, but the client will treat this as equivalent
 to a success response (see below).

7.3. Receiving a Refresh Response

 If the client receives a success response to its Refresh request with
 a non-zero lifetime, it updates its copy of the allocation data
 structure with the time-to-expiry value contained in the response.

 If the client receives a 437 (Allocation Mismatch) error response to
 a request to delete the allocation, then the allocation no longer
 exists and it should consider its request as having effectively
 succeeded.

8. Permissions

 For each allocation, the server keeps a list of zero or more
 permissions. Each permission consists of an IP address and an
 associated time-to-expiry. While a permission exists, all peers
 using the IP address in the permission are allowed to send data to

Mahy, et al. Standards Track [Page 32]

RFC 5766 TURN April 2010

 the client. The time-to-expiry is the number of seconds until the
 permission expires. Within the context of an allocation, a
 permission is uniquely identified by its associated IP address.

 By sending either CreatePermission requests or ChannelBind requests,
 the client can cause the server to install or refresh a permission
 for a given IP address. This causes one of two things to happen:

 o If no permission for that IP address exists, then a permission is
 created with the given IP address and a time-to-expiry equal to
 Permission Lifetime.

 o If a permission for that IP address already exists, then the time-
 to-expiry for that permission is reset to Permission Lifetime.

 The Permission Lifetime MUST be 300 seconds (= 5 minutes).

 Each permission’s time-to-expiry decreases down once per second until
 it reaches 0; at which point, the permission expires and is deleted.

 CreatePermission and ChannelBind requests may be freely intermixed on
 a permission. A given permission may be initially installed and/or
 refreshed with a CreatePermission request, and then later refreshed
 with a ChannelBind request, or vice versa.

 When a UDP datagram arrives at the relayed transport address for the
 allocation, the server extracts the source IP address from the IP
 header. The server then compares this address with the IP address
 associated with each permission in the list of permissions for the
 allocation. If no match is found, relaying is not permitted, and the
 server silently discards the UDP datagram. If an exact match is
 found, then the permission check is considered to have succeeded and
 the server continues to process the UDP datagram as specified
 elsewhere (Section 10.3). Note that only addresses are compared and
 port numbers are not considered.

 The permissions for one allocation are totally unrelated to the
 permissions for a different allocation. If an allocation expires,
 all its permissions expire with it.

 NOTE: Though TURN permissions expire after 5 minutes, many NATs
 deployed at the time of publication expire their UDP bindings
 considerably faster. Thus, an application using TURN will
 probably wish to send some sort of keep-alive traffic at a much
 faster rate. Applications using ICE should follow the keep-alive
 guidelines of ICE [RFC5245], and applications not using ICE are
 advised to do something similar.

Mahy, et al. Standards Track [Page 33]

RFC 5766 TURN April 2010

9. CreatePermission

 TURN supports two ways for the client to install or refresh
 permissions on the server. This section describes one way: the
 CreatePermission request.

 A CreatePermission request may be used in conjunction with either the
 Send mechanism in Section 10 or the Channel mechanism in Section 11.

9.1. Forming a CreatePermission Request

 The client who wishes to install or refresh one or more permissions
 can send a CreatePermission request to the server.

 When forming a CreatePermission request, the client MUST include at
 least one XOR-PEER-ADDRESS attribute, and MAY include more than one
 such attribute. The IP address portion of each XOR-PEER-ADDRESS
 attribute contains the IP address for which a permission should be
 installed or refreshed. The port portion of each XOR-PEER-ADDRESS
 attribute will be ignored and can be any arbitrary value. The
 various XOR-PEER-ADDRESS attributes can appear in any order.

9.2. Receiving a CreatePermission Request

 When the server receives the CreatePermission request, it processes
 as per Section 4 plus the specific rules mentioned here.

 The message is checked for validity. The CreatePermission request
 MUST contain at least one XOR-PEER-ADDRESS attribute and MAY contain
 multiple such attributes. If no such attribute exists, or if any of
 these attributes are invalid, then a 400 (Bad Request) error is
 returned. If the request is valid, but the server is unable to
 satisfy the request due to some capacity limit or similar, then a 508
 (Insufficient Capacity) error is returned.

 The server MAY impose restrictions on the IP address allowed in the
 XOR-PEER-ADDRESS attribute -- if a value is not allowed, the server
 rejects the request with a 403 (Forbidden) error.

 If the message is valid and the server is capable of carrying out the
 request, then the server installs or refreshes a permission for the
 IP address contained in each XOR-PEER-ADDRESS attribute as described
 in Section 8. The port portion of each attribute is ignored and may
 be any arbitrary value.

 The server then responds with a CreatePermission success response.
 There are no mandatory attributes in the success response.

Mahy, et al. Standards Track [Page 34]

RFC 5766 TURN April 2010

 NOTE: A server need not do anything special to implement
 idempotency of CreatePermission requests over UDP using the
 "stateless stack approach". Retransmitted CreatePermission
 requests will simply refresh the permissions.

9.3. Receiving a CreatePermission Response

 If the client receives a valid CreatePermission success response,
 then the client updates its data structures to indicate that the
 permissions have been installed or refreshed.

10. Send and Data Methods

 TURN supports two mechanisms for sending and receiving data from
 peers. This section describes the use of the Send and Data
 mechanisms, while Section 11 describes the use of the Channel
 mechanism.

10.1. Forming a Send Indication

 The client can use a Send indication to pass data to the server for
 relaying to a peer. A client may use a Send indication even if a
 channel is bound to that peer. However, the client MUST ensure that
 there is a permission installed for the IP address of the peer to
 which the Send indication is being sent; this prevents a third party
 from using a TURN server to send data to arbitrary destinations.

 When forming a Send indication, the client MUST include an XOR-PEER-
 ADDRESS attribute and a DATA attribute. The XOR-PEER-ADDRESS
 attribute contains the transport address of the peer to which the
 data is to be sent, and the DATA attribute contains the actual
 application data to be sent to the peer.

 The client MAY include a DONT-FRAGMENT attribute in the Send
 indication if it wishes the server to set the DF bit on the UDP
 datagram sent to the peer.

10.2. Receiving a Send Indication

 When the server receives a Send indication, it processes as per
 Section 4 plus the specific rules mentioned here.

 The message is first checked for validity. The Send indication MUST
 contain both an XOR-PEER-ADDRESS attribute and a DATA attribute. If
 one of these attributes is missing or invalid, then the message is
 discarded. Note that the DATA attribute is allowed to contain zero
 bytes of data.

Mahy, et al. Standards Track [Page 35]

RFC 5766 TURN April 2010

 The Send indication may also contain the DONT-FRAGMENT attribute. If
 the server is unable to set the DF bit on outgoing UDP datagrams when
 this attribute is present, then the server acts as if the DONT-
 FRAGMENT attribute is an unknown comprehension-required attribute
 (and thus the Send indication is discarded).

 The server also checks that there is a permission installed for the
 IP address contained in the XOR-PEER-ADDRESS attribute. If no such
 permission exists, the message is discarded. Note that a Send
 indication never causes the server to refresh the permission.

 The server MAY impose restrictions on the IP address and port values
 allowed in the XOR-PEER-ADDRESS attribute -- if a value is not
 allowed, the server silently discards the Send indication.

 If everything is OK, then the server forms a UDP datagram as follows:

 o the source transport address is the relayed transport address of
 the allocation, where the allocation is determined by the 5-tuple
 on which the Send indication arrived;

 o the destination transport address is taken from the XOR-PEER-
 ADDRESS attribute;

 o the data following the UDP header is the contents of the value
 field of the DATA attribute.

 The handling of the DONT-FRAGMENT attribute (if present), is
 described in Section 12.

 The resulting UDP datagram is then sent to the peer.

10.3. Receiving a UDP Datagram

 When the server receives a UDP datagram at a currently allocated
 relayed transport address, the server looks up the allocation
 associated with the relayed transport address. The server then
 checks to see whether the set of permissions for the allocation allow
 the relaying of the UDP datagram as described in Section 8.

 If relaying is permitted, then the server checks if there is a
 channel bound to the peer that sent the UDP datagram (see
 Section 11). If a channel is bound, then processing proceeds as
 described in Section 11.7.

 If relaying is permitted but no channel is bound to the peer, then
 the server forms and sends a Data indication. The Data indication
 MUST contain both an XOR-PEER-ADDRESS and a DATA attribute. The DATA

Mahy, et al. Standards Track [Page 36]

RFC 5766 TURN April 2010

 attribute is set to the value of the ’data octets’ field from the
 datagram, and the XOR-PEER-ADDRESS attribute is set to the source
 transport address of the received UDP datagram. The Data indication
 is then sent on the 5-tuple associated with the allocation.

10.4. Receiving a Data Indication

 When the client receives a Data indication, it checks that the Data
 indication contains both an XOR-PEER-ADDRESS and a DATA attribute,
 and discards the indication if it does not. The client SHOULD also
 check that the XOR-PEER-ADDRESS attribute value contains an IP
 address with which the client believes there is an active permission,
 and discard the Data indication otherwise. Note that the DATA
 attribute is allowed to contain zero bytes of data.

 NOTE: The latter check protects the client against an attacker who
 somehow manages to trick the server into installing permissions
 not desired by the client.

 If the Data indication passes the above checks, the client delivers
 the data octets inside the DATA attribute to the application, along
 with an indication that they were received from the peer whose
 transport address is given by the XOR-PEER-ADDRESS attribute.

11. Channels

 Channels provide a way for the client and server to send application
 data using ChannelData messages, which have less overhead than Send
 and Data indications.

 The ChannelData message (see Section 11.4) starts with a two-byte
 field that carries the channel number. The values of this field are
 allocated as follows:

 0x0000 through 0x3FFF: These values can never be used for channel
 numbers.

 0x4000 through 0x7FFF: These values are the allowed channel
 numbers (16,383 possible values).

 0x8000 through 0xFFFF: These values are reserved for future use.

 Because of this division, ChannelData messages can be distinguished
 from STUN-formatted messages (e.g., Allocate request, Send
 indication, etc.) by examining the first two bits of the message:

 0b00: STUN-formatted message (since the first two bits of a STUN-
 formatted message are always zero).

Mahy, et al. Standards Track [Page 37]

RFC 5766 TURN April 2010

 0b01: ChannelData message (since the channel number is the first
 field in the ChannelData message and channel numbers fall in the
 range 0x4000 - 0x7FFF).

 0b10: Reserved

 0b11: Reserved

 The reserved values may be used in the future to extend the range of
 channel numbers. Thus, an implementation MUST NOT assume that a TURN
 message always starts with a 0 bit.

 Channel bindings are always initiated by the client. The client can
 bind a channel to a peer at any time during the lifetime of the
 allocation. The client may bind a channel to a peer before
 exchanging data with it, or after exchanging data with it (using Send
 and Data indications) for some time, or may choose never to bind a
 channel to it. The client can also bind channels to some peers while
 not binding channels to other peers.

 Channel bindings are specific to an allocation, so that the use of a
 channel number or peer transport address in a channel binding in one
 allocation has no impact on their use in a different allocation. If
 an allocation expires, all its channel bindings expire with it.

 A channel binding consists of:

 o a channel number;

 o a transport address (of the peer); and

 o A time-to-expiry timer.

 Within the context of an allocation, a channel binding is uniquely
 identified either by the channel number or by the peer’s transport
 address. Thus, the same channel cannot be bound to two different
 transport addresses, nor can the same transport address be bound to
 two different channels.

 A channel binding lasts for 10 minutes unless refreshed. Refreshing
 the binding (by the server receiving a ChannelBind request rebinding
 the channel to the same peer) resets the time-to-expiry timer back to
 10 minutes.

 When the channel binding expires, the channel becomes unbound. Once
 unbound, the channel number can be bound to a different transport
 address, and the transport address can be bound to a different
 channel number. To prevent race conditions, the client MUST wait 5

Mahy, et al. Standards Track [Page 38]

RFC 5766 TURN April 2010

 minutes after the channel binding expires before attempting to bind
 the channel number to a different transport address or the transport
 address to a different channel number.

 When binding a channel to a peer, the client SHOULD be prepared to
 receive ChannelData messages on the channel from the server as soon
 as it has sent the ChannelBind request. Over UDP, it is possible for
 the client to receive ChannelData messages from the server before it
 receives a ChannelBind success response.

 In the other direction, the client MAY elect to send ChannelData
 messages before receiving the ChannelBind success response. Doing
 so, however, runs the risk of having the ChannelData messages dropped
 by the server if the ChannelBind request does not succeed for some
 reason (e.g., packet lost if the request is sent over UDP, or the
 server being unable to fulfill the request). A client that wishes to
 be safe should either queue the data or use Send indications until
 the channel binding is confirmed.

11.1. Sending a ChannelBind Request

 A channel binding is created or refreshed using a ChannelBind
 transaction. A ChannelBind transaction also creates or refreshes a
 permission towards the peer (see Section 8).

 To initiate the ChannelBind transaction, the client forms a
 ChannelBind request. The channel to be bound is specified in a
 CHANNEL-NUMBER attribute, and the peer’s transport address is
 specified in an XOR-PEER-ADDRESS attribute. Section 11.2 describes
 the restrictions on these attributes.

 Rebinding a channel to the same transport address that it is already
 bound to provides a way to refresh a channel binding and the
 corresponding permission without sending data to the peer. Note
 however, that permissions need to be refreshed more frequently than
 channels.

11.2. Receiving a ChannelBind Request

 When the server receives a ChannelBind request, it processes as per
 Section 4 plus the specific rules mentioned here.

 The server checks the following:

 o The request contains both a CHANNEL-NUMBER and an XOR-PEER-ADDRESS
 attribute;

Mahy, et al. Standards Track [Page 39]

RFC 5766 TURN April 2010

 o The channel number is in the range 0x4000 through 0x7FFE
 (inclusive);

 o The channel number is not currently bound to a different transport
 address (same transport address is OK);

 o The transport address is not currently bound to a different
 channel number.

 If any of these tests fail, the server replies with a 400 (Bad
 Request) error.

 The server MAY impose restrictions on the IP address and port values
 allowed in the XOR-PEER-ADDRESS attribute -- if a value is not
 allowed, the server rejects the request with a 403 (Forbidden) error.

 If the request is valid, but the server is unable to fulfill the
 request due to some capacity limit or similar, the server replies
 with a 508 (Insufficient Capacity) error.

 Otherwise, the server replies with a ChannelBind success response.
 There are no required attributes in a successful ChannelBind
 response.

 If the server can satisfy the request, then the server creates or
 refreshes the channel binding using the channel number in the
 CHANNEL-NUMBER attribute and the transport address in the XOR-PEER-
 ADDRESS attribute. The server also installs or refreshes a
 permission for the IP address in the XOR-PEER-ADDRESS attribute as
 described in Section 8.

 NOTE: A server need not do anything special to implement
 idempotency of ChannelBind requests over UDP using the "stateless
 stack approach". Retransmitted ChannelBind requests will simply
 refresh the channel binding and the corresponding permission.
 Furthermore, the client must wait 5 minutes before binding a
 previously bound channel number or peer address to a different
 channel, eliminating the possibility that the transaction would
 initially fail but succeed on a retransmission.

11.3. Receiving a ChannelBind Response

 When the client receives a ChannelBind success response, it updates
 its data structures to record that the channel binding is now active.
 It also updates its data structures to record that the corresponding
 permission has been installed or refreshed.

Mahy, et al. Standards Track [Page 40]

RFC 5766 TURN April 2010

 If the client receives a ChannelBind failure response that indicates
 that the channel information is out-of-sync between the client and
 the server (e.g., an unexpected 400 "Bad Request" response), then it
 is RECOMMENDED that the client immediately delete the allocation and
 start afresh with a new allocation.

11.4. The ChannelData Message

 The ChannelData message is used to carry application data between the
 client and the server. It has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Channel Number | Length |
 +-+
 | |
 / Application Data /
 / /
 | |
 | +-------------------------------+
 | |
 +-------------------------------+

 The Channel Number field specifies the number of the channel on which
 the data is traveling, and thus the address of the peer that is
 sending or is to receive the data.

 The Length field specifies the length in bytes of the application
 data field (i.e., it does not include the size of the ChannelData
 header). Note that 0 is a valid length.

 The Application Data field carries the data the client is trying to
 send to the peer, or that the peer is sending to the client.

11.5. Sending a ChannelData Message

 Once a client has bound a channel to a peer, then when the client has
 data to send to that peer it may use either a ChannelData message or
 a Send indication; that is, the client is not obligated to use the
 channel when it exists and may freely intermix the two message types
 when sending data to the peer. The server, on the other hand, MUST
 use the ChannelData message if a channel has been bound to the peer.

 The fields of the ChannelData message are filled in as described in
 Section 11.4.

Mahy, et al. Standards Track [Page 41]

RFC 5766 TURN April 2010

 Over TCP and TLS-over-TCP, the ChannelData message MUST be padded to
 a multiple of four bytes in order to ensure the alignment of
 subsequent messages. The padding is not reflected in the length
 field of the ChannelData message, so the actual size of a ChannelData
 message (including padding) is (4 + Length) rounded up to the nearest
 multiple of 4. Over UDP, the padding is not required but MAY be
 included.

 The ChannelData message is then sent on the 5-tuple associated with
 the allocation.

11.6. Receiving a ChannelData Message

 The receiver of the ChannelData message uses the first two bits to
 distinguish it from STUN-formatted messages, as described above. If
 the message uses a value in the reserved range (0x8000 through
 0xFFFF), then the message is silently discarded.

 If the ChannelData message is received in a UDP datagram, and if the
 UDP datagram is too short to contain the claimed length of the
 ChannelData message (i.e., the UDP header length field value is less
 than the ChannelData header length field value + 4 + 8), then the
 message is silently discarded.

 If the ChannelData message is received over TCP or over TLS-over-TCP,
 then the actual length of the ChannelData message is as described in
 Section 11.5.

 If the ChannelData message is received on a channel that is not bound
 to any peer, then the message is silently discarded.

 On the client, it is RECOMMENDED that the client discard the
 ChannelData message if the client believes there is no active
 permission towards the peer. On the server, the receipt of a
 ChannelData message MUST NOT refresh either the channel binding or
 the permission towards the peer.

 On the server, if no errors are detected, the server relays the
 application data to the peer by forming a UDP datagram as follows:

 o the source transport address is the relayed transport address of
 the allocation, where the allocation is determined by the 5-tuple
 on which the ChannelData message arrived;

 o the destination transport address is the transport address to
 which the channel is bound;

Mahy, et al. Standards Track [Page 42]

RFC 5766 TURN April 2010

 o the data following the UDP header is the contents of the data
 field of the ChannelData message.

 The resulting UDP datagram is then sent to the peer. Note that if
 the Length field in the ChannelData message is 0, then there will be
 no data in the UDP datagram, but the UDP datagram is still formed and
 sent.

11.7. Relaying Data from the Peer

 When the server receives a UDP datagram on the relayed transport
 address associated with an allocation, the server processes it as
 described in Section 10.3. If that section indicates that a
 ChannelData message should be sent (because there is a channel bound
 to the peer that sent to the UDP datagram), then the server forms and
 sends a ChannelData message as described in Section 11.5.

12. IP Header Fields

 This section describes how the server sets various fields in the IP
 header when relaying between the client and the peer or vice versa.
 The descriptions in this section apply: (a) when the server sends a
 UDP datagram to the peer, or (b) when the server sends a Data
 indication or ChannelData message to the client over UDP transport.
 The descriptions in this section do not apply to TURN messages sent
 over TCP or TLS transport from the server to the client.

 The descriptions below have two parts: a preferred behavior and an
 alternate behavior. The server SHOULD implement the preferred
 behavior, but if that is not possible for a particular field, then it
 SHOULD implement the alternative behavior.

 Time to Live (TTL) field

 Preferred Behavior: If the incoming value is 0, then the drop the
 incoming packet. Otherwise, set the outgoing Time to Live/Hop
 Count to one less than the incoming value.

 Alternate Behavior: Set the outgoing value to the default for
 outgoing packets.

 Differentiated Services Code Point (DSCP) field [RFC2474]

 Preferred Behavior: Set the outgoing value to the incoming value,
 unless the server includes a differentiated services classifier
 and marker [RFC2474].

Mahy, et al. Standards Track [Page 43]

RFC 5766 TURN April 2010

 Alternate Behavior: Set the outgoing value to a fixed value, which
 by default is Best Effort unless configured otherwise.

 In both cases, if the server is immediately adjacent to a
 differentiated services classifier and marker, then DSCP MAY be
 set to any arbitrary value in the direction towards the
 classifier.

 Explicit Congestion Notification (ECN) field [RFC3168]

 Preferred Behavior: Set the outgoing value to the incoming value,
 UNLESS the server is doing Active Queue Management, the incoming
 ECN field is ECT(1) (=0b01) or ECT(0) (=0b10), and the server
 wishes to indicate that congestion has been experienced, in which
 case set the outgoing value to CE (=0b11).

 Alternate Behavior: Set the outgoing value to Not-ECT (=0b00).

 IPv4 Fragmentation fields

 Preferred Behavior: When the server sends a packet to a peer in
 response to a Send indication containing the DONT-FRAGMENT
 attribute, then set the DF bit in the outgoing IP header to 1. In
 all other cases when sending an outgoing packet containing
 application data (e.g., Data indication, ChannelData message, or
 DONT-FRAGMENT attribute not included in the Send indication), copy
 the DF bit from the DF bit of the incoming packet that contained
 the application data.

 Set the other fragmentation fields (Identification, More
 Fragments, Fragment Offset) as appropriate for a packet
 originating from the server.

 Alternate Behavior: As described in the Preferred Behavior, except
 always assume the incoming DF bit is 0.

 In both the Preferred and Alternate Behaviors, the resulting
 packet may be too large for the outgoing link. If this is the
 case, then the normal fragmentation rules apply [RFC1122].

 IPv4 Options

 Preferred Behavior: The outgoing packet is sent without any IPv4
 options.

 Alternate Behavior: Same as preferred.

Mahy, et al. Standards Track [Page 44]

RFC 5766 TURN April 2010

13. New STUN Methods

 This section lists the codepoints for the new STUN methods defined in
 this specification. See elsewhere in this document for the semantics
 of these new methods.

 0x003 : Allocate (only request/response semantics defined)
 0x004 : Refresh (only request/response semantics defined)
 0x006 : Send (only indication semantics defined)
 0x007 : Data (only indication semantics defined)
 0x008 : CreatePermission (only request/response semantics defined
 0x009 : ChannelBind (only request/response semantics defined)

14. New STUN Attributes

 This STUN extension defines the following new attributes:

 0x000C: CHANNEL-NUMBER
 0x000D: LIFETIME
 0x0010: Reserved (was BANDWIDTH)
 0x0012: XOR-PEER-ADDRESS
 0x0013: DATA
 0x0016: XOR-RELAYED-ADDRESS
 0x0018: EVEN-PORT
 0x0019: REQUESTED-TRANSPORT
 0x001A: DONT-FRAGMENT
 0x0021: Reserved (was TIMER-VAL)
 0x0022: RESERVATION-TOKEN

 Some of these attributes have lengths that are not multiples of 4.
 By the rules of STUN, any attribute whose length is not a multiple of
 4 bytes MUST be immediately followed by 1 to 3 padding bytes to
 ensure the next attribute (if any) would start on a 4-byte boundary
 (see [RFC5389]).

14.1. CHANNEL-NUMBER

 The CHANNEL-NUMBER attribute contains the number of the channel. The
 value portion of this attribute is 4 bytes long and consists of a 16-
 bit unsigned integer, followed by a two-octet RFFU (Reserved For
 Future Use) field, which MUST be set to 0 on transmission and MUST be
 ignored on reception.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Channel Number | RFFU = 0 |
 +-+

Mahy, et al. Standards Track [Page 45]

RFC 5766 TURN April 2010

14.2. LIFETIME

 The LIFETIME attribute represents the duration for which the server
 will maintain an allocation in the absence of a refresh. The value
 portion of this attribute is 4-bytes long and consists of a 32-bit
 unsigned integral value representing the number of seconds remaining
 until expiration.

14.3. XOR-PEER-ADDRESS

 The XOR-PEER-ADDRESS specifies the address and port of the peer as
 seen from the TURN server. (For example, the peer’s server-reflexive
 transport address if the peer is behind a NAT.) It is encoded in the
 same way as XOR-MAPPED-ADDRESS [RFC5389].

14.4. DATA

 The DATA attribute is present in all Send and Data indications. The
 value portion of this attribute is variable length and consists of
 the application data (that is, the data that would immediately follow
 the UDP header if the data was been sent directly between the client
 and the peer). If the length of this attribute is not a multiple of
 4, then padding must be added after this attribute.

14.5. XOR-RELAYED-ADDRESS

 The XOR-RELAYED-ADDRESS is present in Allocate responses. It
 specifies the address and port that the server allocated to the
 client. It is encoded in the same way as XOR-MAPPED-ADDRESS
 [RFC5389].

14.6. EVEN-PORT

 This attribute allows the client to request that the port in the
 relayed transport address be even, and (optionally) that the server
 reserve the next-higher port number. The value portion of this
 attribute is 1 byte long. Its format is:

Mahy, et al. Standards Track [Page 46]

RFC 5766 TURN April 2010

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |R| RFFU |
 +-+-+-+-+-+-+-+-+

 The value contains a single 1-bit flag:

 R: If 1, the server is requested to reserve the next-higher port
 number (on the same IP address) for a subsequent allocation. If
 0, no such reservation is requested.

 The other 7 bits of the attribute’s value must be set to zero on
 transmission and ignored on reception.

 Since the length of this attribute is not a multiple of 4, padding
 must immediately follow this attribute.

14.7. REQUESTED-TRANSPORT

 This attribute is used by the client to request a specific transport
 protocol for the allocated transport address. The value of this
 attribute is 4 bytes with the following format:
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Protocol | RFFU |
 +-+

 The Protocol field specifies the desired protocol. The codepoints
 used in this field are taken from those allowed in the Protocol field
 in the IPv4 header and the NextHeader field in the IPv6 header
 [Protocol-Numbers]. This specification only allows the use of
 codepoint 17 (User Datagram Protocol).

 The RFFU field MUST be set to zero on transmission and MUST be
 ignored on reception. It is reserved for future uses.

14.8. DONT-FRAGMENT

 This attribute is used by the client to request that the server set
 the DF (Don’t Fragment) bit in the IP header when relaying the
 application data onward to the peer. This attribute has no value
 part and thus the attribute length field is 0.

Mahy, et al. Standards Track [Page 47]

RFC 5766 TURN April 2010

14.9. RESERVATION-TOKEN

 The RESERVATION-TOKEN attribute contains a token that uniquely
 identifies a relayed transport address being held in reserve by the
 server. The server includes this attribute in a success response to
 tell the client about the token, and the client includes this
 attribute in a subsequent Allocate request to request the server use
 that relayed transport address for the allocation.

 The attribute value is 8 bytes and contains the token value.

15. New STUN Error Response Codes

 This document defines the following new error response codes:

 403 (Forbidden): The request was valid but cannot be performed due
 to administrative or similar restrictions.

 437 (Allocation Mismatch): A request was received by the server that
 requires an allocation to be in place, but no allocation exists,
 or a request was received that requires no allocation, but an
 allocation exists.

 441 (Wrong Credentials): The credentials in the (non-Allocate)
 request do not match those used to create the allocation.

 442 (Unsupported Transport Protocol): The Allocate request asked the
 server to use a transport protocol between the server and the peer
 that the server does not support. NOTE: This does NOT refer to
 the transport protocol used in the 5-tuple.

 486 (Allocation Quota Reached): No more allocations using this
 username can be created at the present time.

 508 (Insufficient Capacity): The server is unable to carry out the
 request due to some capacity limit being reached. In an Allocate
 response, this could be due to the server having no more relayed
 transport addresses available at that time, having none with the
 requested properties, or the one that corresponds to the specified
 reservation token is not available.

16. Detailed Example

 This section gives an example of the use of TURN, showing in detail
 the contents of the messages exchanged. The example uses the network
 diagram shown in the Overview (Figure 1).

Mahy, et al. Standards Track [Page 48]

RFC 5766 TURN April 2010

 For each message, the attributes included in the message and their
 values are shown. For convenience, values are shown in a human-
 readable format rather than showing the actual octets; for example,
 "XOR-RELAYED-ADDRESS=192.0.2.15:9000" shows that the XOR-RELAYED-
 ADDRESS attribute is included with an address of 192.0.2.15 and a
 port of 9000, here the address and port are shown before the xor-ing
 is done. For attributes with string-like values (e.g.,
 SOFTWARE="Example client, version 1.03" and
 NONCE="adl7W7PeDU4hKE72jdaQvbAMcr6h39sm"), the value of the attribute
 is shown in quotes for readability, but these quotes do not appear in
 the actual value.

 TURN TURN Peer Peer
 client server A B
 | | | |
 |--- Allocate request -------------->| | |
 | Transaction-Id=0xA56250D3F17ABE679422DE85 | |
 | SOFTWARE="Example client, version 1.03" | |
 | LIFETIME=3600 (1 hour) | | |
 | REQUESTED-TRANSPORT=17 (UDP) | | |
 | DONT-FRAGMENT | | |
 | | | |
 |<-- Allocate error response --------| | |
 | Transaction-Id=0xA56250D3F17ABE679422DE85 | |
 | SOFTWARE="Example server, version 1.17" | |
 | ERROR-CODE=401 (Unauthorized) | | |
 | REALM="example.com" | | |
 | NONCE="adl7W7PeDU4hKE72jdaQvbAMcr6h39sm" | |
 | | | |
 |--- Allocate request -------------->| | |
 | Transaction-Id=0xC271E932AD7446A32C234492 | |
 | SOFTWARE="Example client 1.03" | | |
 | LIFETIME=3600 (1 hour) | | |
 | REQUESTED-TRANSPORT=17 (UDP) | | |
 | DONT-FRAGMENT | | |
 | USERNAME="George" | | |
 | REALM="example.com" | | |
 | NONCE="adl7W7PeDU4hKE72jdaQvbAMcr6h39sm" | |
 | MESSAGE-INTEGRITY=... | | |
 | | | |
 |<-- Allocate success response ------| | |
 | Transaction-Id=0xC271E932AD7446A32C234492 | |
 | SOFTWARE="Example server, version 1.17" | |
 | LIFETIME=1200 (20 minutes) | | |
 | XOR-RELAYED-ADDRESS=192.0.2.15:50000 | |
 | XOR-MAPPED-ADDRESS=192.0.2.1:7000 | |
 | MESSAGE-INTEGRITY=... | | |

Mahy, et al. Standards Track [Page 49]

RFC 5766 TURN April 2010

 The client begins by selecting a host transport address to use for
 the TURN session; in this example, the client has selected 10.1.1.2:
 49721 as shown in Figure 1. The client then sends an Allocate
 request to the server at the server transport address. The client
 randomly selects a 96-bit transaction id of
 0xA56250D3F17ABE679422DE85 for this transaction; this is encoded in
 the transaction id field in the fixed header. The client includes a
 SOFTWARE attribute that gives information about the client’s
 software; here the value is "Example client, version 1.03" to
 indicate that this is version 1.03 of something called the Example
 client. The client includes the LIFETIME attribute because it wishes
 the allocation to have a longer lifetime than the default of 10
 minutes; the value of this attribute is 3600 seconds, which
 corresponds to 1 hour. The client must always include a REQUESTED-
 TRANSPORT attribute in an Allocate request and the only value allowed
 by this specification is 17, which indicates UDP transport between
 the server and the peers. The client also includes the DONT-FRAGMENT
 attribute because it wishes to use the DONT-FRAGMENT attribute later
 in Send indications; this attribute consists of only an attribute
 header, there is no value part. We assume the client has not
 recently interacted with the server, thus the client does not include
 USERNAME, REALM, NONCE, or MESSAGE-INTEGRITY attribute. Finally,
 note that the order of attributes in a message is arbitrary (except
 for the MESSAGE-INTEGRITY and FINGERPRINT attributes) and the client
 could have used a different order.

 Servers require any request to be authenticated. Thus, when the
 server receives the initial Allocate request, it rejects the request
 because the request does not contain the authentication attributes.
 Following the procedures of the long-term credential mechanism of
 STUN [RFC5389], the server includes an ERROR-CODE attribute with a
 value of 401 (Unauthorized), a REALM attribute that specifies the
 authentication realm used by the server (in this case, the server’s
 domain "example.com"), and a nonce value in a NONCE attribute. The
 server also includes a SOFTWARE attribute that gives information
 about the server’s software.

 The client, upon receipt of the 401 error, re-attempts the Allocate
 request, this time including the authentication attributes. The
 client selects a new transaction id, and then populates the new
 Allocate request with the same attributes as before. The client
 includes a USERNAME attribute and uses the realm value received from
 the server to help it determine which value to use; here the client
 is configured to use the username "George" for the realm
 "example.com". The client also includes the REALM and NONCE
 attributes, which are just copied from the 401 error response.
 Finally, the client includes a MESSAGE-INTEGRITY attribute as the
 last attribute in the message, whose value is a Hashed Message

Mahy, et al. Standards Track [Page 50]

RFC 5766 TURN April 2010

 Authentication Code - Secure Hash Algorithm 1 (HMAC-SHA1) hash over
 the contents of the message (shown as just "..." above); this HMAC-
 SHA1 computation includes a password value. Thus, an attacker cannot
 compute the message integrity value without somehow knowing the
 secret password.

 The server, upon receipt of the authenticated Allocate request,
 checks that everything is OK, then creates an allocation. The server
 replies with an Allocate success response. The server includes a
 LIFETIME attribute giving the lifetime of the allocation; here, the
 server has reduced the client’s requested 1-hour lifetime to just 20
 minutes, because this particular server doesn’t allow lifetimes
 longer than 20 minutes. The server includes an XOR-RELAYED-ADDRESS
 attribute whose value is the relayed transport address of the
 allocation. The server includes an XOR-MAPPED-ADDRESS attribute
 whose value is the server-reflexive address of the client; this value
 is not used otherwise in TURN but is returned as a convenience to the
 client. The server includes a MESSAGE-INTEGRITY attribute to
 authenticate the response and to ensure its integrity; note that the
 response does not contain the USERNAME, REALM, and NONCE attributes.
 The server also includes a SOFTWARE attribute.

 TURN TURN Peer Peer
 client server A B
 |--- CreatePermission request ------>| | |
 | Transaction-Id=0xE5913A8F460956CA277D3319 | |
 | XOR-PEER-ADDRESS=192.0.2.150:0 | | |
 | USERNAME="George" | | |
 | REALM="example.com" | | |
 | NONCE="adl7W7PeDU4hKE72jdaQvbAMcr6h39sm" | |
 | MESSAGE-INTEGRITY=... | | |
 | | | |
 |<-- CreatePermission success resp.--| | |
 | Transaction-Id=0xE5913A8F460956CA277D3319 | |
 | MESSAGE-INTEGRITY=... | | |

 The client then creates a permission towards Peer A in preparation
 for sending it some application data. This is done through a
 CreatePermission request. The XOR-PEER-ADDRESS attribute contains
 the IP address for which a permission is established (the IP address
 of peer A); note that the port number in the attribute is ignored
 when used in a CreatePermission request, and here it has been set to
 0; also, note how the client uses Peer A’s server-reflexive IP
 address and not its (private) host address. The client uses the same
 username, realm, and nonce values as in the previous request on the
 allocation. Though it is allowed to do so, the client has chosen not
 to include a SOFTWARE attribute in this request.

Mahy, et al. Standards Track [Page 51]

RFC 5766 TURN April 2010

 The server receives the CreatePermission request, creates the
 corresponding permission, and then replies with a CreatePermission
 success response. Like the client, the server chooses not to include
 the SOFTWARE attribute in its reply. Again, note how success
 responses contain a MESSAGE-INTEGRITY attribute (assuming the server
 uses the long-term credential mechanism), but no USERNAME, REALM, and
 NONCE attributes.

 TURN TURN Peer Peer
 client server A B
 |--- Send indication --------------->| | |
 | Transaction-Id=0x1278E9ACA2711637EF7D3328 | |
 | XOR-PEER-ADDRESS=192.0.2.150:32102 | |
 | DONT-FRAGMENT | | |
 | DATA=... | | |
 | |-- UDP dgm ->| |
 | | data=... | |
 | | | |
 | |<- UDP dgm --| |
 | | data=... | |
 |<-- Data indication ----------------| | |
 | Transaction-Id=0x8231AE8F9242DA9FF287FEFF | |
 | XOR-PEER-ADDRESS=192.0.2.150:32102 | |
 | DATA=... | | |

 The client now sends application data to Peer A using a Send
 indication. Peer A’s server-reflexive transport address is specified
 in the XOR-PEER-ADDRESS attribute, and the application data (shown
 here as just "...") is specified in the DATA attribute. The client
 is doing a form of path MTU discovery at the application layer and
 thus specifies (by including the DONT-FRAGMENT attribute) that the
 server should set the DF bit in the UDP datagram to send to the peer.
 Indications cannot be authenticated using the long-term credential
 mechanism of STUN, so no MESSAGE-INTEGRITY attribute is included in
 the message. An application wishing to ensure that its data is not
 altered or forged must integrity-protect its data at the application
 level.

 Upon receipt of the Send indication, the server extracts the
 application data and sends it in a UDP datagram to Peer A, with the
 relayed transport address as the source transport address of the
 datagram, and with the DF bit set as requested. Note that, had the
 client not previously established a permission for Peer A’s server-
 reflexive IP address, then the server would have silently discarded
 the Send indication instead.

Mahy, et al. Standards Track [Page 52]

RFC 5766 TURN April 2010

 Peer A then replies with its own UDP datagram containing application
 data. The datagram is sent to the relayed transport address on the
 server. When this arrives, the server creates a Data indication
 containing the source of the UDP datagram in the XOR-PEER-ADDRESS
 attribute, and the data from the UDP datagram in the DATA attribute.
 The resulting Data indication is then sent to the client.

 TURN TURN Peer Peer
 client server A B
 |--- ChannelBind request ----------->| | |
 | Transaction-Id=0x6490D3BC175AFF3D84513212 | |
 | CHANNEL-NUMBER=0x4000 | | |
 | XOR-PEER-ADDRESS=192.0.2.210:49191 | |
 | USERNAME="George" | | |
 | REALM="example.com" | | |
 | NONCE="adl7W7PeDU4hKE72jdaQvbAMcr6h39sm" | |
 | MESSAGE-INTEGRITY=... | | |
 | | | |
 |<-- ChannelBind success response ---| | |
 | Transaction-Id=0x6490D3BC175AFF3D84513212 | |
 | MESSAGE-INTEGRITY=... | | |

 The client now binds a channel to Peer B, specifying a free channel
 number (0x4000) in the CHANNEL-NUMBER attribute, and Peer B’s
 transport address in the XOR-PEER-ADDRESS attribute. As before, the
 client re-uses the username, realm, and nonce from its last request
 in the message.

 Upon receipt of the request, the server binds the channel number to
 the peer, installs a permission for Peer B’s IP address, and then
 replies with ChannelBind success response.

 TURN TURN Peer Peer
 client server A B
 |--- ChannelData ------------------->| | |
 | Channel-number=0x4000 |--- UDP datagram --------->|
 | Data=... | Data=... |
 | | | |
 | |<-- UDP datagram ----------|
 | | Data=... | |
 |<-- ChannelData --------------------| | |
 | Channel-number=0x4000 | | |
 | Data=... | | |

 The client now sends a ChannelData message to the server with data
 destined for Peer B. The ChannelData message is not a STUN message,
 and thus has no transaction id. Instead, it has only three fields: a
 channel number, data, and data length; here the channel number field

Mahy, et al. Standards Track [Page 53]

RFC 5766 TURN April 2010

 is 0x4000 (the channel the client just bound to Peer B). When the
 server receives the ChannelData message, it checks that the channel
 is currently bound (which it is) and then sends the data onward to
 Peer B in a UDP datagram, using the relayed transport address as the
 source transport address and 192.0.2.210:49191 (the value of the XOR-
 PEER-ADDRESS attribute in the ChannelBind request) as the destination
 transport address.

 Later, Peer B sends a UDP datagram back to the relayed transport
 address. This causes the server to send a ChannelData message to the
 client containing the data from the UDP datagram. The server knows
 to which client to send the ChannelData message because of the
 relayed transport address at which the UDP datagram arrived, and
 knows to use channel 0x4000 because this is the channel bound to
 192.0.2.210:49191. Note that if there had not been any channel
 number bound to that address, the server would have used a Data
 indication instead.

 TURN TURN Peer Peer
 client server A B
 |--- Refresh request --------------->| | |
 | Transaction-Id=0x0864B3C27ADE9354B4312414 | |
 | SOFTWARE="Example client 1.03" | | |
 | USERNAME="George" | | |
 | REALM="example.com" | | |
 | NONCE="adl7W7PeDU4hKE72jdaQvbAMcr6h39sm" | |
 | MESSAGE-INTEGRITY=... | | |
 | | | |
 |<-- Refresh error response ---------| | |
 | Transaction-Id=0x0864B3C27ADE9354B4312414 | |
 | SOFTWARE="Example server, version 1.17" | |
 | ERROR-CODE=438 (Stale Nonce) | | |
 | REALM="example.com" | | |
 | NONCE="npSw1Xw239bBwGYhjNWgz2yH47sxB2j" | |
 | | | |
 |--- Refresh request --------------->| | |
 | Transaction-Id=0x427BD3E625A85FC731DC4191 | |
 | SOFTWARE="Example client 1.03" | | |
 | USERNAME="George" | | |
 | REALM="example.com" | | |
 | NONCE="npSw1Xw239bBwGYhjNWgz2yH47sxB2j" | |
 | MESSAGE-INTEGRITY=... | | |
 | | | |
 |<-- Refresh success response -------| | |
 | Transaction-Id=0x427BD3E625A85FC731DC4191 | |
 | SOFTWARE="Example server, version 1.17" | |
 | LIFETIME=600 (10 minutes) | | |

Mahy, et al. Standards Track [Page 54]

RFC 5766 TURN April 2010

 Sometime before the 20 minute lifetime is up, the client refreshes
 the allocation. This is done using a Refresh request. As before,
 the client includes the latest username, realm, and nonce values in
 the request. The client also includes the SOFTWARE attribute,
 following the recommended practice of always including this attribute
 in Allocate and Refresh messages. When the server receives the
 Refresh request, it notices that the nonce value has expired, and so
 replies with 438 (Stale Nonce) error given a new nonce value. The
 client then reattempts the request, this time with the new nonce
 value. This second attempt is accepted, and the server replies with
 a success response. Note that the client did not include a LIFETIME
 attribute in the request, so the server refreshes the allocation for
 the default lifetime of 10 minutes (as can be seen by the LIFETIME
 attribute in the success response).

17. Security Considerations

 This section considers attacks that are possible in a TURN
 deployment, and discusses how they are mitigated by mechanisms in the
 protocol or recommended practices in the implementation.

 Most of the attacks on TURN are mitigated by the server requiring
 requests be authenticated. Thus, this specification requires the use
 of authentication. The mandatory-to-implement mechanism is the long-
 term credential mechanism of STUN. Other authentication mechanisms
 of equal or stronger security properties may be used. However, it is
 important to ensure that they can be invoked in an inter-operable
 way.

17.1. Outsider Attacks

 Outsider attacks are ones where the attacker has no credentials in
 the system, and is attempting to disrupt the service seen by the
 client or the server.

17.1.1. Obtaining Unauthorized Allocations

 An attacker might wish to obtain allocations on a TURN server for any
 number of nefarious purposes. A TURN server provides a mechanism for
 sending and receiving packets while cloaking the actual IP address of
 the client. This makes TURN servers an attractive target for
 attackers who wish to use it to mask their true identity.

 An attacker might also wish to simply utilize the services of a TURN
 server without paying for them. Since TURN services require
 resources from the provider, it is anticipated that their usage will
 come with a cost.

Mahy, et al. Standards Track [Page 55]

RFC 5766 TURN April 2010

 These attacks are prevented using the long-term credential mechanism,
 which allows the TURN server to determine the identity of the
 requestor and whether the requestor is allowed to obtain the
 allocation.

17.1.2. Offline Dictionary Attacks

 The long-term credential mechanism used by TURN is subject to offline
 dictionary attacks. An attacker that is capable of eavesdropping on
 a message exchange between a client and server can determine the
 password by trying a number of candidate passwords and seeing if one
 of them is correct. This attack works when the passwords are low
 entropy, such as a word from the dictionary. This attack can be
 mitigated by using strong passwords with large entropy. In
 situations where even stronger mitigation is required, TLS transport
 between the client and the server can be used.

17.1.3. Faked Refreshes and Permissions

 An attacker might wish to attack an active allocation by sending it a
 Refresh request with an immediate expiration, in order to delete it
 and disrupt service to the client. This is prevented by
 authentication of refreshes. Similarly, an attacker wishing to send
 CreatePermission requests to create permissions to undesirable
 destinations is prevented from doing so through authentication. The
 motivations for such an attack are described in Section 17.2.

17.1.4. Fake Data

 An attacker might wish to send data to the client or the peer, as if
 they came from the peer or client, respectively. To do that, the
 attacker can send the client a faked Data Indication or ChannelData
 message, or send the TURN server a faked Send Indication or
 ChannelData message.

 Since indications and ChannelData messages are not authenticated,
 this attack is not prevented by TURN. However, this attack is
 generally present in IP-based communications and is not substantially
 worsened by TURN. Consider a normal, non-TURN IP session between
 hosts A and B. An attacker can send packets to B as if they came
 from A by sending packets towards A with a spoofed IP address of B.
 This attack requires the attacker to know the IP addresses of A and
 B. With TURN, an attacker wishing to send packets towards a client
 using a Data indication needs to know its IP address (and port), the
 IP address and port of the TURN server, and the IP address and port
 of the peer (for inclusion in the XOR-PEER-ADDRESS attribute). To
 send a fake ChannelData message to a client, an attacker needs to
 know the IP address and port of the client, the IP address and port

Mahy, et al. Standards Track [Page 56]

RFC 5766 TURN April 2010

 of the TURN server, and the channel number. This particular
 combination is mildly more guessable than in the non-TURN case.

 These attacks are more properly mitigated by application-layer
 authentication techniques. In the case of real-time traffic, usage
 of SRTP [RFC3711] prevents these attacks.

 In some situations, the TURN server may be situated in the network
 such that it is able to send to hosts to which the client cannot
 directly send. This can happen, for example, if the server is
 located behind a firewall that allows packets from outside the
 firewall to be delivered to the server, but not to other hosts behind
 the firewall. In these situations, an attacker could send the server
 a Send indication with an XOR-PEER-ADDRESS attribute containing the
 transport address of one of the other hosts behind the firewall. If
 the server was to allow relaying of traffic to arbitrary peers, then
 this would provide a way for the attacker to attack arbitrary hosts
 behind the firewall.

 To mitigate this attack, TURN requires that the client establish a
 permission to a host before sending it data. Thus, an attacker can
 only attack hosts with which the client is already communicating,
 unless the attacker is able to create authenticated requests.
 Furthermore, the server administrator may configure the server to
 restrict the range of IP addresses and ports to which it will relay
 data. To provide even greater security, the server administrator can
 require that the client use TLS for all communication between the
 client and the server.

17.1.5. Impersonating a Server

 When a client learns a relayed address from a TURN server, it uses
 that relayed address in application protocols to receive traffic.
 Therefore, an attacker wishing to intercept or redirect that traffic
 might try to impersonate a TURN server and provide the client with a
 faked relayed address.

 This attack is prevented through the long-term credential mechanism,
 which provides message integrity for responses in addition to
 verifying that they came from the server. Furthermore, an attacker
 cannot replay old server responses as the transaction id in the STUN
 header prevents this. Replay attacks are further thwarted through
 frequent changes to the nonce value.

Mahy, et al. Standards Track [Page 57]

RFC 5766 TURN April 2010

17.1.6. Eavesdropping Traffic

 TURN concerns itself primarily with authentication and message
 integrity. Confidentiality is only a secondary concern, as TURN
 control messages do not include information that is particularly
 sensitive. The primary protocol content of the messages is the IP
 address of the peer. If it is important to prevent an eavesdropper
 on a TURN connection from learning this, TURN can be run over TLS.

 Confidentiality for the application data relayed by TURN is best
 provided by the application protocol itself, since running TURN over
 TLS does not protect application data between the server and the
 peer. If confidentiality of application data is important, then the
 application should encrypt or otherwise protect its data. For
 example, for real-time media, confidentiality can be provided by
 using SRTP.

17.1.7. TURN Loop Attack

 An attacker might attempt to cause data packets to loop indefinitely
 between two TURN servers. The attack goes as follows. First, the
 attacker sends an Allocate request to server A, using the source
 address of server B. Server A will send its response to server B,
 and for the attack to succeed, the attacker must have the ability to
 either view or guess the contents of this response, so that the
 attacker can learn the allocated relayed transport address. The
 attacker then sends an Allocate request to server B, using the source
 address of server A. Again, the attacker must be able to view or
 guess the contents of the response, so it can send learn the
 allocated relayed transport address. Using the same spoofed source
 address technique, the attacker then binds a channel number on server
 A to the relayed transport address on server B, and similarly binds
 the same channel number on server B to the relayed transport address
 on server A. Finally, the attacker sends a ChannelData message to
 server A.

 The result is a data packet that loops from the relayed transport
 address on server A to the relayed transport address on server B,
 then from server B’s transport address to server A’s transport
 address, and then around the loop again.

 This attack is mitigated as follows. By requiring all requests to be
 authenticated and/or by randomizing the port number allocated for the
 relayed transport address, the server forces the attacker to either
 intercept or view responses sent to a third party (in this case, the
 other server) so that the attacker can authenticate the requests and
 learn the relayed transport address. Without one of these two
 measures, an attacker can guess the contents of the responses without

Mahy, et al. Standards Track [Page 58]

RFC 5766 TURN April 2010

 needing to see them, which makes the attack much easier to perform.
 Furthermore, by requiring authenticated requests, the server forces
 the attacker to have credentials acceptable to the server, which
 turns this from an outsider attack into an insider attack and allows
 the attack to be traced back to the client initiating it.

 The attack can be further mitigated by imposing a per-username limit
 on the bandwidth used to relay data by allocations owned by that
 username, to limit the impact of this attack on other allocations.
 More mitigation can be achieved by decrementing the TTL when relaying
 data packets (if the underlying OS allows this).

17.2. Firewall Considerations

 A key security consideration of TURN is that TURN should not weaken
 the protections afforded by firewalls deployed between a client and a
 TURN server. It is anticipated that TURN servers will often be
 present on the public Internet, and clients may often be inside
 enterprise networks with corporate firewalls. If TURN servers
 provide a ’backdoor’ for reaching into the enterprise, TURN will be
 blocked by these firewalls.

 TURN servers therefore emulate the behavior of NAT devices that
 implement address-dependent filtering [RFC4787], a property common in
 many firewalls as well. When a NAT or firewall implements this
 behavior, packets from an outside IP address are only allowed to be
 sent to an internal IP address and port if the internal IP address
 and port had recently sent a packet to that outside IP address. TURN
 servers introduce the concept of permissions, which provide exactly
 this same behavior on the TURN server. An attacker cannot send a
 packet to a TURN server and expect it to be relayed towards the
 client, unless the client has tried to contact the attacker first.

 It is important to note that some firewalls have policies that are
 even more restrictive than address-dependent filtering. Firewalls
 can also be configured with address- and port-dependent filtering, or
 can be configured to disallow inbound traffic entirely. In these
 cases, if a client is allowed to connect the TURN server,
 communications to the client will be less restrictive than what the
 firewall would normally allow.

17.2.1. Faked Permissions

 In firewalls and NAT devices, permissions are granted implicitly
 through the traversal of a packet from the inside of the network
 towards the outside peer. Thus, a permission cannot, by definition,
 be created by any entity except one inside the firewall or NAT. With
 TURN, this restriction no longer holds. Since the TURN server sits

Mahy, et al. Standards Track [Page 59]

RFC 5766 TURN April 2010

 outside the firewall, at attacker outside the firewall can now send a
 message to the TURN server and try to create a permission for itself.

 This attack is prevented because all messages that create permissions
 (i.e., ChannelBind and CreatePermission) are authenticated.

17.2.2. Blacklisted IP Addresses

 Many firewalls can be configured with blacklists that prevent a
 client behind the firewall from sending packets to, or receiving
 packets from, ranges of blacklisted IP addresses. This is
 accomplished by inspecting the source and destination addresses of
 packets entering and exiting the firewall, respectively.

 This feature is also present in TURN, since TURN servers are allowed
 to arbitrarily restrict the range of addresses of peers that they
 will relay to.

17.2.3. Running Servers on Well-Known Ports

 A malicious client behind a firewall might try to connect to a TURN
 server and obtain an allocation which it then uses to run a server.
 For example, a client might try to run a DNS server or FTP server.

 This is not possible in TURN. A TURN server will never accept
 traffic from a peer for which the client has not installed a
 permission. Thus, peers cannot just connect to the allocated port in
 order to obtain the service.

17.3. Insider Attacks

 In insider attacks, a client has legitimate credentials but defies
 the trust relationship that goes with those credentials. These
 attacks cannot be prevented by cryptographic means but need to be
 considered in the design of the protocol.

17.3.1. DoS against TURN Server

 A client wishing to disrupt service to other clients might obtain an
 allocation and then flood it with traffic, in an attempt to swamp the
 server and prevent it from servicing other legitimate clients. This
 is mitigated by the recommendation that the server limit the amount
 of bandwidth it will relay for a given username. This won’t prevent
 a client from sending a large amount of traffic, but it allows the
 server to immediately discard traffic in excess.

 Since each allocation uses a port number on the IP address of the
 TURN server, the number of allocations on a server is finite. An

Mahy, et al. Standards Track [Page 60]

RFC 5766 TURN April 2010

 attacker might attempt to consume all of them by requesting a large
 number of allocations. This is prevented by the recommendation that
 the server impose a limit of the number of allocations active at a
 time for a given username.

17.3.2. Anonymous Relaying of Malicious Traffic

 TURN servers provide a degree of anonymization. A client can send
 data to peers without revealing its own IP address. TURN servers may
 therefore become attractive vehicles for attackers to launch attacks
 against targets without fear of detection. Indeed, it is possible
 for a client to chain together multiple TURN servers, such that any
 number of relays can be used before a target receives a packet.

 Administrators who are worried about this attack can maintain logs
 that capture the actual source IP and port of the client, and perhaps
 even every permission that client installs. This will allow for
 forensic tracing to determine the original source, should it be
 discovered that an attack is being relayed through a TURN server.

17.3.3. Manipulating Other Allocations

 An attacker might attempt to disrupt service to other users of the
 TURN server by sending Refresh requests or CreatePermission requests
 that (through source address spoofing) appear to be coming from
 another user of the TURN server. TURN prevents this by requiring
 that the credentials used in CreatePermission, Refresh, and
 ChannelBind messages match those used to create the initial
 allocation. Thus, the fake requests from the attacker will be
 rejected.

17.4. Other Considerations

 Any relay addresses learned through an Allocate request will not
 operate properly with IPsec Authentication Header (AH) [RFC4302] in
 transport or tunnel mode. However, tunnel-mode IPsec Encapsulating
 Security Payload (ESP) [RFC4303] should still operate.

18. IANA Considerations

 Since TURN is an extension to STUN [RFC5389], the methods,
 attributes, and error codes defined in this specification are new
 methods, attributes, and error codes for STUN. IANA has added these
 new protocol elements to the IANA registry of STUN protocol elements.

 The codepoints for the new STUN methods defined in this specification
 are listed in Section 13.

Mahy, et al. Standards Track [Page 61]

RFC 5766 TURN April 2010

 The codepoints for the new STUN attributes defined in this
 specification are listed in Section 14.

 The codepoints for the new STUN error codes defined in this
 specification are listed in Section 15.

 IANA has allocated the SRV service name of "turn" for TURN over UDP
 or TCP, and the service name of "turns" for TURN over TLS.

 IANA has created a registry for TURN channel numbers, initially
 populated as follows:

 0x0000 through 0x3FFF: Reserved and not available for use, since
 they conflict with the STUN header.

 0x4000 through 0x7FFF: A TURN implementation is free to use
 channel numbers in this range.

 0x8000 through 0xFFFF: Unassigned.

 Any change to this registry must be made through an IETF Standards
 Action.

19. IAB Considerations

 The IAB has studied the problem of "Unilateral Self Address Fixing"
 (UNSAF), which is the general process by which a client attempts to
 determine its address in another realm on the other side of a NAT
 through a collaborative protocol-reflection mechanism [RFC3424]. The
 TURN extension is an example of a protocol that performs this type of
 function. The IAB has mandated that any protocols developed for this
 purpose document a specific set of considerations. These
 considerations and the responses for TURN are documented in this
 section.

 Consideration 1: Precise definition of a specific, limited-scope
 problem that is to be solved with the UNSAF proposal. A short-term
 fix should not be generalized to solve other problems. Such
 generalizations lead to the prolonged dependence on and usage of the
 supposed short-term fix -- meaning that it is no longer accurate to
 call it "short-term".

 Response: TURN is a protocol for communication between a relay (=
 TURN server) and its client. The protocol allows a client that is
 behind a NAT to obtain and use a public IP address on the relay. As
 a convenience to the client, TURN also allows the client to determine
 its server-reflexive transport address.

Mahy, et al. Standards Track [Page 62]

RFC 5766 TURN April 2010

 Consideration 2: Description of an exit strategy/transition plan.
 The better short-term fixes are the ones that will naturally see less
 and less use as the appropriate technology is deployed.

 Response: TURN will no longer be needed once there are no longer any
 NATs. Unfortunately, as of the date of publication of this document,
 it no longer seems very likely that NATs will go away any time soon.
 However, the need for TURN will also decrease as the number of NATs
 with the mapping property of Endpoint-Independent Mapping [RFC4787]
 increases.

 Consideration 3: Discussion of specific issues that may render
 systems more "brittle". For example, approaches that involve using
 data at multiple network layers create more dependencies, increase
 debugging challenges, and make it harder to transition.

 Response: TURN is "brittle" in that it requires the NAT bindings
 between the client and the server to be maintained unchanged for the
 lifetime of the allocation. This is typically done using keep-
 alives. If this is not done, then the client will lose its
 allocation and can no longer exchange data with its peers.

 Consideration 4: Identify requirements for longer-term, sound
 technical solutions; contribute to the process of finding the right
 longer-term solution.

 Response: The need for TURN will be reduced once NATs implement the
 recommendations for NAT UDP behavior documented in [RFC4787].
 Applications are also strongly urged to use ICE [RFC5245] to
 communicate with peers; though ICE uses TURN, it does so only as a
 last resort, and uses it in a controlled manner.

 Consideration 5: Discussion of the impact of the noted practical
 issues with existing deployed NATs and experience reports.

 Response: Some NATs deployed today exhibit a mapping behavior other
 than Endpoint-Independent mapping. These NATs are difficult to work
 with, as they make it difficult or impossible for protocols like ICE
 to use server-reflexive transport addresses on those NATs. A client
 behind such a NAT is often forced to use a relay protocol like TURN
 because "UDP hole punching" techniques [RFC5128] do not work.

20. Acknowledgements

 The authors would like to thank the various participants in the
 BEHAVE working group for their many comments on this document. Marc
 Petit-Huguenin, Remi Denis-Courmont, Jason Fischl, Derek MacDonald,
 Scott Godin, Cullen Jennings, Lars Eggert, Magnus Westerlund, Benny

Mahy, et al. Standards Track [Page 63]

RFC 5766 TURN April 2010

 Prijono, and Eric Rescorla have been particularly helpful, with Eric
 suggesting the channel allocation mechanism, Cullen suggesting an
 earlier version of the EVEN-PORT mechanism, and Marc spending many
 hours implementing the preliminary versions to look for problems.
 Christian Huitema was an early contributor to this document and was a
 co-author on the first few versions. Finally, the authors would like
 to thank Dan Wing for both his contributions to the text and his huge
 help in restarting progress on this document after work had stalled.

21. References

21.1. Normative References

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D.
 Wing, "Session Traversal Utilities for NAT
 (STUN)", RFC 5389, October 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119,
 March 1997.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field
 (DS Field) in the IPv4 and IPv6 Headers",
 RFC 2474, December 1998.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The
 Addition of Explicit Congestion Notification
 (ECN) to IP", RFC 3168, September 2001.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 October 1989.

21.2. Informative References

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery",
 RFC 1191, November 1990.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D.,
 Groot, G., and E. Lear, "Address Allocation for
 Private Internets", BCP 5, RFC 1918,
 February 1996.

Mahy, et al. Standards Track [Page 64]

RFC 5766 TURN April 2010

 [RFC3424] Daigle, L. and IAB, "IAB Considerations for
 UNilateral Self-Address Fixing (UNSAF) Across
 Network Address Translation", RFC 3424,
 November 2002.

 [RFC4787] Audet, F. and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for
 Unicast UDP", BCP 127, RFC 4787, January 2007.

 [RFC5245] Rosenberg, J., "Interactive Connectivity
 Establishment (ICE): A Protocol for Network
 Address Translator (NAT) Traversal for
 Offer/Answer Protocols", RFC 5245, April 2010.

 [TURN-TCP] Perreault, S. and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN) Extensions for TCP
 Allocations", Work in Progress, March 2010.

 [TURN-IPv6] Perreault, S., Camarillo, G., and O. Novo,
 "Traversal Using Relays around NAT (TURN)
 Extension for IPv6", Work in Progress, March
 2010.

 [TSVWG-PORT] Larsen, M. and F. Gont, "Port Randomization",
 Work in Progress, April 2010.

 [RFC5128] Srisuresh, P., Ford, B., and D. Kegel, "State of
 Peer-to-Peer (P2P) Communication across Network
 Address Translators (NATs)", RFC 5128,
 March 2008.

 [RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R.,
 Koblas, D., and L. Jones, "SOCKS Protocol
 Version 5", RFC 1928, March 1996.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and
 V. Jacobson, "RTP: A Transport Protocol for
 Real-Time Applications", STD 64, RFC 3550,
 July 2003.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara,
 E., and K. Norrman, "The Secure Real-time
 Transport Protocol (SRTP)", RFC 3711,
 March 2004.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 December 2005.

Mahy, et al. Standards Track [Page 65]

RFC 5766 TURN April 2010

 [RFC4303] Kent, S., "IP Encapsulating Security Payload
 (ESP)", RFC 4303, December 2005.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer
 Path MTU Discovery", RFC 4821, March 2007.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G.,
 Johnston, A., Peterson, J., Sparks, R., Handley,
 M., and E. Schooler, "SIP: Session Initiation
 Protocol", RFC 3261, June 2002.

 [MMUSIC-ICE-NONSIP] Rosenberg, J., "Guidelines for Usage of
 Interactive Connectivity Establishment (ICE) by
 non Session Initiation Protocol (SIP)
 Protocols", Work in Progress, July 2008.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106,
 RFC 4086, June 2005.

 [Frag-Harmful] Kent and Mogul, "Fragmentation Considered
 Harmful". Proc. SIGCOMM ’87, vol. 17, No. 5,
 October 1987

 [Port-Numbers] "IANA Port Numbers Registry",
 <http://www.iana.org>.

 [Protocol-Numbers] "IANA Protocol Numbers Registry", 2005,
 <http://www.iana.org>.

Mahy, et al. Standards Track [Page 66]

RFC 5766 TURN April 2010

Authors’ Addresses

 Rohan Mahy
 Unaffiliated

 EMail: rohan@ekabal.com

 Philip Matthews
 Alcatel-Lucent
 600 March Road
 Ottawa, Ontario
 Canada

 EMail: philip_matthews@magma.ca

 Jonathan Rosenberg
 jdrosen.net
 Monmouth, NJ
 USA

 EMail: jdrosen@jdrosen.net
 URI: http://www.jdrosen.net

Mahy, et al. Standards Track [Page 67]

