
Internet Engineering Task Force (IETF) J. Halpern
Request for Comments: 5812 Self
Category: Standards Track J. Hadi Salim
ISSN: 2070-1721 Znyx Networks
 March 2010

 Forwarding and Control Element Separation (ForCES)
 Forwarding Element Model

Abstract

 This document defines the forwarding element (FE) model used in the
 Forwarding and Control Element Separation (ForCES) protocol. The
 model represents the capabilities, state, and configuration of
 forwarding elements within the context of the ForCES protocol, so
 that control elements (CEs) can control the FEs accordingly. More
 specifically, the model describes the logical functions that are
 present in an FE, what capabilities these functions support, and how
 these functions are or can be interconnected. This FE model is
 intended to satisfy the model requirements specified in RFC 3654.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5812.

Halpern & Hadi Salim Standards Track [Page 1]

RFC 5812 ForCES FE Model March 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Halpern & Hadi Salim Standards Track [Page 2]

RFC 5812 ForCES FE Model March 2010

Table of Contents

 1. Introduction ..5
 1.1. Requirements on the FE Model5
 1.2. The FE Model in Relation to FE Implementations6
 1.3. The FE Model in Relation to the ForCES Protocol6
 1.4. Modeling Language for the FE Model7
 1.5. Document Structure ...8
 2. Definitions ...8
 3. ForCES Model Concepts ..10
 3.1. ForCES Capability Model and State Model12
 3.1.1. FE Capability Model and State Model12
 3.1.2. Relating LFB and FE Capability and State Model14
 3.2. Logical Functional Block (LFB) Modeling14
 3.2.1. LFB Outputs ..18
 3.2.2. LFB Inputs ...21
 3.2.3. Packet Type ..24
 3.2.4. Metadata ...24
 3.2.5. LFB Events ...27
 3.2.6. Component Properties28
 3.2.7. LFB Versioning29
 3.2.8. LFB Inheritance29
 3.3. ForCES Model Addressing30
 3.3.1. Addressing LFB Components: Paths and Keys32
 3.4. FE Data Path Modeling32
 3.4.1. Alternative Approaches for Modeling FE Data Paths ..33
 3.4.2. Configuring the LFB Topology37
 4. Model and Schema for LFB Classes41
 4.1. Namespace ...42
 4.2. <LFBLibrary> Element42
 4.3. <load> Element ..44
 4.4. <frameDefs> Element for Frame Type Declarations45
 4.5. <dataTypeDefs> Element for Data Type Definitions45
 4.5.1. <typeRef> Element for Renaming Existing
 Data Types ...49
 4.5.2. <atomic> Element for Deriving New Atomic Types49
 4.5.3. <array> Element to Define Arrays50
 4.5.4. <struct> Element to Define Structures54
 4.5.5. <union> Element to Define Union Types56
 4.5.6. <alias> Element56
 4.5.7. Augmentations57
 4.6. <metadataDefs> Element for Metadata Definitions58
 4.7. <LFBClassDefs> Element for LFB Class Definitions59
 4.7.1. <derivedFrom> Element to Express LFB Inheritance ...62
 4.7.2. <inputPorts> Element to Define LFB Inputs62
 4.7.3. <outputPorts> Element to Define LFB Outputs65
 4.7.4. <components> Element to Define LFB
 Operational Components67

Halpern & Hadi Salim Standards Track [Page 3]

RFC 5812 ForCES FE Model March 2010

 4.7.5. <capabilities> Element to Define LFB
 Capability Components70
 4.7.6. <events> Element for LFB Notification Generation ...71
 4.7.7. <description> Element for LFB Operational
 Specification79
 4.8. Properties ..79
 4.8.1. Basic Properties79
 4.8.2. Array Properties81
 4.8.3. String Properties81
 4.8.4. Octetstring Properties82
 4.8.5. Event Properties83
 4.8.6. Alias Properties87
 4.9. XML Schema for LFB Class Library Documents88
 5. FE Components and Capabilities99
 5.1. XML for FEObject Class Definition99
 5.2. FE Capabilities ..106
 5.2.1. ModifiableLFBTopology106
 5.2.2. SupportedLFBs and SupportedLFBType106
 5.3. FE Components ..110
 5.3.1. FEState ...110
 5.3.2. LFBSelectors and LFBSelectorType110
 5.3.3. LFBTopology and LFBLinkType110
 5.3.4. FENeighbors and FEConfiguredNeighborType111
 6. Satisfying the Requirements on the FE Model111
 7. Using the FE Model in the ForCES Protocol112
 7.1. FE Topology Query ..115
 7.2. FE Capability Declarations116
 7.3. LFB Topology and Topology Configurability Query116
 7.4. LFB Capability Declarations116
 7.5. State Query of LFB Components118
 7.6. LFB Component Manipulation118
 7.7. LFB Topology Reconfiguration118
 8. Example LFB Definition ..119
 8.1. Data Handling ..126
 8.1.1. Setting Up a DLCI127
 8.1.2. Error Handling127
 8.2. LFB Components ...128
 8.3. Capabilities ...128
 8.4. Events ...129
 9. IANA Considerations ...130
 9.1. URN Namespace Registration130
 9.2. LFB Class Names and LFB Class Identifiers130
 10. Authors Emeritus ...132
 11. Acknowledgments ..132
 12. Security Considerations132
 13. References ...132
 13.1. Normative References132
 13.2. Informative References133

Halpern & Hadi Salim Standards Track [Page 4]

RFC 5812 ForCES FE Model March 2010

1. Introduction

 RFC 3746 [RFC3746] specifies a framework by which control elements
 (CEs) can configure and manage one or more separate forwarding
 elements (FEs) within a network element (NE) using the ForCES
 protocol. The ForCES architecture allows forwarding elements of
 varying functionality to participate in a ForCES network element.
 The implication of this varying functionality is that CEs can make
 only minimal assumptions about the functionality provided by FEs in
 an NE. Before CEs can configure and control the forwarding behavior
 of FEs, CEs need to query and discover the capabilities and states of
 their FEs. RFC 3654 [RFC3654] mandates that the capabilities, states
 and configuration information be expressed in the form of an FE
 model.

 RFC 3444 [RFC3444] observed that information models (IMs) and data
 models (DMs) are different because they serve different purposes.
 "The main purpose of an IM is to model managed objects at a
 conceptual level, independent of any specific implementations or
 protocols used". "DMs, conversely, are defined at a lower level of
 abstraction and include many details. They are intended for
 implementors and include protocol-specific constructs". Sometimes it
 is difficult to draw a clear line between the two. The FE model
 described in this document is primarily an information model, but
 also includes some aspects of a data model, such as explicit
 definitions of the LFB (Logical Functional Block) class schema and FE
 schema. It is expected that this FE model will be used as the basis
 to define the payload for information exchange between the CE and FE
 in the ForCES protocol.

1.1. Requirements on the FE Model

 RFC 3654 [RFC3654] defines requirements that must be satisfied by a
 ForCES FE model. To summarize, an FE model must define:

 o Logically separable and distinct packet forwarding operations in
 an FE data path (Logical Functional Blocks or LFBs);

 o The possible topological relationships (and hence the sequence of
 packet forwarding operations) between the various LFBs;

 o The possible operational capabilities (e.g., capacity limits,
 constraints, optional features, granularity of configuration) of
 each type of LFB;

 o The possible configurable parameters (e.g., components) of each
 type of LFB; and

Halpern & Hadi Salim Standards Track [Page 5]

RFC 5812 ForCES FE Model March 2010

 o Metadata that may be exchanged between LFBs.

1.2. The FE Model in Relation to FE Implementations

 The FE model proposed here is based on an abstraction using distinct
 Logical Functional Blocks (LFBs), which are interconnected in a
 directed graph, and receive, process, modify, and transmit packets
 along with metadata. The FE model is designed, and any defined LFB
 classes should be designed, such that different implementations of
 the forwarding data path can be logically mapped onto the model with
 the functionality and sequence of operations correctly captured.
 However, the model is not intended to directly address how a
 particular implementation maps to an LFB topology. It is left to the
 forwarding plane vendors to define how the FE functionality is
 represented using the FE model. Our goal is to design the FE model
 such that it is flexible enough to accommodate most common
 implementations.

 The LFB topology model for a particular data path implementation must
 correctly capture the sequence of operations on the packet. Metadata
 generation by certain LFBs MUST always precede any use of that
 metadata by subsequent LFBs in the topology graph; this is required
 for logically consistent operation. Further, modification of packet
 fields that are subsequently used as inputs for further processing
 MUST occur in the order specified in the model for that particular
 implementation to ensure correctness.

1.3. The FE Model in Relation to the ForCES Protocol

 The ForCES base protocol [RFC5810] is used by the CEs and FEs to
 maintain the communication channel between the CEs and FEs. The
 ForCES protocol may be used to query and discover the intra-FE
 topology. The details of a particular data path implementation
 inside an FE, including the LFB topology, along with the operational
 capabilities and attributes of each individual LFB, are conveyed to
 the CE within information elements in the ForCES protocol. The model
 of an LFB class should define all of the information that needs to be
 exchanged between an FE and a CE for the proper configuration and
 management of that LFB.

 Specifying the various payloads of the ForCES messages in a
 systematic fashion is difficult without a formal definition of the
 objects being configured and managed (the FE and the LFBs within).
 The FE model document defines a set of classes and components for
 describing and manipulating the state of the LFBs within an FE.
 These class definitions themselves will generally not appear in the

Halpern & Hadi Salim Standards Track [Page 6]

RFC 5812 ForCES FE Model March 2010

 ForCES protocol. Rather, ForCES protocol operations will reference
 classes defined in this model, including relevant components and the
 defined operations.

 Section 7 provides more detailed discussion on how the FE model
 should be used by the ForCES protocol.

1.4. Modeling Language for the FE Model

 Even though not absolutely required, it is beneficial to use a formal
 data modeling language to represent the conceptual FE model described
 in this document. Use of a formal language can help to enforce
 consistency and logical compatibility among LFBs. A full
 specification will be written using such a data modeling language.
 The formal definition of the LFB classes may facilitate the eventual
 automation of some of the code generation process and the functional
 validation of arbitrary LFB topologies. These class definitions form
 the LFB library. Documents that describe LFB classes are therefore
 referred to as LFB library documents.

 Human readability was the most important factor considered when
 selecting the specification language, whereas encoding, decoding, and
 transmission performance were not a selection factor. The encoding
 method for over-the-wire transport is not dependent on the
 specification language chosen and is outside the scope of this
 document and up to the ForCES protocol to define.

 XML is chosen as the specification language in this document, because
 XML has the advantage of being both human and machine readable with
 widely available tools support. This document uses an XML schema to
 define the structure of the LFB library documents, as defined in
 [RFC3470] and [Schema1] and [Schema2]. While these LFB class
 definitions are not sent in the ForCES protocol, these definitions
 comply with the recommendations in RFC 3470 [RFC3470] on the use of
 XML in IETF protocols.

 By using an XML schema to define the structure for the LFB library
 documents, we have a very clear set of syntactic restrictions to go
 with the desired semantic descriptions and restrictions covered in
 this document. As a corollary to that, if it is determined that a
 change in the syntax is needed, then a new schema will be required.
 This would be identified by a different URN to identify the namespace
 for such a new schema.

Halpern & Hadi Salim Standards Track [Page 7]

RFC 5812 ForCES FE Model March 2010

1.5. Document Structure

 Section 3 provides a conceptual overview of the FE model, laying the
 foundation for the more detailed discussion and specifications in the
 sections that follow. Section 4 and Section 5 constitute the core of
 the FE model, detailing the two major aspects of the FE model: a
 general LFB model and a definition of the FE Object LFB, with its
 components, including FE capabilities and LFB topology information.
 Section 6 directly addresses the model requirements imposed by the
 ForCES requirements defined in RFC 3654 [RFC3654], while Section 7
 explains how the FE model should be used in the ForCES protocol.

2. Definitions

 The use of compliance terminology (MUST, SHOULD, MAY, MUST NOT) is
 used in accordance with RFC 2119 [RFC2119]. Such terminology is used
 in describing the required behavior of ForCES forwarding elements or
 control elements in supporting or manipulating information described
 in this model.

 Terminology associated with the ForCES requirements is defined in RFC
 3654 [RFC3654] and is not copied here. The following list of
 terminology relevant to the FE model is defined in this section.

 FE Model: The FE model is designed to model the logical processing
 functions of an FE. The FE model proposed in this document
 includes three components; the LFB modeling of individual Logical
 Functional Block (LFB model), the logical interconnection between
 LFBs (LFB topology), and the FE-level attributes, including FE
 capabilities. The FE model provides the basis to define the
 information elements exchanged between the CE and the FE in the
 ForCES protocol [RFC5810].

 Data Path: A conceptual path taken by packets within the forwarding
 plane inside an FE. Note that more than one data path can exist
 within an FE.

 LFB (Logical Functional Block) Class (or type): A template that
 represents a fine-grained, logically separable aspect of FE
 processing. Most LFBs relate to packet processing in the data
 path. LFB classes are the basic building blocks of the FE model.

 LFB Instance: As a packet flows through an FE along a data path, it
 flows through one or multiple LFB instances, where each LFB is an
 instance of a specific LFB class. Multiple instances of the same
 LFB class can be present in an FE’s data path. Note that we often

Halpern & Hadi Salim Standards Track [Page 8]

RFC 5812 ForCES FE Model March 2010

 refer to LFBs without distinguishing between an LFB class and LFB
 instance when we believe the implied reference is obvious for the
 given context.

 LFB Model: The LFB model describes the content and structures in an
 LFB, plus the associated data definition. XML is used to provide
 a formal definition of the necessary structures for the modeling.
 Four types of information are defined in the LFB model. The core
 part of the LFB model is the LFB class definitions; the other
 three types of information define constructs associated with and
 used by the class definition. These are reusable data types,
 supported frame (packet) formats, and metadata.

 Element: Element is generally used in this document in accordance
 with the XML usage of the term. It refers to an XML tagged part
 of an XML document. For a precise definition, please see the full
 set of XML specifications from the W3C. This term is included in
 this list for completeness because the ForCES formal model uses
 XML.

 Attribute: Attribute is used in the ForCES formal modeling in
 accordance with standard XML usage of the term, i.e., to provide
 attribute information included in an XML tag.

 LFB Metadata: Metadata is used to communicate per-packet state from
 one LFB to another, but is not sent across the network. The FE
 model defines how such metadata is identified, produced, and
 consumed by the LFBs, but not how the per-packet state is
 implemented within actual hardware. Metadata is sent between the
 FE and the CE on redirect packets.

 ForCES Component: A ForCES Component is a well-defined, uniquely
 identifiable and addressable ForCES model building block. A
 component has a 32-bit ID, name, type, and an optional synopsis
 description. These are often referred to simply as components.

 LFB Component: An LFB component is a ForCES component that defines
 the Operational parameters of the LFBs that must be visible to the
 CEs.

 Structure Component: A ForCES component that is part of a complex
 data structure to be used in LFB data definitions. The individual
 parts that make up a structured set of data are referred to as
 structure components. These can themselves be of any valid data
 type, including tables and structures.

Halpern & Hadi Salim Standards Track [Page 9]

RFC 5812 ForCES FE Model March 2010

 Property: ForCES components have properties associated with them,
 such as readability. Other examples include lengths for variable-
 sized components. These properties are accessed by the CE for
 reading (or, where appropriate, writing.) Details on the ForCES
 properties are found in Section 4.8.

 LFB Topology: LFB topology is a representation of the logical
 interconnection and the placement of LFB instances along the data
 path within one FE. Sometimes this representation is called
 intra-FE topology, to be distinguished from inter-FE topology.
 LFB topology is outside of the LFB model, but is part of the FE
 model.

 FE Topology: FE topology is a representation of how multiple FEs
 within a single network element (NE) are interconnected.
 Sometimes this is called inter-FE topology, to be distinguished
 from intra-FE topology (i.e., LFB topology). An individual FE
 might not have the global knowledge of the full FE topology, but
 the local view of its connectivity with other FEs is considered to
 be part of the FE model. The FE topology is discovered by the
 ForCES base protocol or by some other means.

 Inter-FE Topology: See FE Topology.

 Intra-FE Topology: See LFB Topology.

 LFB Class Library: The LFB class library is a set of LFB classes
 that has been identified as the most common functions found in
 most FEs and hence should be defined first by the ForCES Working
 Group.

3. ForCES Model Concepts

 Some of the important ForCES concepts used throughout this document
 are introduced in this section. These include the capability and
 state abstraction, the FE and LFB model construction, and the unique
 addressing of the different model structures. Details of these
 aspects are described in Section 4 and Section 5. The intent of this
 section is to discuss these concepts at the high level and lay the
 foundation for the detailed description in the following sections.

 The ForCES FE model includes both a capability and a state
 abstraction.

 o The FE/LFB capability model describes the capabilities and
 capacities of an FE/LFB by specifying the variation in functions
 supported and any limitations. Capacity describes the limits of
 specific components (an example would be a table size limit).

Halpern & Hadi Salim Standards Track [Page 10]

RFC 5812 ForCES FE Model March 2010

 o The state model describes the current state of the FE/LFB, that
 is, the instantaneous values or operational behavior of the FE/
 LFB.

 Section 3.1 explains the difference between a capability model and a
 state model, and describes how the two can be combined in the FE
 model.

 The ForCES model construction laid out in this document allows an FE
 to provide information about its structure for operation. This can
 be thought of as FE-level information and information about the
 individual instances of LFBs provided by the FE.

 o The ForCES model includes the constructions for defining the class
 of Logical Functional Blocks (LFBs) that an FE may support. These
 classes are defined in this and other documents. The definition
 of such a class provides the information content for monitoring
 and controlling instances of the LFB class for ForCES purposes.
 Each LFB model class formally defines the operational LFB
 components, LFB capabilities, and LFB events. Essentially,
 Section 3.2 introduces the concept of LFBs as the basic functional
 building blocks in the ForCES model.

 o The FE model also provides the construction necessary to monitor
 and control the FE as a whole for ForCES purposes. For
 consistency of operation and simplicity, this information is
 represented as an LFB, the FE Object LFB class and a singular LFB
 instance of that class, defined using the LFB model. The FE
 Object class defines the components to provide information at the
 FE level, particularly the capabilities of the FE at a coarse
 level, i.e., not all possible capabilities or all details about
 the capabilities of the FE. Part of the FE-level information is
 the LFB topology, which expresses the logical inter-connection
 between the LFB instances along the data path(s) within the FE.
 Section 3.3 discusses the LFB topology. The FE Object also
 includes information about what LFB classes the FE can support.

 The ForCES model allows for unique identification of the different
 constructs it defines. This includes identification of the LFB
 classes, and of LFB instances within those classes, as well as
 identification of components within those instances.

 The ForCES protocol [RFC5810] encapsulates target address(es) to
 eventually get to a fine-grained entity being referenced by the CE.
 The addressing hierarchy is broken into the following:

 o An FE is uniquely identified by a 32-bit FEID.

Halpern & Hadi Salim Standards Track [Page 11]

RFC 5812 ForCES FE Model March 2010

 o Each class of LFB is uniquely identified by a 32-bit LFB ClassID.
 The LFB ClassIDs are global within the network element and may be
 issued by IANA.

 o Within an FE, there can be multiple instances of each LFB class.
 Each LFB class instance is identified by a 32-bit identifier that
 is unique within a particular LFB class on that FE.

 o All the components within an LFB instance are further defined
 using 32-bit identifiers.

 Refer to Section 3.3 for more details on addressing.

3.1. ForCES Capability Model and State Model

 Capability and state modeling applies to both the FE and LFB
 abstraction.

 Figure 1 shows the concepts of FE state, capabilities, and
 configuration in the context of CE-FE communication via the ForCES
 protocol.

 +-------+ +-------+
	FE capabilities: what it can/cannot do.	
	<---	
CE	FE state: what it is now.	FE
	<---	
	FE configuration: what it should be.	
	--->	
 +-------+ +-------+

 Figure 1: Illustration of FE capabilities, state, and configuration
 exchange in the context of CE-FE communication via ForCES.

3.1.1. FE Capability Model and State Model

 Conceptually, the FE capability model tells the CE which states are
 allowed on an FE, with capacity information indicating certain
 quantitative limits or constraints. Thus, the CE has general
 knowledge about configurations that are applicable to a particular
 FE.

Halpern & Hadi Salim Standards Track [Page 12]

RFC 5812 ForCES FE Model March 2010

3.1.1.1. FE Capability Model

 The FE capability model may be used to describe an FE at a coarse
 level. For example, an FE might be defined as follows:

 o the FE can handle IPv4 and IPv6 forwarding;

 o the FE can perform classification based on the following fields:
 source IP address, destination IP address, source port number,
 destination port number, etc.;

 o the FE can perform metering;

 o the FE can handle up to N queues (capacity); and

 o the FE can add and remove encapsulating headers of types including
 IPsec, GRE, L2TP.

 While one could try to build an object model to fully represent the
 FE capabilities, other efforts found this approach to be a
 significant undertaking. The main difficulty arises in describing
 detailed limits, such as the maximum number of classifiers, queues,
 buffer pools, and meters that the FE can provide. We believe that a
 good balance between simplicity and flexibility can be achieved for
 the FE model by combining coarse-level-capability reporting with an
 error reporting mechanism. That is, if the CE attempts to instruct
 the FE to set up some specific behavior it cannot support, the FE
 will return an error indicating the problem. Examples of similar
 approaches include Diffserv PIB RFC 3317 [RFC3317] and framework PIB
 RFC 3318 [RFC3318].

3.1.1.2. FE State Model

 The FE state model presents the snapshot view of the FE to the CE.
 For example, using an FE state model, an FE might be described to its
 corresponding CE as the following:

 o on a given port, the packets are classified using a given
 classification filter;

 o the given classifier results in packets being metered in a certain
 way and then marked in a certain way;

 o the packets coming from specific markers are delivered into a
 shared queue for handling, while other packets are delivered to a
 different queue; and

Halpern & Hadi Salim Standards Track [Page 13]

RFC 5812 ForCES FE Model March 2010

 o a specific scheduler with specific behavior and parameters will
 service these collected queues.

3.1.1.3. LFB Capability and State Model

 Both LFB capability and state information are defined formally using
 the LFB modeling XML schema.

 Capability information at the LFB level is an integral part of the
 LFB model and provides for powerful semantics. For example, when
 certain features of an LFB class are optional, the CE needs to be
 able to determine whether those optional features are supported by a
 given LFB instance. The schema for the definition of LFB classes
 provides a means for identifying such components.

 State information is defined formally using LFB component constructs.

3.1.2. Relating LFB and FE Capability and State Model

 Capability information at the FE level describes the LFB classes that
 the FE can instantiate, the number of instances of each that can be
 created, the topological (linkage) limitations between these LFB
 instances, etc. Section 5 defines the FE-level components including
 capability information. Since all information is represented as
 LFBs, this is provided by a single instance of the FE Object LFB
 class. By using a single instance with a known LFB class and a known
 instance identification, the ForCES protocol can allow a CE to access
 this information whenever it needs to, including while the CE is
 establishing the control of the FE.

 Once the FE capability is described to the CE, the FE state
 information can be represented at two levels. The first level is the
 logically separable and distinct packet processing functions, called
 LFBs. The second level of information describes how these individual
 LFBs are ordered and placed along the data path to deliver a complete
 forwarding plane service. The interconnection and ordering of the
 LFBs is called LFB topology. Section 3.2 discusses high-level
 concepts around LFBs, whereas Section 3.3 discusses LFB topology
 issues. This topology information is represented as components of
 the FE Object LFB instance, to allow the CE to fetch and manipulate
 this.

3.2. Logical Functional Block (LFB) Modeling

 Each LFB performs a well-defined action or computation on the packets
 passing through it. Upon completion of its prescribed function,
 either the packets are modified in certain ways (e.g., decapsulator,
 marker), or some results are generated and stored, often in the form

Halpern & Hadi Salim Standards Track [Page 14]

RFC 5812 ForCES FE Model March 2010

 of metadata (e.g., classifier). Each LFB typically performs a single
 action. Classifiers, shapers, and meters are all examples of such
 LFBs. Modeling LFBs at such a fine granularity allows us to use a
 small number of LFBs to express the higher-order FE functions (such
 as an IPv4 forwarder) precisely, which in turn can describe more
 complex networking functions and vendor implementations of software
 and hardware. These fine-grained LFBs will be defined in detail in
 one or more documents to be published separately, using the material
 in this model.

 It is also the case that LFBs may exist in order to provide a set of
 components for control of FE operation by the CE (i.e., a locus of
 control), without tying that control to specific packets or specific
 parts of the data path. An example of such an LFB is the FE Object,
 which provides the CE with information about the FE as a whole, and
 allows the FE to control some aspects of the FE, such as the data
 path itself. Such LFBs will not have the packet-oriented properties
 described in this section.

 In general, multiple LFBs are contained in one FE, as shown in
 Figure 2, and all the LFBs share the same ForCES protocol (Fp)
 termination point that implements the ForCES protocol logic and
 maintains the communication channel to and from the CE.

Halpern & Hadi Salim Standards Track [Page 15]

RFC 5812 ForCES FE Model March 2010

 +-----------+
 | CE |
 +-----------+
 ^
 | Fp reference point
 |
 +--------------------------|-----------------------------------+
 | FE | |
 | v |
 | +--+ |
 | | ForCES protocol | |
 | | termination point | |
 | +--+ |
 | ^ ^ |
 | : : Internal control |
 | : : |
 | +---:----------+ +---:----------| | | | | | | | |
 | | :LFB1 | | : LFB2 | |
 | =====>| v |============>| v |======>...|
 | Inputs| +----------+ |Outputs | +----------+ | |
 | (P,M) | |Components| |(P’,M’) | |Components| |(P",M") |
 | | +----------+ | | +----------+ | |
 | +--------------+ +--------------+ |
 | |
 +--+

 Figure 2: Generic LFB diagram.

 An LFB, as shown in Figure 2, may have inputs, outputs, and
 components that can be queried and manipulated by the CE via an Fp
 reference point (defined in RFC 3746 [RFC3746]) and the ForCES
 protocol termination point. The horizontal axis is in the forwarding
 plane for connecting the inputs and outputs of LFBs within the same
 FE. P (with marks to indicate modification) indicates a data packet,
 while M (with marks to indicate modification) indicates the metadata
 associated with a packet. The vertical axis between the CE and the
 FE denotes the Fp reference point where bidirectional communication
 between the CE and FE occurs: the CE-to-FE communication is for
 configuration, control, and packet injection, while the FE-to-CE
 communication is used for packet redirection to the control plane,
 reporting of monitoring and accounting information, reporting of
 errors, etc. Note that the interaction between the CE and the LFB is
 only abstract and indirect. The result of such an interaction is for
 the CE to manipulate the components of the LFB instances.

 An LFB can have one or more inputs. Each input takes a pair of a
 packet and its associated metadata. Depending upon the LFB input
 port definition, the packet or the metadata may be allowed to be

Halpern & Hadi Salim Standards Track [Page 16]

RFC 5812 ForCES FE Model March 2010

 empty (or equivalently to not be provided). When input arrives at an
 LFB, either the packet or its associated metadata must be non-empty
 or there is effectively no input. (LFB operation generally may be
 triggered by input arrival, by timers, or by other system state. It
 is only in the case where the goal is to have input drive operation
 that the input must be non-empty.)

 The LFB processes the input, and produces one or more outputs, each
 of which is a pair of a packet and its associated metadata. Again,
 depending upon the LFB output port definition, either the packet or
 the metadata may be allowed to be empty (or equivalently to be
 absent). Metadata attached to packets on output may be metadata that
 was received, or may be information about the packet processing that
 may be used by later LFBs in the FEs packet processing.

 A namespace is used to associate a unique name and ID with each LFB
 class. The namespace MUST be extensible so that a new LFB class can
 be added later to accommodate future innovation in the forwarding
 plane.

 LFB operation is specified in the model to allow the CE to understand
 the behavior of the forwarding data path. For instance, the CE needs
 to understand at what point in the data path the IPv4 header TTL is
 decremented by the FE. That is, the CE needs to know if a control
 packet could be delivered to it either before or after this point in
 the data path. In addition, the CE needs to understand where and
 what type of header modifications (e.g., tunnel header append or
 strip) are performed by the FEs. Further, the CE works to verify
 that the various LFBs along a data path within an FE are compatible
 to link together. Connecting incompatible LFB instances will produce
 a non-working data path. So the model is designed to provide
 sufficient information for the CE to make this determination.

 Selecting the right granularity for describing the functions of the
 LFBs is an important aspect of this model. There is value to vendors
 if the operation of LFB classes can be expressed in sufficient detail
 so that physical devices implementing different LFB functions can be
 integrated easily into an FE design. However, the model, and the
 associated library of LFBs, must not be so detailed and so specific
 as to significantly constrain implementations. Therefore, a semi-
 formal specification is needed; that is, a text description of the
 LFB operation (human readable), but sufficiently specific and
 unambiguous to allow conformance testing and efficient design, so
 that interoperability between different CEs and FEs can be achieved.

Halpern & Hadi Salim Standards Track [Page 17]

RFC 5812 ForCES FE Model March 2010

 The LFB class model specifies the following, among other information:

 o number of inputs and outputs (and whether they are configurable)

 o metadata read/consumed from inputs

 o metadata produced at the outputs

 o packet types accepted at the inputs and emitted at the outputs

 o packet content modifications (including encapsulation or
 decapsulation)

 o packet routing criteria (when multiple outputs on an LFB are
 present)

 o packet timing modifications

 o packet flow ordering modifications

 o LFB capability information components

 o events that can be detected by the LFB, with notification to the
 CE

 o LFB operational components

 Section 4 of this document provides a detailed discussion of the LFB
 model with a formal specification of LFB class schema. The rest of
 Section 3.2 only intends to provide a conceptual overview of some
 important issues in LFB modeling, without covering all the specific
 details.

3.2.1. LFB Outputs

 An LFB output is a conceptual port on an LFB that can send
 information to another LFB. The information sent on that port is a
 pair of a packet and associated metadata, one of which may be empty.
 (If both were empty, there would be no output.)

 A single LFB output can be connected to only one LFB input. This is
 required to make the packet flow through the LFB topology
 unambiguous.

 Some LFBs will have a single output, as depicted in Figure 3.a.

Halpern & Hadi Salim Standards Track [Page 18]

RFC 5812 ForCES FE Model March 2010

 +---------------+ +-----------------+
 | | | |
 | | | OUT +-->
 ... OUT +--> ... |
 | | | EXCEPTIONOUT +-->
 | | | |
 +---------------+ +-----------------+

 a. One output b. Two distinct outputs

 +---------------+ +-----------------+
 | | | EXCEPTIONOUT +-->
 | OUT:1 +--> | |
 ... OUT:2 +--> ... OUT:1 +-->
 | ... +... | OUT:2 +-->
 | OUT:n +--> | ... +...
 +---------------+ | OUT:n +-->
 +-----------------+

 c. One output group d. One output and one output group

 Figure 3: Examples of LFBs with various output combinations.

 To accommodate a non-trivial LFB topology, multiple LFB outputs are
 needed so that an LFB class can fork the data path. Two mechanisms
 are provided for forking: multiple singleton outputs and output
 groups, which can be combined in the same LFB class.

 Multiple separate singleton outputs are defined in an LFB class to
 model a predetermined number of semantically different outputs. That
 is, the LFB class definition MUST include the number of outputs,
 implying the number of outputs is known when the LFB class is
 defined. Additional singleton outputs cannot be created at LFB
 instantiation time, nor can they be created on the fly after the LFB
 is instantiated.

 For example, an IPv4 LPM (Longest-Prefix-Matching) LFB may have one
 output (OUT) to send those packets for which the LPM look-up was
 successful, passing a META_ROUTEID as metadata; and have another
 output (EXCEPTIONOUT) for sending exception packets when the LPM
 look-up failed. This example is depicted in Figure 3.b. Packets
 emitted by these two outputs not only require different downstream
 treatment, but they are a result of two different conditions in the
 LFB and each output carries different metadata. This concept assumes
 that the number of distinct outputs is known when the LFB class is
 defined. For each singleton output, the LFB class definition defines
 the types of frames (packets) and metadata the output emits.

Halpern & Hadi Salim Standards Track [Page 19]

RFC 5812 ForCES FE Model March 2010

 An output group, on the other hand, is used to model the case where a
 flow of similar packets with an identical set of permitted metadata
 needs to be split into multiple paths. In this case, the number of
 such paths is not known when the LFB class is defined because it is
 not an inherent property of the LFB class. An output group consists
 of a number of outputs, called the output instances of the group,
 where all output instances share the same frame (packet) and metadata
 emission definitions (see Figure 3.c). Each output instance can
 connect to a different downstream LFB, just as if they were separate
 singleton outputs, but the number of output instances can differ
 between LFB instances of the same LFB class. The class definition
 may include a lower and/or an upper limit on the number of outputs.
 In addition, for configurable FEs, the FE capability information may
 define further limits on the number of instances in specific output
 groups for certain LFBs. The actual number of output instances in a
 group is a component of the LFB instance, which is read-only for
 static topologies, and read-write for dynamic topologies. The output
 instances in a group are numbered sequentially, from 0 to N-1, and
 are addressable from within the LFB. To use Output Port groups, the
 LFB has to have a built-in mechanism to select one specific output
 instance for each packet. This mechanism is described in the textual
 definition of the class and is typically configurable via some
 attributes of the LFB.

 For example, consider a redirector LFB, whose sole purpose is to
 direct packets to one of N downstream paths based on one of the
 metadata associated with each arriving packet. Such an LFB is fairly
 versatile and can be used in many different places in a topology.
 For example, given LFBs that record the type of packet in a FRAMETYPE
 metadatum, or a packet rate class in a COLOR metadatum, one may uses
 these metadata for branching. A redirector can be used to divide the
 data path into an IPv4 and an IPv6 path based on a FRAMETYPE
 metadatum (N=2), or to fork into rate-specific paths after metering
 using the COLOR metadatum (red, yellow, green; N=3), etc.

 Using an output group in the above LFB class provides the desired
 flexibility to adapt each instance of this class to the required
 operation. The metadata to be used as a selector for the output
 instance is a property of the LFB. For each packet, the value of the
 specified metadata may be used as a direct index to the output
 instance. Alternatively, the LFB may have a configurable selector
 table that maps a metadatum value to output instance.

 Note that other LFBs may also use the output group concept to build
 in similar adaptive forking capability. For example, a classifier
 LFB with one input and N outputs can be defined easily by using the
 output group concept. Alternatively, a classifier LFB with one
 singleton output in combination with an explicit N-output re-director

Halpern & Hadi Salim Standards Track [Page 20]

RFC 5812 ForCES FE Model March 2010

 LFB models the same processing behavior. The decision of whether to
 use the output group model for a certain LFB class is left to the LFB
 class designers.

 The model allows the output group to be combined with other singleton
 output(s) in the same class, as demonstrated in Figure 3.d. The LFB
 here has two types of outputs, OUT, for normal packet output, and
 EXCEPTIONOUT, for packets that triggered some exception. The normal
 OUT has multiple instances; thus, it is an output group.

 In summary, the LFB class may define one output, multiple singleton
 outputs, one or more output groups, or a combination thereof.
 Multiple singleton outputs should be used when the LFB must provide
 for forking the data path and at least one of the following
 conditions hold:

 o the number of downstream directions is inherent from the
 definition of the class and hence fixed

 o the frame type and set of permitted metadata emitted on any of the
 outputs are different from what is emitted on the other outputs
 (i.e., they cannot share their frametype and permitted metadata
 definitions)

 An output group is appropriate when the LFB must provide for forking
 the data path and at least one of the following conditions hold:

 o the number of downstream directions is not known when the LFB
 class is defined

 o the frame type and set of metadata emitted on these outputs are
 sufficiently similar or, ideally, identical, such they can share
 the same output definition

3.2.2. LFB Inputs

 An LFB input is a conceptual port on an LFB on which the LFB can
 receive information from other LFBs. The information is typically a
 pair of a packet and its associated metadata. Either the packet or
 the metadata may for some LFBs and some situations be empty. They
 cannot both be empty, as then there is no input.

 For LFB instances that receive packets from more than one other LFB
 instance (fan-in), there are three ways to model fan-in, all
 supported by the LFB model and can all be combined in the same LFB:

 o Implicit multiplexing via a single input

Halpern & Hadi Salim Standards Track [Page 21]

RFC 5812 ForCES FE Model March 2010

 o Explicit multiplexing via multiple singleton inputs

 o Explicit multiplexing via a group of inputs (input group)

 The simplest form of multiplexing uses a singleton input
 (Figure 4.a). Most LFBs will have only one singleton input.
 Multiplexing into a single input is possible because the model allows
 more than one LFB output to connect to the same LFB input. This
 property applies to any LFB input without any special provisions in
 the LFB class. Multiplexing into a single input is applicable when
 the packets from the upstream LFBs are similar in frametype and
 accompanying metadata, and require similar processing. Note that
 this model does not address how potential contention is handled when
 multiple packets arrive simultaneously. If contention handling needs
 to be explicitly modeled, one of the other two modeling solutions
 must be used.

 The second method to model fan-in uses individually defined singleton
 inputs (Figure 4.b). This model is meant for situations where the
 LFB needs to handle distinct types of packet streams, requiring
 input-specific handling inside the LFB, and where the number of such
 distinct cases is known when the LFB class is defined. For example,
 an LFB that can perform both Layer 2 decapsulation (to Layer 3) and
 Layer 3 encapsulation (to Layer 2) may have two inputs, one for
 receiving Layer 2 frames for decapsulation, and one for receiving
 Layer 3 frames for encapsulation. This LFB type expects different
 frames (L2 versus L3) at its inputs, each with different sets of
 metadata, and would thus apply different processing on frames
 arriving at these inputs. This model is capable of explicitly
 addressing packet contention by defining how the LFB class handles
 the contending packets.

 +--------------+ +------------------------+
 | LFB X +---+ | |
 +--------------+ | | |
 | | |
 +--------------+ v | |
 | LFB Y +---+-->|input Meter LFB |
 +--------------+ ^ | |
 | | |
 +--------------+ | | |
 | LFB Z |---+ | |
 +--------------+ +------------------------+

 (a) An LFB connects with multiple upstream LFBs via a single input.

Halpern & Hadi Salim Standards Track [Page 22]

RFC 5812 ForCES FE Model March 2010

 +--------------+ +------------------------+
 | LFB X +---+ | |
 +--------------+ +-->|layer2 |
 +--------------+ | |
 | LFB Y +------>|layer3 LFB |
 +--------------+ +------------------------+

 (b) An LFB connects with multiple upstream LFBs via two separate
 singleton inputs.

 +--------------+ +------------------------+
 | Queue LFB #1 +---+ | |
 +--------------+ | | |
 | | |
 +--------------+ +-->|in:0 \ |
 | Queue LFB #2 +------>|in:1 | input group |
 +--------------+ |... | |
 +-->|in:N-1 / |
 ... | | |
 +--------------+ | | |
 | Queue LFB #N |---+ | Scheduler LFB |
 +--------------+ +------------------------+

 (c) A Scheduler LFB uses an input group to differentiate which queue
 LFB packets are coming from.

 Figure 4: Examples of LFBs with various input combinations.

 The third method to model fan-in uses the concept of an input group.
 The concept is similar to the output group introduced in the previous
 section and is depicted in Figure 4.c. An input group consists of a
 number of input instances, all sharing the properties (same frame and
 metadata expectations). The input instances are numbered from 0 to
 N-1. From the outside, these inputs appear as normal inputs, i.e.,
 any compatible upstream LFB can connect its output to one of these
 inputs. When a packet is presented to the LFB at a particular input
 instance, the index of the input where the packet arrived is known to
 the LFB and this information may be used in the internal processing.
 For example, the input index can be used as a table selector, or as
 an explicit precedence selector to resolve contention. As with
 output groups, the number of input instances in an input group is not
 defined in the LFB class. However, the class definition may include
 restrictions on the range of possible values. In addition, if an FE
 supports configurable topologies, it may impose further limitations
 on the number of instances for particular port group(s) of a
 particular LFB class. Within these limitations, different instances
 of the same class may have a different number of input instances.

Halpern & Hadi Salim Standards Track [Page 23]

RFC 5812 ForCES FE Model March 2010

 The number of actual input instances in the group is a component
 defined in the LFB class, which is read-only for static topologies,
 and is read-write for configurable topologies.

 As an example for the input group, consider the Scheduler LFB
 depicted in Figure 4.c. Such an LFB receives packets from a number
 of Queue LFBs via a number of input instances, and uses the input
 index information to control contention resolution and scheduling.

 In summary, the LFB class may define one input, multiple singleton
 inputs, one or more input groups, or a combination thereof. Any
 input allows for implicit multiplexing of similar packet streams via
 connecting multiple outputs to the same input. Explicit multiple
 singleton inputs are useful when either the contention handling must
 be handled explicitly or when the LFB class must receive and process
 a known number of distinct types of packet streams. An input group
 is suitable when contention handling must be modeled explicitly, but
 the number of inputs is not inherent from the class (and hence is not
 known when the class is defined), or when it is critical for LFB
 operation to know exactly on which input the packet was received.

3.2.3. Packet Type

 When LFB classes are defined, the input and output packet formats
 (e.g., IPv4, IPv6, Ethernet) MUST be specified. These are the types
 of packets that a given LFB input is capable of receiving and
 processing, or that a given LFB output is capable of producing. This
 model requires that distinct packet types be uniquely labeled with a
 symbolic name and/or ID.

 Note that each LFB has a set of packet types that it operates on, but
 does not care whether the underlying implementation is passing a
 greater portion of the packets. For example, an IPv4 LFB might only
 operate on IPv4 packets, but the underlying implementation may or may
 not be stripping the L2 header before handing it over. Whether or
 not such processing is happening is opaque to the CE.

3.2.4. Metadata

 Metadata is state that is passed from one LFB to another alongside a
 packet. The metadata passed with the packet assists subsequent LFBs
 to process that packet.

 The ForCES model defines metadata as precise atomic definitions in
 the form of label, value pairs.

Halpern & Hadi Salim Standards Track [Page 24]

RFC 5812 ForCES FE Model March 2010

 The ForCES model provides to the authors of LFB classes a way to
 formally define how to achieve metadata creation, modification,
 reading, as well as consumption (deletion).

 Inter-FE metadata, i.e., metadata crossing FEs, while it is likely to
 be semantically similar to this metadata, is out of scope for this
 document.

 Section 4 has informal details on metadata.

3.2.4.1. Metadata Lifecycle within the ForCES Model

 Each metadatum is modeled as a <label, value> pair, where the label
 identifies the type of information (e.g., "color"), and its value
 holds the actual information (e.g., "red"). The label here is shown
 as a textual label, but for protocol processing it is associated with
 a unique numeric value (identifier).

 To ensure inter-operability between LFBs, the LFB class specification
 must define what metadata the LFB class "reads" or "consumes" on its
 input(s) and what metadata it "produces" on its output(s). For
 maximum extensibility, this definition should specify neither which
 LFBs the metadata is expected to come from for a consumer LFB nor
 which LFBs are expected to consume metadata for a given producer LFB.

3.2.4.2. Metadata Production and Consumption

 For a given metadatum on a given packet path, there MUST be at least
 one producer LFB that creates that metadatum and SHOULD be at least
 one consumer LFB that needs that metadatum.

 In the ForCES model, the producer and consumer LFBs of a metadatum
 are not required to be adjacent. In addition, there may be multiple
 producers and consumers for the same metadatum. When a packet path
 involves multiple producers of the same metadatum, then subsequent
 producers overwrite that metadatum value.

 The metadata that is produced by an LFB is specified by the LFB class
 definition on a per-output-port-group basis. A producer may always
 generate the metadata on the port group, or may generate it only
 under certain conditions. We call the former "unconditional"
 metadata, whereas the latter is "conditional" metadata. For example,
 deep packet inspection LFB might produce several pieces of metadata
 about the packet. The first metadatum might be the IP protocol (TCP,
 UDP, SCTP, ...) being carried, and two additional metadata items
 might be the source and destination port number. These additional
 metadata items are conditional on the value of the first metadatum
 (IP carried protocol) as they are only produced for protocols that

Halpern & Hadi Salim Standards Track [Page 25]

RFC 5812 ForCES FE Model March 2010

 use port numbers. In the case of conditional metadata, it should be
 possible to determine from the definition of the LFB when
 "conditional" metadata is produced. The consumer behavior of an LFB,
 that is, the metadata that the LFB needs for its operation, is
 defined in the LFB class definition on a per-input-port-group basis.
 An input port group may "require" a given metadatum, or may treat it
 as "optional" information. In the latter case, the LFB class
 definition MUST explicitly define what happens if any optional
 metadata is not provided. One approach is to specify a default value
 for each optional metadatum, and assume that the default value is
 used for any metadata that is not provided with the packet.

 When specifying the metadata tags, some harmonization effort must be
 made so that the producer LFB class uses the same tag as its intended
 consumer(s).

3.2.4.3. LFB Operations on Metadata

 When the packet is processed by an LFB (i.e., between the time it is
 received and forwarded by the LFB), the LFB may perform read, write,
 and/or consume operations on any active metadata associated with the
 packet. If the LFB is considered to be a black box, one of the
 following operations is performed on each active metadatum.

 * IGNORE: ignores and forwards the metadatum

 * READ: reads and forwards the metadatum

 * READ/RE-WRITE: reads, over-writes, and forwards the metadatum

 * WRITE: writes and forwards the metadatum (can also be used to
 create new metadata)

 * READ-AND-CONSUME: reads and consumes the metadatum

 * CONSUME: consumes metadatum without reading

 The last two operations terminate the life-cycle of the metadatum,
 meaning that the metadatum is not forwarded with the packet when the
 packet is sent to the next LFB.

 In the ForCES model, a new metadatum is generated by an LFB when the
 LFB applies a WRITE operation to a metadatum type that was not
 present when the packet was received by the LFB. Such implicit
 creation may be unintentional by the LFB; that is, the LFB may apply
 the WRITE operation without knowing or caring whether or not the
 given metadatum existed. If it existed, the metadatum gets over-
 written; if it did not exist, the metadatum is created.

Halpern & Hadi Salim Standards Track [Page 26]

RFC 5812 ForCES FE Model March 2010

 For LFBs that insert packets into the model, WRITE is the only
 meaningful metadata operation.

 For LFBs that remove the packet from the model, they may either READ-
 AND-CONSUME (read) or CONSUME (ignore) each active metadatum
 associated with the packet.

3.2.5. LFB Events

 During operation, various conditions may occur that can be detected
 by LFBs. Examples range from link failure or restart to timer
 expiration in special purpose LFBs. The CE may wish to be notified
 of the occurrence of such events. The description of how such
 messages are sent, and their format, is part of the Forwarding and
 Control Element Separation (ForCES) protocol [RFC5810] document.
 Indicating how such conditions are understood is part of the job of
 this model.

 Events are declared in the LFB class definition. The LFB event
 declaration constitutes:

 o a unique 32-bit identifier.

 o An LFB component that is used to trigger the event. This entity
 is known as the event target.

 o A condition that will happen to the event target that will result
 in a generation of an event to the CE. Examples of a condition
 include something getting created or deleted, a config change,
 etc.

 o What should be reported to the CE by the FE if the declared
 condition is met.

 The declaration of an event within an LFB class essentially defines
 what part of the LFB component(s) need to be monitored for events,
 what condition on the LFB monitored LFB component an FE should detect
 to trigger such an event, and what to report to the CE when the event
 is triggered.

 While events may be declared by the LFB class definition, runtime
 activity is controlled using built-in event properties using LFB
 component properties (discussed in Section 3.2.6). A CE subscribes
 to the events on an LFB class instance by setting an event property
 for subscription. Each event has a subscription property that is by
 default off. A CE wishing to receive a specific event needs to turn
 on the subscription property at runtime.

Halpern & Hadi Salim Standards Track [Page 27]

RFC 5812 ForCES FE Model March 2010

 Event properties also provide semantics for runtime event filtering.
 A CE may set an event property to further suppress events to which it
 has already subscribed. The LFB model defines such filters to
 include threshold values, hysteresis, time intervals, number of
 events, etc.

 The contents of reports with events are designed to allow for the
 common, closely related information that the CE can be strongly
 expected to need to react to the event. It is not intended to carry
 information that the CE already has, large volumes of information, or
 information related in complex fashions.

 From a conceptual point of view, at runtime, event processing is
 split into:

 1. Detection of something happening to the (declared during LFB
 class definition) event target. Processing the next step happens
 if the CE subscribed (at runtime) to the event.

 2. Checking of the (declared during LFB class definition) condition
 on the LFB event target. If the condition is met, proceed with
 the next step.

 3. Checking (runtime set) event filters if they exist to see if the
 event should be reported or suppressed. If the event is to be
 reported, proceed to the next step.

 4. Submitting of the declared report to the CE.

 Section 4.7.6 discusses events in more details.

3.2.6. Component Properties

 LFBs and structures are made up of components, containing the
 information that the CE needs to see and/or change about the
 functioning of the LFB. These components, as described in detail in
 Section 4.7, may be basic values, complex structures (containing
 multiple components themselves, each of which can be values,
 structures, or tables), or tables (which contain values, structures,
 or tables). Components may be defined such that their appearance in
 LFB instances is optional. Components may be readable or writable at
 the discretion of the FE implementation. The CE needs to know these
 properties. Additionally, certain kinds of components (arrays /
 tables, aliases, and events) have additional property information
 that the CE may need to read or write. This model defines the
 structure of the property information for all defined data types.

 Section 4.8 describes properties in more details.

Halpern & Hadi Salim Standards Track [Page 28]

RFC 5812 ForCES FE Model March 2010

3.2.7. LFB Versioning

 LFB class versioning is a method to enable incremental evolution of
 LFB classes. In general, an FE is not allowed to contain an LFB
 instance for more than one version of a particular class.
 Inheritance (discussed next in Section 3.2.8) has special rules. If
 an FE data path model containing an LFB instance of a particular
 class C also simultaneously contains an LFB instance of a class C’
 inherited from class C; C could have a different version than C’.

 LFB class versioning is supported by requiring a version string in
 the class definition. CEs may support multiple versions of a
 particular LFB class to provide backward compatibility, but FEs MUST
 NOT support more than one version of a particular class.

 Versioning is not restricted to making backward-compatible changes.
 It is specifically expected to be used to make changes that cannot be
 represented by inheritance. Often this will be to correct errors,
 and hence may not be backward compatible. It may also be used to
 remove components that are not considered useful (particularly if
 they were previously mandatory, and hence were an implementation
 impediment).

3.2.8. LFB Inheritance

 LFB class inheritance is supported in the FE model as a method to
 define new LFB classes. This also allows FE vendors to add vendor-
 specific extensions to standardized LFBs. An LFB class specification
 MUST specify the base class and version number it inherits from (the
 default is the base LFB class). Multiple inheritance is not allowed,
 however, to avoid unnecessary complexity.

 Inheritance should be used only when there is significant reuse of
 the base LFB class definition. A separate LFB class should be
 defined if little or no reuse is possible between the derived and the
 base LFB class.

 An interesting issue related to class inheritance is backward
 compatibility between a descendant and an ancestor class. Consider
 the following hypothetical scenario where a standardized LFB class
 "L1" exists. Vendor A builds an FE that implements LFB "L1", and
 vendor B builds a CE that can recognize and operate on LFB "L1".
 Suppose that a new LFB class, "L2", is defined based on the existing
 "L1" class by extending its capabilities incrementally. Let us
 examine the FE backward-compatibility issue by considering what would
 happen if vendor B upgrades its FE from "L1" to "L2" and vendor C’s

Halpern & Hadi Salim Standards Track [Page 29]

RFC 5812 ForCES FE Model March 2010

 CE is not changed. The old L1-based CE can interoperate with the new
 L2-based FE if the derived LFB class "L2" is indeed backward
 compatible with the base class "L1".

 The reverse scenario is a much less problematic case, i.e., when CE
 vendor B upgrades to the new LFB class "L2", but the FE is not
 upgraded. Note that as long as the CE is capable of working with
 older LFB classes, this problem does not affect the model; hence we
 will use the term "backward compatibility" to refer to the first
 scenario concerning FE backward compatibility.

 Backward compatibility can be designed into the inheritance model by
 constraining LFB inheritance to require that the derived class be a
 functional superset of the base class (i.e., the derived class can
 only add functions to the base class, but not remove functions).
 Additionally, the following mechanisms are required to support FE
 backward compatibility:

 1. When detecting an LFB instance of an LFB type that is unknown to
 the CE, the CE MUST be able to query the base class of such an
 LFB from the FE.

 2. The LFB instance on the FE SHOULD support a backward-
 compatibility mode (meaning the LFB instance reverts itself back
 to the base class instance), and the CE SHOULD be able to
 configure the LFB to run in such a mode.

3.3. ForCES Model Addressing

 Figure 5 demonstrates the abstraction of the different ForCES model
 entities. The ForCES protocol provides the mechanism to uniquely
 identify any of the LFB class instance components.

 FE Address = FE01
 +--+
 | |
 | +--------------+ +--------------+ |
 | | LFB ClassID 1| |LFB ClassID 91| | | | | |
 | | InstanceID 3 |============>|InstanceID 3 |======>... |
 | | +----------+ | | +----------+ | |
 | | |Components| | | |Components| | |
 | | +----------+ | | +----------+ | |
 | +--------------+ +--------------+ |
 | |
 +--+

 Figure 5: FE entity hierarchy.

Halpern & Hadi Salim Standards Track [Page 30]

RFC 5812 ForCES FE Model March 2010

 At the top of the addressing hierarchy is the FE identifier. In the
 example above, the 32-bit FE identifier is illustrated with the
 mnemonic FE01. The next 32-bit entity selector is the LFB ClassID.
 In the illustration above, two LFB classes with identifiers 1 and 91
 are demonstrated. The example above further illustrates one instance
 of each of the two classes. The scope of the 32-bit LFB class
 instance identifier is valid only within the LFB class. To emphasize
 that point, each of class 1 and 91 has an instance of 3.

 Using the described addressing scheme, a message could be sent to
 address FE01, LFB ClassID 1, LFB InstanceID 3, utilizing the ForCES
 protocol. However, to be effective, such a message would have to
 target entities within an LFB. These entities could be carrying
 state, capability, etc. These are further illustrated in Figure 6
 below.

 LFB Class ID 1,InstanceID 3 Components
 +-------------------------------------+
 | |
 | LFB ComponentID 1 |
 | +----------------------+ |
 | | | |
 | +----------------------+ |
 | |
 | LFB ComponentID 31 |
 | +----------------------+ |
 | | | |
 | +----------------------+ |
 | |
 | LFB ComponentID 51 |
 | +----------------------+ |
 | | LFB ComponentID 89 | | | |
 | | +-----------------+ | |
 | | | | | |
 | | +-----------------+ | |
 | +----------------------+ |
 | |
 | |
 +-------------------------------------+

 Figure 6: LFB hierarchy.

 Figure 6 zooms into the components carried by LFB Class ID 1, LFB
 InstanceID 3 from Figure 5.

Halpern & Hadi Salim Standards Track [Page 31]

RFC 5812 ForCES FE Model March 2010

 The example shows three components with 32-bit component identifiers
 1, 31, and 51. LFB ComponentID 51 is a complex structure
 encapsulating within it an entity with LFB ComponentID 89. LFB
 ComponentID 89 could be a complex structure itself, but is restricted
 in the example for the sake of clarity.

3.3.1. Addressing LFB Components: Paths and Keys

 As mentioned above, LFB components could be complex structures, such
 as a table, or even more complex structures such as a table whose
 cells are further tables, etc. The ForCES model XML schema
 (Section 4) allows for uniquely identifying anything with such
 complexity, utilizing the concept of dot-annotated static paths and
 content addressing of paths as derived from keys. As an example, if
 LFB ComponentID 51 were a structure, then the path to LFB ComponentID
 89 above will be 51.89.

 LFB ComponentID 51 might represent a table (an array). In that case,
 to select the LFB component with ID 89 from within the 7th entry of
 the table, one would use the path 51.7.89. In addition to supporting
 explicit table element selection by including an index in the dotted
 path, the model supports identifying table elements by their
 contents. This is referred to as using keys, or key indexing. So,
 as a further example, if ComponentID 51 was a table that was key
 index-able, then a key describing content could also be passed by the
 CE, along with path 51 to select the table, and followed by the path
 89 to select the table structure element, which upon computation by
 the FE would resolve to the LFB ComponentID 89 within the specified
 table entry.

3.4. FE Data Path Modeling

 Packets coming into the FE from ingress ports generally flow through
 one or more LFBs before leaving out of the egress ports. How an FE
 treats a packet depends on many factors, such as type of the packet
 (e.g., IPv4, IPv6, or MPLS), header values, time of arrival, etc.
 The result of LFB processing may have an impact on how the packet is
 to be treated in downstream LFBs. This differentiation of packet
 treatment downstream can be conceptualized as having alternative data
 paths in the FE. For example, the result of a 6-tuple classification
 performed by a classifier LFB could control which rate meter is
 applied to the packet by a rate meter LFB in a later stage in the
 data path.

 LFB topology is a directed graph representation of the logical data
 paths within an FE, with the nodes representing the LFB instances and
 the directed link depicting the packet flow direction from one LFB to

Halpern & Hadi Salim Standards Track [Page 32]

RFC 5812 ForCES FE Model March 2010

 the next. Section 3.4.1 discusses how the FE data paths can be
 modeled as LFB topology, while Section 3.4.2 focuses on issues
 related to LFB topology reconfiguration.

3.4.1. Alternative Approaches for Modeling FE Data Paths

 There are two basic ways to express the differentiation in packet
 treatment within an FE; one represents the data path directly and
 graphically (topological approach) and the other utilizes metadata
 (the encoded state approach).

 o Topological Approach

 Using this approach, differential packet treatment is expressed by
 splitting the LFB topology into alternative paths. In other words,
 if the result of an LFB operation controls how the packet is further
 processed, then such an LFB will have separate output ports, one for
 each alternative treatment, connected to separate sub-graphs, each
 expressing the respective treatment downstream.

 o Encoded State Approach

 An alternate way of expressing differential treatment is by using
 metadata. The result of the operation of an LFB can be encoded in a
 metadatum, which is passed along with the packet to downstream LFBs.
 A downstream LFB, in turn, can use the metadata and its value (e.g.,
 as an index into some table) to determine how to treat the packet.

 Theoretically, either approach could substitute for the other, so one
 could consider using a single pure approach to describe all data
 paths in an FE. However, neither model by itself results in the best
 representation for all practically relevant cases. For a given FE
 with certain logical data paths, applying the two different modeling
 approaches will result in very different looking LFB topology graphs.
 A model using only the topological approach may require a very large
 graph with many links or paths, and nodes (i.e., LFB instances) to
 express all alternative data paths. On the other hand, a model using
 only the encoded state model would be restricted to a string of LFBs,
 which is not an intuitive way to describe different data paths (such
 as MPLS and IPv4). Therefore, a mix of these two approaches will
 likely be used for a practical model. In fact, as we illustrate
 below, the two approaches can be mixed even within the same LFB.

 Using a simple example of a classifier with N classification outputs
 followed by other LFBs, Figure 7.a shows what the LFB topology looks
 like when using the pure topological approach. Each output from the
 classifier goes to one of the N LFBs where no metadata is needed.
 The topological approach is simple, straightforward, and graphically

Halpern & Hadi Salim Standards Track [Page 33]

RFC 5812 ForCES FE Model March 2010

 intuitive. However, if N is large and the N nodes following the
 classifier (LFB#1, LFB#2, ..., LFB#N) all belong to the same LFB type
 (e.g., meter), but each has its own independent components, the
 encoded state approach gives a much simpler topology representation,
 as shown in Figure 7.b. The encoded state approach requires that a
 table of N rows of meter components be provided in the Meter node
 itself, with each row representing the attributes for one meter
 instance. A metadatum M is also needed to pass along with the packet
 P from the classifier to the meter, so that the meter can use M as a
 look-up key (index) to find the corresponding row of the attributes
 that should be used for any particular packet P.

 What if those N nodes (LFB#1, LFB#2, ..., LFB#N) are not of the same
 type? For example, if LFB#1 is a queue while the rest are all
 meters, what is the best way to represent such data paths? While it
 is still possible to use either the pure topological approach or the
 pure encoded state approach, the natural combination of the two
 appears to be the best option. Figure 7.c depicts two different
 functional data paths using the topological approach while leaving
 the N-1 meter instances distinguished by metadata only, as shown in
 Figure 7.c.

 +----------+
 P | LFB#1 |
 +--------->|(Compon-1)|
 +-------------+ | +----------+
 | 1|------+ P +----------+
 | 2|---------------->| LFB#2 |
 | classifier 3| |(Compon-2)|
 | ...|... +----------+
 | N|------+ ...
 +-------------+ | P +----------+
 +--------->| LFB#N |
 |(Compon-N)|
 +----------+

 (a) Using pure topological approach

Halpern & Hadi Salim Standards Track [Page 34]

RFC 5812 ForCES FE Model March 2010

 +-------------+ +-------------+
1		Meter
2	(P, M)	(Compon-1)
3	---------------->	(Compon-2)
...		...
N		(Compon-N)
 +-------------+ +-------------+

 (b) Using pure encoded state approach to represent the LFB
 topology in 5(a), if LFB#1, LFB#2, ..., and LFB#N are of the
 same type (e.g., meter).

 +-------------+
 +-------------+ (P, M) | queue |
 | 1|------------->| (Compon-1) |
 | 2| +-------------+
 | 3| (P, M) +-------------+
 | ...|------------->| Meter |
 | N| | (Compon-2) |
 +-------------+ | ... |
 | (Compon-N) |
 +-------------+

 (c) Using a combination of the two, if LFB#1, LFB#2, ..., and
 LFB#N are of different types (e.g., queue and meter).

 Figure 7: An example of how to model FE data paths.

 From this example, we demonstrate that each approach has a distinct
 advantage depending on the situation. Using the encoded state
 approach, fewer connections are typically needed between a fan-out
 node and its next LFB instances of the same type because each packet
 carries metadata the following nodes can interpret and hence invoke a
 different packet treatment. For those cases, a pure topological
 approach forces one to build elaborate graphs with many more
 connections and often results in an unwieldy graph. On the other
 hand, a topological approach is the most intuitive for representing
 functionally different data paths.

 For complex topologies, a combination of the two is the most
 flexible. A general design guideline is provided to indicate which
 approach is best used for a particular situation. The topological
 approach should primarily be used when the packet data path forks to
 distinct LFB classes (not just distinct parameterizations of the same
 LFB class), and when the fan-outs do not require changes, such as
 adding/removing LFB outputs, or require only very infrequent changes.

Halpern & Hadi Salim Standards Track [Page 35]

RFC 5812 ForCES FE Model March 2010

 Configuration information that needs to change frequently should be
 expressed by using the internal attributes of one or more LFBs (and
 hence using the encoded state approach).

 +---+
 | |
 +----------+ V +----------+ +------+ |
 | | | | |if IP-in-IP| | |
 ---->| ingress |->+----->|classifier|---------->|Decap.|---->---+
 | ports | | |---+ | |
 +----------+ +----------+ |others +------+
 |
 V
 (a) The LFB topology with a logical loop

 +-------+ +-----------+ +------+ +-----------+
 | | | |if IP-in-IP | | | |
 --->|ingress|-->|classifier1|----------->|Decap.|-->+classifier2|->
 | ports | | |----+ | | | |
 +-------+ +-----------+ |others +------+ +-----------+
 |
 V
 (b) The LFB topology without the loop utilizing two independent
 classifier instances.

 Figure 8: An LFB topology example.

 It is important to point out that the LFB topology described here is
 the logical topology, not the physical topology of how the FE
 hardware is actually laid out. Nevertheless, the actual
 implementation may still influence how the functionality is mapped to
 the LFB topology. Figure 8 shows one simple FE example. In this
 example, an IP-in-IP packet from an IPsec application like VPN may go
 to the classifier first and have the classification done based on the
 outer IP header. Upon being classified as an IP-in-IP packet, the
 packet is then sent to a decapsulator to strip off the outer IP
 header, followed by a classifier again to perform classification on
 the inner IP header. If the same classifier hardware or software is
 used for both outer and inner IP header classification with the same
 set of filtering rules, a logical loop is naturally present in the
 LFB topology, as shown in Figure 8.a. However, if the classification
 is implemented by two different pieces of hardware or software with
 different filters (i.e., one set of filters for the outer IP header
 and another set for the inner IP header), then it is more natural to
 model them as two different instances of classifier LFB, as shown in
 Figure 8.b.

Halpern & Hadi Salim Standards Track [Page 36]

RFC 5812 ForCES FE Model March 2010

3.4.2. Configuring the LFB Topology

 While there is little doubt that an individual LFB must be
 configurable, the configurability question is more complicated for
 LFB topology. Since the LFB topology is really the graphic
 representation of the data paths within an FE, configuring the LFB
 topology means dynamically changing the data paths, including
 changing the LFBs along the data paths on an FE (e.g., creating/
 instantiating, updating, or deleting LFBs) and setting up or deleting
 interconnections between outputs of upstream LFBs to inputs of
 downstream LFBs.

 Why would the data paths on an FE ever change dynamically? The data
 paths on an FE are set up by the CE to provide certain data plane
 services (e.g., Diffserv, VPN) to the network element’s (NE)
 customers. The purpose of reconfiguring the data paths is to enable
 the CE to customize the services the NE is delivering at run time.
 The CE needs to change the data paths when the service requirements
 change, such as adding a new customer or when an existing customer
 changes their service. However, note that not all data path changes
 result in changes in the LFB topology graph. Changes in the graph
 are dependent on the approach used to map the data paths into LFB
 topology. As discussed in Section 3.4.1, the topological approach
 and encoded state approach can result in very different looking LFB
 topologies for the same data paths. In general, an LFB topology
 based on a pure topological approach is likely to experience more
 frequent topology reconfiguration than one based on an encoded state
 approach. However, even an LFB topology based entirely on an encoded
 state approach may have to change the topology at times, for example,
 to bypass some LFBs or insert new LFBs. Since a mix of these two
 approaches is used to model the data paths, LFB topology
 reconfiguration is considered an important aspect of the FE model.

 We want to point out that allowing a configurable LFB topology in the
 FE model does not mandate that all FEs are required to have this
 capability. Even if an FE supports configurable LFB topology, the FE
 may impose limitations on what can actually be configured.
 Performance-optimized hardware implementations may have zero or very
 limited configurability, while FE implementations running on network
 processors may provide more flexibility and configurability. It is
 entirely up to the FE designers to decide whether or not the FE
 actually implements reconfiguration and if so, how much. Whether a
 simple runtime switch is used to enable or disable (i.e., bypass)
 certain LFBs, or more flexible software reconfiguration is used, is
 an implementation detail internal to the FE and outside the scope of
 the FE model. In either case, the CE(s) MUST be able to learn the
 FE’s configuration capabilities. Therefore, the FE model MUST

Halpern & Hadi Salim Standards Track [Page 37]

RFC 5812 ForCES FE Model March 2010

 provide a mechanism for describing the LFB topology configuration
 capabilities of an FE. These capabilities may include (see Section 5
 for full details):

 o Which LFB classes the FE can instantiate

 o The maximum number of instances of the same LFB class that can be
 created

 o Any topological limitations, for example:

 * The maximum number of instances of the same class or any class
 that can be created on any given branch of the graph

 * Ordering restrictions on LFBs (e.g., any instance of LFB class
 A must be always downstream of any instance of LFB class B)

 The CE needs some programming help in order to cope with the range of
 complexity. In other words, even when the CE is allowed to configure
 LFB topology for the FE, the CE is not expected to be able to
 interpret an arbitrary LFB topology and determine which specific
 service or application (e.g., VPN, Diffserv) is supported by the FE.
 However, once the CE understands the coarse capability of an FE, the
 CE MUST configure the LFB topology to implement the network service
 the NE is supposed to provide. Thus, the mapping the CE has to
 understand is from the high-level NE service to a specific LFB
 topology, not the other way around. The CE is not expected to have
 the ultimate intelligence to translate any high-level service policy
 into the configuration data for the FEs. However, it is conceivable
 that within a given network service domain, a certain amount of
 intelligence can be programmed into the CE to give the CE a general
 understanding of the LFBs involved to allow the translation from a
 high-level service policy to the low-level FE configuration to be
 done automatically. Note that this is considered an implementation
 issue internal to the control plane and outside the scope of the FE
 model. Therefore, it is not discussed any further in this document.

Halpern & Hadi Salim Standards Track [Page 38]

RFC 5812 ForCES FE Model March 2010

 +----------+ +-----------+
 ---->| Ingress |---->|classifier |--------------+
 | | |chip | |
 +----------+ +-----------+ |
 v
 +---+
 +--------+ | Network Processor |
 <----| Egress | | +------+ +------+ +-------+ |
 +--------+ | |Meter | |Marker| |Dropper| |
 ^ | +------+ +------+ +-------+ |
 | | |
 +----------+-------+ |
 | | |
 | +---------+ +---------+ +------+ +---------+ |
 | |Forwarder|<------|Scheduler|<--|Queue | |Counter | |
 | +---------+ +---------+ +------+ +---------+ |
 +--+

 Figure 9: The capability of an FE as reported to the CE.

 Figure 9 shows an example where a QoS-enabled (quality-of-service)
 router has several line cards that have a few ingress ports and
 egress ports, a specialized classification chip, and a network
 processor containing codes for FE blocks like meter, marker, dropper,
 counter, queue, scheduler, and IPv4 forwarder. Some of the LFB
 topology is already fixed and has to remain static due to the
 physical layout of the line cards. For example, all of the ingress
 ports might be hardwired into the classification chip so all packets
 flow from the ingress port into the classification engine. On the
 other hand, the LFBs on the network processor and their execution
 order are programmable. However, certain capacity limits and linkage
 constraints could exist between these LFBs. Examples of the capacity
 limits might be:

 o 8 meters

 o 16 queues in one FE

 o the scheduler can handle at most up to 16 queues

 o The linkage constraints might dictate that:

 * the classification engine may be followed by:

 + a meter

 + marker

Halpern & Hadi Salim Standards Track [Page 39]

RFC 5812 ForCES FE Model March 2010

 + dropper

 + counter

 + queue or IPv4 forwarder, but not a scheduler

 * queues can only be followed by a scheduler

 * a scheduler must be followed by the IPv4 forwarder

 * the last LFB in the data path before going into the egress
 ports must be the IPv4 forwarder

 +-----+ +-------+ +---+
 | A|--->|Queue1 |--------------------->| |
 ------>| | +-------+ | | +---+
 | | | | | | | | | |
 | | +-------+ +-------+ | | | |
 | B|--->|Meter1 |----->|Queue2 |------>| |->| |
 | | | | +-------+ | | | |
 | | | |--+ | | | |
 +-----+ +-------+ | +-------+ | | +---+
 classifier +-->|Dropper| | | IPv4
 +-------+ +---+ Fwd.
 Scheduler

 Figure 10: An LFB topology as configured
 by the CE and accepted by the FE.

 Once the FE reports these capabilities and capacity limits to the CE,
 it is now up to the CE to translate the QoS policy into a desirable
 configuration for the FE. Figure 9 depicts the FE capability, while
 Figure 10 and Figure 11 depict two different topologies that the CE
 may request the FE to configure. Note that Figure 11 is not fully
 drawn, as inter-LFB links are included to suggest potential
 complexity, without drawing in the endpoints of all such links.

Halpern & Hadi Salim Standards Track [Page 40]

RFC 5812 ForCES FE Model March 2010

 Queue1
 +---+ +--+
 | A|------------------->| |--+
 +->| | | | |
 | | B|--+ +--+ +--+ +--+ | | | |
 | +---+ | | | | | |
 | Meter1 +->| |-->| | |
 | | | | | |
 | +--+ +--+ | IPv4
 | Counter1 Dropper1 Queue2| +--+ Fwd.
 +---+ | +--+ +--->|A | +-+
 | A|---+ | |------>|B | | |
 ------>| B|------------------------------>| | +-->|C |->| |->
 | C|---+ +--+ | +>|D | | |
 | D|-+ | | | +--+ +-+
 +---+ | | +---+ Queue3 | |Scheduler
 Classifier1 | | | A|------------> +--+ | |
 | +->| | | |-+ |
 | | B|--+ +--+ +-------->| | |
 | +---+ | | | | +--+ |
 | Meter2 +->| |-+ |
 | | | |
 | +--+ Queue4 |
 | Marker1 +--+ |
 +---------------------------->| |---+
 | |
 +--+

 Figure 11: Another LFB topology as configured
 by the CE and accepted by the FE.

 Note that both the ingress and egress are omitted in Figure 10 and
 Figure 11 to simplify the representation. The topology in Figure 11
 is considerably more complex than Figure 10, but both are feasible
 within the FE capabilities, and so the FE should accept either
 configuration request from the CE.

4. Model and Schema for LFB Classes

 The main goal of the FE model is to provide an abstract, generic,
 modular, implementation-independent representation of the FEs. This
 is facilitated using the concept of LFBs, which are instantiated from
 LFB classes. LFB classes and associated definitions will be provided

Halpern & Hadi Salim Standards Track [Page 41]

RFC 5812 ForCES FE Model March 2010

 in a collection of XML documents. The collection of these XML
 documents is called an LFB class library, and each document is called
 an LFB class library document (or library document, for short). Each
 of the library documents MUST conform to the schema presented in this
 section. The schema here and the rules for conforming to the schema
 are those defined by the W3C in the definitions of XML schema in XML
 schema [Schema1] and XML schema DataTypes [Schema2]. The root
 element of the library document is the <LFBLibrary> element.

 It is not expected that library documents will be exchanged between
 FEs and CEs "over-the-wire". But the model will serve as an
 important reference for the design and development of the CEs
 (software) and FEs (mostly the software part). It will also serve as
 a design input when specifying the ForCES protocol elements for CE-FE
 communication.

 The following sections describe the portions of an LFBLibrary XML
 document. The descriptions primarily provide the necessary semantic
 information to understand the meaning and uses of the XML elements.
 The XML schema below provides the final definition on what elements
 are permitted, and their base syntax. Unfortunately, due to the
 limitations of English and XML, there are constraints described in
 the semantic sections that are not fully captured in the XML schema,
 so both sets of information need to be used to build a compliant
 library document.

4.1. Namespace

 A namespace is needed to uniquely identify the LFB type in the LFB
 class library. The reference to the namespace definition is
 contained in Section 9, IANA Considerations.

4.2. <LFBLibrary> Element

 The <LFBLibrary> element serves as a root element of all library
 documents. A library document contains a sequence of top-level
 elements. The following is a list of all the elements that can occur
 directly in the <LFBLibrary> element. If they occur, they must occur
 in the order listed.

 o <description> providing a text description of the purpose of the
 library document,

 o <load> for loading information from other library documents,

 o <frameDefs> for the frame declarations,

Halpern & Hadi Salim Standards Track [Page 42]

RFC 5812 ForCES FE Model March 2010

 o <dataTypeDefs> for defining common data types,

 o <metadataDefs> for defining metadata, and

 o <LFBClassDefs> for defining LFB classes.

 Each element is optional. One library document may contain only
 metadata definitions, another may contain only LFB class definitions,
 and yet another may contain all of the above.

 A library document can import other library documents if it needs to
 refer to definitions contained in the included document. This
 concept is similar to the "#include" directive in the C programming
 language. Importing is expressed by the use of <load> elements,
 which must precede all the above elements in the document. For
 unique referencing, each LFBLibrary instance document has a unique
 label defined in the "provide" attribute of the LFBLibrary element.
 Note that what this performs is a ForCES inclusion, not an XML
 inclusion. The semantic content of the library referenced by the
 <load> element is included, not the xml content. Also, in terms of
 the conceptual processing of <load> elements, the total set of
 documents loaded is considered to form a single document for
 processing. A given document is included in this set only once, even
 if it is referenced by <load> elements several times, even from
 several different files. As the processing of LFBLibrary information
 is not order dependent, the order for processing loaded elements is
 up to the implementor, as long as the total effect is as if all of
 the information from all the files were available for referencing
 when needed. Note that such computer processing of ForCES model
 library documents may be helpful for various implementations, but is
 not required to define the libraries, or for the actual operation of
 the protocol itself.

 The following is a skeleton of a library document:

Halpern & Hadi Salim Standards Track [Page 43]

RFC 5812 ForCES FE Model March 2010

 <?xml version="1.0" encoding="UTF-8"?>
 <LFBLibrary xmlns="urn:ietf:params:xml:ns:forces:lfbmodel:1.0"
 provides="this_library">

 <description>

 </description>

 <!-- Loading external libraries (optional) -->
 <load library="another_library"/>
 ...

 <!-- FRAME TYPE DEFINITIONS (optional) -->
 <frameDefs>
 ...
 </frameDefs>

 <!-- DATA TYPE DEFINITIONS (optional) -->
 <dataTypeDefs>
 ...
 </dataTypeDefs>

 <!-- METADATA DEFINITIONS (optional) -->
 <metadataDefs>
 ...
 </metadataDefs>

 <!--
 -
 -
 LFB CLASS DEFINITIONS (optional) -->
 <LFBCLassDefs>

 </LFBCLassDefs>
 </LFBLibrary>

4.3. <load> Element

 This element is used to refer to another LFB library document.
 Similar to the "#include" directive in C, this makes the objects
 (metadata types, data types, etc.) defined in the referred library
 document available for referencing in the current document.

 The load element MUST contain the label of the library document to be
 included and MAY contain a URL to specify where the library can be
 retrieved. The load element can be repeated unlimited times. Below
 are three examples for the <load> elements:

Halpern & Hadi Salim Standards Track [Page 44]

RFC 5812 ForCES FE Model March 2010

 <load library="a_library"/>
 <load library="another_library" location="another_lib.xml"/>
 <load library="yetanother_library"
 location="http://www.example.com/forces/1.0/lfbmodel/lpm.xml"/>

4.4. <frameDefs> Element for Frame Type Declarations

 Frame names are used in the LFB definition to define the types of
 frames the LFB expects at its input port(s) and emits at its output
 port(s). The <frameDefs> optional element in the library document
 contains one or more <frameDef> elements, each declaring one frame
 type.

 Each frame definition MUST contain a unique name (NMTOKEN) and a
 brief synopsis. In addition, an optional detailed description MAY be
 provided.

 Uniqueness of frame types MUST be ensured among frame types defined
 in the same library document and in all directly or indirectly
 included library documents.

 The following example defines two frame types:

 <frameDefs>
 <frameDef>
 <name>ipv4</name>
 <synopsis>IPv4 packet</synopsis>
 <description>
 This frame type refers to an IPv4 packet.
 </description>
 </frameDef>
 <frameDef>
 <name>ipv6</name>
 <synopsis>IPv6 packet</synopsis>
 <description>
 This frame type refers to an IPv6 packet.
 </description>
 </frameDef>
 ...
 </frameDefs>

4.5. <dataTypeDefs> Element for Data Type Definitions

 The (optional) <dataTypeDefs> element can be used to define commonly
 used data types. It contains one or more <dataTypeDef> elements,
 each defining a data type with a unique name. Such data types can be
 used in several places in the library documents, including:

Halpern & Hadi Salim Standards Track [Page 45]

RFC 5812 ForCES FE Model March 2010

 o Defining other data types

 o Defining components of LFB classes

 This is similar to the concept of having a common header file for
 shared data types.

 Each <dataTypeDef> element MUST contain a unique name (NMTOKEN), a
 brief synopsis, and a type definition element. The name MUST be
 unique among all data types defined in the same library document and
 in any directly or indirectly included library documents. The
 <dataTypeDef> element MAY also include an optional longer
 description, for example:

 <dataTypeDefs>
 <dataTypeDef>
 <name>ieeemacaddr</name>
 <synopsis>48-bit IEEE MAC address</synopsis>
 ... type definition ...
 </dataTypeDef>
 <dataTypeDef>
 <name>ipv4addr</name>
 <synopsis>IPv4 address</synopsis>
 ... type definition ...
 </dataTypeDef>
 ...
 </dataTypeDefs>

 There are two kinds of data types: atomic and compound. Atomic data
 types are appropriate for single-value variables (e.g., integer,
 string, byte array).

 The following built-in atomic data types are provided, but additional
 atomic data types can be defined with the <typeRef> and <atomic>
 elements:

Halpern & Hadi Salim Standards Track [Page 46]

RFC 5812 ForCES FE Model March 2010

 <name> Meaning
 ---- -------
 char 8-bit signed integer
 uchar 8-bit unsigned integer
 int16 16-bit signed integer
 uint16 16-bit unsigned integer
 int32 32-bit signed integer
 uint32 32-bit unsigned integer
 int64 64-bit signed integer
 uint64 64-bit unsigned integer
 boolean A true / false value where
 0 = false, 1 = true
 string[N] A UTF-8 string represented in at most
 N octets
 string A UTF-8 string without a configured
 storage length limit
 byte[N] A byte array of N bytes
 octetstring[N] A buffer of N octets, which MAY
 contain fewer than N octets. Hence
 the encoded value will always have
 a length.
 float32 32-bit IEEE floating point number
 float64 64-bit IEEE floating point number

 These built-in data types can be readily used to define metadata or
 LFB attributes, but can also be used as building blocks when defining
 new data types. The boolean data type is defined here because it is
 so common, even though it can be built by sub-ranging the uchar data
 type, as defined under atomic types (Section 4.5.2).

 Compound data types can build on atomic data types and other compound
 data types. Compound data types can be defined in one of four ways.
 They may be defined as an array of components of some compound or
 atomic data type. They may be a structure of named components of
 compound or atomic data types (cf. C structures). They may be a
 union of named components of compound or atomic data types (cf. C
 unions). They may also be defined as augmentations (explained in
 Section 4.5.7) of existing compound data types.

 Given that the ForCES protocol will be getting and setting component
 values, all atomic data types used here must be able to be conveyed
 in the ForCES protocol. Further, the ForCES protocol will need a
 mechanism to convey compound data types. However, the details of
 such representations are for the ForCES protocol [RFC5810] document
 to define, not the model document. Strings and octetstrings must be
 conveyed by the protocol with their length, as they are not
 delimited, the value does not itself include the length, and these
 items are variable length.

Halpern & Hadi Salim Standards Track [Page 47]

RFC 5812 ForCES FE Model March 2010

 With regard to strings, this model defines a small set of
 restrictions and definitions on how they are structured. String and
 octetstring length limits can be specified in the LFB class
 definitions. The component properties for string and octetstring
 components also contain actual lengths and length limits. This
 duplication of limits is to allow for implementations with smaller
 limits than the maximum limits specified in the LFB class definition.
 In all cases, these lengths are specified in octets, not in
 characters. In terms of protocol operation, as long as the specified
 length is within the FE’s supported capabilities, the FE stores the
 contents of a string exactly as provided by the CE, and returns those
 contents when requested. No canonicalization, transformations, or
 equivalences are performed by the FE. Components of type string (or
 string[n]) MAY be used to hold identifiers for correlation with
 components in other LFBs. In such cases, an exact octet for octet
 match is used. No equivalences are used by the FE or CE in
 performing that matching. The ForCES protocol [RFC5810] does not
 perform or require validation of the content of UTF-8 strings.
 However, UTF-8 strings SHOULD be encoded in the shortest form to
 avoid potential security issues described in [UNICODE]. Any entity
 displaying such strings is expected to perform its own validation
 (for example, for correct multi-byte characters, and for ensuring
 that the string does not end in the middle of a multi-byte sequence).
 Specific LFB class definitions MAY restrict the valid contents of a
 string as suited to the particular usage (for example, a component
 that holds a DNS name would be restricted to hold only octets valid
 in such a name). FEs should validate the contents of SET requests
 for such restricted components at the time the set is performed, just
 as range checks for range-limited components are performed. The
 ForCES protocol behavior defines the normative processing for
 requests using that protocol.

 For the definition of the actual type in the <dataTypeDef> element,
 the following elements are available: <typeRef>, <atomic>, <array>,
 <struct>, and <union>.

 The predefined type alias is somewhere between the atomic and
 compound data types. Alias is used to allow a component inside an
 LFB to be an indirect reference to another component inside the same
 or a different LFB class or instance. The alias component behaves
 like a structure, one component of which has special behavior. Given
 that the special behavior is tied to the other parts of the
 structure, the compound result is treated as a predefined construct.

Halpern & Hadi Salim Standards Track [Page 48]

RFC 5812 ForCES FE Model March 2010

4.5.1. <typeRef> Element for Renaming Existing Data Types

 The <typeRef> element refers to an existing data type by its name.
 The referred data type MUST be defined either in the same library
 document or in one of the included library documents. If the
 referred data type is an atomic data type, the newly defined type
 will also be regarded as atomic. If the referred data type is a
 compound type, the new type will also be compound. Some usage
 examples follow:

 <dataTypeDef>
 <name>short</name>
 <synopsis>Alias to int16</synopsis>
 <typeRef>int16</typeRef>
 </dataTypeDef>
 <dataTypeDef>
 <name>ieeemacaddr</name>
 <synopsis>48-bit IEEE MAC address</synopsis>
 <typeRef>byte[6]</typeRef>
 </dataTypeDef>

4.5.2. <atomic> Element for Deriving New Atomic Types

 The <atomic> element allows the definition of a new atomic type from
 an existing atomic type, applying range restrictions and/or providing
 special enumerated values. Note that the <atomic> element can only
 use atomic types as base types, and its result MUST be another atomic
 type.

 For example, the following snippet defines a new "dscp" data type:

 <dataTypeDef>
 <name>dscp</name>
 <synopsis>Diffserv code point.</synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <rangeRestriction>
 <allowedRange min="0" max="63"/>
 </rangeRestriction>
 <specialValues>
 <specialValue value="0">
 <name>DSCP-BE</name>
 <synopsis>Best Effort</synopsis>
 </specialValue>
 ...
 </specialValues>
 </atomic>
 </dataTypeDef>

Halpern & Hadi Salim Standards Track [Page 49]

RFC 5812 ForCES FE Model March 2010

4.5.3. <array> Element to Define Arrays

 The <array> element can be used to create a new compound data type as
 an array of a compound or an atomic data type. Depending upon
 context, this document and others refer to such arrays as tables or
 arrays interchangeably, without semantic or syntactic implication.
 The type of the array entry can be specified either by referring to
 an existing type (using the <typeRef> element) or defining an unnamed
 type inside the <array> element using any of the <atomic>, <array>,
 <struct>, or <union> elements.

 The array can be "fixed-size" or "variable-size", which is specified
 by the "type" attribute of the <array> element. The default is
 "variable-size". For variable-size arrays, an optional "maxlength"
 attribute specifies the maximum allowed length. This attribute
 should be used to encode semantic limitations, not implementation
 limitations. The latter (support for implementation constraints)
 should be handled by capability components of LFB classes, and should
 never be included as the maxlength in a data type array that is
 regarded as being of unlimited size.

 For fixed-size arrays, a "length" attribute MUST be provided that
 specifies the constant size of the array.

 The result of this construct is always a compound type, even if the
 array has a fixed size of 1.

 Arrays MUST only be subscripted by integers, and will be presumed to
 start with index 0.

 In addition to their subscripts, arrays MAY be declared to have
 content keys. Such a declaration has several effects:

 o Any declared key can be used in the ForCES protocol to select a
 component for operations (for details, see the ForCES protocol
 [RFC5810]).

 o In any instance of the array, each declared key MUST be unique
 within that instance. That is, no two components of an array may
 have the same values on all the fields that make up a key.

 Each key is declared with a keyID for use in the ForCES protocol
 [RFC5810], where the unique key is formed by combining one or more
 specified key fields. To support the case where an array of an
 atomic type with unique values can be referenced by those values, the
 key field identifier MAY be "*" (i.e., the array entry is the key).
 If the value type of the array is a structure or an array, then the
 key is one or more components of the value type, each identified by

Halpern & Hadi Salim Standards Track [Page 50]

RFC 5812 ForCES FE Model March 2010

 name. Since the field MAY be a component of the contained structure,
 a component of a component of a structure, or further nested, the
 field name is actually a concatenated sequence of component
 identifiers, separated by decimal points ("."). The syntax for key
 field identification is given following the array examples.

 The following example shows the definition of a fixed-size array with
 a predefined data type as the array content type:

 <dataTypeDef>
 <name>dscp-mapping-table</name>
 <synopsis>
 A table of 64 DSCP values, used to re-map code space.
 </synopsis>
 <array type="fixed-size" length="64">
 <typeRef>dscp</typeRef>
 </array>
 </dataTypeDef>

 The following example defines a variable-size array with an upper
 limit on its size:

 <dataTypeDef>
 <name>mac-alias-table</name>
 <synopsis>A table with up to 8 IEEE MAC addresses</synopsis>
 <array type="variable-size" maxlength="8">
 <typeRef>ieeemacaddr</typeRef>
 </array>
 </dataTypeDef>

Halpern & Hadi Salim Standards Track [Page 51]

RFC 5812 ForCES FE Model March 2010

 The following example shows the definition of an array with a local
 (unnamed) content type definition:

 <dataTypeDef>
 <name>classification-table</name>
 <synopsis>
 A table of classification rules and result opcodes.
 </synopsis>
 <array type="variable-size">
 <struct>
 <component componentID="1">
 <name>rule</name>
 <synopsis>The rule to match</synopsis>
 <typeRef>classrule</typeRef>
 </component>
 <component componentID="2">
 <name>opcode</name>
 <synopsis>The result code</synopsis>
 <typeRef>opcode</typeRef>
 </component>
 </struct>
 </array>
 </dataTypeDef>

 In the above example, each entry of the array is a <struct> of two
 components ("rule" and "opcode").

 The following example shows a table of IP prefix information that can
 be accessed by a multi-field content key on the IP address, prefix
 length, and information source. This means that in any instance of
 this table, no two entries can have the same IP address, prefix
 length, and information source.

Halpern & Hadi Salim Standards Track [Page 52]

RFC 5812 ForCES FE Model March 2010

 <dataTypeDef>
 <name>ipPrefixInfo_table</name>
 <synopsis>
 A table of information about known prefixes
 </synopsis>
 <array type="variable-size">
 <struct>
 <component componentID="1">
 <name>address-prefix</name>
 <synopsis>the prefix being described</synopsis>
 <typeRef>ipv4Prefix</typeRef>
 </component>
 <component componentID="2">
 <name>source</name>
 <synopsis>
 the protocol or process providing this information
 </synopsis>
 <typeRef>uint16</typeRef>
 </component>
 <component componentID="3">
 <name>prefInfo</name>
 <synopsis>the information we care about</synopsis>
 <typeRef>hypothetical-info-type</typeRef>
 </component>
 </struct>
 <contentKey contentKeyID="1">
 <contentKeyField> address-prefix.ipv4addr</contentKeyField>
 <contentKeyField> address-prefix.prefixlen</contentKeyField>
 <contentKeyField> source</contentKeyField>
 </contentKey>
 </array>
 </dataTypeDef>

 Note that the keyField elements could also have been simply address-
 prefix and source, since all of the fields of address-prefix are
 being used.

Halpern & Hadi Salim Standards Track [Page 53]

RFC 5812 ForCES FE Model March 2010

4.5.3.1. Key Field References

 In order to use key declarations, one must refer to components that
 are potentially nested inside other components in the array. If
 there are nested arrays, one might even use an array element as a key
 (but great care would be needed to ensure uniqueness).

 The key is the combination of the values of each field declared in a
 keyField element.

 Therefore, the value of a keyField element MUST be a concatenated
 sequence of field identifiers, separated by a "." (period) character.
 Whitespace is permitted and ignored.

 A valid string for a single field identifier within a keyField
 depends upon the current context. Initially, in an array key
 declaration, the context is the type of the array. Progressively,
 the context is whatever type is selected by the field identifiers
 processed so far in the current key field declaration.

 When the current context is an array (e.g., when declaring a key for
 an array whose content is an array), then the only valid value for
 the field identifier is an explicit number.

 When the current context is a structure, the valid values for the
 field identifiers are the names of the components of the structure.
 In the special case of declaring a key for an array containing an
 atomic type, where that content is unique and is to be used as a key,
 the value "*" MUST be used as the single key field identifier.

 In reference array or structure elements, it is possible to construct
 keyFields that do not exist. keyField references SHOULD never
 reference optional structure components. For references to array
 elements, care must be taken to ensure that the necessary array
 elements exist when creating or modifying the overall array element.
 Failure to do so will result in FEs returning errors on the creation
 attempt.

4.5.4. <struct> Element to Define Structures

 A structure is composed of a collection of data components. Each
 data component has a data type (either an atomic type or an existing
 compound type) and is assigned a name unique within the scope of the
 compound data type being defined. These serve the same function as
 "struct" in C, etc. These components are defined using <component>
 elements. A <struct> element MAY contain an optional derivation
 indication, a <derivedFrom> element. The structure definition MUST
 contain a sequence of one or more <component> elements.

Halpern & Hadi Salim Standards Track [Page 54]

RFC 5812 ForCES FE Model March 2010

 The actual type of the component can be defined by referring to an
 existing type (using the <typeRef> element), or can be a locally
 defined (unnamed) type created by any of the <atomic>, <array>,
 <struct>, or <union> elements.

 The <component> element MUST include a componentID attribute. This
 provides the numeric ID for this component, for use by the protocol.
 The <component> MUST contain a component name and a synopsis. It MAY
 contain a <description> element giving a textual description of the
 component. The definition MAY also include an <optional> element,
 which indicates that the component being defined is optional. The
 definition MUST contain elements to define the data type of the
 component, as described above.

 For a dataTypeDef of a struct, the structure definition MAY be
 inherited from, and augment, a previously defined structured type.
 This is indicated by including the optional derivedFrom attribute in
 the struct declaration before the definition of the augmenting or
 replacing components. Section 4.5.7 describes how this is done in
 more detail.

 The componentID attribute for different components in a structure (or
 in an LFB) MUST be distinct. They do not need to be in order, nor do
 they need to be sequential. For clarity of human readability, and
 ease of maintenance, it is usual to define at least sequential sets
 of values. But this is for human ease, not a model or protocol
 requirement.

 The result of this construct is always a compound type, even when the
 <struct> contains only one field.

Halpern & Hadi Salim Standards Track [Page 55]

RFC 5812 ForCES FE Model March 2010

 An example is the following:

 <dataTypeDef>
 <name>ipv4prefix</name>
 <synopsis>
 IPv4 prefix defined by an address and a prefix length
 </synopsis>
 <struct>
 <component componentID="1">
 <name>address</name>
 <synopsis>Address part</synopsis>
 <typeRef>ipv4addr</typeRef>
 </component>
 <component componentID="2">
 <name>prefixlen</name>
 <synopsis>Prefix length part</synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <rangeRestriction>
 <allowedRange min="0" max="32"/>
 </rangeRestriction>
 </atomic>
 </component>
 </struct>
 </dataTypeDef>

4.5.5. <union> Element to Define Union Types

 Similar to the union declaration in C, this construct allows the
 definition of overlay types. Its format is identical to the <struct>
 element.

 The result of this construct is always a compound type, even when the
 union contains only one element.

4.5.6. <alias> Element

 It is sometimes necessary to have a component in an LFB or structure
 refer to information (a component) in other LFBs. This can, for
 example, allow an ARP LFB to share the IP->MAC Address table with the
 local transmission LFB, without duplicating information. Similarly,
 it could allow a traffic measurement LFB to share information with a
 traffic enforcement LFB. The <alias> declaration creates the
 constructs for this. This construct tells the CE and FE that any
 manipulation of the defined data is actually manipulation of data

Halpern & Hadi Salim Standards Track [Page 56]

RFC 5812 ForCES FE Model March 2010

 defined to exist in some specified part of some other LFB instance.
 The content of an <alias> element MUST be a named type. Whatever
 component the alias references (which is determined by the alias
 component properties, as described below), that component must be of
 the same type as that declared for the alias. Thus, when the CE or
 FE dereferences the alias component, the type of the information
 returned is known. The type can be a base type or a derived type.
 The actual value referenced by an alias is known as its target. When
 a GET or SET operation references the alias element, the value of the
 target is returned or replaced. Write access to an alias element is
 permitted if write access to both the alias and the target is
 permitted.

 The target of a component declared by an <alias> element is
 determined by the information in the component’s properties. Like
 all components, the properties include the support / read / write
 permission for the alias. In addition, there are several fields
 (components) in the alias properties that define the target of the
 alias. These components are the ID of the LFB class of the target,
 the ID of the LFB instance of the target, and a sequence of integers
 representing the path within the target LFB instance to the target
 component. The type of the target element must match the declared
 type of the alias. Details of the alias property structure are
 described in Section 4.8 of this document, on properties.

 Note that the read / write property of the alias refers to the value.
 The CE can only determine if it can write the target selection
 properties of the alias by attempting such a write operation.
 (Property components do not themselves have properties.)

4.5.7. Augmentations

 Compound types can also be defined as augmentations of existing
 compound types. If the existing compound type is a structure,
 augmentation MAY add new elements to the type. The type of an
 existing component MAY be replaced in the definition of an augmenting
 structure, but MAY only be replaced with an augmentation derived from
 the current type of the existing component. An existing component
 cannot be deleted. If the existing compound type is an array,
 augmentation means augmentation of the array element type.

 Augmentation MUST NOT be applied to unions.

 One consequence of this is that augmentations are backward compatible
 with the compound type from which they are derived. As such,
 augmentations are useful in defining components for LFB subclasses
 with backward compatibility. In addition to adding new components to
 a class, the data type of an existing component MAY be replaced by an

Halpern & Hadi Salim Standards Track [Page 57]

RFC 5812 ForCES FE Model March 2010

 augmentation of that component, and still meet the compatibility
 rules for subclasses. This compatibility constraint is why
 augmentations cannot be applied to unions.

 For example, consider a simple base LFB class A that has only one
 component (comp1) of type X. One way to derive class A1 from A can
 be by simply adding a second component (of any type). Another way to
 derive a class A2 from A can be by replacing the original component
 (comp1) in A of type X with one of type Y, where Y is an augmentation
 of X. Both classes A1 and A2 are backward compatible with class A.

 The syntax for augmentations is to include a <derivedFrom> element in
 a structure definition, indicating what structure type is being
 augmented. Component names and component IDs for new components
 within the augmentation MUST NOT be the same as those in the
 structure type being augmented. For those components where the data
 type of an existing component is being replaced with a suitable
 augmenting data type, the existing component name and component ID
 MUST be used in the augmentation. Other than the constraint on
 existing elements, there is no requirement that the new component IDs
 be sequential with, greater than, or in any other specific
 relationship to the existing component IDs except different. It is
 expected that using values sequential within an augmentation, and
 distinct from the previously used values, will be a common method to
 enhance human readability.

4.6. <metadataDefs> Element for Metadata Definitions

 The (optional) <metadataDefs> element in the library document
 contains one or more <metadataDef> elements. Each <metadataDef>
 element defines a metadatum.

 Each <metadataDef> element MUST contain a unique name (NMTOKEN).
 Uniqueness is defined to be over all metadata defined in this library
 document and in all directly or indirectly included library
 documents. The <metadataDef> element MUST also contain a brief
 synopsis, the tag value to be used for this metadata, and value type
 definition information. Only atomic data types can be used as value
 types for metadata. The <metadataDef> element MAY contain a detailed
 description element.

 Two forms of type definitions are allowed. The first form uses the
 <typeRef> element to refer to an existing atomic data type defined in
 the <dataTypeDefs> element of the same library document or in one of
 the included library documents. The usage of the <typeRef> element
 is identical to how it is used in the <dataTypeDef> elements, except
 here it can only refer to atomic types. The latter restriction is
 not enforced by the XML schema.

Halpern & Hadi Salim Standards Track [Page 58]

RFC 5812 ForCES FE Model March 2010

 The second form is an explicit type definition using the <atomic>
 element. This element is used here in the same way as in the
 <dataTypeDef> elements.

 The following example shows both usages:

 <metadataDefs>
 <metadataDef>
 <name>NEXTHOPID</name>
 <synopsis>Refers to a Next Hop entry in NH LFB</synopsis>
 <metadataID>17</metadataID>
 <typeRef>int32</typeRef>
 </metadataDef>
 <metadataDef>
 <name>CLASSID</name>
 <synopsis>
 Result of classification (0 means no match).
 </synopsis>
 <metadataID>21</metadataID>
 <atomic>
 <baseType>int32</baseType>
 <specialValues>
 <specialValue value="0">
 <name>NOMATCH</name>
 <synopsis>
 Classification didn’t result in match.
 </synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </metadataDef>
 </metadataDefs>

4.7. <LFBClassDefs> Element for LFB Class Definitions

 The (optional) <LFBClassDefs> element can be used to define one or
 more LFB classes using <LFBClassDef> elements. Each <LFBClassDef>
 element MUST define an LFB class and include the following elements:

 o <name> provides the symbolic name of the LFB class. Example:
 "ipv4lpm".

 o <synopsis> provides a short synopsis of the LFB class. Example:
 "IPv4 Longest Prefix Match Lookup LFB".

 o <version> is the version indicator.

Halpern & Hadi Salim Standards Track [Page 59]

RFC 5812 ForCES FE Model March 2010

 o <derivedFrom> is the inheritance indicator.

 o <inputPorts> lists the input ports and their specifications.

 o <outputPorts> lists the output ports and their specifications.

 o <components> defines the operational components of the LFB.

 o <capabilities> defines the capability components of the LFB.

 o <description> contains the operational specification of the LFB.

 o The LFBClassID attribute of the LFBClassDef element defines the ID
 for this class. These must be globally unique.

 o <events> defines the events that can be generated by instances of
 this LFB.

 LFB class names must be unique, in order to enable other documents to
 reference the classes by name, and to enable human readers to
 understand references to class names. While a complex naming
 structure could be created, simplicity is preferred. As given in the
 IANA Considerations section of this document, the IANA maintains a
 registry of LFB class names and class identifiers, along with a
 reference to the document defining the class.

 Below is a skeleton of an example LFB class definition. Note that in
 order to keep from complicating the XML schema, the order of elements
 in the class definition is fixed. Elements, if they appear, must
 appear in the order shown.

Halpern & Hadi Salim Standards Track [Page 60]

RFC 5812 ForCES FE Model March 2010

 <LFBClassDefs>
 <LFBClassDef LFBClassID="12345">
 <name>ipv4lpm</name>
 <synopsis>IPv4 Longest Prefix Match Lookup LFB</synopsis>
 <version>1.0</version>
 <derivedFrom>baseclass</derivedFrom>

 <inputPorts>
 ...
 </inputPorts>

 <outputPorts>
 ...
 </outputPorts>

 <components>
 ...
 </components>

 <capabilities>
 ...
 </capabilities>

 <events>
 ...
 </events>

 <description>
 This LFB represents the IPv4 longest prefix match lookup
 operation.
 The modeled behavior is as follows:
 Blah-blah-blah.
 </description>

 </LFBClassDef>
 ...
 </LFBClassDefs>

 The individual components and capabilities will have componentIDs for
 use by the ForCES protocol. These parallel the componentIDs used in
 structs, and are used the same way. Component and capability
 componentIDs must be unique within the LFB class definition.

 Note that the <name>, <synopsis>, and <version> elements are
 required; all other elements are optional in <LFBClassDef>. However,
 when they are present, they must occur in the above order.

Halpern & Hadi Salim Standards Track [Page 61]

RFC 5812 ForCES FE Model March 2010

 The componentID attribute for different items in an LFB class
 definition (or components in a struct) MUST be distinct. They do not
 need to be in order, nor do they need to be sequential. For clarity
 of human readability, and ease of maintenance, it is usual to define
 at least sequential sets of values. But this is for human ease, not
 a model or protocol requirement.

4.7.1. <derivedFrom> Element to Express LFB Inheritance

 The optional <derivedFrom> element can be used to indicate that this
 class is a derivative of some other class. The content of this
 element MUST be the unique name (<name>) of another LFB class. The
 referred LFB class MUST be defined in the same library document or in
 one of the included library documents. In the absence of a
 <derivedFrom>, the class is conceptually derived from the common,
 empty, base class.

 It is assumed that a derived class is backward compatible with its
 base class. A derived class MAY add components to a parent class,
 but cannot delete components. This also applies to input and output
 ports, events, and capabilities.

4.7.2. <inputPorts> Element to Define LFB Inputs

 The optional <inputPorts> element is used to define input ports. An
 LFB class MAY have zero, one, or more inputs. If the LFB class has
 no input ports, the <inputPorts> element MUST be omitted. The
 <inputPorts> element can contain one or more <inputPort> elements,
 one for each port or port group. We assume that most LFBs will have
 exactly one input. Multiple inputs with the same input type are
 modeled as one input group. Input groups are defined the same way as
 input ports by the <inputPort> element, differentiated only by an
 optional "group" attribute.

 Multiple inputs with different input types should be avoided if
 possible (see discussion in Section 4.7.3). Some special LFBs will
 have no inputs at all. For example, a packet generator LFB does not
 need an input.

 Single input ports and input port groups are both defined by the
 <inputPort> element; they are differentiated only by an optional
 "group" attribute.

 The <inputPort> element MUST contain the following elements:

 o <name> provides the symbolic name of the input. Example: "in".
 Note that this symbolic name must be unique only within the scope
 of the LFB class.

Halpern & Hadi Salim Standards Track [Page 62]

RFC 5812 ForCES FE Model March 2010

 o <synopsis> contains a brief description of the input. Example:
 "Normal packet input".

 o <expectation> lists all allowed frame formats. Example: {"ipv4"
 and "ipv6"}. Note that this list should refer to names specified
 in the <frameDefs> element of the same library document or in any
 included library documents. The <expectation> element can also
 provide a list of required metadata. Example: {"classid",
 "vpnid"}. This list should refer to names of metadata defined in
 the <metadataDefs> element in the same library document or in any
 included library documents. For each metadatum, it must be
 specified whether the metadatum is required or optional. For each
 optional metadatum, a default value must be specified, which is
 used by the LFB if the metadatum is not provided with a packet.

 In addition, the optional "group" attribute of the <inputPort>
 element can specify if the port can behave as a port group, i.e., it
 is allowed to be instantiated. This is indicated by a "true" value
 (the default value is "false").

 An example <inputPorts> element, defining two input ports, the second
 one being an input port group is the following:

 <inputPorts>
 <inputPort>
 <name>in</name>
 <synopsis>Normal input</synopsis>
 <expectation>
 <frameExpected>
 <ref>ipv4</ref>
 <ref>ipv6</ref>
 </frameExpected>
 <metadataExpected>
 <ref>classid</ref>
 <ref>vifid</ref>
 <ref dependency="optional" defaultValue="0">vrfid</ref>
 </metadataExpected>
 </expectation>
 </inputPort>
 <inputPort group="true">
 ... another input port ...
 </inputPort>
 </inputPorts>

 For each <inputPort>, the frame type expectations are defined by the
 <frameExpected> element using one or more <ref> elements (see example
 above). When multiple frame types are listed, it means that "one of
 these" frame types is expected. A packet of any other frame type is

Halpern & Hadi Salim Standards Track [Page 63]

RFC 5812 ForCES FE Model March 2010

 regarded as incompatible with this input port of the LFB class. The
 above example lists two frames as expected frame types: "ipv4" and
 "ipv6".

 Metadata expectations are specified by the <metadataExpected>
 element. In its simplest form, this element can contain a list of
 <ref> elements, each referring to a metadatum. When multiple
 instances of metadata are listed by <ref> elements, it means that
 "all of these" metadata must be received with each packet (except
 metadata that are marked as "optional" by the "dependency" attribute
 of the corresponding <ref> element). For a metadatum that is
 specified "optional", a default value MUST be provided using the
 "defaultValue" attribute. The above example lists three metadata as
 expected metadata, two of which are mandatory ("classid" and
 "vifid"), and one being optional ("vrfid").

 The schema also allows for more complex definitions of metadata
 expectations. For example, using the <one-of> element, a list of
 metadata can be specified to express that at least one of the
 specified metadata must be present with any packet. An example is
 the following:

 <metadataExpected>
 <one-of>
 <ref>prefixmask</ref>
 <ref>prefixlen</ref>
 </one-of>
 </metadataExpected>

 The above example specifies that either the "prefixmask" or the
 "prefixlen" metadata must be provided with any packet.

 The two forms can also be combined, as shown in the following
 example:

 <metadataExpected>
 <ref>classid</ref>
 <ref>vifid</ref>
 <ref dependency="optional" defaultValue="0">vrfid</ref>
 <one-of>
 <ref>prefixmask</ref>
 <ref>prefixlen</ref>
 </one-of>
 </metadataExpected>

 Although the schema is constructed to allow even more complex
 definitions of metadata expectations, we do not discuss those here.

Halpern & Hadi Salim Standards Track [Page 64]

RFC 5812 ForCES FE Model March 2010

4.7.3. <outputPorts> Element to Define LFB Outputs

 The optional <outputPorts> element is used to define output ports.
 An LFB class MAY have zero, one, or more outputs. If the LFB class
 has no output ports, the <outputPorts> element MUST be omitted. The
 <outputPorts> element MUST contain one or more <outputPort> elements,
 one for each port or port group. If there are multiple outputs with
 the same output type, we model them as an output port group. Some
 special LFBs have no outputs at all (e.g., Dropper).

 Single output ports and output port groups are both defined by the
 <outputPort> element; they are differentiated only by an optional
 "group" attribute.

 The <outputPort> element MUST contain the following elements:

 o <name> provides the symbolic name of the output. Example: "out".
 Note that the symbolic name must be unique only within the scope
 of the LFB class.

 o <synopsis> contains a brief description of the output port.
 Example: "Normal packet output".

 o <product> lists the allowed frame formats. Example: {"ipv4",
 "ipv6"}. Note that this list should refer to symbols specified in
 the <frameDefs> element in the same library document or in any
 included library documents. The <product> element MAY also
 contain the list of emitted (generated) metadata. Example:
 {"classid", "color"}. This list should refer to names of metadata
 specified in the <metadataDefs> element in the same library
 document or in any included library documents. For each generated
 metadatum, it should be specified whether the metadatum is always
 generated or generated only in certain conditions. This
 information is important when assessing compatibility between
 LFBs.

 In addition, the optional "group" attribute of the <outputPort>
 element can specify if the port can behave as a port group, i.e., it
 is allowed to be instantiated. This is indicated by a "true" value
 (the default value is "false").

 The following example specifies two output ports, the second being an
 output port group:

Halpern & Hadi Salim Standards Track [Page 65]

RFC 5812 ForCES FE Model March 2010

 <outputPorts>
 <outputPort>
 <name>out</name>
 <synopsis>Normal output</synopsis>
 <product>
 <frameProduced>
 <ref>ipv4</ref>
 <ref>ipv4bis</ref>
 </frameProduced>
 <metadataProduced>
 <ref>nhid</ref>
 <ref>nhtabid</ref>
 </metadataProduced>
 </product>
 </outputPort>
 <outputPort group="true">
 <name>exc</name>
 <synopsis>Exception output port group</synopsis>
 <product>
 <frameProduced>
 <ref>ipv4</ref>
 <ref>ipv4bis</ref>
 </frameProduced>
 <metadataProduced>
 <ref availability="conditional">errorid</ref>
 </metadataProduced>
 </product>
 </outputPort>
 </outputPorts>

 The types of frames and metadata the port produces are defined inside
 the <product> element in each <outputPort>. Within the <product>
 element, the list of frame types the port produces is listed in the
 <frameProduced> element. When more than one frame is listed, it
 means that "one of" these frames will be produced.

 The list of metadata that is produced with each packet is listed in
 the optional <metadataProduced> element of the <product>. In its
 simplest form, this element can contain a list of <ref> elements,
 each referring to a metadatum type. The meaning of such a list is
 that "all of" these metadata are provided with each packet, except
 those that are listed with the optional "availability" attribute set
 to "conditional". Similar to the <metadataExpected> element of the
 <inputPort>, the <metadataProduced> element supports more complex
 forms, which we do not discuss here further.

Halpern & Hadi Salim Standards Track [Page 66]

RFC 5812 ForCES FE Model March 2010

4.7.4. <components> Element to Define LFB Operational Components

 Operational parameters of the LFBs that must be visible to the CEs
 are conceptualized in the model as the LFB components. These
 include, for example, flags, single parameter arguments, complex
 arguments, and tables. Note that the components here refer to only
 those operational parameters of the LFBs that must be visible to the
 CEs. Other variables that are internal to LFB implementation are not
 regarded as LFB components and hence are not covered.

 Some examples for LFB components are:

 o Configurable flags and switches selecting between operational
 modes of the LFB

 o Number of inputs or outputs in a port group

 o Various configurable lookup tables, including interface tables,
 prefix tables, classification tables, DSCP mapping tables, MAC
 address tables, etc.

 o Packet and byte counters

 o Various event counters

 o Number of current inputs or outputs for each input or output group

 The ForCES model supports the definition of access permission
 restrictions on what the CE can do with an LFB component. The
 following categories are supported by the model:

 o No-access components. This is useful for completeness, and to
 allow for defining objects that are used by other things, but not
 directly referencable by the CE. It is also useful for an FE that
 is reporting that certain defined, and typically accessible,
 components are not supported for CE access by a reporting FE.

 o Read-only components.

 o Read-write components.

 o Write-only components. This could be any configurable data for
 which read capability is not provided to the CEs (e.g., the
 security key information).

 o Read-reset components. The CE can read and reset this resource,
 but cannot set it to an arbitrary value. Example: Counters.

Halpern & Hadi Salim Standards Track [Page 67]

RFC 5812 ForCES FE Model March 2010

 o Firing-only components. A write attempt to this resource will
 trigger some specific actions in the LFB, but the actual value
 written is ignored.

 The LFB class MUST define only one possible access mode for a given
 component.

 The components of the LFB class are listed in the <components>
 element. Each component is defined by an <component> element. A
 <component> element contains some or all of the following elements,
 some of which are mandatory:

 o <name> MUST occur, and defines the name of the component. This
 name must be unique among the components of the LFB class.
 Example: "version".

 o <synopsis> is also mandatory, and provides a brief description of
 the purpose of the component.

 o <optional/> is an optional element, and if present indicates that
 this component is optional.

 o The data type of the component can be defined either via a
 reference to a predefined data type or by providing a local
 definition of the type. The former is provided by using the
 <typeRef> element, which must refer to the unique name of an
 existing data type defined in the <dataTypeDefs> element in the
 same library document or in any of the included library documents.
 When the data type is defined locally (unnamed type), one of the
 following elements can be used: <atomic>, <array>, <struct>, or
 <union>. Their usage is identical to how they are used inside
 <dataTypeDef> elements (see Section 4.5). Some form of data type
 definition MUST be included in the component definition.

 o The <defaultValue> element is optional, and if present is used to
 specify a default value for a component. If a default value is
 specified, the FE must ensure that the component has that value
 when the LFB is initialized or reset. If a default value is not
 specified for a component, the CE MUST make no assumptions as to
 what the value of the component will be upon initialization. The
 CE must either read the value or set the value, if it needs to
 know what it is.

 o The <description> element MAY also appear. If included, it
 provides a longer description of the meaning or usage of the
 particular component being defined.

Halpern & Hadi Salim Standards Track [Page 68]

RFC 5812 ForCES FE Model March 2010

 The <component> element also MUST have a componentID attribute, which
 is a numeric value used by the ForCES protocol.

 In addition to the above elements, the <component> element includes
 an optional "access" attribute, which can take any of the following
 values: "read-only", "read-write", "write-only", "read-reset", and
 "trigger-only". The default access mode is "read-write".

 Whether optional components are supported, and whether components
 defined as read-write can actually be written, can be determined for
 a given LFB instance by the CE by reading the property information of
 that component. An access control setting of "trigger-only" means
 that this component is included only for use in event detection.

 The following example defines two components for an LFB:

 <components>
 <component access="read-only" componentID="1">
 <name>foo</name>
 <synopsis>number of things</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component access="read-write" componentID="2">
 <name>bar</name>
 <synopsis>number of this other thing</synopsis>
 <atomic>
 <baseType>uint32</baseType>
 <rangeRestriction>
 <allowedRange min="10" max="2000"/>
 </rangeRestriction>
 </atomic>
 <defaultValue>10</defaultValue>
 </component>
 </components>

 The first component ("foo") is a read-only 32-bit unsigned integer,
 defined by referring to the built-in "uint32" atomic type. The
 second component ("bar") is also an integer, but uses the <atomic>
 element to provide additional range restrictions. This component has
 access mode of read-write allowing it to be both read and written. A
 default value of 10 is provided for bar. Although the access for bar
 is read-write, some implementations MAY offer only more restrictive
 access, and this would be reported in the component properties.

Halpern & Hadi Salim Standards Track [Page 69]

RFC 5812 ForCES FE Model March 2010

 Note that not all components are likely to exist at all times in a
 particular implementation. While the capabilities will frequently
 indicate this non-existence, CEs may attempt to reference non-
 existent or non-permitted components anyway. The ForCES protocol
 mechanisms should include appropriate error indicators for this case.

 The mechanism defined above for non-supported components can also
 apply to attempts to reference non-existent array elements or to set
 read-only components.

4.7.5. <capabilities> Element to Define LFB Capability Components

 The LFB class specification provides some flexibility for the FE
 implementation regarding how the LFB class is implemented. For
 example, the instance may have some limitations that are not inherent
 from the class definition, but rather the result of some
 implementation limitations. Some of these limitations are captured
 by the property information of the LFB components. The model allows
 for the notion of additional capability information.

 Such capability-related information is expressed by the capability
 components of the LFB class. The capability components are always
 read-only attributes, and they are listed in a separate
 <capabilities> element in the <LFBClassDef>. The <capabilities>
 element contains one or more <capability> elements, each defining one
 capability component. The format of the <capability> element is
 almost the same as the <component> element. It differs in two
 aspects: it lacks the access mode attribute (because it is always
 read-only), and it lacks the <defaultValue> element (because default
 value is not applicable to read-only attributes).

 Some examples of capability components follow:

 o The version of the LFB class with which this LFB instance complies

 o Supported optional features of the LFB class

 o Maximum number of configurable outputs for an output group

 o Metadata pass-through limitations of the LFB

 o Additional range restriction on operational components

Halpern & Hadi Salim Standards Track [Page 70]

RFC 5812 ForCES FE Model March 2010

 The following example lists two capability attributes:

 <capabilities>
 <capability componentID="3">
 <name>version</name>
 <synopsis>
 LFB class version this instance is compliant with.
 </synopsis>
 <typeRef>version</typeRef>
 </capability>
 <capability componentID="4">
 <name>limitBar</name>
 <synopsis>
 Maximum value of the "bar" attribute.
 </synopsis>
 <typeRef>uint16</typeRef>
 </capability>
 </capabilities>

4.7.6. <events> Element for LFB Notification Generation

 The <events> element contains the information about the occurrences
 for which instances of this LFB class can generate notifications to
 the CE. High-level view on the declaration and operation of LFB
 events is described in Section 3.2.5.

 The <events> element contains 0 or more <event> elements, each of
 which declares a single event. The <event> element has an eventID
 attribute giving the unique (per LFB class) ID of the event. The
 element will include:

 o <eventTarget> element indicating which LFB field (component) is
 tested to generate the event.

 o <condition> element indicating what condition on the field will
 generate the event from a list of defined conditions.

 o <eventReports> element indicating what values are to be reported
 in the notification of the event.

 The example below demonstrates the different constructs.

 The <events> element has a baseID attribute value, which is normally
 <events baseID="number">. The value of the baseID is the starting
 componentID for the path that identifies events. It must not be the
 same as the componentID of any top-level components (including
 capabilities) of the LFB class. In derived LFBs (i.e., ones with a
 <derivedFrom> element) where the parent LFB class has an events

Halpern & Hadi Salim Standards Track [Page 71]

RFC 5812 ForCES FE Model March 2010

 declaration, the baseID must not be present in the derived LFB
 <events> element. Instead, the baseID value from the parent LFB
 class is used. In the example shown, the baseID is 7.

 <events baseID="7">
 <event eventID="7">
 <name>Foochanged</name>
 <synopsis>
 An example event for a scalar
 </synopsis>
 <eventTarget>
 <eventField>foo</eventField>
 </eventTarget>
 <eventChanged/>
 <eventReports>
 <!-- report the new state -->
 <eventReport>
 <eventField>foo</eventField>
 </eventReport>
 </eventReports>
 </event>

 <event eventID="8">
 <name>Goof1changed</name>
 <synopsis>
 An example event for a complex structure
 </synopsis>
 <eventTarget>
 <!-- target is goo.f1 -->
 <eventField>goo</eventField>
 <eventField>f1</eventField>
 </eventTarget>
 <eventChanged/>
 <eventReports>
 <!-- report the new state of goo.f1 -->
 <eventReport>
 <eventField>goo</eventField>
 <eventField>f1</eventField>
 </eventReport>
 </eventReports>
 </event>

Halpern & Hadi Salim Standards Track [Page 72]

RFC 5812 ForCES FE Model March 2010

 <event eventID="9">
 <name>NewbarEntry</name>
 <synopsis>
 Event for a new entry created on table bar
 </synopsis>
 <eventTarget>
 <eventField>bar</eventField>
 <eventSubscript>_barIndex_</eventSubscript>
 </eventTarget>
 <eventCreated/>
 <eventReports>
 <eventReport>
 <eventField>bar</eventField>
 <eventSubscript>_barIndex_</eventSubscript>
 </eventReport>
 <eventReport>
 <eventField>foo</eventField>
 </eventReport>
 </eventReports>
 </event>

 <event eventID="10">
 <name>Gah11changed</name>
 <synopsis>
 Event for table gah, entry index 11 changing
 </synopsis>
 <eventTarget>
 <eventField>gah</eventField>
 <eventSubscript>11</eventSubscript>
 </eventTarget>
 <eventChanged/>
 <eventReports>
 <eventReport>
 <eventField>gah</eventField>
 <eventSubscript>11</eventSubscript>
 </eventReport>
 </eventReports>
 </event>

Halpern & Hadi Salim Standards Track [Page 73]

RFC 5812 ForCES FE Model March 2010

 <event eventID="11">
 <name>Gah10field1</name>
 <synopsis>
 Event for table gah, entry index 10, column field1 changing
 </synopsis>
 <eventTarget>
 <eventField>gah</eventField>
 <eventSubscript>10</eventSubscript>
 <eventField>field1</eventField>
 </eventTarget>
 <eventChanged/>
 <eventReports>
 <eventReport>
 <eventField>gah</eventField>
 <eventSubscript>10</eventSubscript>
 </eventReport>
 </eventReports>
 </event>
 </events>

4.7.6.1. <eventTarget> Element

 The <eventTarget> element contains information identifying a field in
 the LFB that is to be monitored for events.

 The <eventTarget> element contains one or more <eventField>s each of
 which MAY be followed by one or more <eventSubscript> elements. Each
 of these two elements represents the textual equivalent of a path
 select component of the LFB.

 The <eventField> element contains the name of a component in the LFB
 or a component nested in an array or structure within the LFB. The
 name used in <eventField> MUST identify a valid component within the
 containing LFB context. The first element in an <eventTarget> MUST
 be an <eventField> element. In the example shown, four LFB
 components foo, goo, bar, and gah are used as <eventField>s.

 In the simple case, an <eventField> identifies an atomic component.
 This is the case illustrated in the event named Foochanged.
 <eventField> is also used to address complex components such as
 arrays or structures.

 The first defined event, Foochanged, demonstrates how a scalar LFB
 component, foo, could be monitored to trigger an event.

 The second event, Goof1changed, demonstrates how a member of the
 complex structure goo could be monitored to trigger an event.

Halpern & Hadi Salim Standards Track [Page 74]

RFC 5812 ForCES FE Model March 2010

 The events named NewbarEntry, Gah11changed, and Gah10field1
 represent monitoring of arrays bar and gah in differing details.

 If an <eventField> identifies a complex component, then a further
 <eventField> MAY be used to refine the path to the target element.
 Defined event Goof1changed demonstrates how a second <eventField> is
 used to point to member f1 of the structure goo.

 If an <eventField> identifies an array, then the following rules
 apply:

 o <eventSubscript> elements MUST be present as the next XML element
 after an <eventField> that identifies an array component.
 <eventSubscript> MUST NOT occur other than after an array
 reference, as it is only meaningful in that context.

 o An <eventSubscript> contains either:

 * A numeric value to indicate that the event applies to a
 specific entry (by index) of the array. As an example, event
 Gah11changed shows how table gah’s index 11 is being targeted
 for monitoring.

 Or

 * It is expected that the more common usage is to have the event
 being defined across all elements of the array (i.e., a
 wildcard for all indices). In that case, the value of the
 <eventSubscript> MUST be a name rather than a numeric value.
 That same name can then be used as the value of
 <eventSubscript> in <eventReport> elements as described below.
 An example of a wild card table index is shown in event
 NewBarentry where the <eventSubscript> value is named
 barIndex

 o An <eventField> MAY follow an <eventSubscript> to further refine
 the path to the target element. (Note: this is in the same spirit
 as the case where <eventField> is used to further refine
 <eventField> in the earlier example of a complex structure example
 of Goof1changed.) The example event Gah10field1 illustrates how
 the column field1 of table gah is monitored for changes.

 It should be emphasized that the name in an <eventSubscript> element
 in defined event NewbarEntry is not a component name. It is a
 variable name for use in the <eventReport> elements (described in
 Section 4.7.6.3) of the given LFB definition. This name MUST be
 distinct from any component name that can validly occur in the
 <eventReport> clause.

Halpern & Hadi Salim Standards Track [Page 75]

RFC 5812 ForCES FE Model March 2010

4.7.6.2. <eventCondition> Element

 The event condition element represents a condition that triggers a
 notification. The list of conditions is:

 <eventCreated/>: The target must be an array, ending with a
 subscript indication. The event is generated when
 an entry in the array is created. This occurs even
 if the entry is created by CE direction. The event
 example NewbarEntry demonstrates the
 <eventCreated/> condition.

 <eventDeleted/>: The target must be an array, ending with a
 subscript indication. The event is generated when
 an entry in the array is destroyed. This occurs
 even if the entry is destroyed by CE direction.

 <eventChanged/>: The event is generated whenever the target
 component changes in any way. For binary
 components such as up/down, this reflects a change
 in state. It can also be used with numeric
 attributes, in which case any change in value
 results in a detected trigger. Event examples
 Foochanged, Gah11changed, and Gah10field1
 illustrate the <eventChanged/> condition.

 <eventGreaterThan/>: The event is generated whenever the target
 component becomes greater than the threshold.
 The threshold is an event property.

 <eventLessThan/>: The event is generated whenever the target
 component becomes less than the threshold. The
 threshold is an event property.

4.7.6.3. <eventReports> Element

 The <eventReports> element of an <event> declares the information to
 be delivered by the FE along with the notification of the occurrence
 of the event.

 The <eventReports> element contains one or more <eventReport>
 elements. Each <eventReport> element identifies a piece of data from
 the LFB class to be reported. The notification carries that data as
 if the collection of <eventReport> elements had been defined in a
 structure. The syntax is exactly the same as used in the
 <eventTarget> element, using <eventField> and <eventSubscript>
 elements, and so the same rules apply. Each <eventReport> element
 thus MUST identify a component in the LFB class. <eventSubcript> MAY

Halpern & Hadi Salim Standards Track [Page 76]

RFC 5812 ForCES FE Model March 2010

 contain integers. If they contain names, they MUST be names from
 <eventSubscript> elements of the <eventTarget> in the event. The
 selection for the report will use the value for the subscript that
 identifies that specific element triggering the event. This can be
 used to reference the component causing the event, or to reference
 related information in parallel tables.

 In the example shown, in the case of the event Foochanged, the report
 will carry the value of foo. In the case of the defined event
 NewbarEntry acting on LFB component bar, which is an array, there are
 two items that are reported as indicated by the two <eventReport>
 declarations:

 o The first <eventReport> details what new entry was added in the
 table bar. Recall that _barIndex_ is declared as the event’s
 <eventTarget> <eventSubcript> and that by virtue of using a name
 instead of a numeric value, the <eventSubcript> is implied to be a
 wildcard and will carry whatever index of the new entry.

 o The second <eventReport> includes the value of LFB component foo
 at the time the new entry was created in bar. Reporting foo in
 this case is provided to demonstrate the flexibility of event
 reporting.

 This event reporting structure is designed to allow the LFB designer
 to specify information that is likely not known a priori by the CE
 and is likely needed by the CE to process the event. While the
 structure allows for pointing at large blocks of information (full
 arrays or complex structures), this is not recommended. Also, the
 variable reference/subscripting in reporting only captures a small
 portion of the kinds of related information. Chaining through index
 fields stored in a table, for example, is not supported. In general,
 the <eventReports> mechanism is an optimization for cases that have
 been found to be common, saving the CE from having to query for
 information it needs to understand the event. It does not represent
 all possible information needs.

 If any components referenced by the eventReport are optional, then
 the report MUST use a protocol format that supports optional elements
 and allows for the non-existence of such elements. Any components
 that do not exist are not reported.

4.7.6.4. Runtime Control of Events

 The high-level view of the declaration and operation of LFB events is
 described in Section 3.2.5.

Halpern & Hadi Salim Standards Track [Page 77]

RFC 5812 ForCES FE Model March 2010

 The <eventTarget> provides additional components used in the path to
 reference the event. The path constitutes the baseID for events,
 followed by the ID for the specific event, followed by a value for
 each <eventSubscript> element if it exists in the <eventTarget>.

 The event path will uniquely identify a specific occurrence of the
 event in the event notification to the CE. In the example provided
 above, at the end of Section 4.7.6, a notification with path of 7.7
 uniquely identifies the event to be that caused by the change of foo;
 an event with path 7.9.100 uniquely identifies the event to be that
 caused by a creation of table bar entry with index/subscript 100.

 As described in Section 4.8.5, event elements have properties
 associated with them. These properties include the subscription
 information indicating whether the CE wishes the FE to generate event
 reports for the event at all, thresholds for events related to level
 crossing, and filtering conditions that may reduce the set of event
 notifications generated by the FE. Details of the filtering
 conditions that can be applied are given in that section. The
 filtering conditions allow the FE to suppress floods of events that
 could result from oscillation around a condition value. For FEs that
 do not wish to support filtering, the filter properties can be either
 read-only or not supported.

 In addition to identifying the event sources, the CE also uses the
 event path to activate runtime control of the event via the event
 properties (defined in Section 4.8.5) utilizing SET-PROP as defined
 in the ForCES protocol [RFC5810] operation.

 To activate event generation on the FE, a SET-PROP message
 referencing the event and registration property of the event is
 issued to the FE by the CE with any prefix of the path of the event.
 So, for an event defined on the example table bar, a SET-PROP with a
 path of 7.9 will subscribe the CE to all occurrences of that event on
 any entry of the table. This is particularly useful for the
 <eventCreated/> and <eventDestroyed/> conditions on tables. Events
 using those conditions will generally be defined with a field/
 subscript sequence that identifies an array and ends with an
 <eventSubscript> element. Thus, the event notification will indicate
 which array entry has been created or destroyed. A typical
 subscriber will subscribe for the array, as opposed to a specific
 entry in an array, so it will use a shorter path.

 In the example provided, subscribing to 7.8 implies receiving all
 declared events from table bar. Subscribing to 7.8.100 implies
 receiving an event when subscript/index 100 table entry is created.

Halpern & Hadi Salim Standards Track [Page 78]

RFC 5812 ForCES FE Model March 2010

 Threshold and filtering conditions can only be applied to individual
 events. For events defined on elements of an array, this
 specification does not allow for defining a threshold or filtering
 condition on an event for all elements of an array.

4.7.7. <description> Element for LFB Operational Specification

 The <description> element of the <LFBClass> provides unstructured
 text (in XML sense) to explain what the LFB does to a human user.

4.8. Properties

 Components of LFBs have properties that are important to the CE. The
 most important property is the existence / readability / writeability
 of the element. Depending on the type of the component, other
 information may be of importance.

 The model provides the definition of the structure of property
 information. There is a base class of property information. For the
 array, alias, and event components, there are subclasses of property
 information providing additional fields. This information is
 accessed by the CE (and updated where applicable) via the ForCES
 protocol. While some property information is writeable, there is no
 mechanism currently provided for checking the properties of a
 property element. Writeability can only be checked by attempting to
 modify the value.

4.8.1. Basic Properties

 The basic property definition, along with the scalar dataTypeDef for
 accessibility, is below. Note that this access permission
 information is generally read-only.

Halpern & Hadi Salim Standards Track [Page 79]

RFC 5812 ForCES FE Model March 2010

 <dataTypeDef>
 <name>accessPermissionValues</name>
 <synopsis>
 The possible values of component access permission
 </synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <specialValues>
 <specialValue value="0">
 <name>None</name>
 <synopsis>Access is prohibited</synopsis>
 </specialValue>
 <specialValue value="1">
 <name> Read-Only </name>
 <synopsis>
 Access to the component is read only
 </synopsis>
 </specialValue>
 <specialValue value="2">
 <name>Write-Only</name>
 <synopsis>
 The component MAY be written, but not read
 </synopsis>
 </specialValue>
 <specialValue value="3">
 <name>Read-Write</name>
 <synopsis>
 The component MAY be read or written
 </synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>
 <dataTypeDef>
 <name>baseElementProperties</name>
 <synopsis>basic properties, accessibility</synopsis>
 <struct>
 <component componentID="1">
 <name>accessibility</name>
 <synopsis>
 does the component exist, and
 can it be read or written
 </synopsis>
 <typeRef>accessPermissionValues</typeRef>
 </component>
 </struct>
 </dataTypeDef>

Halpern & Hadi Salim Standards Track [Page 80]

RFC 5812 ForCES FE Model March 2010

4.8.2. Array Properties

 The properties for an array add a number of important pieces of
 information. These properties are also read-only.

 <dataTypeDef>
 <name>arrayElementProperties</name>
 <synopsis>Array Element Properties definition</synopsis>
 <struct>
 <derivedFrom>baseElementProperties</derivedFrom>
 <component componentID="2">
 <name>entryCount</name>
 <synopsis>the number of entries in the array</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="3">
 <name>highestUsedSubscript</name>
 <synopsis>the last used subscript in the array</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="4">
 <name>firstUnusedSubscript</name>
 <synopsis>
 The subscript of the first unused array element
 </synopsis>
 <typeRef>uint32</typeRef>
 </component>
 </struct>
 </dataTypeDef>

4.8.3. String Properties

 The properties of a string specify the actual octet length and the
 maximum octet length for the element. The maximum length is included
 because an FE implementation MAY limit a string to be shorter than
 the limit in the LFB class definition.

Halpern & Hadi Salim Standards Track [Page 81]

RFC 5812 ForCES FE Model March 2010

 <dataTypeDef>
 <name>stringElementProperties</name>
 <synopsis>string Element Properties definition </synopsis>
 <struct>
 <derivedFrom>baseElementProperties</derivedFrom>
 <component componentID="2">
 <name>stringLength</name>
 <synopsis>the number of octets in the string</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="3">
 <name>maxStringLength</name>
 <synopsis>
 the maximum number of octets in the string
 </synopsis>
 <typeRef>uint32</typeRef>
 </component>
 </struct>
 </dataTypeDef>

4.8.4. Octetstring Properties

 The properties of an octetstring specify the actual length and the
 maximum length, since the FE implementation MAY limit an octetstring
 to be shorter than the LFB class definition.

 <dataTypeDef>
 <name>octetstringElementProperties</name>
 <synopsis>octetstring Element Properties definition
 </synopsis>
 <struct>
 <derivedFrom>baseElementProperties</derivedFrom>
 <component componentID="2">
 <name>octetstringLength</name>
 <synopsis>
 the number of octets in the octetstring
 </synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="3">
 <name>maxOctetstringLength</name>
 <synopsis>
 the maximum number of octets in the octetstring
 </synopsis>
 <typeRef>uint32</typeRef>
 </component>
 </struct>
 </dataTypeDef>

Halpern & Hadi Salim Standards Track [Page 82]

RFC 5812 ForCES FE Model March 2010

4.8.5. Event Properties

 The properties for an event add three (usually) writeable fields.
 One is the subscription field. 0 means no notification is generated.
 Any non-zero value (typically 1 is used) means that a notification is
 generated. The hysteresis field is used to suppress generation of
 notifications for oscillations around a condition value, and is
 described below (Section 4.8.5.2). The threshold field is used for
 the <eventGreaterThan/> and <eventLessThan/> conditions. It
 indicates the value to compare the event target against. Using the
 properties allows the CE to set the level of interest. FEs that do
 not support setting the threshold for events will make this field
 read-only.

Halpern & Hadi Salim Standards Track [Page 83]

RFC 5812 ForCES FE Model March 2010

 <dataTypeDef>
 <name>eventElementProperties</name>
 <synopsis>event Element Properties definition</synopsis>
 <struct>
 <derivedFrom>baseElementProperties</derivedFrom>
 <component componentID="2">
 <name>registration</name>
 <synopsis>
 has the CE registered to be notified of this event
 </synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="3">
 <name>threshold</name>
 <synopsis> comparison value for level crossing events
 </synopsis>
 <optional/>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="4">
 <name>eventHysteresis</name>
 <synopsis> region to suppress event recurrence notices
 </synopsis>
 <optional/>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="5">
 <name>eventCount</name>
 <synopsis> number of occurrences to suppress
 </synopsis>
 <optional/>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="6">
 <name>eventInterval</name>
 <synopsis> time interval in ms between notifications
 </synopsis>
 <optional/>
 <typeRef>uint32</typeRef>
 </component>
 </struct>
 </dataTypeDef>

Halpern & Hadi Salim Standards Track [Page 84]

RFC 5812 ForCES FE Model March 2010

4.8.5.1. Common Event Filtering

 The event properties have values for controlling several filter
 conditions. Support of these conditions is optional, but all
 conditions SHOULD be supported. Events that are reliably known not
 to be subject to rapid occurrence or other concerns MAY not support
 all filter conditions.

 Currently, three different filter condition variables are defined.
 These are eventCount, eventInterval, and eventHysteresis. Setting
 the condition variables to 0 (their default value) means that the
 condition is not checked.

 Conceptually, when an event is triggered, all configured conditions
 are checked. If no filter conditions are triggered, or if any
 trigger conditions are met, the event notification is generated. If
 there are filter conditions, and no condition is met, then no event
 notification is generated. Event filter conditions have reset
 behavior when an event notification is generated. If any condition
 is passed, and the notification is generated, the notification reset
 behavior is performed on all conditions, even those that had not
 passed. This provides a clean definition of the interaction of the
 various event conditions.

 An example of the interaction of conditions is an event with an
 eventCount property set to 5 and an eventInterval property set to 500
 milliseconds. Suppose that a burst of occurrences of this event is
 detected by the FE. The first occurrence will cause a notification
 to be sent to the CE. Then, if four more occurrences are detected
 rapidly (less than 0.5 seconds) they will not result in
 notifications. If two more occurrences are detected, then the second
 of those will result in a notification. Alternatively, if more than
 500 milliseconds has passed since the notification and an occurrence
 is detected, that will result in a notification. In either case, the
 count and time interval suppression is reset no matter which
 condition actually caused the notification.

4.8.5.2. Event Hysteresis Filtering

 Events with numeric conditions can have hysteresis filters applied to
 them. The hysteresis level is defined by a property of the event.
 This allows the FE to notify the CE of the hysteresis applied, and if
 it chooses, the FE can allow the CE to modify the hysteresis. This
 applies to <eventChanged/> for a numeric field, and to
 <eventGreaterThan/> and <eventLessThan/>. The content of a

Halpern & Hadi Salim Standards Track [Page 85]

RFC 5812 ForCES FE Model March 2010

 <variance> element is a numeric value. When supporting hysteresis,
 the FE MUST track the value of the element and make sure that the
 condition has become untrue by at least the hysteresis from the event
 property. To be specific, if the hysteresis is V, then:

 o For an <eventChanged/> condition, if the last notification was for
 value X, then the <changed/> notification MUST NOT be generated
 until the value reaches X +/- V.

 o For an <eventGreaterThan/> condition with threshold T, once the
 event has been generated at least once it MUST NOT be generated
 again until the field first becomes less than or equal to T - V,
 and then exceeds T.

 o For an <eventLessThan/> condition with threshold T, once the event
 has been generate at least once it MUST NOT be generated again
 until the field first becomes greater than or equal to T + V, and
 then becomes less than T.

4.8.5.3. Event Count Filtering

 Events MAY have a count filtering condition. This property, if set
 to a non-zero value, indicates the number of occurrences of the event
 that should be considered redundant and not result in a notification.
 Thus, if this property is set to 1, and no other conditions apply,
 then every other detected occurrence of the event will result in a
 notification. This particular meaning is chosen so that the value 1
 has a distinct meaning from the value 0.

 A conceptual implementation (not required) for this might be an
 internal suppression counter. Whenever an event is triggered, the
 counter is checked. If the counter is 0, a notification is
 generated. Whether or not a notification is generated, the counter
 is incremented. If the counter exceeds the configured value, it is
 set to 0.

4.8.5.4. Event Time Filtering

 Events MAY have a time filtering condition. This property represents
 the minimum time interval (in the absence of some other filtering
 condition being passed) between generating notifications of detected
 events. This condition MUST only be passed if the time since the
 last notification of the event is longer than the configured interval
 in milliseconds.

Halpern & Hadi Salim Standards Track [Page 86]

RFC 5812 ForCES FE Model March 2010

 Conceptually, this can be thought of as a stored timestamp that is
 compared with the detection time, or as a timer that is running that
 resets a suppression flag. In either case, if a notification is
 generated due to passing any condition then the time interval
 detection MUST be restarted.

4.8.6. Alias Properties

 The properties for an alias add three (usually) writeable fields.
 These combine to identify the target component to which the subject
 alias refers.

 <dataTypeDef>
 <name>aliasElementProperties</name>
 <synopsis>alias Element Properties definition</synopsis>
 <struct>
 <derivedFrom>baseElementProperties</derivedFrom>
 <component componentID="2">
 <name>targetLFBClass</name>
 <synopsis>the class ID of the alias target</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="3">
 <name>targetLFBInstance</name>
 <synopsis>the instance ID of the alias target</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="4">
 <name>targetComponentPath</name>
 <synopsis>
 the path to the component target
 each 4 octets is read as one path element,
 using the path construction in the ForCES protocol,
 [2].
 </synopsis>
 <typeRef>octetstring[128]</typeRef>
 </component>
 </struct>
 </dataTypeDef>

Halpern & Hadi Salim Standards Track [Page 87]

RFC 5812 ForCES FE Model March 2010

4.9. XML Schema for LFB Class Library Documents

 <?xml version="1.0" encoding="UTF-8"?>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns:forces:lfbmodel:1.0"
 xmlns:lfb="urn:ietf:params:xml:ns:forces:lfbmodel:1.0"
 targetNamespace="urn:ietf:params:xml:ns:forces:lfbmodel:1.0"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Schema for Defining LFB Classes and associated types (frames,
 data types for LFB attributes, and metadata).
 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name="description" type="xsd:string"/>
 <xsd:element name="synopsis" type="xsd:string"/>
 <!-- Document root element: LFBLibrary -->
 <xsd:element name="LFBLibrary">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:element name="load" type="loadType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="frameDefs" type="frameDefsType"
 minOccurs="0"/>
 <xsd:element name="dataTypeDefs" type="dataTypeDefsType"
 minOccurs="0"/>
 <xsd:element name="metadataDefs" type="metadataDefsType"
 minOccurs="0"/>
 <xsd:element name="LFBClassDefs" type="LFBClassDefsType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="provides" type="xsd:Name" use="required"/>
 </xsd:complexType>
 <!-- Uniqueness constraints -->
 <xsd:key name="frame">
 <xsd:selector xpath="lfb:frameDefs/lfb:frameDef"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 <xsd:key name="dataType">
 <xsd:selector xpath="lfb:dataTypeDefs/lfb:dataTypeDef"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 <xsd:key name="metadataDef">
 <xsd:selector xpath="lfb:metadataDefs/lfb:metadataDef"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>

Halpern & Hadi Salim Standards Track [Page 88]

RFC 5812 ForCES FE Model March 2010

 <xsd:key name="LFBClassDef">
 <xsd:selector xpath="lfb:LFBClassDefs/lfb:LFBClassDef"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 </xsd:element>
 <xsd:complexType name="loadType">
 <xsd:attribute name="library" type="xsd:Name" use="required"/>
 <xsd:attribute name="location" type="xsd:anyURI" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="frameDefsType">
 <xsd:sequence>
 <xsd:element name="frameDef" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element ref="description" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="dataTypeDefsType">
 <xsd:sequence>
 <xsd:element name="dataTypeDef" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:group ref="typeDeclarationGroup"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <!--
 Predefined (built-in) atomic data-types are:
 char, uchar, int16, uint16, int32, uint32, int64, uint64,
 string[N], string, byte[N], boolean, octetstring[N],
 float32, float64
 -->
 <xsd:group name="typeDeclarationGroup">
 <xsd:choice>
 <xsd:element name="typeRef" type="typeRefNMTOKEN"/>
 <xsd:element name="atomic" type="atomicType"/>
 <xsd:element name="array" type="arrayType"/>
 <xsd:element name="struct" type="structType"/>

Halpern & Hadi Salim Standards Track [Page 89]

RFC 5812 ForCES FE Model March 2010

 <xsd:element name="union" type="structType"/>
 <xsd:element name="alias" type="typeRefNMTOKEN"/>
 </xsd:choice>
 </xsd:group>
 <xsd:simpleType name="typeRefNMTOKEN">
 <xsd:restriction base="xsd:token">
 <xsd:pattern value="\c+"/>
 <xsd:pattern value="string\[\d+\]"/>
 <xsd:pattern value="byte\[\d+\]"/>
 <xsd:pattern value="octetstring\[\d+\]"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="atomicType">
 <xsd:sequence>
 <xsd:element name="baseType" type="typeRefNMTOKEN"/>
 <xsd:element name="rangeRestriction"
 type="rangeRestrictionType" minOccurs="0"/>
 <xsd:element name="specialValues" type="specialValuesType"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="rangeRestrictionType">
 <xsd:sequence>
 <xsd:element name="allowedRange" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="min" type="xsd:integer"
 use="required"/>
 <xsd:attribute name="max" type="xsd:integer"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="specialValuesType">
 <xsd:sequence>
 <xsd:element name="specialValue" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 </xsd:sequence>
 <xsd:attribute name="value" type="xsd:token"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="arrayType">
 <xsd:sequence>

Halpern & Hadi Salim Standards Track [Page 90]

RFC 5812 ForCES FE Model March 2010

 <xsd:group ref="typeDeclarationGroup"/>
 <xsd:element name="contentKey" minOccurs="0"
 maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="contentKeyField" maxOccurs="unbounded"
 type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="contentKeyID" use="required"
 type="xsd:integer"/>
 </xsd:complexType>
 <!--declare keys to have unique IDs -->
 <xsd:key name="contentKeyID">
 <xsd:selector xpath="lfb:contentKey"/>
 <xsd:field xpath="@contentKeyID"/>
 </xsd:key>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="type" use="optional"
 default="variable-size">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="fixed-size"/>
 <xsd:enumeration value="variable-size"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="length" type="xsd:integer" use="optional"/>
 <xsd:attribute name="maxLength" type="xsd:integer"
 use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="structType">
 <xsd:sequence>
 <xsd:element name="derivedFrom" type="typeRefNMTOKEN"
 minOccurs="0"/>
 <xsd:element name="component" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:element name="optional" minOccurs="0"/>
 <xsd:group ref="typeDeclarationGroup"/>
 </xsd:sequence>
 <xsd:attribute name="componentID" use="required"
 type="xsd:unsignedInt"/>
 </xsd:complexType>
 <!-- key declaration to make componentIDs unique in a struct

Halpern & Hadi Salim Standards Track [Page 91]

RFC 5812 ForCES FE Model March 2010

 -->
 <xsd:key name="structComponentID">
 <xsd:selector xpath="lfb:component"/>
 <xsd:field xpath="@componentID"/>
 </xsd:key>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="metadataDefsType">
 <xsd:sequence>
 <xsd:element name="metadataDef" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element name="metadataID" type="xsd:integer"/>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:choice>
 <xsd:element name="typeRef" type="typeRefNMTOKEN"/>
 <xsd:element name="atomic" type="atomicType"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="LFBClassDefsType">
 <xsd:sequence>
 <xsd:element name="LFBClassDef" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element name="version" type="versionType"/>
 <xsd:element name="derivedFrom" type="xsd:NMTOKEN"
 minOccurs="0"/>
 <xsd:element name="inputPorts" type="inputPortsType"
 minOccurs="0"/>
 <xsd:element name="outputPorts" type="outputPortsType"
 minOccurs="0"/>
 <xsd:element name="components" type="LFBComponentsType"
 minOccurs="0"/>
 <xsd:element name="capabilities"
 type="LFBCapabilitiesType" minOccurs="0"/>
 <xsd:element name="events"
 type="eventsType" minOccurs="0"/>
 <xsd:element ref="description" minOccurs="0"/>
 </xsd:sequence>

Halpern & Hadi Salim Standards Track [Page 92]

RFC 5812 ForCES FE Model March 2010

 <xsd:attribute name="LFBClassID" use="required"
 type="xsd:unsignedInt"/>
 </xsd:complexType>
 <!-- Key constraint to ensure unique attribute names within
 a class:
 -->
 <xsd:key name="components">
 <xsd:selector xpath="lfb:components/lfb:component"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 <xsd:key name="capabilities">
 <xsd:selector xpath="lfb:capabilities/lfb:capability"/>
 <xsd:field xpath="lfb:name"/>
 </xsd:key>
 <xsd:key name="componentIDs">
 <xsd:selector xpath="lfb:components/lfb:component"/>
 <xsd:field xpath="@componentID"/>
 </xsd:key>
 <xsd:key name="capabilityIDs">
 <xsd:selector xpath="lfb:capabilities/lfb:capability"/>
 <xsd:field xpath="@componentID"/>
 </xsd:key>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="versionType">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:pattern value="[1-9][0-9]*\.([1-9][0-9]*|0)"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="inputPortsType">
 <xsd:sequence>
 <xsd:element name="inputPort" type="inputPortType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="inputPortType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element name="expectation" type="portExpectationType"/>
 <xsd:element ref="description" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="group" type="xsd:boolean" use="optional"
 default="0"/>
 </xsd:complexType>
 <xsd:complexType name="portExpectationType">
 <xsd:sequence>

Halpern & Hadi Salim Standards Track [Page 93]

RFC 5812 ForCES FE Model March 2010

 <xsd:element name="frameExpected" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <!-- ref must refer to a name of a defined frame type -->
 <xsd:element name="ref" type="xsd:string"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="metadataExpected" minOccurs="0">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->

 <xsd:element name="ref" type="metadataInputRefType"/>
 <xsd:element name="one-of"
 type="metadataInputChoiceType"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="metadataInputChoiceType">
 <xsd:choice minOccurs="2" maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="xsd:NMTOKEN"/>
 <xsd:element name="one-of" type="metadataInputChoiceType"/>
 <xsd:element name="metadataSet" type="metadataInputSetType"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:complexType name="metadataInputSetType">
 <xsd:choice minOccurs="2" maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="metadataInputRefType"/>
 <xsd:element name="one-of" type="metadataInputChoiceType"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:complexType name="metadataInputRefType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:NMTOKEN">
 <xsd:attribute name="dependency" use="optional"
 default="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="required"/>
 <xsd:enumeration value="optional"/>
 </xsd:restriction>
 </xsd:simpleType>

Halpern & Hadi Salim Standards Track [Page 94]

RFC 5812 ForCES FE Model March 2010

 </xsd:attribute>
 <xsd:attribute name="defaultValue" type="xsd:token"
 use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="outputPortsType">
 <xsd:sequence>
 <xsd:element name="outputPort" type="outputPortType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="outputPortType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element name="product" type="portProductType"/>
 <xsd:element ref="description" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="group" type="xsd:boolean" use="optional"
 default="0"/>
 </xsd:complexType>
 <xsd:complexType name="portProductType">
 <xsd:sequence>
 <xsd:element name="frameProduced">
 <xsd:complexType>
 <xsd:sequence>
 <!-- ref must refer to a name of a defined frame type
 -->
 <xsd:element name="ref" type="xsd:NMTOKEN"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="metadataProduced" minOccurs="0">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata
 -->
 <xsd:element name="ref" type="metadataOutputRefType"/>
 <xsd:element name="one-of"
 type="metadataOutputChoiceType"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="metadataOutputChoiceType">

Halpern & Hadi Salim Standards Track [Page 95]

RFC 5812 ForCES FE Model March 2010

 <xsd:choice minOccurs="2" maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="xsd:NMTOKEN"/>
 <xsd:element name="one-of" type="metadataOutputChoiceType"/>
 <xsd:element name="metadataSet" type="metadataOutputSetType"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:complexType name="metadataOutputSetType">
 <xsd:choice minOccurs="2" maxOccurs="unbounded">
 <!-- ref must refer to a name of a defined metadata -->
 <xsd:element name="ref" type="metadataOutputRefType"/>
 <xsd:element name="one-of" type="metadataOutputChoiceType"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:complexType name="metadataOutputRefType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:NMTOKEN">
 <xsd:attribute name="availability" use="optional"
 default="unconditional">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="unconditional"/>
 <xsd:enumeration value="conditional"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="LFBComponentsType">
 <xsd:sequence>
 <xsd:element name="component" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:element name="optional" minOccurs="0"/>
 <xsd:group ref="typeDeclarationGroup"/>
 <xsd:element name="defaultValue" type="xsd:token"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="access" use="optional"
 default="read-write">
 <xsd:simpleType>
 <xsd:list itemType="accessModeType"/>
 </xsd:simpleType>
 </xsd:attribute>

Halpern & Hadi Salim Standards Track [Page 96]

RFC 5812 ForCES FE Model March 2010

 <xsd:attribute name="componentID" use="required"
 type="xsd:unsignedInt"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="accessModeType">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="read-only"/>
 <xsd:enumeration value="read-write"/>
 <xsd:enumeration value="write-only"/>
 <xsd:enumeration value="read-reset"/>
 <xsd:enumeration value="trigger-only"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="LFBCapabilitiesType">
 <xsd:sequence>
 <xsd:element name="capability" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:element name="optional" minOccurs="0"/>
 <xsd:group ref="typeDeclarationGroup"/>
 </xsd:sequence>
 <xsd:attribute name="componentID" use="required"
 type="xsd:integer"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="eventsType">
 <xsd:sequence>
 <xsd:element name="event" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:NMTOKEN"/>
 <xsd:element ref="synopsis"/>
 <xsd:element name="eventTarget" type="eventPathType"/>
 <xsd:element ref="eventCondition"/>
 <xsd:element name="eventReports" type="eventReportsType"
 minOccurs="0"/>
 <xsd:element ref="description" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="eventID" use="required"
 type="xsd:integer"/>
 </xsd:complexType>

Halpern & Hadi Salim Standards Track [Page 97]

RFC 5812 ForCES FE Model March 2010

 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="baseID" type="xsd:integer"
 use="optional"/>
 </xsd:complexType>
 <!-- the substitution group for the event conditions -->
 <xsd:element name="eventCondition" abstract="true"/>
 <xsd:element name="eventCreated"
 substitutionGroup="eventCondition"/>
 <xsd:element name="eventDeleted"
 substitutionGroup="eventCondition"/>
 <xsd:element name="eventChanged"
 substitutionGroup="eventCondition"/>
 <xsd:element name="eventGreaterThan"
 substitutionGroup="eventCondition"/>
 <xsd:element name="eventLessThan"
 substitutionGroup="eventCondition"/>
 <xsd:complexType name="eventPathType">
 <xsd:sequence>
 <xsd:element ref="eventPathPart" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- the substitution group for the event path parts -->
 <xsd:element name="eventPathPart" type="xsd:string"
 abstract="true"/>
 <xsd:element name="eventField" type="xsd:string"
 substitutionGroup="eventPathPart"/>
 <xsd:element name="eventSubscript" type="xsd:string"
 substitutionGroup="eventPathPart"/>
 <xsd:complexType name="eventReportsType">
 <xsd:sequence>
 <xsd:element name="eventReport" type="eventPathType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="booleanType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="0"/>
 <xsd:enumeration value="1"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>

Halpern & Hadi Salim Standards Track [Page 98]

RFC 5812 ForCES FE Model March 2010

5. FE Components and Capabilities

 A ForCES forwarding element handles traffic on behalf of a ForCES
 control element. While the standards will describe the protocol and
 mechanisms for this control, different implementations and different
 instances will have different capabilities. The CE MUST be able to
 determine what each instance it is responsible for is actually
 capable of doing. As stated previously, this is an approximation.
 The CE is expected to be prepared to cope with errors in requests and
 variations in detail not captured by the capabilities information
 about an FE.

 In addition to its capabilities, an FE will have information that can
 be used in understanding and controlling the forwarding operations.
 Some of this information will be read-only, while others parts may
 also be writeable.

 In order to make the FE information easily accessible, the
 information is represented in an LFB. This LFB has a class,
 FEObject. The LFBClassID for this class is 1. Only one instance of
 this class will ever be present in an FE, and the instance ID of that
 instance in the protocol is 1. Thus, by referencing the components
 of class:1, instance:1 a CE can get the general information about the
 FE. The FEObject LFB class is described in this section.

 There will also be an FEProtocol LFB class. LFBClassID 2 is reserved
 for that class. There will be only one instance of that class as
 well. Details of that class are defined in the ForCES protocol
 [RFC5810] document.

5.1. XML for FEObject Class Definition

 <?xml version="1.0" encoding="UTF-8"?>
 <LFBLibrary xmlns="urn:ietf:params:xml:ns:forces:lfbmodel:1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 provides="FEObject">
 <dataTypeDefs>
 <dataTypeDef>
 <name>LFBAdjacencyLimitType</name>
 <synopsis>Describing the Adjacent LFB</synopsis>
 <struct>
 <component componentID="1">
 <name>NeighborLFB</name>
 <synopsis>ID for that LFB class</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="2">
 <name>ViaPorts</name>

Halpern & Hadi Salim Standards Track [Page 99]

RFC 5812 ForCES FE Model March 2010

 <synopsis>
 the ports on which we can connect
 </synopsis>
 <array type="variable-size">
 <typeRef>string</typeRef>
 </array>
 </component>
 </struct>
 </dataTypeDef>
 <dataTypeDef>
 <name>PortGroupLimitType</name>
 <synopsis>
 Limits on the number of ports in a given group
 </synopsis>
 <struct>
 <component componentID="1">
 <name>PortGroupName</name>
 <synopsis>Group Name</synopsis>
 <typeRef>string</typeRef>
 </component>
 <component componentID="2">
 <name>MinPortCount</name>
 <synopsis>Minimum Port Count</synopsis>
 <optional/>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="3">
 <name>MaxPortCount</name>
 <synopsis>Max Port Count</synopsis>
 <optional/>
 <typeRef>uint32</typeRef>
 </component>
 </struct>
 </dataTypeDef>
 <dataTypeDef>
 <name>SupportedLFBType</name>
 <synopsis>table entry for supported LFB</synopsis>
 <struct>
 <component componentID="1">
 <name>LFBName</name>
 <synopsis>
 The name of a supported LFB class
 </synopsis>
 <typeRef>string</typeRef>
 </component>
 <component componentID="2">
 <name>LFBClassID</name>
 <synopsis>the id of a supported LFB class</synopsis>

Halpern & Hadi Salim Standards Track [Page 100]

RFC 5812 ForCES FE Model March 2010

 <typeRef>uint32</typeRef>
 </component>
 <component componentID="3">
 <name>LFBVersion</name>
 <synopsis>
 The version of the LFB class used
 by this FE.
 </synopsis>
 <typeRef>string</typeRef>
 </component>
 <component componentID="4">
 <name>LFBOccurrenceLimit</name>
 <synopsis>
 the upper limit of instances of LFBs of this class
 </synopsis>
 <optional/>
 <typeRef>uint32</typeRef>
 </component>
 <!-- For each port group, how many ports can exist
 -->
 <component componentID="5">
 <name>PortGroupLimits</name>
 <synopsis>Table of Port Group Limits</synopsis>
 <optional/>
 <array type="variable-size">
 <typeRef>PortGroupLimitType</typeRef>
 </array>
 </component>
 <!-- for the named LFB Class, the LFB Classes it may follow -->
 <component componentID="6">
 <name>CanOccurAfters</name>
 <synopsis>
 List of LFB classes that this LFB class can follow
 </synopsis>
 <optional/>
 <array type="variable-size">
 <typeRef>LFBAdjacencyLimitType</typeRef>
 </array>
 </component>
 <!-- for the named LFB Class, the LFB Classes that may follow it
 -->
 <component componentID="7">
 <name>CanOccurBefores</name>
 <synopsis>
 List of LFB classes that can follow this LFB class
 </synopsis>
 <optional/>
 <array type="variable-size">

Halpern & Hadi Salim Standards Track [Page 101]

RFC 5812 ForCES FE Model March 2010

 <typeRef>LFBAdjacencyLimitType</typeRef>
 </array>
 </component>
 <component componentID="8">
 <name>UseableParentLFBClasses</name>
 <synopsis>
 List of LFB classes from which this class has
 inherited, and which the FE is willing to allow
 for references to instances of this class.
 </synopsis>
 <optional/>
 <array type="variable-size">
 <typeRef>uint32</typeRef>
 </array>
 </component>
 </struct>
 </dataTypeDef>
 <dataTypeDef>
 <name>FEStateValues</name>
 <synopsis>The possible values of status</synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <specialValues>
 <specialValue value="0">
 <name>AdminDisable</name>
 <synopsis>
 FE is administratively disabled
 </synopsis>
 </specialValue>
 <specialValue value="1">
 <name>OperDisable</name>
 <synopsis>FE is operatively disabled</synopsis>
 </specialValue>
 <specialValue value="2">
 <name>OperEnable</name>
 <synopsis>FE is operating</synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>
 <dataTypeDef>
 <name>FEConfiguredNeighborType</name>
 <synopsis>Details of the FE’s Neighbor</synopsis>
 <struct>
 <component componentID="1">
 <name>NeighborID</name>
 <synopsis>Neighbors FEID</synopsis>
 <typeRef>uint32</typeRef>

Halpern & Hadi Salim Standards Track [Page 102]

RFC 5812 ForCES FE Model March 2010

 </component>
 <component componentID="2">
 <name>InterfaceToNeighbor</name>
 <synopsis>
 FE’s interface that connects to this neighbor
 </synopsis>
 <optional/>
 <typeRef>string</typeRef>
 </component>
 <component componentID="3">
 <name>NeighborInterface</name>
 <synopsis>
 The name of the interface on the neighbor to
 which this FE is adjacent. This is required
 in case two FEs are adjacent on more than
 one interface.
 </synopsis>
 <optional/>
 <typeRef>string</typeRef>
 </component>
 </struct>
 </dataTypeDef>
 <dataTypeDef>
 <name>LFBSelectorType</name>
 <synopsis>
 Unique identification of an LFB class-instance
 </synopsis>
 <struct>
 <component componentID="1">
 <name>LFBClassID</name>
 <synopsis>LFB Class Identifier</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="2">
 <name>LFBInstanceID</name>
 <synopsis>LFB Instance ID</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 </struct>
 </dataTypeDef>
 <dataTypeDef>
 <name>LFBLinkType</name>
 <synopsis>
 Link between two LFB instances of topology
 </synopsis>
 <struct>
 <component componentID="1">
 <name>FromLFBID</name>

Halpern & Hadi Salim Standards Track [Page 103]

RFC 5812 ForCES FE Model March 2010

 <synopsis>LFB src</synopsis>
 <typeRef>LFBSelectorType</typeRef>
 </component>
 <component componentID="2">
 <name>FromPortGroup</name>
 <synopsis>src port group</synopsis>
 <typeRef>string</typeRef>
 </component>
 <component componentID="3">
 <name>FromPortIndex</name>
 <synopsis>src port index</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="4">
 <name>ToLFBID</name>
 <synopsis>dst LFBID</synopsis>
 <typeRef>LFBSelectorType</typeRef>
 </component>
 <component componentID="5">
 <name>ToPortGroup</name>
 <synopsis>dst port group</synopsis>
 <typeRef>string</typeRef>
 </component>
 <component componentID="6">
 <name>ToPortIndex</name>
 <synopsis>dst port index</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 </struct>
 </dataTypeDef>
 </dataTypeDefs>
 <LFBClassDefs>
 <LFBClassDef LFBClassID="1">
 <name>FEObject</name>
 <synopsis>Core LFB: FE Object</synopsis>
 <version>1.0</version>
 <components>
 <component access="read-write" componentID="1">
 <name>LFBTopology</name>
 <synopsis>the table of known Topologies</synopsis>
 <array type="variable-size">
 <typeRef>LFBLinkType</typeRef>
 </array>
 </component>
 <component access="read-write" componentID="2">
 <name>LFBSelectors</name>
 <synopsis>
 table of known active LFB classes and

Halpern & Hadi Salim Standards Track [Page 104]

RFC 5812 ForCES FE Model March 2010

 instances
 </synopsis>
 <array type="variable-size">
 <typeRef>LFBSelectorType</typeRef>
 </array>
 </component>
 <component access="read-write" componentID="3">
 <name>FEName</name>
 <synopsis>name of this FE</synopsis>
 <typeRef>string[40]</typeRef>
 </component>
 <component access="read-write" componentID="4">
 <name>FEID</name>
 <synopsis>ID of this FE</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component access="read-only" componentID="5">
 <name>FEVendor</name>
 <synopsis>vendor of this FE</synopsis>
 <typeRef>string[40]</typeRef>
 </component>
 <component access="read-only" componentID="6">
 <name>FEModel</name>
 <synopsis>model of this FE</synopsis>
 <typeRef>string[40]</typeRef>
 </component>
 <component access="read-only" componentID="7">
 <name>FEState</name>
 <synopsis>State of this FE</synopsis>
 <typeRef>FEStateValues</typeRef>
 </component>
 <component access="read-write" componentID="8">
 <name>FENeighbors</name>
 <synopsis>table of known neighbors</synopsis>
 <optional/>
 <array type="variable-size">
 <typeRef>FEConfiguredNeighborType</typeRef>
 </array>
 </component>
 </components>
 <capabilities>
 <capability componentID="30">
 <name>ModifiableLFBTopology</name>
 <synopsis>
 Whether Modifiable LFB is supported
 </synopsis>
 <optional/>
 <typeRef>boolean</typeRef>

Halpern & Hadi Salim Standards Track [Page 105]

RFC 5812 ForCES FE Model March 2010

 </capability>
 <capability componentID="31">
 <name>SupportedLFBs</name>
 <synopsis>List of all supported LFBs</synopsis>
 <optional/>
 <array type="variable-size">
 <typeRef>SupportedLFBType</typeRef>
 </array>
 </capability>
 </capabilities>
 </LFBClassDef>
 </LFBClassDefs>
 </LFBLibrary>

5.2. FE Capabilities

 The FE capability information is contained in the capabilities
 element of the class definition. As described elsewhere, capability
 information is always considered to be read-only.

 The currently defined capabilities are ModifiableLFBTopology and
 SupportedLFBs. Information as to which components of the FEObject
 LFB are supported is accessed by the properties information for those
 components.

5.2.1. ModifiableLFBTopology

 This component has a boolean value that indicates whether the LFB
 topology of the FE may be changed by the CE. If the component is
 absent, the default value is assumed to be true, and the CE presumes
 that the LFB topology may be changed. If the value is present and
 set to false, the LFB topology of the FE is fixed. If the topology
 is fixed, the SupportedLFBs element may be omitted, and the list of
 supported LFBs is inferred by the CE from the LFB topology
 information. If the list of supported LFBs is provided when
 ModifiableLFBTopology is false, the CanOccurBefore and CanOccurAfter
 information should be omitted.

5.2.2. SupportedLFBs and SupportedLFBType

 One capability that the FE should include is the list of supported
 LFB classes. The SupportedLFBs component, is an array that contains
 the information about each supported LFB class. The array structure
 type is defined as the SupportedLFBType dataTypeDef.

 Each entry in the SupportedLFBs array describes an LFB class that the
 FE supports. In addition to indicating that the FE supports the
 class, FEs with modifiable LFB topology SHOULD include information

Halpern & Hadi Salim Standards Track [Page 106]

RFC 5812 ForCES FE Model March 2010

 about how LFBs of the specified class may be connected to other LFBs.
 This information SHOULD describe which LFB classes the specified LFB
 class may succeed or precede in the LFB topology. The FE SHOULD
 include information as to which port groups may be connected to the
 given adjacent LFB class. If port group information is omitted, it
 is assumed that all port groups may be used. This capability
 information on the acceptable ordering and connection of LFBs MAY be
 omitted if the implementor concludes that the actual constraints are
 such that the information would be misleading for the CE.

5.2.2.1. LFBName

 This component has as its value the name of the LFB class being
 described.

5.2.2.2. LFBClassID

 LFBClassID is the numeric ID of the LFB class being described. While
 conceptually redundant with the LFB name, both are included for
 clarity and to allow consistency checking.

5.2.2.3. LFBVersion

 LFBVersion is the version string specifying the LFB class version
 supported by this FE. As described above in versioning, an FE can
 support only a single version of a given LFB class.

5.2.2.4. LFBOccurrenceLimit

 This component, if present, indicates the largest number of instances
 of this LFB class the FE can support. For FEs that do not have the
 capability to create or destroy LFB instances, this can either be
 omitted or be the same as the number of LFB instances of this class
 contained in the LFB list attribute.

5.2.2.5. PortGroupLimits and PortGroupLimitType

 The PortGroupLimits component is an array of information about the
 port groups supported by the LFB class. The structure of the port
 group limit information is defined by the PortGroupLimitType
 dataTypeDef.

 Each PortGroupLimits array entry contains information describing a
 single port group of the LFB class. Each array entry contains the
 name of the port group in the PortGroupName component, the fewest
 number of ports that can exist in the group in the MinPortCount
 component, and the largest number of ports that can exist in the
 group in the MaxPortCount component.

Halpern & Hadi Salim Standards Track [Page 107]

RFC 5812 ForCES FE Model March 2010

5.2.2.6. CanOccurAfters and LFBAdjacencyLimitType

 The CanOccurAfters component is an array that contains the list of
 LFBs the described class can occur after. The array entries are
 defined in the LFBAdjacencyLimitType dataTypeDef.

 The array entries describe a permissible positioning of the described
 LFB class, referred to here as the SupportedLFB. Specifically, each
 array entry names an LFB that can topologically precede that LFB
 class. That is, the SupportedLFB can have an input port connected to
 an output port of an LFB that appears in the CanOccurAfters array.
 The LFB class that the SupportedLFB can follow is identified by the
 NeighborLFB component (of the LFBAdjacencyLimitType dataTypeDef) of
 the CanOccurAfters array entry. If this neighbor can only be
 connected to a specific set of input port groups, then the viaPort
 component is included. This component is an array, with one entry
 for each input port group of the SupportedLFB that can be connected
 to an output port of the NeighborLFB.

 (For example, within a SupportedLFBs entry, each array entry of the
 CanOccurAfters array must have a unique NeighborLFB, and within each
 such array entry each viaPort must represent a distinct and valid
 input port group of the SupportedLFB. The LFB class definition
 schema does not include these uniqueness constraints.)

5.2.2.7. CanOccurBefores and LFBAdjacencyLimitType

 The CanOccurBefores array holds the information about which LFB
 classes can follow the described class. Structurally, this element
 parallels CanOccurAfters, and uses the same type definition for the
 array entries.

 The array entries list those LFB classes that the SupportedLFB may
 precede in the topology. In this component, the entries in the
 viaPort component of the array value represent the output port groups
 of the SupportedLFB that may be connected to the NeighborLFB. As
 with CanOccurAfters, viaPort may have multiple entries if multiple
 output ports may legitimately connect to the given NeighborLFB class.

 (And a similar set of uniqueness constraints applies to the
 CanOccurBefore clauses, even though an LFB may occur both in
 CanOccurAfter and CanOccurBefore.)

5.2.2.8. UseableParentLFBClasses

 The UseableParentLFBClasses array, if present, is used to hold a list
 of parent LFB class IDs. All the entries in the list must be IDs of
 classes from which the SupportedLFB class being described has

Halpern & Hadi Salim Standards Track [Page 108]

RFC 5812 ForCES FE Model March 2010

 inherited (either directly or through an intermediate parent.) (If
 an FE includes improper values in this list, improper manipulations
 by the CE are likely, and operational failures are likely.) In
 addition, the FE, by including a given class in the last, is
 indicating to the CE that a given parent class may be used to
 manipulate an instance of this supported LFB class.

 By allowing such substitution, the FE allows for the case where an
 instantiated LFB may be of a class not known to the CE, but could
 still be manipulated. While it is hoped that such situations are
 rare, it is desirable for this to be supported. This can occur if an
 FE locally defines certain LFB instances, or if an earlier CE had
 configured some LFB instances. It can also occur if the FE would
 prefer to instantiate a more recent, more specific and suitable LFB
 class rather than a common parent.

 In order to permit this, the FE MUST be more restrained in assigning
 LFB instance IDs. Normally, instance IDs are qualified by the LFB
 class. However, if two LFB classes share a parent, and if that
 parent is listed in the UseableParentLFBClasses for both specific LFB
 classes, then all the instances of both (or any, if multiple classes
 are listing the common parent) MUST use distinct instances. This
 permits the FE to determine which LFB instance is intended by CE
 manipulation operations even when a parent class is used.

5.2.2.9. LFBClassCapabilities

 While it would be desirable to include class-capability-level
 information, this is not included in the model. While such
 information belongs in the FE Object in the supported class table,
 the contents of that information would be class specific. The
 currently expected encoding structures for transferring information
 between the CE and FE are such that allowing completely unspecified
 information would be likely to induce parse errors. We could specify
 that the information be encoded in an octetstring, but then we would
 have to define the internal format of that octet string.

 As there also are not currently any defined LFB class-level
 capabilities that the FE needs to report, this information is not
 present now, but may be added in a future version of the FE object.
 (This is an example of a case where versioning, rather than
 inheritance, would be needed, since the FE object must have class ID
 1 and instance ID 1 so that the protocol behavior can start by
 finding this object.)

Halpern & Hadi Salim Standards Track [Page 109]

RFC 5812 ForCES FE Model March 2010

5.3. FE Components

 The <components> element is included if the class definition contains
 the definition of the components of the FE object that are not
 considered "capabilities". Some of these components are writeable
 and some are read-only, which is determinable by examining the
 property information of the components.

5.3.1. FEState

 This component carries the overall state of the FE. The possible
 values are the strings AdminDisable, OperDisable, and OperEnable.
 The starting state is OperDisable, and the transition to OperEnable
 is controlled by the FE. The CE controls the transition from
 OperEnable to/from AdminDisable. For details, refer to the ForCES
 protocol document [RFC5810].

5.3.2. LFBSelectors and LFBSelectorType

 The LFBSelectors component is an array of information about the LFBs
 currently accessible via ForCES in the FE. The structure of the LFB
 information is defined by the LFBSelectorType dataTypeDef.

 Each entry in the array describes a single LFB instance in the FE.
 The array entry contains the numeric class ID of the class of the LFB
 instance and the numeric instance ID for this instance.

5.3.3. LFBTopology and LFBLinkType

 The optional LFBTopology component contains information about each
 inter-LFB link inside the FE, where each link is described in an
 LFBLinkType dataTypeDef. The LFBLinkType component contains
 sufficient information to identify precisely the end points of a
 link. The FromLFBID and ToLFBID components specify the LFB instances
 at each end of the link, and MUST reference LFBs in the LFB instance
 table. The FromPortGroup and ToPortGroup MUST identify output and
 input port groups defined in the LFB classes of the LFB instances
 identified by FromLFBID and ToLFBID. The FromPortIndex and
 ToPortIndex components select the entries from the port groups that
 this link connects. All links are uniquely identified by the
 FromLFBID, FromPortGroup, and FromPortIndex fields. Multiple links
 may have the same ToLFBID, ToPortGroup, and ToPortIndex as this model
 supports fan-in of inter-LFB links but not fan-out.

Halpern & Hadi Salim Standards Track [Page 110]

RFC 5812 ForCES FE Model March 2010

5.3.4. FENeighbors and FEConfiguredNeighborType

 The FENeighbors component is an array of information about manually
 configured adjacencies between this FE and other FEs. The content of
 the array is defined by the FEConfiguredNeighborType dataTypeDef.

 This array is intended to capture information that may be configured
 on the FE and is needed by the CE, where one array entry corresponds
 to each configured neighbor. Note that this array is not intended to
 represent the results of any discovery protocols, as those will have
 their own LFBs. This component is optional.

 While there may be many ways to configure neighbors, the FE-ID is the
 best way for the CE to correlate entities. And the interface
 identifier (name string) is the best correlator. The CE will be able
 to determine the IP address and media-level information about the
 neighbor from the neighbor directly. Omitting that information from
 this table avoids the risk of incorrect double configuration.

 Information about the intended forms of exchange with a given
 neighbor is not captured here; only the adjacency information is
 included.

5.3.4.1. NeighborID

 This is the ID in some space meaningful to the CE for the neighbor.

5.3.4.2. InterfaceToNeighbor

 This identifies the interface through which the neighbor is reached.

5.3.4.3. NeighborInterface

 This identifies the interface on the neighbor through which the
 neighbor is reached. The interface identification is needed when
 either only one side of the adjacency has configuration information
 or the two FEs are adjacent on more than one interface.

6. Satisfying the Requirements on the FE Model

 This section describes how the proposed FE model meets the
 requirements outlined in Section 5 of RFC 3654 [RFC3654]. The
 requirements can be separated into general requirements (Section 5,
 5.1 - 5.4) and the specification of the minimal set of logical
 functions that the FE model must support (Section 5.5).

Halpern & Hadi Salim Standards Track [Page 111]

RFC 5812 ForCES FE Model March 2010

 The general requirement on the FE model is that it be able to express
 the logical packet processing capability of the FE, through both a
 capability and a state model. In addition, the FE model is expected
 to allow flexible implementations and be extensible to allow defining
 new logical functions.

 A major component of the proposed FE model is the Logical Functional
 Block (LFB) model. Each distinct logical function in an FE is
 modeled as an LFB. Operational parameters of the LFB that must be
 visible to the CE are conceptualized as LFB components. These
 components express the capability of the FE and support flexible
 implementations by allowing an FE to specify which optional features
 are supported. The components also indicate whether they are
 configurable by the CE for an LFB class. Configurable components
 provide the CE some flexibility in specifying the behavior of an LFB.
 When multiple LFBs belonging to the same LFB class are instantiated
 on an FE, each of those LFBs could be configured with different
 component settings. By querying the settings of the components for
 an instantiated LFB, the CE can determine the state of that LFB.

 Instantiated LFBs are interconnected in a directed graph that
 describes the ordering of the functions within an FE. This directed
 graph is described by the topology model. The combination of the
 components of the instantiated LFBs and the topology describe the
 packet processing functions available on the FE (current state).

 Another key component of the FE model is the FE components. The FE
 components are used mainly to describe the capabilities of the FE,
 but they also convey information about the FE state.

 The FE model includes only the definition of the FE Object LFB
 itself. Meeting the full set of working group requirements requires
 other LFBs. The class definitions for those LFBs will be provided in
 other documents.

7. Using the FE Model in the ForCES Protocol

 The actual model of the forwarding plane in a given NE is something
 the CE must learn and control by communicating with the FEs (or by
 other means). Most of this communication will happen in the post-
 association phase using the ForCES protocol. The following types of
 information must be exchanged between CEs and FEs via the ForCES
 protocol [RFC5810]:

 1. FE topology query,

 2. FE capability declaration,

Halpern & Hadi Salim Standards Track [Page 112]

RFC 5812 ForCES FE Model March 2010

 3. LFB topology (per FE) and configuration capabilities query,

 4. LFB capability declaration,

 5. State query of LFB components,

 6. Manipulation of LFB components, and

 7. LFB topology reconfiguration.

 Items 1 through 5 are query exchanges, where the main flow of
 information is from the FEs to the CEs. Items 1 through 4 are
 typically queried by the CE(s) in the beginning of the post-
 association (PA) phase, though they may be repeatedly queried at any
 time in the PA phase. Item 5 (state query) will be used at the
 beginning of the PA phase, and often frequently during the PA phase
 (especially for the query of statistical counters).

 Items 6 and 7 are "command" types of exchanges, where the main flow
 of information is from the CEs to the FEs. Messages in Item 6 (the
 LFB re-configuration commands) are expected to be used frequently.
 Item 7 (LFB topology re-configuration) is needed only if dynamic LFB
 topologies are supported by the FEs and it is expected to be used
 infrequently.

 The inter-FE topology (Item 1 above) can be determined by the CE in
 many ways. Neither this document nor the ForCES protocol [RFC5810]
 document mandates a specific mechanism. The LFB class definition
 does include the capability for an FE to be configured with, and to
 provide to the CE in response to a query, the identity of its
 neighbors. There may also be defined specific LFB classes and
 protocols for neighbor discovery. Routing protocols may be used by
 the CE for adjacency determination. The CE may be configured with
 the relevant information.

 The relationship between the FE model and the seven post-association
 messages is visualized in Figure 12:

Halpern & Hadi Salim Standards Track [Page 113]

RFC 5812 ForCES FE Model March 2010

 +--------+
 -->| CE |
 /----\ . +--------+
 ____/ FE Model . ^ |
 | |................ (1),2 | | 6, 7
 | | (off-line) . 3, 4, 5 | |
 ____/ . | v
 . +--------+
 e.g., RFCs -->| FE |
 +--------+

 Figure 12: Relationship between the FE model and the ForCES protocol
 messages, where (1) is part of the ForCES base protocol, and the
 rest are defined by the FE model.

 The actual encoding of these messages is defined by the ForCES
 protocol [RFC5810] document and is beyond the scope of the FE model.
 Their discussion is nevertheless important here for the following
 reasons:

 o These PA model components have considerable impact on the FE
 model. For example, some of the above information can be
 represented as components of the LFBs, in which case such
 components must be defined in the LFB classes.

 o The understanding of the type of information that must be
 exchanged between the FEs and CEs can help to select the
 appropriate protocol format and the actual encoding method (such
 as XML, TLVs).

 o Understanding the frequency of these types of messages should
 influence the selection of the protocol format (efficiency
 considerations).

 The remaining sub-sections of this section address each of the seven
 message types.

Halpern & Hadi Salim Standards Track [Page 114]

RFC 5812 ForCES FE Model March 2010

7.1. FE Topology Query

 An FE may contain zero, one, or more external ingress ports.
 Similarly, an FE may contain zero, one, or more external egress
 ports. In other words, not every FE has to contain any external
 ingress or egress interfaces. For example, Figure 13 shows two
 cascading FEs. FE #1 contains one external ingress interface but no
 external egress interface, while FE #2 contains one external egress
 interface but no ingress interface. It is possible to connect these
 two FEs together via their internal interfaces to achieve the
 complete ingress-to-egress packet processing function. This provides
 the flexibility to spread the functions across multiple FEs and
 interconnect them together later for certain applications.

 While the inter-FE communication protocol is out of scope for ForCES,
 it is up to the CE to query and understand how multiple FEs are
 inter-connected to perform a complete ingress-egress packet
 processing function, such as the one described in Figure 13. The
 inter-FE topology information may be provided by FEs, may be hard-
 coded into CE, or may be provided by some other entity (e.g., a bus
 manager) independent of the FEs. So while the ForCES protocol
 [RFC5810] supports FE topology query from FEs, it is optional for the
 CE to use it, assuming that the CE has other means to gather such
 topology information.

 +---+
 | +---------+ +------------+ +---------+ |
 input| | | | | | output |
 ---+->| Ingress |-->|Header |-->|IPv4 |---------+--->+
 | | port | |Decompressor| |Forwarder| FE | |
 | +---------+ +------------+ +---------+ #1 | |
 +---+ V
 |
 +-----------------------<-----------------------------+
 |
 | +--+
 V | +------------+ +----------+ |
 | input | | | | output |
 +->--+->|Header |-->| Egress |---------+-->
 | |Compressor | | port | FE |
 | +------------+ +----------+ #2 |
 +--+

 Figure 13: An example of two FEs connected together.

Halpern & Hadi Salim Standards Track [Page 115]

RFC 5812 ForCES FE Model March 2010

 Once the inter-FE topology is discovered by the CE after this query,
 it is assumed that the inter-FE topology remains static. However, it
 is possible that an FE may go down during the NE operation, or a
 board may be inserted and a new FE activated, so the inter-FE
 topology will be affected. It is up to the ForCES protocol to
 provide a mechanism for the CE to detect such events and deal with
 the change in FE topology. FE topology is outside the scope of the
 FE model.

7.2. FE Capability Declarations

 FEs will have many types of limitations. Some of the limitations
 must be expressed to the CEs as part of the capability model. The
 CEs must be able to query these capabilities on a per-FE basis.
 Examples are the following:

 o Metadata passing capabilities of the FE. Understanding these
 capabilities will help the CE to evaluate the feasibility of LFB
 topologies, and hence to determine the availability of certain
 services.

 o Global resource query limitations (applicable to all LFBs of the
 FE).

 o LFB supported by the FE.

 o LFB class instantiation limit.

 o LFB topological limitations (linkage constraint, ordering, etc.).

7.3. LFB Topology and Topology Configurability Query

 The ForCES protocol must provide the means for the CEs to discover
 the current set of LFB instances in an FE and the interconnections
 between the LFBs within the FE. In addition, sufficient information
 should be available to determine whether the FE supports any CE-
 initiated (dynamic) changes to the LFB topology, and if so, determine
 the allowed topologies. Topology configurability can also be
 considered as part of the FE capability query as described in Section
 7.2.

7.4. LFB Capability Declarations

 LFB class specifications define a generic set of capabilities. When
 an LFB instance is implemented (instantiated) on a vendor’s FE, some
 additional limitations may be introduced. Note that we discuss only
 those limitations that are within the flexibility of the LFB class
 specification. That is, the LFB instance will remain compliant with

Halpern & Hadi Salim Standards Track [Page 116]

RFC 5812 ForCES FE Model March 2010

 the LFB class specification despite these limitations. For example,
 certain features of an LFB class may be optional, in which case it
 must be possible for the CE to determine whether or not an optional
 feature is supported by a given LFB instance. Also, the LFB class
 definitions will probably contain very few quantitative limits (e.g.,
 size of tables), since these limits are typically imposed by the
 implementation. Therefore, quantitative limitations should always be
 expressed by capability arguments.

 LFB instances in the model of a particular FE implementation will
 possess limitations on the capabilities defined in the corresponding
 LFB class. The LFB class specifications must define a set of
 capability arguments, and the CE must be able to query the actual
 capabilities of the LFB instance via querying the value of such
 arguments. The capability query will typically happen when the LFB
 is first detected by the CE. Capabilities need not be re-queried in
 case of static limitations. In some cases, however, some
 capabilities may change in time (e.g., as a result of adding/removing
 other LFBs, or configuring certain components of some other LFB when
 the LFBs share physical resources), in which case additional
 mechanisms must be implemented to inform the CE about the changes.

 The following two broad types of limitations will exist:

 o Qualitative restrictions. For example, a standardized multi-
 field classifier LFB class may define a large number of
 classification fields, but a given FE may support only a subset of
 those fields.

 o Quantitative restrictions, such as the maximum size of tables,
 etc.

 The capability parameters that can be queried on a given LFB class
 will be part of the LFB class specification. The capability
 parameters should be regarded as special components of the LFB. The
 actual values of these components may, therefore, be obtained using
 the same component query mechanisms as used for other LFB components.

 Capability components are read-only arguments. In cases where some
 implementations may allow CE modification of the value, the
 information must be represented as an operational component, not a
 capability component.

 Assuming that capabilities will not change frequently, the efficiency
 of the protocol/schema/encoding is of secondary concern.

Halpern & Hadi Salim Standards Track [Page 117]

RFC 5812 ForCES FE Model March 2010

 Much of this restrictive information is captured by the component
 property information, and so can be accessed uniformly for all
 information within the model.

7.5. State Query of LFB Components

 This feature must be provided by all FEs. The ForCES protocol and
 the data schema/encoding conveyed by the protocol must together
 satisfy the following requirements to facilitate state query of the
 LFB components:

 o Must permit FE selection. This is primarily to refer to a single
 FE, but referring to a group of (or all) FEs may optionally be
 supported.

 o Must permit LFB instance selection. This is primarily to refer to
 a single LFB instance of an FE, but optionally addressing of a
 group of (or all) LFBs may be supported.

 o Must support addressing of individual components of an LFB.

 o Must provide efficient encoding and decoding of the addressing
 info and the configured data.

 o Must provide efficient data transmission of the component state
 over the wire (to minimize communication load on the CE-FE link).

7.6. LFB Component Manipulation

 The FE model provides for the definition of LFB classes. Each class
 has a globally unique identifier. Information within the class is
 represented as components and assigned identifiers within the scope
 of that class. This model also specifies that instances of LFB
 classes have identifiers. The combination of class identifiers,
 instance identifiers, and component identifiers is used by the
 protocol to reference the LFB information in the protocol operations.

7.7. LFB Topology Reconfiguration

 Operations that will be needed to reconfigure LFB topology are as
 follows:

 o Create a new instance of a given LFB class on a given FE.

 o Connect a given output of LFB x to the given input of LFB y.

 o Disconnect: remove a link between a given output of an LFB and a
 given input of another LFB.

Halpern & Hadi Salim Standards Track [Page 118]

RFC 5812 ForCES FE Model March 2010

 o Delete a given LFB (automatically removing all interconnects to/
 from the LFB).

8. Example LFB Definition

 This section contains an example LFB definition. While some
 properties of LFBs are shown by the FE Object LFB, this endeavors to
 show how a data plane LFB might be build. This example is a
 fictional case of an interface supporting a coarse WDM optical
 interface that carries frame relay traffic. The statistical
 information (including error statistics) is omitted.

 Later portions of this example include references to protocol
 operations. The operations described are operations the protocol
 needs to support. The exact format and fields are purely
 informational here, as the ForCES protocol [RFC5810] document defines
 the precise syntax and semantics of its operations.

 <?xml version="1.0" encoding="UTF-8"?>
 <LFBLibrary xmlns="urn:ietf:params:xml:ns:forces:lfbmodel:1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 provides="LaserFrameLFB">
 <frameDefs>
 <frameDef>
 <name>FRFrame</name>
 <synopsis>
 A frame relay frame, with DLCI without
 stuffing)
 </synopsis>
 </frameDef>
 <frameDef>
 <name>IPFrame</name>
 <synopsis>An IP Packet</synopsis>
 </frameDef>
 </frameDefs>
 <dataTypeDefs>
 <dataTypeDef>
 <name>frequencyInformationType</name>
 <synopsis>
 Information about a single CWDM frequency
 </synopsis>
 <struct>
 <component componentID="1">
 <name>LaserFrequency</name>
 <synopsis>encoded frequency(channel)</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="2">

Halpern & Hadi Salim Standards Track [Page 119]

RFC 5812 ForCES FE Model March 2010

 <name>FrequencyState</name>
 <synopsis>state of this frequency</synopsis>
 <typeRef>PortStatusValues</typeRef>
 </component>
 <component componentID="3">
 <name>LaserPower</name>
 <synopsis>current observed power</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="4">
 <name>FrameRelayCircuits</name>
 <synopsis>
 Information about circuits on this Frequency
 </synopsis>
 <array>
 <typeRef>frameCircuitsType</typeRef>
 </array>
 </component>
 </struct>
 </dataTypeDef>
 <dataTypeDef>
 <name>frameCircuitsType</name>
 <synopsis>
 Information about a single Frame Relay Circuit
 </synopsis>
 <struct>
 <component componentID="1">
 <name>DLCI</name>
 <synopsis>DLCI of the circuit</synopsis>
 <typeRef>uint32</typeRef>
 </component>
 <component componentID="2">
 <name>CircuitStatus</name>
 <synopsis>state of the circuit</synopsis>
 <typeRef>PortStatusValues</typeRef>
 </component>
 <component componentID="3">
 <name>isLMI</name>
 <synopsis>is this the LMI circuit</synopsis>
 <typeRef>boolean</typeRef>
 </component>
 <component componentID="4">
 <name>associatedPort</name>
 <synopsis>
 which input / output port is associated
 with this circuit
 </synopsis>
 <typeRef>uint32</typeRef>

Halpern & Hadi Salim Standards Track [Page 120]

RFC 5812 ForCES FE Model March 2010

 </component>
 </struct>
 </dataTypeDef>
 <dataTypeDef>
 <name>PortStatusValues</name>
 <synopsis>
 The possible values of status. Used for both
 administrative and operational status
 </synopsis>
 <atomic>
 <baseType>uchar</baseType>
 <specialValues>
 <specialValue value="0">
 <name>Disabled </name>
 <synopsis>the component is disabled</synopsis>
 </specialValue>
 <specialValue value="1">
 <name>Enabled</name>
 <synopsis>FE is operatively enabled</synopsis>
 </specialValue>
 </specialValues>
 </atomic>
 </dataTypeDef>
 </dataTypeDefs>
 <metadataDefs>
 <metadataDef>
 <name>DLCI</name>
 <synopsis>The DLCI the frame arrived on</synopsis>
 <metadataID>12</metadataID>
 <typeRef>uint32</typeRef>
 </metadataDef>
 <metadataDef>
 <name>LaserChannel</name>
 <synopsis>The index of the laser channel</synopsis>
 <metadataID>34</metadataID>
 <typeRef>uint32</typeRef>
 </metadataDef>
 </metadataDefs>
 <LFBClassDefs>
 <!-- dummy classid, but needs to be a valid value -->
 <LFBClassDef LFBClassID="255">
 <name>FrameLaserLFB</name>
 <synopsis>Fictional LFB for Demonstrations</synopsis>
 <version>1.0</version>
 <inputPorts>
 <inputPort group="true">
 <name>LMIfromFE</name>
 <synopsis>

Halpern & Hadi Salim Standards Track [Page 121]

RFC 5812 ForCES FE Model March 2010

 Ports for LMI traffic, for transmission
 </synopsis>
 <expectation>
 <frameExpected>
 <ref>FRFrame</ref>
 </frameExpected>
 <metadataExpected>
 <ref>DLCI</ref>
 <ref>LaserChannel</ref>
 </metadataExpected>
 </expectation>
 </inputPort>
 <inputPort>
 <name>DatafromFE</name>
 <synopsis>
 Ports for data to be sent on circuits
 </synopsis>
 <expectation>
 <frameExpected>
 <ref>IPFrame</ref>
 </frameExpected>
 <metadataExpected>
 <ref>DLCI</ref>
 <ref>LaserChannel</ref>
 </metadataExpected>
 </expectation>
 </inputPort>
 </inputPorts>
 <outputPorts>
 <outputPort group="true">
 <name>LMItoFE</name>
 <synopsis>
 Ports for LMI traffic for processing
 </synopsis>
 <product>
 <frameProduced>
 <ref>FRFrame</ref>
 </frameProduced>
 <metadataProduced>
 <ref>DLCI</ref>
 <ref>LaserChannel</ref>
 </metadataProduced>
 </product>
 </outputPort>
 <outputPort group="true">
 <name>DatatoFE</name>
 <synopsis>
 Ports for Data traffic for processing

Halpern & Hadi Salim Standards Track [Page 122]

RFC 5812 ForCES FE Model March 2010

 </synopsis>
 <product>
 <frameProduced>
 <ref>IPFrame</ref>
 </frameProduced>
 <metadataProduced>
 <ref>DLCI</ref>
 <ref>LaserChannel</ref>
 </metadataProduced>
 </product>
 </outputPort>
 </outputPorts>
 <components>
 <component access="read-write" componentID="1">
 <name>AdminPortState</name>
 <synopsis>is this port allowed to function</synopsis>
 <typeRef>PortStatusValues</typeRef>
 </component>
 <component access="read-write" componentID="2">
 <name>FrequencyInformation</name>
 <synopsis>
 table of information per CWDM frequency
 </synopsis>
 <array type="variable-size">
 <typeRef>frequencyInformationType</typeRef>
 </array>
 </component>
 </components>
 <capabilities>
 <capability componentID="31">
 <name>OperationalState</name>
 <synopsis>
 whether the port over all is operational
 </synopsis>
 <typeRef>PortStatusValues</typeRef>
 </capability>
 <capability componentID="32">
 <name>MaximumFrequencies</name>
 <synopsis>
 how many laser frequencies are there
 </synopsis>
 <typeRef>uint16</typeRef>
 </capability>
 <capability componentID="33">
 <name>MaxTotalCircuits</name>
 <synopsis>
 Total supportable Frame Relay Circuits, across
 all laser frequencies

Halpern & Hadi Salim Standards Track [Page 123]

RFC 5812 ForCES FE Model March 2010

 </synopsis>
 <optional/>
 <typeRef>uint32</typeRef>
 </capability>
 </capabilities>
 <events baseID="61">
 <event eventID="1">
 <name>FrequencyState</name>
 <synopsis>
 The state of a frequency has changed
 </synopsis>
 <eventTarget>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>FrequencyState</eventField>
 </eventTarget>
 <eventChanged/>
 <eventReports>
 <!-- report the new state -->
 <eventReport>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>FrequencyState</eventField>
 </eventReport>
 </eventReports>
 </event>
 <event eventID="2">
 <name>CreatedFrequency</name>
 <synopsis>A new frequency has appeared</synopsis>
 <eventTarget>
 <eventField>FrequencyInformation></eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 </eventTarget>
 <eventCreated/>
 <eventReports>
 <eventReport>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>LaserFrequency</eventField>
 </eventReport>
 </eventReports>
 </event>
 <event eventID="3">
 <name>DeletedFrequency</name>
 <synopsis>
 A frequency Table entry has been deleted
 </synopsis>
 <eventTarget>

Halpern & Hadi Salim Standards Track [Page 124]

RFC 5812 ForCES FE Model March 2010

 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 </eventTarget>
 <eventDeleted/>
 </event>
 <event eventID="4">
 <name>PowerProblem</name>
 <synopsis>
 there are problems with the laser power level
 </synopsis>
 <eventTarget>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>LaserPower</eventField>
 </eventTarget>
 <eventLessThan/>
 <eventReports>
 <eventReport>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>LaserPower</eventField>
 </eventReport>
 <eventReport>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>LaserFrequency</eventField>
 </eventReport>
 </eventReports>
 </event>
 <event eventID="5">
 <name>FrameCircuitChanged</name>
 <synopsis>
 the state of an Fr circuit on a frequency
 has changed
 </synopsis>
 <eventTarget>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>FrameRelayCircuits</eventField>
 <eventSubscript>FrameCircuitIndex</eventSubscript>
 <eventField>CircuitStatus</eventField>
 </eventTarget>
 <eventChanged/>
 <eventReports>
 <eventReport>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>FrameRelayCircuits</eventField>

Halpern & Hadi Salim Standards Track [Page 125]

RFC 5812 ForCES FE Model March 2010

 <eventSubscript>FrameCircuitIndex</eventSubscript>
 <eventField>CircuitStatus</eventField>
 </eventReport>
 <eventReport>
 <eventField>FrequencyInformation</eventField>
 <eventSubscript>_FrequencyIndex_</eventSubscript>
 <eventField>FrameRelayCircuits</eventField>
 <eventSubscript>FrameCircuitIndex</eventSubscript>
 <eventField>DLCI</eventField>
 </eventReport>
 </eventReports>
 </event>
 </events>
 </LFBClassDef>
 </LFBClassDefs>
 </LFBLibrary>

8.1. Data Handling

 This LFB is designed to handle data packets coming in from or going
 out to the external world. It is not a full port, and it lacks many
 useful statistics, but it serves to show many of the relevant
 behaviors. The following paragraphs describe a potential operational
 device and how it might use this LFB definition.

 Packets arriving without error from the physical interface come in on
 a frame relay DLCI on a laser channel. These two values are used by
 the LFB to look up the handling for the packet. If the handling
 indicates that the packet is LMI, then the output index is used to
 select an LFB port from the LMItoFE port group. The packet is sent
 as a full frame relay frame (without any bit or byte stuffing) on the
 selected port. The laser channel and DLCI are sent as metadata, even
 though the DLCI is also still in the packet.

 Good packets that arrive and are not LMI and have a frame relay type
 indicator of IP are sent as IP packets on the port in the DatatoFE
 port group, using the same index field from the table based on the
 laser channel and DLCI. The channel and DLCI are attached as
 metadata for other use (classifiers, for example).

 The current definition does not specify what to do if the frame relay
 type information is not IP.

 Packets arriving on input ports arrive with the laser channel and
 frame relay DLCI as metadata. As such, a single input port could
 have been used. With the structure that is defined (which parallels
 the output structure), the selection of channel and DLCI could be
 restricted by the arriving input port group (LMI vs. data) and port

Halpern & Hadi Salim Standards Track [Page 126]

RFC 5812 ForCES FE Model March 2010

 index. As an alternative LFB design, the structures could require a
 1-1 relationship between DLCI and the LFB port, in which case no
 metadata would be needed. This would however be quite complex and
 noisy. The intermediate level of structure here allows parallelism
 between input and output, without requiring excessive ports.

8.1.1. Setting Up a DLCI

 When a CE chooses to establish a DLCI on a specific laser channel, it
 sends a SET request directed to this LFB. The request might look
 like

 T = SET
 T = PATH-DATA
 Path: flags = none, length = 4, path = 2, channel, 4, entryIdx
 DataRaw: DLCI, Enabled(1), false, out-idx

 which would establish the DLCI as enabled, with traffic going to a
 specific entry of the output port group DatatoFE. (The CE would
 ensure that the output port is connected to the right place before
 issuing this request.)

 The response would confirm the creation of the specified entry. This
 table is structured to use separate internal indices and DLCIs. An
 alternative design could have used the DLCI as index, trading off
 complexities.

 One could also imagine that the FE has an LMI LFB. Such an LFB would
 be connected to the LMItoFE and LMIfromFE port groups. It would
 process LMI information. It might be the LFB’s job to set up the
 frame relay circuits. The LMI LFB would have an alias entry that
 points to the frame relay circuits table it manages, so that it can
 manipulate those entities.

8.1.2. Error Handling

 The LFB will receive invalid packets over the wire. Many of these
 will simply result in incrementing counters. The LFB designer might
 also specify some error rate measures. This puts more work on the
 FE, but allows for more meaningful alarms.

 There may be some error conditions that should cause parts of the
 packet to be sent to the CE. The error itself is not something that
 can cause an event in the LFB. There are two ways this can be
 handled.

Halpern & Hadi Salim Standards Track [Page 127]

RFC 5812 ForCES FE Model March 2010

 One way is to define a specific component to count the error, and a
 component in the LFB to hold the required portion of the packet. The
 component could be defined to hold the portion of the packet from the
 most recent error. One could then define an event that occurs
 whenever the error count changes, and declare that reporting the
 event includes the LFB field with the packet portion. For rare but
 extremely critical errors, this is an effective solution. It ensures
 reliable delivery of the notification. And it allows the CE to
 control if it wants the notification.

 Another approach is for the LFB to have a port that connects to a
 redirect sink. The LFB would attach the laser channel, the DLCI, and
 the error indication as metadata, and ship the packet to the CE.

 Other aspects of error handling are discussed under events below.

8.2. LFB Components

 This LFB is defined to have two top-level components. One reflects
 the administrative state of the LFB. This allows the CE to disable
 the LFB completely.

 The other component is the table of information about the laser
 channels. It is a variable-sized array. Each array entry contains
 an identifier for what laser frequency this entry is associated with,
 whether that frequency is operational, the power of the laser at that
 frequency, and a table of information about frame relay circuits on
 this frequency. There is no administrative status since a CE can
 disable an entry simply by removing it. (Frequency and laser power
 of a non-operational channel are not particularly useful. Knowledge
 about what frequencies can be supported would be a table in the
 capabilities section.)

 The frame relay circuit information contains the DLCI, the
 operational circuit status, whether this circuit is to be treated as
 carrying LMI information, and which port in the output port group of
 the LFB traffic is to be sent to. As mentioned above, the circuit
 index could, in some designs, be combined with the DLCI.

8.3. Capabilities

 The capability information for this LFB includes whether the
 underlying interface is operational, how many frequencies are
 supported, and how many total circuits, across all channels, are
 permitted. The maximum number for a given laser channel can be
 determined from the properties of the FrameRelayCircuits table. A
 GET-PROP on path 2.channel.4 will give the CE the properties of that

Halpern & Hadi Salim Standards Track [Page 128]

RFC 5812 ForCES FE Model March 2010

 FrameRelayCircuits array which include the number of entries used,
 the first available entry, and the maximum number of entries
 permitted.

8.4. Events

 This LFB is defined to be able to generate several events in which
 the CE may be interested. There are events to report changes in
 operational state of frequencies, and the creation and deletion of
 frequency entries. There is an event for changes in status of
 individual frame relay circuits. So an event notification of
 61.5.3.11 would indicate that there had been a circuit status change
 on subscript 11 of the circuit table in subscript 3 of the frequency
 table. The event report would include the new status of the circuit
 and the DLCI of the circuit. Arguably, the DLCI is redundant, since
 the CE presumably knows the DLCI based on the circuit index. It is
 included here to show including two pieces of information in an event
 report.

 As described above, the event declaration defines the event target,
 the event condition, and the event report content. The event
 properties indicate whether the CE is subscribed to the event, the
 specific threshold for the event, and any filter conditions for the
 event.

 Another event shown is a laser power problem. This event is
 generated whenever the laser falls below the specified threshold.
 Thus, a CE can register for the event of laser power loss on all
 circuits. It would do this by:

 T = SET-PROP
 Path-TLV: flags=0, length = 2, path = 61.4
 Path-TLV: flags = property-field, length = 1, path = 2
 Content = 1 (register)
 Path-TLV: flags = property-field, length = 1, path = 3
 Content = 15 (threshold)

 This would set the registration for the event on all entries in the
 table. It would also set the threshold for the event, causing
 reporting if the power falls below 15. (Presumably, the CE knows
 what the scale is for power, and has chosen 15 as a meaningful
 problem level.)

Halpern & Hadi Salim Standards Track [Page 129]

RFC 5812 ForCES FE Model March 2010

 If a laser oscillates in power near the 15 mark, one could get a lot
 of notifications. (If it flips back and forth between 14 and 15,
 each flip down will generate an event.) Suppose that the CE decides
 to suppress this oscillation somewhat on laser channel 5. It can do
 this by setting the hysteresis property on that event. The request
 would look like:

 T = SET-PROP
 Path-TLV: flags=0, length = 3, path = 61.4.5
 Path-TLV: flags = property-field, length = 1, path = 4
 Content = 2 (hysteresis)

 Setting the hysteresis to 2 suppresses a lot of spurious
 notifications. When the level first falls below 10, a notification
 is generated. If the power level increases to 10 or 11, and then
 falls back below 10, an event will not be generated. The power has
 to recover to at least 12 and fall back below 10 to generate another
 event. One common cause of this form of oscillation is when the
 actual value is right near the border. If it is really 9.5, tiny
 changes might flip it back and forth between 9 and 10. A hysteresis
 level of 1 will suppress this sort of condition. Many other events
 have oscillations that are somewhat wider, so larger hysteresis
 settings can be used with those.

9. IANA Considerations

 The ForCES model creates the need for a unique XML namespace for
 ForCES library definition usage, and unique class names and numeric
 class identifiers.

9.1. URN Namespace Registration

 IANA has registered a new XML namespace, as per the guidelines in RFC
 3688 [RFC3688].

 URI: The URI for this namespace is
 urn:ietf:params:xml:ns:forces:lfbmodel:1.0

 Registrant Contact: IESG

 XML: none, this is an XML namespace

9.2. LFB Class Names and LFB Class Identifiers

 In order to have well defined ForCES LFB Classes, and well defined
 identifiers for those classes, IANA has created a registry of LFB
 class names, corresponding class identifiers, and the document that
 defines the LFB class. The registry policy is simply first come,

Halpern & Hadi Salim Standards Track [Page 130]

RFC 5812 ForCES FE Model March 2010

 first served (FCFS) with regard to LFB class names. With regard to
 LFB class identifiers, identifiers less than 65536 are reserved for
 assignment by IETF Standards-Track RFCs. Identifiers equal to or
 above 65536, in the 32-bit class ID space, are available for
 assignment on a first come, first served basis. All registry entries
 must be documented in a stable, publicly available form.

 Since this registry provides for FCFS allocation of a portion of the
 class identifier space, it is necessary to define rules for naming
 classes that are using that space. As these can be defined by
 anyone, the needed rule is to keep the FCFS class names from
 colliding with IETF-defined class names. Therefore, all FCFS class
 names MUST start with the string "Ext-".

 Table 1 tabulates the above information.

 IANA has created a registry of ForCES LFB Class Names and the
 corresponding ForCES LFB Class Identifiers, with the location of the
 definition of the ForCES LFB Class, in accordance with the rules in
 the following table.

 +----------------+------------+---------------+---------------------+
 | LFB Class Name | LFB Class | Place Defined | Description |
 | | Identifier | | |
 +----------------+------------+---------------+---------------------+
Reserved	0	RFC 5812	Reserved

FE Object	1	RFC 5812	Defines ForCES
			Forwarding Element
			information
FE Protocol	2	[2]	Defines parameters
Object			for the ForCES
			protocol operation

IETF defined	3-65535	Standards	Reserved for IETF
LFBs		Track RFCs	defined RFCs

ForCES LFB	>65535	Any Publicly	First Come, First
Class names		Available	Served for any use
beginning EXT-		Document	
 +----------------+------------+---------------+---------------------+

 Table 1

Halpern & Hadi Salim Standards Track [Page 131]

RFC 5812 ForCES FE Model March 2010

10. Authors Emeritus

 The following are the authors who were instrumental in the creation
 of earlier releases of this document.

 Ellen Delganes, Intel Corp.
 Lily Yang, Intel Corp.
 Ram Gopal, Nokia Research Center
 Alan DeKok, Infoblox, Inc.
 Zsolt Haraszti, Clovis Solutions

11. Acknowledgments

 Many of the colleagues in our companies and participants in the
 ForCES mailing list have provided invaluable input into this work.
 Particular thanks to Evangelos Haleplidis for help getting the XML
 right.

12. Security Considerations

 The FE model describes the representation and organization of data
 sets and components in the FEs. The ForCES framework document
 [RFC3746] provides a comprehensive security analysis for the overall
 ForCES architecture. For example, the ForCES protocol entities must
 be authenticated per the ForCES requirements before they can access
 the information elements described in this document via ForCES.
 Access to the information contained in the FE model is accomplished
 via the ForCES protocol, which is defined in separate documents, and
 thus the security issues will be addressed there.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5810] Doria, A., Ed., Hadi Salim, J., Ed., Haas, R., Ed.,
 Khosravi, H., Ed., Wang, W., Ed., Dong, L., Gopal, R., and
 J. Halpern, "Forwarding and Control Element Separation
 (ForCES) Protocol Specification", RFC 5810, March 2010.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [Schema1] Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn,
 "XML Schema Part 1: Structures", W3C REC-xmlschema-1,
 http://www.w3.org/TR/xmlshcema-1/, May 2001.

Halpern & Hadi Salim Standards Track [Page 132]

RFC 5812 ForCES FE Model March 2010

 [Schema2] Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes",
 W3C REC-xmlschema-2, http://www.w3.org/TR/xmlschema-2/,
 May 2001.

13.2. Informative References

 [RFC3654] Khosravi, H. and T. Anderson, "Requirements for Separation
 of IP Control and Forwarding", RFC 3654, November 2003.

 [RFC3746] Yang, L., Dantu, R., Anderson, T., and R. Gopal,
 "Forwarding and Control Element Separation (ForCES)
 Framework", RFC 3746, April 2004.

 [RFC3317] Chan, K., Sahita, R., Hahn, S., and K. McCloghrie,
 "Differentiated Services Quality of Service Policy
 Information Base", RFC 3317, March 2003.

 [RFC3318] Sahita, R., Hahn, S., Chan, K., and K. McCloghrie,
 "Framework Policy Information Base", RFC 3318, March 2003.

 [RFC3444] Pras, A. and J. Schoenwaelder, "On the Difference between
 Information Models and Data Models", RFC 3444,
 January 2003.

 [RFC3470] Hollenbeck, S., Rose, M., and L. Masinter, "Guidelines for
 the Use of Extensible Markup Language (XML)
 within IETF Protocols", BCP 70, RFC 3470, January 2003.

 [UNICODE] Davis, M. and M. Suignard, "UNICODE Security
 Considerations",
 http://www.unicode.org/reports/tr36/tr36-3.html ,
 July 2005.

Halpern & Hadi Salim Standards Track [Page 133]

RFC 5812 ForCES FE Model March 2010

Authors’ Addresses

 Joel Halpern
 Self
 P.O. Box 6049
 Leesburg, VA 20178
 USA

 Phone: +1 703 371 3043
 EMail: jmh@joelhalpern.com

 Jamal Hadi Salim
 Znyx Networks
 Ottawa, Ontario
 Canada

 EMail: hadi@mojatatu.com

Halpern & Hadi Salim Standards Track [Page 134]

