
Internet Engineering Task Force (IETF) B. Haberman, Ed.
Request for Comments: 5906 JHU/APL
Category: Informational D. Mills
ISSN: 2070-1721 U. Delaware
 June 2010

 Network Time Protocol Version 4: Autokey Specification

Abstract

 This memo describes the Autokey security model for authenticating
 servers to clients using the Network Time Protocol (NTP) and public
 key cryptography. Its design is based on the premise that IPsec
 schemes cannot be adopted intact, since that would preclude stateless
 servers and severely compromise timekeeping accuracy. In addition,
 Public Key Infrastructure (PKI) schemes presume authenticated time
 values are always available to enforce certificate lifetimes;
 however, cryptographically verified timestamps require interaction
 between the timekeeping and authentication functions.

 This memo includes the Autokey requirements analysis, design
 principles, and protocol specification. A detailed description of
 the protocol states, events, and transition functions is included. A
 prototype of the Autokey design based on this memo has been
 implemented, tested, and documented in the NTP version 4 (NTPv4)
 software distribution for the Unix, Windows, and Virtual Memory
 System (VMS) operating systems at http://www.ntp.org.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5906.

Haberman & Mills Informational [Page 1]

RFC 5906 NTPv4 Autokey June 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Haberman & Mills Informational [Page 2]

RFC 5906 NTPv4 Autokey June 2010

Table of Contents

 1. Introduction ..4
 2. NTP Security Model ..4
 3. Approach ..7
 4. Autokey Cryptography ..8
 5. Autokey Protocol Overview12
 6. NTP Secure Groups ..14
 7. Identity Schemes ...19
 8. Timestamps and Filestamps20
 9. Autokey Operations ...22
 10. Autokey Protocol Messages23
 10.1. No-Operation ...26
 10.2. Association Message (ASSOC)26
 10.3. Certificate Message (CERT)26
 10.4. Cookie Message (COOKIE)27
 10.5. Autokey Message (AUTO)27
 10.6. Leapseconds Values Message (LEAP)27
 10.7. Sign Message (SIGN)27
 10.8. Identity Messages (IFF, GQ, MV)27
 11. Autokey State Machine ...28
 11.1. Status Word ..28
 11.2. Host State Variables30
 11.3. Client State Variables (all modes)33
 11.4. Protocol State Transitions34
 11.4.1. Server Dance34
 11.4.2. Broadcast Dance35
 11.4.3. Symmetric Dance36
 11.5. Error Recovery ...37
 12. Security Considerations39
 12.1. Protocol Vulnerability39
 12.2. Clogging Vulnerability40
 13. IANA Considerations ...42
 13. References ..42
 13.1. Normative References42
 13.2. Informative References43
 Appendix A. Timestamps, Filestamps, and Partial Ordering45
 Appendix B. Identity Schemes46
 Appendix C. Private Certificate (PC) Scheme47
 Appendix D. Trusted Certificate (TC) Scheme47
 Appendix E. Schnorr (IFF) Identity Scheme48
 Appendix F. Guillard-Quisquater (GQ) Identity Scheme49
 Appendix G. Mu-Varadharajan (MV) Identity Scheme51
 Appendix H. ASN.1 Encoding Rules54
 Appendix I. COOKIE Request, IFF Response, GQ Response, MV
 Response ...54
 Appendix J. Certificates ...55

Haberman & Mills Informational [Page 3]

RFC 5906 NTPv4 Autokey June 2010

1. Introduction

 A distributed network service requires reliable, ubiquitous, and
 survivable provisions to prevent accidental or malicious attacks on
 the servers and clients in the network or the values they exchange.
 Reliability requires that clients can determine that received packets
 are authentic; that is, were actually sent by the intended server and
 not manufactured or modified by an intruder. Ubiquity requires that
 a client can verify the authenticity of a server using only public
 information. Survivability requires protection from faulty
 implementations, improper operation, and possibly malicious clogging
 and replay attacks.

 This memo describes a cryptographically sound and efficient
 methodology for use in the Network Time Protocol (NTP) [RFC5905].
 The various key agreement schemes [RFC4306][RFC2412][RFC2522]
 proposed require per-association state variables, which contradicts
 the principles of the remote procedure call (RPC) paradigm in which
 servers keep no state for a possibly large client population. An
 evaluation of the PKI model and algorithms, e.g., as implemented in
 the OpenSSL library, leads to the conclusion that any scheme
 requiring every NTP packet to carry a PKI digital signature would
 result in unacceptably poor timekeeping performance.

 The Autokey protocol is based on a combination of PKI and a pseudo-
 random sequence generated by repeated hashes of a cryptographic value
 involving both public and private components. This scheme has been
 implemented, tested, and deployed in the Internet of today. A
 detailed description of the security model, design principles, and
 implementation is presented in this memo.

 This informational document describes the NTP extensions for Autokey
 as implemented in an NTPv4 software distribution available from
 http://www.ntp.org. This description is provided to offer a basis
 for future work and a reference for the software release. This
 document also describes the motivation for the extensions within the
 protocol.

2. NTP Security Model

 NTP security requirements are even more stringent than most other
 distributed services. First, the operation of the authentication
 mechanism and the time synchronization mechanism are inextricably
 intertwined. Reliable time synchronization requires cryptographic
 keys that are valid only over designated time intervals; but, time
 intervals can be enforced only when participating servers and clients
 are reliably synchronized to UTC. In addition, the NTP subnet is

Haberman & Mills Informational [Page 4]

RFC 5906 NTPv4 Autokey June 2010

 hierarchical by nature, so time and trust flow from the primary
 servers at the root through secondary servers to the clients at the
 leaves.

 A client can claim authentic to dependent applications only if all
 servers on the path to the primary servers are bona fide authentic.
 In order to emphasize this requirement, in this memo, the notion of
 "authentic" is replaced by "proventic", an adjective new to English
 and derived from "provenance", as in the provenance of a painting.
 Having abused the language this far, the suffixes fixable to the
 various derivatives of authentic will be adopted for proventic as
 well. In NTP, each server authenticates the next-lower stratum
 servers and proventicates (authenticates by induction) the lowest
 stratum (primary) servers. Serious computer linguists would
 correctly interpret the proventic relation as the transitive closure
 of the authentic relation.

 It is important to note that the notion of proventic does not
 necessarily imply the time is correct. An NTP client mobilizes a
 number of concurrent associations with different servers and uses a
 crafted agreement algorithm to pluck truechimers from the population
 possibly including falsetickers. A particular association is
 proventic if the server certificate and identity have been verified
 by the means described in this memo. However, the statement "the
 client is synchronized to proventic sources" means that the system
 clock has been set using the time values of one or more proventic
 associations and according to the NTP mitigation algorithms.

 Over the last several years, the IETF has defined and evolved the
 IPsec infrastructure for privacy protection and source authentication
 in the Internet. The infrastructure includes the Encapsulating
 Security Payload (ESP) [RFC4303] and Authentication Header (AH)
 [RFC4302] for IPv4 and IPv6. Cryptographic algorithms that use these
 headers for various purposes include those developed for the PKI,
 including various message digest, digital signature, and key
 agreement algorithms. This memo takes no position on which message
 digest or digital signature algorithm is used. This is established
 by a profile for each community of users.

 It will facilitate the discussion in this memo to refer to the
 reference implementation available at http://www.ntp.org. It
 includes Autokey as described in this memo and is available to the
 general public; however, it is not part of the specification itself.
 The cryptographic means used by the reference implementation and its
 user community are based on the OpenSSL cryptographic software
 library available at http://www.openssl.org, but other libraries with
 equivalent functionality could be used as well. It is important for

Haberman & Mills Informational [Page 5]

RFC 5906 NTPv4 Autokey June 2010

 distribution and export purposes that the way in which these
 algorithms are used precludes encryption of any data other than
 incidental to the construction of digital signatures.

 The fundamental assumption in NTP about the security model is that
 packets transmitted over the Internet can be intercepted by those
 other than the intended recipient, remanufactured in various ways,
 and replayed in whole or part. These packets can cause the client to
 believe or produce incorrect information, cause protocol operations
 to fail, interrupt network service, or consume precious network and
 processor resources.

 In the case of NTP, the assumed goal of the intruder is to inject
 false time values, disrupt the protocol or clog the network, servers,
 or clients with spurious packets that exhaust resources and deny
 service to legitimate applications. The mission of the algorithms
 and protocols described in this memo is to detect and discard
 spurious packets sent by someone other than the intended sender or
 sent by the intended sender, but modified or replayed by an intruder.

 There are a number of defense mechanisms already built in the NTP
 architecture, protocol, and algorithms. The on-wire timestamp
 exchange scheme is inherently resistant to spoofing, packet-loss, and
 replay attacks. The engineered clock filter, selection, and
 clustering algorithms are designed to defend against evil cliques of
 Byzantine traitors. While not necessarily designed to defeat
 determined intruders, these algorithms and accompanying sanity checks
 have functioned well over the years to deflect improperly operating
 but presumably friendly scenarios. However, these mechanisms do not
 securely identify and authenticate servers to clients. Without
 specific further protection, an intruder can inject any or all of the
 following attacks.

 1. An intruder can intercept and archive packets forever, as well as
 all the public values ever generated and transmitted over the
 net.

 2. An intruder can generate packets faster than the server, network,
 or client can process them, especially if they require expensive
 cryptographic computations.

 3. In a wiretap attack, the intruder can intercept, modify, and
 replay a packet. However, it cannot permanently prevent onward
 transmission of the original packet; that is, it cannot break the
 wire, only tell lies and congest it. Except in the unlikely
 cases considered in Section 12, the modified packet cannot arrive
 at the victim before the original packet, nor does it have the
 server private keys or identity parameters.

Haberman & Mills Informational [Page 6]

RFC 5906 NTPv4 Autokey June 2010

 4. In a man-in-the-middle or masquerade attack, the intruder is
 positioned between the server and client, so it can intercept,
 modify, and replay a packet and prevent onward transmission of
 the original packet. Except in unlikely cases considered in
 Section 12, the middleman does not have the server private keys.

 The NTP security model assumes the following possible limitations.

 1. The running times for public key algorithms are relatively long
 and highly variable. In general, the performance of the time
 synchronization function is badly degraded if these algorithms
 must be used for every NTP packet.

 2. In some modes of operation, it is not feasible for a server to
 retain state variables for every client. It is however feasible
 to regenerated them for a client upon arrival of a packet from
 that client.

 3. The lifetime of cryptographic values must be enforced, which
 requires a reliable system clock. However, the sources that
 synchronize the system clock must be cryptographically
 proventicated. This circular interdependence of the timekeeping
 and proventication functions requires special handling.

 4. Client security functions must involve only public values
 transmitted over the net. Private values must never be disclosed
 beyond the machine on which they were created, except in the case
 of a special trusted agent (TA) assigned for this purpose.

 Unlike the Secure Shell (SSH) security model, where the client must
 be securely authenticated to the server, in NTP, the server must be
 securely authenticated to the client. In SSH, each different
 interface address can be bound to a different name, as returned by a
 reverse-DNS query. In this design, separate public/private key pairs
 may be required for each interface address with a distinct name. A
 perceived advantage of this design is that the security compartment
 can be different for each interface. This allows a firewall, for
 instance, to require some interfaces to authenticate the client and
 others not.

3. Approach

 The Autokey protocol described in this memo is designed to meet the
 following objectives. In-depth discussions on these objectives is in
 the web briefings and will not be elaborated in this memo. Note that
 here, and elsewhere in this memo, mention of broadcast mode means
 multicast mode as well, with exceptions as noted in the NTP software
 documentation [RFC5905].

Haberman & Mills Informational [Page 7]

RFC 5906 NTPv4 Autokey June 2010

 1. It must interoperate with the existing NTP architecture model and
 protocol design. In particular, it must support the symmetric
 key scheme described in [RFC1305]. As a practical matter, the
 reference implementation must use the same internal key
 management system, including the use of 32-bit key IDs and
 existing mechanisms to store, activate, and revoke keys.

 2. It must provide for the independent collection of cryptographic
 values and time values. An NTP packet is accepted for processing
 only when the required cryptographic values have been obtained
 and verified and the packet has passed all header sanity checks.

 3. It must not significantly degrade the potential accuracy of the
 NTP synchronization algorithms. In particular, it must not make
 unreasonable demands on the network or host processor and memory
 resources.

 4. It must be resistant to cryptographic attacks, specifically those
 identified in the security model above. In particular, it must
 be tolerant of operational or implementation variances, such as
 packet loss or disorder, or suboptimal configurations.

 5. It must build on a widely available suite of cryptographic
 algorithms, yet be independent of the particular choice. In
 particular, it must not require data encryption other than that
 which is incidental to signature and cookie encryption
 operations.

 6. It must function in all the modes supported by NTP, including
 server, symmetric, and broadcast modes.

4. Autokey Cryptography

 Autokey cryptography is based on the PKI algorithms commonly used in
 the Secure Shell and Secure Sockets Layer (SSL) applications. As in
 these applications, Autokey uses message digests to detect packet
 modification, digital signatures to verify credentials, and public
 certificates to provide traceable authority. What makes Autokey
 cryptography unique is the way in which these algorithms are used to
 deflect intruder attacks while maintaining the integrity and accuracy
 of the time synchronization function.

 Autokey, like many other remote procedure call (RPC) protocols,
 depends on message digests for basic authentication; however, it is
 important to understand that message digests are also used by NTP
 when Autokey is not available or not configured. Selection of the
 digest algorithm is a function of NTP configuration and is
 transparent to Autokey.

Haberman & Mills Informational [Page 8]

RFC 5906 NTPv4 Autokey June 2010

 The protocol design and reference implementation support both 128-bit
 and 160-bit message digest algorithms, each with a 32-bit key ID. In
 order to retain backwards compatibility with NTPv3, the NTPv4 key ID
 space is partitioned in two subspaces at a pivot point of 65536.
 Symmetric key IDs have values less than the pivot and indefinite
 lifetime. Autokey key IDs have pseudo-random values equal to or
 greater than the pivot and are expunged immediately after use.

 Both symmetric key and public key cryptography authenticate as shown
 in Figure 1. The server looks up the key associated with the key ID
 and calculates the message digest from the NTP header and extension
 fields together with the key value. The key ID and digest form the
 message authentication code (MAC) included with the message. The
 client does the same computation using its local copy of the key and
 compares the result with the digest in the MAC. If the values agree,
 the message is assumed authentic.

 +------------------+
 | NTP Header and |
 | Extension Fields |
 +------------------+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | | Message Authentication Code |
 \|/ \|/ + (MAC) +
 ******************** | +-------------------------+ |
 * Compute Hash *<----| Key ID | Message Digest | +
 ******************** | +-------------------------+ |
 | +-+-+-+-+-+-+-|-+-+-+-+-+-+-+-+-+
 \|/ \|/
 +------------------+ +-------------+
 | Message Digest |------>| Compare |
 +------------------+ +-------------+

 Figure 1: Message Authentication

 Autokey uses specially contrived session keys, called autokeys, and a
 precomputed pseudo-random sequence of autokeys that are saved in the
 autokey list. The Autokey protocol operates separately for each
 association, so there may be several autokey sequences operating
 independently at the same time.

 +-------------+-------------+--------+--------+
 | Src Address | Dst Address | Key ID | Cookie |
 +-------------+-------------+--------+--------+

 Figure 2: NTPv4 Autokey

Haberman & Mills Informational [Page 9]

RFC 5906 NTPv4 Autokey June 2010

 An autokey is computed from four fields in network byte order as
 shown in Figure 2. The four values are hashed using the MD5
 algorithm to produce the 128-bit autokey value, which in the
 reference implementation is stored along with the key ID in a cache
 used for symmetric keys as well as autokeys. Keys are retrieved from
 the cache by key ID using hash tables and a fast lookup algorithm.

 For use with IPv4, the Src Address and Dst Address fields contain 32
 bits; for use with IPv6, these fields contain 128 bits. In either
 case, the Key ID and Cookie fields contain 32 bits. Thus, an IPv4
 autokey has four 32-bit words, while an IPv6 autokey has ten 32-bit
 words. The source and destination addresses and key ID are public
 values visible in the packet, while the cookie can be a public value
 or shared private value, depending on the NTP mode.

 The NTP packet format has been augmented to include one or more
 extension fields piggybacked between the original NTP header and the
 MAC. For packets without extension fields, the cookie is a shared
 private value. For packets with extension fields, the cookie has a
 default public value of zero, since these packets are validated
 independently using digital signatures.

 There are some scenarios where the use of endpoint IP addresses may
 be difficult or impossible. These include configurations where
 network address translation (NAT) devices are in use or when
 addresses are changed during an association lifetime due to mobility
 constraints. For Autokey, the only restriction is that the address
 fields that are visible in the transmitted packet must be the same as
 those used to construct the autokey list and that these fields be the
 same as those visible in the received packet. (The use of
 alternative means, such as Autokey host names (discussed later) or
 hashes of these names may be a topic for future study.)

Haberman & Mills Informational [Page 10]

RFC 5906 NTPv4 Autokey June 2010

+-----------+-----------+------+------+ +---------+ +-----+------+
|Src Address|Dst Address|Key ID|Cookie|-->| | |Final|Final |
+-----------+-----------+------+------+ | Session | |Index|Key ID|
 | | | | | Key ID | +-----+------+
 \|/ \|/ \|/ \|/ | List | | |
 ************************************* +---------+ \|/ \|/
 * COMPUTE HASH * *******************
 ************************************* *COMPUTE SIGNATURE*
 | Index n *******************
 \|/ |
 +--------+ |
 | Next | \|/
 | Key ID | +-----------+
 +--------+ | Signature |
 Index n+1 +-----------+

 Figure 3: Constructing the Key List

 Figure 3 shows how the autokey list and autokey values are computed.
 The key IDs used in the autokey list consist of a sequence starting
 with a random 32-bit nonce (autokey seed) greater than or equal to
 the pivot as the first key ID. The first autokey is computed as
 above using the given cookie and autokey seed and assigned index 0.
 The first 32 bits of the result in network byte order become the next
 key ID. The MD5 hash of the autokey is the key value saved in the
 key cache along with the key ID. The first 32 bits of the key become
 the key ID for the next autokey assigned index 1.

 Operations continue to generate the entire list. It may happen that
 a newly generated key ID is less than the pivot or collides with
 another one already generated (birthday event). When this happens,
 which occurs only rarely, the key list is terminated at that point.
 The lifetime of each key is set to expire one poll interval after its
 scheduled use. In the reference implementation, the list is
 terminated when the maximum key lifetime is about one hour, so for
 poll intervals above one hour, a new key list containing only a
 single entry is regenerated for every poll.

Haberman & Mills Informational [Page 11]

RFC 5906 NTPv4 Autokey June 2010

 +------------------+
 | NTP Header and |
 | Extension Fields |
 +------------------+
 | |
 \|/ \|/ +---------+
 **************** +--------+ | Session |
 * COMPUTE HASH *<---| Key ID |<---| Key ID |
 **************** +--------+ | List |
 | | +---------+
 \|/ \|/
 +-----------------------------------+
 | Message Authentication Code (MAC) |
 +-----------------------------------+

 Figure 4: Transmitting Messages

 The index of the last autokey in the list is saved along with the key
 ID for that entry, collectively called the autokey values. The
 autokey values are then signed for use later. The list is used in
 reverse order as shown in Figure 4, so that the first autokey used is
 the last one generated.

 The Autokey protocol includes a message to retrieve the autokey
 values and verify the signature, so that subsequent packets can be
 validated using one or more hashes that eventually match the last key
 ID (valid) or exceed the index (invalid). This is called the autokey
 test in the following and is done for every packet, including those
 with and without extension fields. In the reference implementation,
 the most recent key ID received is saved for comparison with the
 first 32 bits in network byte order of the next following key value.
 This minimizes the number of hash operations in case a single packet
 is lost.

5. Autokey Protocol Overview

 The Autokey protocol includes a number of request/response exchanges
 that must be completed in order. In each exchange, a client sends a
 request message with data and expects a server response message with
 data. Requests and responses are contained in extension fields, one
 request or response in each field, as described later. An NTP packet
 can contain one request message and one or more response messages.
 The following is a list of these messages.

 o Parameter exchange. The request includes the client host name and
 status word; the response includes the server host name and status
 word. The status word specifies the digest/signature scheme to
 use and the identity schemes supported.

Haberman & Mills Informational [Page 12]

RFC 5906 NTPv4 Autokey June 2010

 o Certificate exchange. The request includes the subject name of a
 certificate; the response consists of a signed certificate with
 that subject name. If the issuer name is not the same as the
 subject name, it has been signed by a host one step closer to a
 trusted host, so certificate retrieval continues for the issuer
 name. If it is trusted and self-signed, the trail concludes at
 the trusted host. If nontrusted and self-signed, the host
 certificate has not yet been signed, so the trail temporarily
 loops. Completion of this exchange lights the VAL bit as
 described below.

 o Identity exchange. The certificate trail is generally not
 considered sufficient protection against man-in-the-middle attacks
 unless additional protection such as the proof-of-possession
 scheme described in [RFC2875] is available, but this is expensive
 and requires servers to retain state. Autokey can use one of the
 challenge/response identity schemes described in Appendix B.
 Completion of this exchange lights the IFF bit as described below.

 o Cookie exchange. The request includes the public key of the
 server. The response includes the server cookie encrypted with
 this key. The client uses this value when constructing the key
 list. Completion of this exchange lights the COOK bit as
 described below.

 o Autokey exchange. The request includes either no data or the
 autokey values in symmetric modes. The response includes the
 autokey values of the server. These values are used to verify the
 autokey sequence. Completion of this exchange lights the AUT bit
 as described below.

 o Sign exchange. This exchange is executed only when the client has
 synchronized to a proventic source. The request includes the
 self-signed client certificate. The server acting as
 certification authority (CA) interprets the certificate as a
 X.509v3 certificate request. It extracts the subject, issuer, and
 extension fields, builds a new certificate with these data along
 with its own serial number and expiration time, then signs it
 using its own private key and includes it in the response. The
 client uses the signed certificate in its own role as server for
 dependent clients. Completion of this exchange lights the SIGN
 bit as described below.

 o Leapseconds exchange. This exchange is executed only when the
 client has synchronized to a proventic source. This exchange
 occurs when the server has the leapseconds values, as indicated in
 the host status word. If so, the client requests the values and
 compares them with its own values, if available. If the server

Haberman & Mills Informational [Page 13]

RFC 5906 NTPv4 Autokey June 2010

 values are newer than the client values, the client replaces its
 own with the server values. The client, acting as server, can now
 provide the most recent values to its dependent clients. In
 symmetric mode, this results in both peers having the newest
 values. Completion of this exchange lights the LPT bit as
 described below.

 Once the certificates and identity have been validated, subsequent
 packets are validated by digital signatures and the autokey sequence.
 The association is now proventic with respect to the downstratum
 trusted host, but is not yet selectable to discipline the system
 clock. The associations accumulate time values, and the mitigation
 algorithms continue in the usual way. When these algorithms have
 culled the falsetickers and cluster outliers and at least three
 survivors remain, the system clock has been synchronized to a
 proventic source.

 The time values for truechimer sources form a proventic partial
 ordering relative to the applicable signature timestamps. This
 raises the interesting issue of how to differentiate between the
 timestamps of different associations. It might happen, for instance,
 that the timestamp of some Autokey message is ahead of the system
 clock by some presumably small amount. For this reason, timestamp
 comparisons between different associations and between associations
 and the system clock are avoided, except in the NTP intersection and
 clustering algorithms and when determining whether a certificate has
 expired.

6. NTP Secure Groups

 NTP secure groups are used to define cryptographic compartments and
 security hierarchies. A secure group consists of a number of hosts
 dynamically assembled as a forest with roots the trusted hosts (THs)
 at the lowest stratum of the group. The THs do not have to be, but
 often are, primary (stratum 1) servers. A trusted authority (TA),
 not necessarily a group host, generates private identity keys for
 servers and public identity keys for clients at the leaves of the
 forest. The TA deploys the server keys to the THs and other
 designated servers using secure means and posts the client keys on a
 public web site.

 For Autokey purposes, all hosts belonging to a secure group have the
 same group name but different host names, not necessarily related to
 the DNS names. The group name is used in the subject and issuer
 fields of the TH certificates; the host name is used in these fields
 for other hosts. Thus, all host certificates are self-signed.
 During the use of the Autokey protocol, a client requests that the
 server sign its certificate and caches the result. A certificate

Haberman & Mills Informational [Page 14]

RFC 5906 NTPv4 Autokey June 2010

 trail is constructed by each host, possibly via intermediate hosts
 and ending at a TH. Thus, each host along the trail retrieves the
 entire trail from its server(s) and provides this plus its own signed
 certificates to its clients.

 Secure groups can be configured as hierarchies where a TH of one
 group can be a client of one or more other groups operating at a
 lower stratum. In one scenario, THs for groups RED and GREEN can be
 cryptographically distinct, but both be clients of group BLUE
 operating at a lower stratum. In another scenario, THs for group
 CYAN can be clients of multiple groups YELLOW and MAGENTA, both
 operating at a lower stratum. There are many other scenarios, but
 all must be configured to include only acyclic certificate trails.

 In Figure 5, the Alice group consists of THs Alice, which is also the
 TA, and Carol. Dependent servers Brenda and Denise have configured
 Alice and Carol, respectively, as their time sources. Stratum 3
 server Eileen has configured both Brenda and Denise as her time
 sources. Public certificates are identified by the subject and
 signed by the issuer. Note that the server group keys have been
 previously installed on Brenda and Denise and the client group keys
 installed on all machines.

Haberman & Mills Informational [Page 15]

RFC 5906 NTPv4 Autokey June 2010

 +-------------+ +-------------+ +-------------+
 | Alice Group | | Brenda | | Denise |
 | Alice | | | | |
 | +-+-+-+-+ | | +-+-+-+-+ | | +-+-+-+-+ |
 Certificate | | Alice | | | | Brenda| | | | Denise| |
 +-+-+-+-+-+ | +-+-+-+-+ | | +-+-+-+-+ | | +-+-+-+-+ |
 | Subject | | | Alice*| 1 | | | Alice | 4 | | | Carol | 4 |
 +-+-+-+-+-+ | +-+-+-+-+ | | +-+-+-+-+ | | +-+-+-+-+ |
 | Issuer | S | | | | | |
 +-+-+-+-+-+ | +=======+ | | +-+-+-+-+ | | +-+-+-+-+ |
 | ||Alice|| 3 | | | Alice | | | | Carol | |
 Group Key | +=======+ | | +-+-+-+-+ | | +-+-+-+-+ |
 +=========+ +-------------+ | | Alice*| 2 | | | Carol*| 2 |
 || Group || S | Alice Group | | +-+-+-+-+ | | +-+-+-+-+ |
 +=========+ | Carol | | | | |
 | +-+-+-+-+ | | +-+-+-+-+ | | +-+-+-+-+ |
 S = step | | Carol | | | | Brenda| | | | Denise| |
 * = trusted | +-+-+-+-+ | | +-+-+-+-+ | | +-+-+-+-+ |
 | | Carol*| 1 | | | Brenda| 1 | | | Denise| 1 | | | | | | |
 | +-+-+-+-+ | | +-+-+-+-+ | | +-+-+-+-+ |
 | | | | | |
 | +=======+ | | +=======+ | | +=======+ |
 | ||Alice|| 3 | | ||Alice|| 3 | | ||Alice|| 3 |
 | +=======+ | | +=======+ | | +=======+ |
 +-------------+ +-------------+ +-------------+
 Stratum 1 Stratum 2

Haberman & Mills Informational [Page 16]

RFC 5906 NTPv4 Autokey June 2010

 +---+
 | Eileen |
 | |
 | +-+-+-+-+ +-+-+-+-+ |
 | | Eileen| | Eileen| |
 | +-+-+-+-+ +-+-+-+-+ |
 | | Brenda| 4 | Carol | 4 |
 | +-+-+-+-+ +-+-+-+-+ |
 | |
 | +-+-+-+-+ +-+-+-+-+ |
 | | Alice | | Carol | |
 | +-+-+-+-+ +-+-+-+-+ |
 | | Alice*| 2 | Carol*| 2 |
 | +-+-+-+-+ +-+-+-+-+ |
 | |
 | +-+-+-+-+ +-+-+-+-+ |
 | | Brenda| | Denise| |
 | +-+-+-+-+ +-+-+-+-+ |
 | | Alice | 2 | Carol | 2 |
 | +-+-+-+-+ +-+-+-+-+ |
 | |
 | +-+-+-+-+ |
 | | Eileen| |
 | +-+-+-+-+ |
 | | Eileen| 1 |
 | +-+-+-+-+ |
 | |
 | +=======+ |
 | ||Alice|| 3 |
 | +=======+ |
 +---+
 Stratum 3

 Figure 5: NTP Secure Groups

 The steps in hiking the certificate trails and verifying identity are
 as follows. Note the step number in the description matches the step
 number in the figure.

 1. The girls start by loading the host key, sign key, self-signed
 certificate, and group key. Each client and server acting as a
 client starts the Autokey protocol by retrieving the server host
 name and digest/signature. This is done using the ASSOC exchange
 described later.

 2. They continue to load certificates recursively until a self-
 signed trusted certificate is found. Brenda and Denise
 immediately find trusted certificates for Alice and Carol,

Haberman & Mills Informational [Page 17]

RFC 5906 NTPv4 Autokey June 2010

 respectively, but Eileen will loop because neither Brenda nor
 Denise have their own certificates signed by either Alice or
 Carol. This is done using the CERT exchange described later.

 3. Brenda and Denise continue with the selected identity schemes to
 verify that Alice and Carol have the correct group key previously
 generated by Alice. This is done using one of the identity
 schemes IFF, GQ, or MV, described later. If this succeeds, each
 continues in step 4.

 4. Brenda and Denise present their certificates for signature using
 the SIGN exchange described later. If this succeeds, either one
 of or both Brenda and Denise can now provide these signed
 certificates to Eileen, which may be looping in step 2. Eileen
 can now verify the trail via either Brenda or Denise to the
 trusted certificates for Alice and Carol. Once this is done,
 Eileen can complete the protocol just as Brenda and Denise did.

 For various reasons, it may be convenient for a server to have client
 keys for more than one group. For example, Figure 6 shows three
 secure groups Alice, Helen, and Carol arranged in a hierarchy. Hosts
 A, B, C, and D belong to Alice with A and B as her THs. Hosts R and
 S belong to Helen with R as her TH. Hosts X and Y belong to Carol
 with X as her TH. Note that the TH for a group is always the lowest
 stratum and that the hosts of the combined groups form an acyclic
 graph. Note also that the certificate trail for each group
 terminates on a TH for that group.

 ***** ***** @@@@@
 Stratum 1 * A * * B * @ R @
 ***** ***** @@@@@
 \ / /
 \ / /
 ***** @@@@@ *********
 2 * C * @ S @ * Alice *
 ***** @@@@@ *********
 / \ /
 / \ / @@@@@@@@@
 ***** ##### @ Helen @
 3 * D * # X # @@@@@@@@@
 ***** #####
 / \ #########
 / \ # Carol #
 ##### ##### #########
 4 # Y # # Z #
 ##### #####

 Figure 6: Hierarchical Overlapping Groups

Haberman & Mills Informational [Page 18]

RFC 5906 NTPv4 Autokey June 2010

 The intent of the scenario is to provide security separation, so that
 servers cannot masquerade as clients in other groups and clients
 cannot masquerade as servers. Assume, for example, that Alice and
 Helen belong to national standards laboratories and their server keys
 are used to confirm identity between members of each group. Carol is
 a prominent corporation receiving standards products and requiring
 cryptographic authentication. Perhaps under contract, host X
 belonging to Carol has client keys for both Alice and Helen and
 server keys for Carol. The Autokey protocol operates for each group
 separately while preserving security separation. Host X can prove
 identity in Carol to clients Y and Z, but cannot prove to anybody
 that it belongs to either Alice or Helen.

7. Identity Schemes

 A digital signature scheme provides secure server authentication, but
 it does not provide protection against masquerade, unless the server
 identity is verified by other means. The PKI model requires a server
 to prove identity to the client by a certificate trail, but
 independent means such as a driver’s license are required for a CA to
 sign the server certificate. While Autokey supports this model by
 default, in a hierarchical ad hoc network, especially with server
 discovery schemes like NTP manycast, proving identity at each rest
 stop on the trail must be an intrinsic capability of Autokey itself.

 While the identity scheme described in [RFC2875] is based on a
 ubiquitous Diffie-Hellman infrastructure, it is expensive to generate
 and use when compared to others described in Appendix B. In
 principle, an ordinary public key scheme could be devised for this
 purpose, but the most stringent Autokey design requires that every
 challenge, even if duplicated, results in a different acceptable
 response.

 1. The scheme must have a relatively long lifetime, certainly longer
 than a typical certificate, and have no specific lifetime or
 expiration date. At the time the scheme is used, the host has
 not yet synchronized to a proventic source, so the scheme cannot
 depend on time.

 2. As the scheme can be used many times where the data might be
 exposed to potential intruders, the data must be either nonces or
 encrypted nonces.

 3. The scheme should allow designated servers to prove identity to
 designated clients, but not allow clients acting as servers to
 prove identity to dependent clients.

Haberman & Mills Informational [Page 19]

RFC 5906 NTPv4 Autokey June 2010

 4. To the greatest extent possible, the scheme should represent a
 zero-knowledge proof; that is, the client should be able to
 verify that the server has the correct group key, but without
 knowing the key itself.

 There are five schemes now implemented in the NTPv4 reference
 implementation to prove identity: (1) private certificate (PC), (2)
 trusted certificate (TC), (3) a modified Schnorr algorithm (IFF aka
 Identify Friendly or Foe), (4) a modified Guillou-Quisquater (GQ)
 algorithm, and (5) a modified Mu-Varadharajan (MV) algorithm. Not
 all of these provide the same level of protection and one, TC,
 provides no protection but is included for comparison. The following
 is a brief summary description of each; details are given in
 Appendix B.

 The PC scheme involves a private certificate as group key. The
 certificate is distributed to all other group members by secure means
 and is never revealed outside the group. In effect, the private
 certificate is used as a symmetric key. This scheme is used
 primarily for testing and development and is not recommended for
 regular use and is not considered further in this memo.

 All other schemes involve a conventional certificate trail as
 described in [RFC5280]. This is the default scheme when an identity
 scheme is not required. While the remaining identity schemes
 incorporate TC, it is not by itself considered further in this memo.

 The three remaining schemes IFF, GQ, and MV involve a
 cryptographically strong challenge-response exchange where an
 intruder cannot deduce the server key, even after repeated
 observations of multiple exchanges. In addition, the MV scheme is
 properly described as a zero-knowledge proof, because the client can
 verify the server has the correct group key without either the server
 or client knowing its value. These schemes start when the client
 sends a nonce to the server, which then rolls its own nonce, performs
 a mathematical operation and sends the results to the client. The
 client performs another mathematical operation and verifies the
 results are correct.

8. Timestamps and Filestamps

 While public key signatures provide strong protection against
 misrepresentation of source, computing them is expensive. This
 invites the opportunity for an intruder to clog the client or server
 by replaying old messages or originating bogus messages. A client
 receiving such messages might be forced to verify what turns out to
 be an invalid signature and consume significant processor resources.
 In order to foil such attacks, every Autokey message carries a

Haberman & Mills Informational [Page 20]

RFC 5906 NTPv4 Autokey June 2010

 timestamp in the form of the NTP seconds when it was created. If the
 system clock is synchronized to a proventic source, a signature is
 produced with a valid (nonzero) timestamp. Otherwise, there is no
 signature and the timestamp is invalid (zero). The protocol detects
 and discards extension fields with old or duplicate timestamps,
 before any values are used or signatures are verified.

 Signatures are computed only when cryptographic values are created or
 modified, which is by design not very often. Extension fields
 carrying these signatures are copied to messages as needed, but the
 signatures are not recomputed. There are three signature types:

 1. Cookie signature/timestamp. The cookie is signed when created by
 the server and sent to the client.

 2. Autokey signature/timestamp. The autokey values are signed when
 the key list is created.

 3. Public values signature/timestamp. The public key, certificate,
 and leapsecond values are signed at the time of generation, which
 occurs when the system clock is first synchronized to a proventic
 source, when the values have changed and about once per day after
 that, even if these values have not changed.

 The most recent timestamp received of each type is saved for
 comparison. Once a signature with a valid timestamp has been
 received, messages with invalid timestamps or earlier valid
 timestamps of the same type are discarded before the signature is
 verified. This is most important in broadcast mode, which could be
 vulnerable to a clogging attack without this test.

 All cryptographic values used by the protocol are time sensitive and
 are regularly refreshed. In particular, files containing
 cryptographic values used by signature and encryption algorithms are
 regenerated from time to time. It is the intent that file
 regenerations occur without specific advance warning and without
 requiring prior distribution of the file contents. While
 cryptographic data files are not specifically signed, every file is
 associated with a filestamp showing the NTP seconds at the creation
 epoch.

 Filestamps and timestamps can be compared in any combination and use
 the same conventions. It is necessary to compare them from time to
 time to determine which are earlier or later. Since these quantities
 have a granularity only to the second, such comparisons are ambiguous
 if the values are in the same second.

Haberman & Mills Informational [Page 21]

RFC 5906 NTPv4 Autokey June 2010

 It is important that filestamps be proventic data; thus, they cannot
 be produced unless the producer has been synchronized to a proventic
 source. As such, the filestamps throughout the NTP subnet represent
 a partial ordering of all creation epochs and serve as means to
 expunge old data and ensure new data are consistent. As the data are
 forwarded from server to client, the filestamps are preserved,
 including those for certificate and leapseconds values. Packets with
 older filestamps are discarded before spending cycles to verify the
 signature.

9. Autokey Operations

 The NTP protocol has three principal modes of operation: client/
 server, symmetric, and broadcast and each has its own Autokey
 program, or dance. Autokey choreography is designed to be non-
 intrusive and to require no additional packets other than for regular
 NTP operations. The NTP and Autokey protocols operate simultaneously
 and independently. When the dance is complete, subsequent packets
 are validated by the autokey sequence and thus considered proventic
 as well. Autokey assumes NTP clients poll servers at a relatively
 low rate, such as once per minute or slower. In particular, it
 assumes that a request sent at one poll opportunity will normally
 result in a response before the next poll opportunity; however, the
 protocol is robust against a missed or duplicate response.

 The server dance was suggested by Steve Kent over lunch some time
 ago, but considerably modified since that meal. The server keeps no
 state for each client, but uses a fast algorithm and a 32-bit random
 private value (server seed) to regenerate the cookie upon arrival of
 a client packet. The cookie is calculated as the first 32 bits of
 the autokey computed from the client and server addresses, key ID
 zero, and the server seed as cookie. The cookie is used for the
 actual autokey calculation by both the client and server and is thus
 specific to each client separately.

 In the server dance, the client uses the cookie and each key ID on
 the key list in turn to retrieve the autokey and generate the MAC.
 The server uses the same values to generate the message digest and
 verifies it matches the MAC. It then generates the MAC for the
 response using the same values, but with the client and server
 addresses interchanged. The client generates the message digest and
 verifies it matches the MAC. In order to deflect old replays, the
 client verifies that the key ID matches the last one sent. In this
 dance, the sequential structure of the key list is not exploited, but
 doing it this way simplifies and regularizes the implementation while
 making it nearly impossible for an intruder to guess the next key ID.

Haberman & Mills Informational [Page 22]

RFC 5906 NTPv4 Autokey June 2010

 In the broadcast dance, clients normally do not send packets to the
 server, except when first starting up. At that time, the client runs
 the server dance to verify the server credentials and calibrate the
 propagation delay. The dance requires the association ID of the
 particular server association, since there can be more than one
 operating in the same server. For this purpose, the server packet
 includes the association ID in every response message sent and, when
 sending the first packet after generating a new key list, it sends
 the autokey values as well. After obtaining and verifying the
 autokey values, no extension fields are necessary and the client
 verifies further server packets using the autokey sequence.

 The symmetric dance is similar to the server dance and requires only
 a small amount of state between the arrival of a request and
 departure of the response. The key list for each direction is
 generated separately by each peer and used independently, but each is
 generated with the same cookie. The cookie is conveyed in a way
 similar to the server dance, except that the cookie is a simple
 nonce. There exists a possible race condition where each peer sends
 a cookie request before receiving the cookie response from the other
 peer. In this case, each peer winds up with two values, one it
 generated and one the other peer generated. The ambiguity is
 resolved simply by computing the working cookie as the EXOR of the
 two values.

 Once the Autokey dance has completed, it is normally dormant. In all
 except the broadcast dance, packets are normally sent without
 extension fields, unless the packet is the first one sent after
 generating a new key list or unless the client has requested the
 cookie or autokey values. If for some reason the client clock is
 stepped, rather than slewed, all cryptographic and time values for
 all associations are purged and the dances in all associations
 restarted from scratch. This ensures that stale values never
 propagate beyond a clock step.

10. Autokey Protocol Messages

 The Autokey protocol data unit is the extension field, one or more of
 which can be piggybacked in the NTP packet. An extension field
 contains either a request with optional data or a response with
 optional data. To avoid deadlocks, any number of responses can be
 included in a packet, but only one request can be. A response is
 generated for every request, even if the requestor is not
 synchronized to a proventic source, but most contain meaningful data
 only if the responder is synchronized to a proventic source. Some
 requests and most responses carry timestamped signatures. The
 signature covers the entire extension field, including the timestamp

Haberman & Mills Informational [Page 23]

RFC 5906 NTPv4 Autokey June 2010

 and filestamp, where applicable. Only if the packet has correct
 format, length, and message digest are cycles spent to verify the
 signature.

 There are currently eight Autokey requests and eight corresponding
 responses. The NTP packet format is described in [RFC5905] and the
 extension field format used for these messages is illustrated in
 Figure 7.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |R|E| Code | Field Type | Length |
 +-+
 | Association ID |
 +-+
 | Timestamp |
 +-+
 | Filestamp |
 +-+
 | Value Length |
 +-+
 \ /

 / Value \
 \ /
 +-+
 | Signature Length |
 +-+
 \ /
 / Signature \
 \ /
 +-+
 \ /
 / Padding (if needed) \
 \ /
 +-+

 Figure 7: NTPv4 Extension Field Format

 While each extension field is zero-padded to a 4-octet (word)
 boundary, the entire extension is not word-aligned. The Length field
 covers the entire extension field, including the Length and Padding
 fields. While the minimum field length is 8 octets, a maximum field
 length remains to be established. The reference implementation
 discards any packet with a field length more than 1024 octets.

Haberman & Mills Informational [Page 24]

RFC 5906 NTPv4 Autokey June 2010

 One or more extension fields follow the NTP packet header and the
 last followed by the MAC. The extension field parser initializes a
 pointer to the first octet beyond the NTP packet header and
 calculates the number of octets remaining to the end of the packet.
 If the remaining length is 20 (128-bit digest plus 4-octet key ID) or
 22 (160-bit digest plus 4-octet key ID), the remaining data are the
 MAC and parsing is complete. If the remaining length is greater than
 22, an extension field is present. If the remaining length is less
 than 8 or not a multiple of 4, a format error has occurred and the
 packet is discarded; otherwise, the parser increments the pointer by
 the extension field length and then uses the same rules as above to
 determine whether a MAC is present or another extension field.

 In Autokey the 8-bit Field Type field is interpreted as the version
 number, currently 2. For future versions, values 1-7 have been
 reserved for Autokey; other values may be assigned for other
 applications. The 6-bit Code field specifies the request or response
 operation. There are two flag bits: bit 0 is the Response Flag (R)
 and bit 1 is the Error Flag (E); the Reserved field is unused and
 should be set to 0. The remaining fields will be described later.

 In the most common protocol operations, a client sends a request to a
 server with an operation code specified in the Code field and both
 the R bit and E bit dim. The server returns a response with the same
 operation code in the Code field and lights the R bit. The server
 can also light the E bit in case of error. Note that it is not
 necessarily a protocol error to send an unsolicited response with no
 matching request. If the R bit is dim, the client sets the
 Association ID field to the client association ID, which the server
 returns for verification. If the two values do not match, the
 response is discarded as if never sent. If the R bit is lit, the
 Association ID field is set to the server association ID obtained in
 the initial protocol exchange. If the Association ID field does not
 match any mobilized association ID, the request is discarded as if
 never sent.

 In some cases, not all fields may be present. For requests, until a
 client has synchronized to a proventic source, signatures are not
 valid. In such cases, the Timestamp field and Signature Length field
 (which specifies the length of the Signature) are zero and the
 Signature field is absent. Some request and error response messages
 carry no value or signature fields, so in these messages only the
 first two words (8 octets) are present.

 The Timestamp and Filestamp words carry the seconds field of an NTP
 timestamp. The timestamp establishes the signature epoch of the data
 field in the message, while the filestamp establishes the generation
 epoch of the file that ultimately produced the data that is signed.

Haberman & Mills Informational [Page 25]

RFC 5906 NTPv4 Autokey June 2010

 A signature and timestamp are valid only when the signing host is
 synchronized to a proventic source; otherwise, the timestamp is zero.
 A cryptographic data file can only be generated if a signature is
 possible; otherwise, the filestamp is zero, except in the ASSOC
 response message, where it contains the server status word.

 As in all other TCP/IP protocol designs, all data are sent in network
 byte order. Unless specified otherwise in the descriptions to
 follow, the data referred to are stored in the Value field. The
 Value Length field specifies the length of the data in the Value
 field.

10.1. No-Operation

 A No-operation request (Code 0) does nothing except return an empty
 response, which can be used as a crypto-ping.

10.2. Association Message (ASSOC)

 An Association Message (Code 1) is used in the parameter exchange to
 obtain the host name and status word. The request contains the
 client status word in the Filestamp field and the Autokey host name
 in the Value field. The response contains the server status word in
 the Filestamp field and the Autokey host name in the Value field.
 The Autokey host name is not necessarily the DNS host name. A valid
 response lights the ENAB bit and possibly others in the association
 status word.

 When multiple identity schemes are supported, the host status word
 determines which ones are available. In server and symmetric modes,
 the response status word contains bits corresponding to the supported
 schemes. In all modes, the scheme is selected based on the client
 identity parameters that are loaded at startup.

10.3. Certificate Message (CERT)

 A Certificate Message (Code 2) is used in the certificate exchange to
 obtain a certificate by subject name. The request contains the
 subject name; the response contains the certificate encoded in X.509
 format with ASN.1 syntax as described in Appendix H.

 If the subject name in the response does not match the issuer name,
 the exchange continues with the issuer name replacing the subject
 name in the request. The exchange continues until a trusted, self-
 signed certificate is found and lights the CERT bit in the
 association status word.

Haberman & Mills Informational [Page 26]

RFC 5906 NTPv4 Autokey June 2010

10.4. Cookie Message (COOKIE)

 The Cookie Message (Code 3) is used in server and symmetric modes to
 obtain the server cookie. The request contains the host public key
 encoded with ASN.1 syntax as described in Appendix H. The response
 contains the cookie encrypted by the public key in the request. A
 valid response lights the COOKIE bit in the association status word.

10.5. Autokey Message (AUTO)

 The Autokey Message (Code 4) is used to obtain the autokey values.
 The request contains no value for a client or the autokey values for
 a symmetric peer. The response contains two 32-bit words, the first
 is the final key ID, while the second is the index of the final key
 ID. A valid response lights the AUTO bit in the association status
 word.

10.6. Leapseconds Values Message (LEAP)

 The Leapseconds Values Message (Code 5) is used to obtain the
 leapseconds values as parsed from the leapseconds table from the
 National Institute of Standards and Technology (NIST). The request
 contains no values. The response contains three 32-bit integers:
 first the NTP seconds of the latest leap event followed by the NTP
 seconds when the latest NIST table expires and then the TAI offset
 following the leap event. A valid response lights the LEAP bit in
 the association status word.

10.7. Sign Message (SIGN)

 The Sign Message (Code 6) requests that the server sign and return a
 certificate presented in the request. The request contains the
 client certificate encoded in X.509 format with ASN.1 syntax as
 described in Appendix H. The response contains the client
 certificate signed by the server private key. A valid response
 lights the SIGN bit in the association status word.

10.8. Identity Messages (IFF, GQ, MV)

 The Identity Messages (Code 7 (IFF), 8 (GQ), or 9 (MV)) contains the
 client challenge, usually a 160- or 512-bit nonce. The response
 contains the result of the mathematical operation defined in
 Appendix B. The Response is encoded in ASN.1 syntax as described in
 Appendix H. A valid response lights the VRFY bit in the association
 status word.

Haberman & Mills Informational [Page 27]

RFC 5906 NTPv4 Autokey June 2010

11. Autokey State Machine

 This section describes the formal model of the Autokey state machine,
 its state variables and the state transition functions.

11.1. Status Word

 The server implements a host status word, while each client
 implements an association status word. These words have the format
 and content shown in Figure 8. The low-order 16 bits of the status
 word define the state of the Autokey dance, while the high-order 16
 bits specify the Numerical Identifier (NID) as generated by the
 OpenSSL library of the OID for one of the message digest/signature
 encryption schemes defined in [RFC3279]. The NID values for the
 digest/signature algorithms defined in RFC 3279 are as follows:

 +------------------------+----------------------+-----+
 | Algorithm | OID | NID |
 +------------------------+----------------------+-----+
 | pkcs-1 | 1.2.840.113549.1.1 | 2 |
 | md2 | 1.2.840.113549.2.2 | 3 |
 | md5 | 1.2.840.113549.2.5 | 4 |
 | rsaEncryption | 1.2.840.113549.1.1.1 | 6 |
 | md2WithRSAEncryption | 1.2.840.113549.1.1.2 | 7 |
 | md5WithRSAEncryption | 1.2.840.113549.1.1.4 | 8 |
 | id-sha1 | 1.3.14.3.2.26 | 64 |
 | sha-1WithRSAEncryption | 1.2.840.113549.1.1.5 | 65 |
 | id-dsa-wth-sha1 | 1.2.840.10040.4.3 | 113 |
 | id-dsa | 1.2.840.10040.4.1 | 116 |
 +------------------------+----------------------+-----+

 Bits 24-31 are reserved for server use, while bits 16-23 are reserved
 for client use. In the host portion, bits 24-27 specify the
 available identity schemes, while bits 28-31 specify the server
 capabilities. There are two additional bits implemented separately.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Digest / Signature NID | Client | Ident | Host |
 +-+

 Figure 8: Status Word

Haberman & Mills Informational [Page 28]

RFC 5906 NTPv4 Autokey June 2010

 The host status word is included in the ASSOC request and response
 messages. The client copies this word to the association status word
 and then lights additional bits as the dance proceeds. Once enabled,
 these bits ordinarily never become dark unless a general reset occurs
 and the protocol is restarted from the beginning.

 The host status bits are defined as follows:

 o ENAB (31) is lit if the server implements the Autokey protocol.

 o LVAL (30) is lit if the server has installed leapseconds values,
 either from the NIST leapseconds file or from another server.

 o Bits (28-29) are reserved - always dark.

 o Bits 24-27 select which server identity schemes are available.
 While specific coding for various schemes is yet to be determined,
 the schemes available in the reference implementation and
 described in Appendix B include the following:

 * none - Trusted Certificate (TC) Scheme (default).

 * PC (27) Private Certificate Scheme.

 * IFF (26) Schnorr aka Identify-Friendly-or-Foe Scheme.

 * GQ (25) Guillard-Quisquater Scheme.

 * MV (24) Mu-Varadharajan Scheme.

 o The PC scheme is exclusive of any other scheme. Otherwise, the
 IFF, GQ, and MV bits can be enabled in any combination.

 The association status bits are defined as follows:

 o CERT (23): Lit when the trusted host certificate and public key
 are validated.

 o VRFY (22): Lit when the trusted host identity credentials are
 confirmed.

 o PROV (21): Lit when the server signature is verified using its
 public key and identity credentials. Also called the proventic
 bit elsewhere in this memo. When enabled, signed values in
 subsequent messages are presumed proventic.

Haberman & Mills Informational [Page 29]

RFC 5906 NTPv4 Autokey June 2010

 o COOK (20): Lit when the cookie is received and validated. When
 lit, key lists with nonzero cookies are generated; when dim, the
 cookie is zero.

 o AUTO (19): Lit when the autokey values are received and validated.
 When lit, clients can validate packets without extension fields
 according to the autokey sequence.

 o SIGN (18): Lit when the host certificate is signed by the server.

 o LEAP (17): Lit when the leapseconds values are received and
 validated.

 o Bit 16: Reserved - always dark.

 There are three additional bits: LIST, SYNC, and PEER not included in
 the association status word. LIST is lit when the key list is
 regenerated and dim when the autokey values have been transmitted.
 This is necessary to avoid livelock under some conditions. SYNC is
 lit when the client has synchronized to a proventic source and never
 dim after that. PEER is lit when the server has synchronized, as
 indicated in the NTP header, and never dim after that.

11.2. Host State Variables

 The following is a list of host state variables.

 Host Name: The name of the host, by default the string
 returned by the Unix gethostname() library
 function. In the reference implementation, this
 is a configurable value.

 Host Status Word: This word is initialized when the host first
 starts up. The format is described above.

 Host Key: The RSA public/private key pair used to encrypt/
 decrypt cookies. This is also the default sign
 key.

 Sign Key: The RSA or Digital Signature Algorithm (DSA)
 public/private key pair used to encrypt/decrypt
 signatures when the host key is not used for
 this purpose.

 Sign Digest: The message digest algorithm used to compute the
 message digest before encryption.

Haberman & Mills Informational [Page 30]

RFC 5906 NTPv4 Autokey June 2010

 IFF Parameters: The parameters used in the optional IFF identity
 scheme described in Appendix B.

 GQ Parameters: The parameters used in the optional GQ identity
 scheme described in Appendix B.

 MV Parameters: The parameters used in the optional MV identity
 scheme described in Appendix B.

 Server Seed: The private value hashed with the IP addresses
 and key identifier to construct the cookie.

 CIS: Certificate Information Structure. This
 structure includes certain information fields
 from an X.509v3 certificate, together with the
 certificate itself. The fields extracted
 include the subject and issuer names, subject
 public key and message digest algorithm
 (pointers), and the beginning and end of the
 valid period in NTP seconds.

 The certificate itself is stored as an extension
 field in network byte order so it can be copied
 intact to the message. The structure is signed
 using the sign key and carries the public values
 timestamp at signature time and the filestamp of
 the original certificate file. The structure is
 used by the CERT response message and SIGN
 request and response messages.

 A flags field in the CIS determines the status
 of the certificate. The field is encoded as
 follows:

 * TRUST (0x01) - The certificate has been
 signed by a trusted issuer. If the
 certificate is self-signed and contains
 "trustRoot" in the Extended Key Usage field,
 this bit is lit when the CIS is constructed.

 * SIGN (0x02) - The certificate signature has
 been verified. If the certificate is self-
 signed and verified using the contained
 public key, this bit is lit when the CIS is
 constructed.

Haberman & Mills Informational [Page 31]

RFC 5906 NTPv4 Autokey June 2010

 * VALID (0x04) - The certificate is valid and
 can be used to verify signatures. This bit
 is lit when a trusted certificate has been
 found on a valid certificate trail.

 * PRIV (0x08) - The certificate is private and
 not to be revealed. If the certificate is
 self-signed and contains "Private" in the
 Extended Key Usage field, this bit is lit
 when the CIS is constructed.

 * ERROR (0x80) - The certificate is defective
 and not to be used in any way.

 Certificate List: CIS structures are stored on the certificate
 list in order of arrival, with the most recently
 received CIS placed first on the list. The list
 is initialized with the CIS for the host
 certificate, which is read from the host
 certificate file. Additional CIS entries are
 added to the list as certificates are obtained
 from the servers during the certificate
 exchange. CIS entries are discarded if
 overtaken by newer ones.

 The following values are stored as an extension
 field structure in network byte order so they
 can be copied intact to the message. They are
 used to send some Autokey requests and
 responses. All but the Host Name Values
 structure are signed using the sign key and all
 carry the public values timestamp at signature
 time.

 Host Name Values: This is used to send ASSOC request and response
 messages. It contains the host status word and
 host name.

 Public Key Values: This is used to send the COOKIE request message.
 It contains the public encryption key used for
 the COOKIE response message.

 Leapseconds Values: This is used to send the LEAP response message.
 It contains the leapseconds values in the LEAP
 message description.

Haberman & Mills Informational [Page 32]

RFC 5906 NTPv4 Autokey June 2010

11.3. Client State Variables (all modes)

 The following is a list of state variables used by the various dances
 in all modes.

 Association ID: The association ID used in responses. It
 is assigned when the association is
 mobilized.

 Association Status Word: The status word copied from the ASSOC
 response; subsequently modified by the
 state machine.

 Subject Name: The server host name copied from the ASSOC
 response.

 Issuer Name: The host name signing the certificate. It
 is extracted from the current server
 certificate upon arrival and used to
 request the next host on the certificate
 trail.

 Server Public Key: The public key used to decrypt signatures.
 It is extracted from the server host
 certificate.

 Server Message Digest: The digest/signature scheme determined in
 the parameter exchange.

 Group Key: A set of values used by the identity
 exchange. It identifies the cryptographic
 compartment shared by the server and
 client.

 Receive Cookie Values: The cookie returned in a COOKIE response,
 together with its timestamp and filestamp.

 Receive Autokey Values: The autokey values returned in an AUTO
 response, together with its timestamp and
 filestamp.

 Send Autokey Values: The autokey values with signature and
 timestamps.

Haberman & Mills Informational [Page 33]

RFC 5906 NTPv4 Autokey June 2010

 Key List: A sequence of key IDs starting with the
 autokey seed and each pointing to the next.
 It is computed, timestamped, and signed at
 the next poll opportunity when the key list
 becomes empty.

 Current Key Number: The index of the entry on the Key List to
 be used at the next poll opportunity.

11.4. Protocol State Transitions

 The protocol state machine is very simple but robust. The state is
 determined by the client status word bits defined above. The state
 transitions of the three dances are shown below. The capitalized
 truth values represent the client status bits. All bits are
 initialized as dark and are lit upon the arrival of a specific
 response message as detailed above.

11.4.1. Server Dance

 The server dance begins when the client sends an ASSOC request to the
 server. The clock is updated when PREV is lit and the dance ends
 when LEAP is lit. In this dance, the autokey values are not used, so
 an autokey exchange is not necessary. Note that the SIGN and LEAP
 requests are not issued until the client has synchronized to a
 proventic source. Subsequent packets without extension fields are
 validated by the autokey sequence. This example and others assumes
 the IFF identity scheme has been selected in the parameter exchange.

Haberman & Mills Informational [Page 34]

RFC 5906 NTPv4 Autokey June 2010

1 while (1) {
2 wait_for_next_poll;
3 make_NTP_header;
4 if (response_ready)
5 send_response;
6 if (!ENB) /* parameter exchange */
7 ASSOC_request;
8 else if (!CERT) /* certificate exchange */
9 CERT_request(Host_Name);
10 else if (!IFF) /* identity exchange */
11 IFF_challenge;
12 else if (!COOK) /* cookie exchange */
13 COOKIE_request;
14 else if (!SYNC) /* wait for synchronization */
15 continue;
16 else if (!SIGN) /* sign exchange */
17 SIGN_request(Host_Certificate);
18 else if (!LEAP) /* leapsecond values exchange */
19 LEAP_request;
20 send packet;
21 }

 Figure 9: Server Dance

 If the server refreshes the private seed, the cookie becomes invalid.
 The server responds to an invalid cookie with a crypto-NAK message,
 which causes the client to restart the protocol from the beginning.

11.4.2. Broadcast Dance

 The broadcast dance is similar to the server dance with the cookie
 exchange replaced by the autokey values exchange. The broadcast
 dance begins when the client receives a broadcast packet including an
 ASSOC response with the server association ID. This mobilizes a
 client association in order to proventicate the source and calibrate
 the propagation delay. The dance ends when the LEAP bit is lit,
 after which the client sends no further packets. Normally, the
 broadcast server includes an ASSOC response in each transmitted
 packet. However, when the server generates a new key list, it
 includes an AUTO response instead.

 In the broadcast dance, extension fields are used with every packet,
 so the cookie is always zero and no cookie exchange is necessary. As
 in the server dance, the clock is updated when PREV is lit and the

Haberman & Mills Informational [Page 35]

RFC 5906 NTPv4 Autokey June 2010

 dance ends when LEAP is lit. Note that the SIGN and LEAP requests
 are not issued until the client has synchronized to a proventic
 source. Subsequent packets without extension fields are validated by
 the autokey sequence.
1 while (1) {
2 wait_for_next_poll;
3 make_NTP_header;
4 if (response_ready)
5 send_response;
6 if (!ENB) /* parameters exchange */
7 ASSOC_request;
8 else if (!CERT) /* certificate exchange */
9 CERT_request(Host_Name);
10 else if (!IFF) /* identity exchange */
11 IFF_challenge;
12 else if (!AUT) /* autokey values exchange */
13 AUTO_request;
14 else if (!SYNC) /* wait for synchronization */
15 continue;
16 else if (!SIGN) /* sign exchange */
17 SIGN_request(Host_Certificate);
18 else if (!LEAP) /* leapsecond values exchange */
19 LEAP_request;
20 send NTP_packet;
21 }

 Figure 10: Broadcast Dance

 If a packet is lost and the autokey sequence is broken, the client
 hashes the current autokey until either it matches the previous
 autokey or the number of hashes exceeds the count given in the
 autokey values. If the latter, the client sends an AUTO request to
 retrieve the autokey values. If the client receives a crypto-NAK
 during the dance, or if the association ID changes, the client
 restarts the protocol from the beginning.

11.4.3. Symmetric Dance

 The symmetric dance is intricately choreographed. It begins when the
 active peer sends an ASSOC request to the passive peer. The passive
 peer mobilizes an association and both peers step a three-way dance
 where each peer completes a parameter exchange with the other. Until
 one of the peers has synchronized to a proventic source (which could
 be the other peer) and can sign messages, the other peer loops
 waiting for a valid timestamp in the ensuing CERT response.

Haberman & Mills Informational [Page 36]

RFC 5906 NTPv4 Autokey June 2010

1 while (1) {
2 wait_for_next_poll;
3 make_NTP_header;
4 if (!ENB) /* parameters exchange */
5 ASSOC_request;
6 else if (!CERT) /* certificate exchange */
7 CERT_request(Host_Name);
8 else if (!IFF) /* identity exchange */
9 IFF_challenge;
10 else if (!COOK && PEER) /* cookie exchange */
11 COOKIE_request);
12 else if (!AUTO) /* autokey values exchange */
13 AUTO_request;
14 else if (LIST) /* autokey values response */
15 AUTO_response;
16 else if (!SYNC) /* wait for synchronization */
17 continue;
18 else if (!SIGN) /* sign exchange */
19 SIGN_request;
20 else if (!LEAP) /* leapsecond values exchange */
21 LEAP_request;
22 send NTP_packet;
23 }

 Figure 11: Symmetric Dance

 Once a peer has synchronized to a proventic source, it includes
 timestamped signatures in its messages. The other peer, which has
 been stalled waiting for valid timestamps, now mates the dance. It
 retrieves the now nonzero cookie using a cookie exchange and then the
 updated autokey values using an autokey exchange.

 As in the broadcast dance, if a packet is lost and the autokey
 sequence broken, the peer hashes the current autokey until either it
 matches the previous autokey or the number of hashes exceeds the
 count given in the autokey values. If the latter, the client sends
 an AUTO request to retrieve the autokey values. If the peer receives
 a crypto-NAK during the dance, or if the association ID changes, the
 peer restarts the protocol from the beginning.

11.5. Error Recovery

 The Autokey protocol state machine includes provisions for various
 kinds of error conditions that can arise due to missing files,
 corrupted data, protocol violations, and packet loss or misorder, not
 to mention hostile intrusion. This section describes how the
 protocol responds to reachability and timeout events that can occur
 due to such errors.

Haberman & Mills Informational [Page 37]

RFC 5906 NTPv4 Autokey June 2010

 A persistent NTP association is mobilized by an entry in the
 configuration file, while an ephemeral association is mobilized upon
 the arrival of a broadcast or symmetric active packet with no
 matching association. Subsequently, a general reset reinitializes
 all association variables to the initial state when first mobilized.
 In addition, if the association is ephemeral, the association is
 demobilized and all resources acquired are returned to the system.

 Every NTP association has two variables that maintain the liveness
 state of the protocol, the 8-bit reach register and the unreach
 counter defined in [RFC5905]. At every poll interval, the reach
 register is shifted left, the low order bit is dimmed and the high
 order bit is lost. At the same time, the unreach counter is
 incremented by one. If an arriving packet passes all authentication
 and sanity checks, the rightmost bit of the reach register is lit and
 the unreach counter is set to zero. If any bit in the reach register
 is lit, the server is reachable; otherwise, it is unreachable.

 When the first poll is sent from an association, the reach register
 and unreach counter are set to zero. If the unreach counter reaches
 16, the poll interval is doubled. In addition, if association is
 persistent, it is demobilized. This reduces the network load for
 packets that are unlikely to elicit a response.

 At each state in the protocol, the client expects a particular
 response from the server. A request is included in the NTP packet
 sent at each poll interval until a valid response is received or a
 general reset occurs, in which case the protocol restarts from the
 beginning. A general reset also occurs for an association when an
 unrecoverable protocol error occurs. A general reset occurs for all
 associations when the system clock is first synchronized or the clock
 is stepped or when the server seed is refreshed.

 There are special cases designed to quickly respond to broken
 associations, such as when a server restarts or refreshes keys.
 Since the client cookie is invalidated, the server rejects the next
 client request and returns a crypto-NAK packet. Since the crypto-NAK
 has no MAC, the problem for the client is to determine whether it is
 legitimate or the result of intruder mischief. In order to reduce
 the vulnerability in such cases, the crypto-NAK, as well as all
 responses, is believed only if the result of a previous packet sent
 by the client and not a replay, as confirmed by the NTP on-wire
 protocol. While this defense can be easily circumvented by a man-in-
 the-middle, it does deflect other kinds of intruder warfare.

 There are a number of situations where some event happens that causes
 the remaining autokeys on the key list to become invalid. When one
 of these situations happens, the key list and associated autokeys in

Haberman & Mills Informational [Page 38]

RFC 5906 NTPv4 Autokey June 2010

 the key cache are purged. A new key list, signature, and timestamp
 are generated when the next NTP message is sent, assuming there is
 one. The following is a list of these situations:

 1. When the cookie value changes for any reason.

 2. When the poll interval is changed. In this case, the calculated
 expiration times for the keys become invalid.

 3. If a problem is detected when an entry is fetched from the key
 list. This could happen if the key was marked non-trusted or
 timed out, either of which implies a software bug.

12. Security Considerations

 This section discusses the most obvious security vulnerabilities in
 the various Autokey dances. In the following discussion, the
 cryptographic algorithms and private values themselves are assumed
 secure; that is, a brute force cryptanalytic attack will not reveal
 the host private key, sign private key, cookie value, identity
 parameters, server seed or autokey seed. In addition, an intruder
 will not be able to predict random generator values.

12.1. Protocol Vulnerability

 While the protocol has not been subjected to a formal analysis, a few
 preliminary assertions can be made. In the client/server and
 symmetric dances, the underlying NTP on-wire protocol is resistant to
 lost, duplicate, and bogus packets, even if the clock is not
 synchronized, so the protocol is not vulnerable to a wiretapper
 attack. The on-wire protocol is resistant to replays of both the
 client request packet and the server reply packet. A man-in-the-
 middle attack, even if it could simulate a valid cookie, could not
 prove identity.

 In the broadcast dance, the client begins with a volley in client/
 server mode to obtain the autokey values and signature, so has the
 same protection as in that mode. When continuing in receive-only
 mode, a wiretapper cannot produce a key list with valid signed
 autokey values. If it replays an old packet, the client will reject
 it by the timestamp check. The most it can do is manufacture a
 future packet causing clients to repeat the autokey hash operations
 until exceeding the maximum key number. If this happens the
 broadcast client temporarily reverts to client mode to refresh the
 autokey values.

Haberman & Mills Informational [Page 39]

RFC 5906 NTPv4 Autokey June 2010

 By assumption, a man-in-the-middle attacker that intercepts a packet
 cannot break the wire or delay an intercepted packet. If this
 assumption is removed, the middleman could intercept a broadcast
 packet and replace the data and message digest without detection by
 the clients.

 As mentioned previously in this memo, the TC identity scheme is
 vulnerable to a man-in-the-middle attack where an intruder could
 create a bogus certificate trail. To foil this kind of attack,
 either the PC, IFF, GQ, or MV identity schemes must be used.

 A client instantiates cryptographic variables only if the server is
 synchronized to a proventic source. A server does not sign values or
 generate cryptographic data files unless synchronized to a proventic
 source. This raises an interesting issue: how does a client generate
 proventic cryptographic files before it has ever been synchronized to
 a proventic source? (Who shaves the barber if the barber shaves
 everybody in town who does not shave himself?) In principle, this
 paradox is resolved by assuming the primary (stratum 1) servers are
 proventicated by external phenomenological means.

12.2. Clogging Vulnerability

 A self-induced clogging incident cannot happen, since signatures are
 computed only when the data have changed and the data do not change
 very often. For instance, the autokey values are signed only when
 the key list is regenerated, which happens about once an hour, while
 the public values are signed only when one of them is updated during
 a dance or the server seed is refreshed, which happens about once per
 day.

 There are two clogging vulnerabilities exposed in the protocol
 design: an encryption attack where the intruder hopes to clog the
 victim server with needless cryptographic calculations, and a
 decryption attack where the intruder attempts to clog the victim
 client with needless cryptographic calculations. Autokey uses public
 key cryptography and the algorithms that perform these functions
 consume significant resources.

 In client/server and peer dances, an encryption hazard exists when a
 wiretapper replays prior cookie request messages at speed. There is
 no obvious way to deflect such attacks, as the server retains no
 state between requests. Replays of cookie request or response
 messages are detected and discarded by the client on-wire protocol.

 In broadcast mode, a decryption hazard exists when a wiretapper
 replays autokey response messages at speed. Once synchronized to a
 proventic source, a legitimate extension field with timestamp the

Haberman & Mills Informational [Page 40]

RFC 5906 NTPv4 Autokey June 2010

 same as or earlier than the most recently received of that type is
 immediately discarded. This foils a man-in-the-middle cut-and-paste
 attack using an earlier response, for example. A legitimate
 extension field with timestamp in the future is unlikely, as that
 would require predicting the autokey sequence. However, this causes
 the client to refresh and verify the autokey values and signature.

 A determined attacker can destabilize the on-wire protocol or an
 Autokey dance in various ways by replaying old messages before the
 client or peer has synchronized for the first time. For instance,
 replaying an old symmetric mode message before the peers have
 synchronize will prevent the peers from ever synchronizing.
 Replaying out of order Autokey messages in any mode during a dance
 could prevent the dance from ever completing. There is nothing new
 in these kinds of attack; a similar vulnerability even exists in TCP.

Haberman & Mills Informational [Page 41]

RFC 5906 NTPv4 Autokey June 2010

13. IANA Consideration

 The IANA has added the following entries to the NTP Extensions Field
 Types registry:

 +------------+--+
 | Field Type | Meaning |
 +------------+--+
 | 0x0002 | No-Operation Request |
 | 0x8002 | No-Operation Response |
 | 0xC002 | No-Operation Error Response |
 | 0x0102 | Association Message Request |
 | 0x8102 | Association Message Response |
 | 0xC102 | Association Message Error Response |
 | 0x0202 | Certificate Message Request |
 | 0x8202 | Certificate Message Response |
 | 0xC202 | Certificate Message Error Response |
 | 0x0302 | Cookie Message Request |
 | 0x8302 | Cookie Message Response |
 | 0xC302 | Cookie Message Error Response |
 | 0x0402 | Autokey Message Request |
 | 0x8402 | Autokey Message Response |
 | 0xC402 | Autokey Message Error Response |
 | 0x0502 | Leapseconds Value Message Request |
 | 0x8502 | Leapseconds Value Message Response |
 | 0xC502 | Leapseconds Value Message Error Response |
 | 0x0602 | Sign Message Request |
 | 0x8602 | Sign Message Response |
 | 0xC602 | Sign Message Error Response |
 | 0x0702 | IFF Identity Message Request |
 | 0x8702 | IFF Identity Message Response |
 | 0xC702 | IFF Identity Message Error Response |
 | 0x0802 | GQ Identity Message Request |
 | 0x8802 | GQ Identity Message Response |
 | 0xC802 | GQ Identity Message Error Response |
 | 0x0902 | MV Identity Message Request |
 | 0x8902 | MV Identity Message Response |
 | 0xC902 | MV Identity Message Error Response |
 +------------+--+

14. References

14.1. Normative References

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, June 2010.

Haberman & Mills Informational [Page 42]

RFC 5906 NTPv4 Autokey June 2010

14.2. Informative References

 [DASBUCH] Mills, D., "Computer Network Time Synchronization - the
 Network Time Protocol", 2006.

 [GUILLOU] Guillou, L. and J. Quisquatar, "A "paradoxical" identity-
 based signature scheme resulting from zero-knowledge",
 1990.

 [MV] Mu, Y. and V. Varadharajan, "Robust and secure
 broadcasting", 2001.

 [RFC1305] Mills, D., "Network Time Protocol (Version 3)
 Specification, Implementation", RFC 1305, March 1992.

 [RFC2412] Orman, H., "The OAKLEY Key Determination Protocol",
 RFC 2412, November 1998.

 [RFC2522] Karn, P. and W. Simpson, "Photuris: Session-Key Management
 Protocol", RFC 2522, March 1999.

 [RFC2875] Prafullchandra, H. and J. Schaad, "Diffie-Hellman Proof-
 of-Possession Algorithms", RFC 2875, July 2000.

 [RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and
 Identifiers for the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 3279, April 2002.

 [RFC4210] Adams, C., Farrell, S., Kause, T., and T. Mononen,
 "Internet X.509 Public Key Infrastructure Certificate
 Management Protocol (CMP)", RFC 4210, September 2005.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 December 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303, December 2005.

 [RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",
 RFC 4306, December 2005.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

Haberman & Mills Informational [Page 43]

RFC 5906 NTPv4 Autokey June 2010

 [SCHNORR] Schnorr, C., "Efficient signature generation for smart
 cards", 1991.

 [STINSON] Stinson, D., "Cryptography - Theory and Practice", 1995.

Haberman & Mills Informational [Page 44]

RFC 5906 NTPv4 Autokey June 2010

Appendix A. Timestamps, Filestamps, and Partial Ordering

 When the host starts, it reads the host key and host certificate
 files, which are required for continued operation. It also reads the
 sign key and leapseconds values, when available. When reading these
 files, the host checks the file formats and filestamps for validity;
 for instance, all filestamps must be later than the time the UTC
 timescale was established in 1972 and the certificate filestamp must
 not be earlier than its associated sign key filestamp. At the time
 the files are read, the host is not synchronized, so it cannot
 determine whether the filestamps are bogus other than by using these
 simple checks. It must not produce filestamps or timestamps until
 synchronized to a proventic source.

 In the following, the relation A --> B is Lamport’s "happens before"
 relation, which is true if event A happens before event B. When
 timestamps are compared to timestamps, the relation is false if A
 <--> B; that is, false if the events are simultaneous. For
 timestamps compared to filestamps and filestamps compared to
 filestamps, the relation is true if A <--> B. Note that the current
 time plays no part in these assertions except in (6) below; however,
 the NTP protocol itself ensures a correct partial ordering for all
 current time values.

 The following assertions apply to all relevant responses:

 1. The client saves the most recent timestamp T0 and filestamp F0
 for the respective signature type. For every received message
 carrying timestamp T1 and filestamp F1, the message is discarded
 unless T0 --> T1 and F0 --> F1. The requirement that T0 --> T1
 is the primary defense against replays of old messages.

 2. For timestamp T and filestamp F, F --> T; that is, the filestamp
 must happen before the timestamp. If not, this could be due to a
 file generation error or a significant error in the system clock
 time.

 3. For sign key filestamp S, certificate filestamp C, cookie
 timestamp D and autokey timestamp A, S --> C --> D --> A; that
 is, the autokey must be generated after the cookie, the cookie
 after the certificate, and the certificate after the sign key.

 4. For sign key filestamp S and certificate filestamp C specifying
 begin time B and end time E, S --> C--> B --> E; that is, the
 valid period must not be retroactive.

Haberman & Mills Informational [Page 45]

RFC 5906 NTPv4 Autokey June 2010

 5. A certificate for subject S signed by issuer I and with filestamp
 C1 obsoletes, but does not necessarily invalidate, another
 certificate with the same subject and issuer but with filestamp
 C0, where C0 --> C1.

 6. A certificate with begin time B and end time E is invalid and
 cannot be used to verify signatures if t --> B or E --> t, where
 t is the current proventic time. Note that the public key
 previously extracted from the certificate continues to be valid
 for an indefinite time. This raises the interesting possibility
 where a truechimer server with expired certificate or a
 falseticker with valid certificate are not detected until the
 client has synchronized to a proventic source.

Appendix B. Identity Schemes

 There are five identity schemes in the NTPv4 reference
 implementation: (1) private certificate (PC), (2) trusted certificate
 (TC), (3) a modified Schnorr algorithm (IFF - Identify Friend or
 Foe), (4) a modified Guillou-Quisquater (GQ) algorithm, and (5) a
 modified Mu-Varadharajan (MV) algorithm.

 The PC scheme is intended for testing and development and not
 recommended for general use. The TC scheme uses a certificate trail,
 but not an identity scheme. The IFF, GQ, and MV identity schemes use
 a cryptographically strong challenge-response exchange where an
 intruder cannot learn the group key, even after repeated observations
 of multiple exchanges. These schemes begin when the client sends a
 nonce to the server, which then rolls its own nonce, performs a
 mathematical operation and sends the results to the client. The
 client performs a second mathematical operation to prove the server
 has the same group key as the client.

Haberman & Mills Informational [Page 46]

RFC 5906 NTPv4 Autokey June 2010

Appendix C. Private Certificate (PC) Scheme

 The PC scheme shown in Figure 12 uses a private certificate as the
 group key.

 Trusted
 Authority
 Secure +-------------+ Secure
 +--------------| Certificate |-------------+
 | +-------------+ |
 | |
 \|/ \|/
 +-------------+ +-------------+
 | Certificate | | Certificate |
 +-------------+ +-------------+
 Server Client

 Figure 12: Private Certificate (PC) Identity Scheme

 A certificate is designated private when the X.509v3 Extended Key
 Usage extension field is present and contains "Private". The private
 certificate is distributed to all other group members by secret
 means, so in fact becomes a symmetric key. Private certificates are
 also trusted, so there is no need for a certificate trail or identity
 scheme.

Appendix D. Trusted Certificate (TC) Scheme

 All other schemes involve a conventional certificate trail as shown
 in Figure 13.
 Trusted
 Host Host Host
 +-----------+ +-----------+ +-----------+
 +--->| Subject | +--->| Subject | +--->| Subject |
 | +-----------+ | +-----------+ | +-----------+
 ...---+ | Issuer |---+ | Issuer |---+ | Issuer |
 +-----------+ +-----------+ +-----------+
 | Signature | | Signature | | Signature |
 +-----------+ +-----------+ +-----------+

 Figure 13: Trusted Certificate (TC) Identity Scheme

 As described in RFC 4210 [RFC4210], each certificate is signed by an
 issuer one step closer to the trusted host, which has a self-signed
 trusted certificate. A certificate is designated trusted when an
 X.509v3 Extended Key Usage extension field is present and contains
 "trustRoot". If no identity scheme is specified in the parameter
 exchange, this is the default scheme.

Haberman & Mills Informational [Page 47]

RFC 5906 NTPv4 Autokey June 2010

Appendix E. Schnorr (IFF) Identity Scheme

 The IFF scheme is useful when the group key is concealed, so that
 client keys need not be protected. The primary disadvantage is that
 when the server key is refreshed all hosts must update the client
 key. The scheme shown in Figure 14 involves a set of public
 parameters and a group key including both private and public
 components. The public component is the client key.

 Trusted
 Authority
 +------------+
 | Parameters |
 Secure +------------+ Insecure
 +-------------| Group Key |-----------+
 | +------------+ |
 \|/ \|/
 +------------+ Challenge +------------+
 | Parameters |<------------------------| Parameters |
 +------------+ +------------+
 | Group Key |------------------------>| Client Key |
 +------------+ Response +------------+
 Server Client

 Figure 14: Schnorr (IFF) Identity Scheme

 By happy coincidence, the mathematical principles on which IFF is
 based are similar to DSA. The scheme is a modification an algorithm
 described in [SCHNORR] and [STINSON] (p. 285). The parameters are
 generated by routines in the OpenSSL library, but only the moduli p,
 q and generator g are used. The p is a 512-bit prime, g a generator
 of the multiplicative group Z_p* and q a 160-bit prime that divides
 (p-1) and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA
 rolls a private random group key b (0 < b < q), then computes public
 client key v = g^(q-b) mod p. The TA distributes (p, q, g, b) to all
 servers using secure means and (p, q, g, v) to all clients not
 necessarily using secure means.

 The TA hides IFF parameters and keys in an OpenSSL DSA cuckoo
 structure. The IFF parameters are identical to the DSA parameters,
 so the OpenSSL library can be used directly. The structure shown in
 Figure 15 is written to a file as a DSA private key encoded in PEM.
 Unused structure members are set to one.

Haberman & Mills Informational [Page 48]

RFC 5906 NTPv4 Autokey June 2010

 +----------------------------------+-------------+
 | IFF | DSA | Item | Include |
 +=========+==========+=============+=============+
 | p | p | modulus | all |
 +---------+----------+-------------+-------------+
 | q | q | modulus | all |
 +---------+----------+-------------+-------------+
 | g | g | generator | all |
 +---------+----------+-------------+-------------+
 | b | priv_key | group key | server |
 +---------+----------+-------------+-------------+
 | v | pub_key | client key | client |
 +---------+----------+-------------+-------------+

 Figure 15: IFF Identity Scheme Structure

 Alice challenges Bob to confirm identity using the following protocol
 exchange.

 1. Alice rolls random r (0 < r < q) and sends to Bob.

 2. Bob rolls random k (0 < k < q), computes y = k + br mod q and x =
 g^k mod p, then sends (y, hash(x)) to Alice.

 3. Alice computes z = g^y * v^r mod p and verifies hash(z) equals
 hash(x).

 If the hashes match, Alice knows that Bob has the group key b.
 Besides making the response shorter, the hash makes it effectively
 impossible for an intruder to solve for b by observing a number of
 these messages. The signed response binds this knowledge to Bob’s
 private key and the public key previously received in his
 certificate.

Appendix F. Guillard-Quisquater (GQ) Identity Scheme

 The GQ scheme is useful when the server key must be refreshed from
 time to time without changing the group key. The NTP utility
 programs include the GQ client key in the X.509v3 Subject Key
 Identifier extension field. The primary disadvantage of the scheme
 is that the group key must be protected in both the server and
 client. A secondary disadvantage is that when a server key is
 refreshed, old extension fields no longer work. The scheme shown in
 Figure 16 involves a set of public parameters and a group key used to
 generate private server keys and client keys.

Haberman & Mills Informational [Page 49]

RFC 5906 NTPv4 Autokey June 2010

 Trusted
 Authority
 +------------+
 | Parameters |
 Secure +------------+ Secure
 +-------------| Group Key |-----------+
 | +------------+ |
 \|/ \|/
 +------------+ Challenge +------------+
 | Parameters |<------------------------| Parameters |
 +------------+ +------------+
 | Group Key | | Group Key |
 +------------+ Response +------------+
 | Server Key |------------------------>| Client Key |
 +------------+ +------------+
 Server Client

 Figure 16: Schnorr (IFF) Identity Scheme

 By happy coincidence, the mathematical principles on which GQ is
 based are similar to RSA. The scheme is a modification of an
 algorithm described in [GUILLOU] and [STINSON] (p. 300) (with
 errors). The parameters are generated by routines in the OpenSSL
 library, but only the moduli p and q are used. The 512-bit public
 modulus is n=pq, where p and q are secret large primes. The TA rolls
 random large prime b (0 < b < n) and distributes (n, b) to all group
 servers and clients using secure means, since an intruder in
 possession of these values could impersonate a legitimate server.
 The private server key and public client key are constructed later.

 The TA hides GQ parameters and keys in an OpenSSL RSA cuckoo
 structure. The GQ parameters are identical to the RSA parameters, so
 the OpenSSL library can be used directly. When generating a
 certificate, the server rolls random server key u (0 < u < n) and
 client key its inverse obscured by the group key v = (u^-1)^b mod n.
 These values replace the private and public keys normally generated
 by the RSA scheme. The client key is conveyed in a X.509 certificate
 extension. The updated GQ structure shown in Figure 17 is written as
 an RSA private key encoded in PEM. Unused structure members are set
 to one.

Haberman & Mills Informational [Page 50]

RFC 5906 NTPv4 Autokey June 2010

 +---------------------------------+-------------+
 | GQ | RSA | Item | Include |
 +=========+==========+============+=============+
 | n | n | modulus | all |
 +---------+----------+------------+-------------+
 | b | e | group key | all |
 +---------+----------+------------+-------------+
 | u | p | server key | server |
 +---------+----------+------------+-------------+
 | v | q | client key | client |
 +---------+----------+------------+-------------+

 Figure 17: GQ Identity Scheme Structure

 Alice challenges Bob to confirm identity using the following
 exchange.

 1. Alice rolls random r (0 < r < n) and sends to Bob.

 2. Bob rolls random k (0 < k < n) and computes y = ku^r mod n and x
 = k^b mod n, then sends (y, hash(x)) to Alice.

 3. Alice computes z = (v^r)*(y^b) mod n and verifies hash(z) equals
 hash(x).

 If the hashes match, Alice knows that Bob has the corresponding
 server key u. Besides making the response shorter, the hash makes it
 effectively impossible for an intruder to solve for u by observing a
 number of these messages. The signed response binds this knowledge
 to Bob’s private key and the client key previously received in his
 certificate.

Appendix G. Mu-Varadharajan (MV) Identity Scheme

 The MV scheme is perhaps the most interesting and flexible of the
 three challenge/response schemes, but is devilishly complicated. It
 is most useful when a small number of servers provide synchronization
 to a large client population where there might be considerable risk
 of compromise between and among the servers and clients. The client
 population can be partitioned into a modest number of subgroups, each
 associated with an individual client key.

 The TA generates an intricate cryptosystem involving encryption and
 decryption keys, together with a number of activation keys and
 associated client keys. The TA can activate and revoke individual
 client keys without changing the client keys themselves. The TA
 provides to the servers an encryption key E, and partial decryption
 keys g-bar and g-hat which depend on the activated keys. The servers

Haberman & Mills Informational [Page 51]

RFC 5906 NTPv4 Autokey June 2010

 have no additional information and, in particular, cannot masquerade
 as a TA. In addition, the TA provides to each client j individual
 partial decryption keys x-bar_j and x-hat_j, which do not need to be
 changed if the TA activates or deactivates any client key. The
 clients have no further information and, in particular, cannot
 masquerade as a server or TA.

 The scheme uses an encryption algorithm similar to El Gamal
 cryptography and a polynomial formed from the expansion of product
 terms (x-x_1)(x-x_2)(x-x_3)...(x-x_n), as described in [MV]. The
 paper has significant errors and serious omissions. The cryptosystem
 is constructed so that, for every encryption key E its inverse is
 (g-bar^x-hat_j)(g-hat^x-bar_j) mod p for every j. This remains true
 if both quantities are raised to the power k mod p. The difficulty
 in finding E is equivalent to the discrete log problem.

 The scheme is shown in Figure 18. The TA generates the parameters,
 group key, server keys, and client keys, one for each client, all of
 which must be protected to prevent theft of service. Note that only
 the TA has the group key, which is not known to either the servers or
 clients. In this sense, the MV scheme is a zero-knowledge proof.

 Trusted
 Authority
 +------------+
 | Parameters |
 +------------+
 | Group Key |
 +------------+
 | Server Key |
 Secure +------------+ Secure
 +-------------| Client Key |-----------+
 | +------------+ |
 \|/ \|/
 +------------+ Challenge +------------+
 | Parameters |<------------------------| Parameters |
 +------------+ +------------+
 | Server Key |------------------------>| Client Key |
 +------------+ Response +------------+
 Server Client

 Figure 18: Mu-Varadharajan (MV) Identity Scheme

 The TA hides MV parameters and keys in OpenSSL DSA cuckoo structures.
 The MV parameters are identical to the DSA parameters, so the OpenSSL
 library can be used directly. The structure shown in the figures
 below are written to files as a the fkey encoded in PEM. Unused
 structure members are set to one. The Figure 19 shows the data

Haberman & Mills Informational [Page 52]

RFC 5906 NTPv4 Autokey June 2010

 structure used by the servers, while Figure 20 shows the client data
 structure associated with each activation key.

 +---------------------------------+-------------+
 | MV | DSA | Item | Include |
 +=========+==========+============+=============+
 | p | p | modulus | all |
 +---------+----------+------------+-------------+
 | q | q | modulus | server |
 +---------+----------+------------+-------------+
 | E | g | private | server |
 | | | encrypt | |
 +---------+----------+------------+-------------+
 | g-bar | priv_key | public | server |
 | | | decrypt | |
 +---------+----------+------------+-------------+
 | g-hat | pub_key | public | server |
 | | | decrypt | |
 +---------+----------+------------+-------------+

 Figure 19: MV Scheme Server Structure

 +---------------------------------+-------------+
 | MV | DSA | Item | Include |
 +=========+==========+============+=============+
 | p | p | modulus | all |
 +---------+----------+------------+-------------+
 | x-bar_j | priv_key | public | client |
 | | | decrypt | |
 +---------+----------+------------+-------------+
 | x-hat_j | pub_key | public | client |
 | | | decrypt | |
 +---------+----------+------------+-------------+

 Figure 20: MV Scheme Client Structure

 The devil is in the details, which are beyond the scope of this memo.
 The steps in generating the cryptosystem activating the keys and
 generating the partial decryption keys are in [DASBUCH] (page 170
 ff).

 Alice challenges Bob to confirm identity using the following
 exchange.

 1. Alice rolls random r (0 < r < q) and sends to Bob.

Haberman & Mills Informational [Page 53]

RFC 5906 NTPv4 Autokey June 2010

 2. Bob rolls random k (0 < k < q) and computes the session
 encryption key E-prime = E^k mod p and partial decryption keys
 g-bar-prime = g-bar^k mod p and g-hat-prime = g-hat^k mod p. He
 encrypts x = E-prime * r mod p and sends (x, g-bar-prime, g-hat-
 prime) to Alice.

 3. Alice computes the session decryption key E^-1 = (g-bar-prime)^x-
 hat_j (g-hat-prime)^x-bar_j mod p and verifies that r = E^-1 x.

Appendix H. ASN.1 Encoding Rules

 Certain value fields in request and response messages contain data
 encoded in ASN.1 distinguished encoding rules (DER). The BNF grammar
 for each encoding rule is given below along with the OpenSSL routine
 used for the encoding in the reference implementation. The object
 identifiers for the encryption algorithms and message digest/
 signature encryption schemes are specified in [RFC3279]. The
 particular algorithms required for conformance are not specified in
 this memo.

Appendix I. COOKIE Request, IFF Response, GQ Response, MV Response

 The value field of the COOKIE request message contains a sequence of
 two integers (n, e) encoded by the i2d_RSAPublicKey() routine in the
 OpenSSL distribution. In the request, n is the RSA modulus in bits
 and e is the public exponent.

 RSAPublicKey ::= SEQUENCE {
 n ::= INTEGER,
 e ::= INTEGER
 }

 The IFF and GQ responses contain a sequence of two integers (r, s)
 encoded by the i2d_DSA_SIG() routine in the OpenSSL distribution. In
 the responses, r is the challenge response and s is the hash of the
 private value.

 DSAPublicKey ::= SEQUENCE {
 r ::= INTEGER,
 s ::= INTEGER
 }

 The MV response contains a sequence of three integers (p, q, g)
 encoded by the i2d_DSAparams() routine in the OpenSSL library. In
 the response, p is the hash of the encrypted challenge value and (q,
 g) is the client portion of the decryption key.

Haberman & Mills Informational [Page 54]

RFC 5906 NTPv4 Autokey June 2010

 DSAparameters ::= SEQUENCE {
 p ::= INTEGER,
 q ::= INTEGER,
 g ::= INTEGER
 }

Appendix J. Certificates

 Certificate extension fields are used to convey information used by
 the identity schemes. While the semantics of these fields generally
 conform with conventional usage, there are subtle variations. The
 fields used by Autokey version 2 include:

 o Basic Constraints. This field defines the basic functions of the
 certificate. It contains the string "critical,CA:TRUE", which
 means the field must be interpreted and the associated private key
 can be used to sign other certificates. While included for
 compatibility, Autokey makes no use of this field.

 o Key Usage. This field defines the intended use of the public key
 contained in the certificate. It contains the string
 "digitalSignature,keyCertSign", which means the contained public
 key can be used to verify signatures on data and other
 certificates. While included for compatibility, Autokey makes no
 use of this field.

 o Extended Key Usage. This field further refines the intended use
 of the public key contained in the certificate and is present only
 in self-signed certificates. It contains the string "Private" if
 the certificate is designated private or the string "trustRoot" if
 it is designated trusted. A private certificate is always
 trusted.

 o Subject Key Identifier. This field contains the client identity
 key used in the GQ identity scheme. It is present only if the GQ
 scheme is in use.

 The value field contains an X.509v3 certificate encoded by the
 i2d_X509() routine in the OpenSSL distribution. The encoding follows
 the rules stated in [RFC5280], including the use of X.509v3 extension
 fields.

 Certificate ::= SEQUENCE {
 tbsCertificate TBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING
 }

Haberman & Mills Informational [Page 55]

RFC 5906 NTPv4 Autokey June 2010

 The signatureAlgorithm is the object identifier of the message
 digest/signature encryption scheme used to sign the certificate. The
 signatureValue is computed by the certificate issuer using this
 algorithm and the issuer private key.

 TBSCertificate ::= SEQUENCE {
 version EXPLICIT v3(2),
 serialNumber CertificateSerialNumber,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 extensions EXPLICIT Extensions OPTIONAL
 }

 The serialNumber is an integer guaranteed to be unique for the
 generating host. The reference implementation uses the NTP seconds
 when the certificate was generated. The signature is the object
 identifier of the message digest/signature encryption scheme used to
 sign the certificate. It must be identical to the
 signatureAlgorithm.

 CertificateSerialNumber
 SET { ::= INTEGER
 Validity ::= SEQUENCE {
 notBefore UTCTime,
 notAfter UTCTime
 }
 }

 The notBefore and notAfter define the period of validity as defined
 in Appendix B.

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING
 }

 The AlgorithmIdentifier specifies the encryption algorithm for the
 subject public key. The subjectPublicKey is the public key of the
 subject.

Haberman & Mills Informational [Page 56]

RFC 5906 NTPv4 Autokey June 2010

 Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension
 Extension ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING
 }

 SET {
 Name ::= SEQUENCE {
 OBJECT IDENTIFIER commonName
 PrintableString HostName
 }
 }

 For trusted host certificates, the subject and issuer HostName is the
 NTP name of the group, while for all other host certificates the
 subject and issuer HostName is the NTP name of the host. In the
 reference implementation, if these names are not explicitly
 specified, they default to the string returned by the Unix
 gethostname() routine (trailing NUL removed). For other than self-
 signed certificates, the issuer HostName is the unique DNS name of
 the host signing the certificate.

 It should be noted that the Autokey protocol itself has no provisions
 to revoke certificates. The reference implementation is purposely
 restarted about once a week, leading to the regeneration of the
 certificate and a restart of the Autokey protocol. This restart is
 not enforced for the Autokey protocol but rather for NTP
 functionality reasons.

 Each group host operates with only one certificate at a time and
 constructs a trail by induction. Since the group configuration must
 form an acyclic graph, with roots at the trusted hosts, it does not
 matter which, of possibly several, signed certificates is used. The
 reference implementation chooses a single certificate and operates
 with only that certificate until the protocol is restarted.

Haberman & Mills Informational [Page 57]

RFC 5906 NTPv4 Autokey June 2010

Authors’ Addresses

 Brian Haberman (editor)
 The Johns Hopkins University Applied Physics Laboratory
 11100 Johns Hopkins Road
 Laurel, MD 20723-6099
 US

 Phone: +1 443 778 1319
 EMail: brian@innovationslab.net

 Dr. David L. Mills
 University of Delaware
 Newark, DE 19716
 US

 Phone: +1 302 831 8247
 EMail: mills@udel.edu

Haberman & Mills Informational [Page 58]

