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Abstr act

This meno describes the Autokey security nodel for authenticating
servers to clients using the Network Tinme Protocol (NTP) and public
key cryptography. |Its design is based on the prenise that |Psec
schenes cannot be adopted intact, since that woul d preclude stateless
servers and severely conproni se tinekeeping accuracy. |In addition
Public Key Infrastructure (PKI) schenes presunme authenticated tine
val ues are always available to enforce certificate lifetines;

however, cryptographically verified tinmestanps require interaction
bet ween the tinmekeepi ng and aut hentication functions.

This meno includes the Autokey requirenments anal ysis, design
principles, and protocol specification. A detailed description of
the protocol states, events, and transition functions is included. A
prot ot ype of the Autokey design based on this neno has been

i mpl enent ed, tested, and documented in the NTP version 4 (NTPv4)
software distribution for the Unix, Wndows, and Virtual Menory
System (VMS) operating systens at http://ww. ntp.org.

Status of This Meno

This docunent is not an Internet Standards Track specification; it is
published for informational purposes.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Not all docunents
approved by the I ESG are a candidate for any |evel of Internet

St andard; see Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/info/rfc5906
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1

I ntroduction

A distributed network service requires reliable, ubiquitous, and
survivabl e provisions to prevent accidental or malicious attacks on
the servers and clients in the network or the val ues they exchange.
Reliability requires that clients can determine that received packets
are authentic; that is, were actually sent by the intended server and
not manufactured or nodified by an intruder. Ubiquity requires that
a client can verify the authenticity of a server using only public
information. Survivability requires protection fromfaulty

i npl enent ati ons, inproper operation, and possibly malicious clogging
and replay attacks.

This meno describes a cryptographically sound and efficient

nmet hodol ogy for use in the Network Time Protocol (NTP) [RFC5905].
The various key agreenent schenmes [ RFC4306] [ RFC2412] [ RFC2522]
proposed require per-association state variables, which contradicts
the principles of the renpote procedure call (RPC) paradigmin which
servers keep no state for a possibly large client population. An
eval uation of the PKI nodel and algorithnms, e.g., as inplenented in
the OpenSSL library, leads to the conclusion that any schene
requiring every NTP packet to carry a PKlI digital signature would
result in unacceptably poor tinekeeping perfornance.

The Aut okey protocol is based on a conbination of PKI and a pseudo-
random sequence generated by repeated hashes of a cryptographic val ue
i nvol ving both public and private conponents. This schenme has been

i npl enment ed, tested, and deployed in the Internet of today. A
detail ed description of the security nodel, design principles, and

i npl ementation is presented in this neno.

This informational docunent describes the NTP extensions for Autokey
as inplenmented in an NTPv4 software distribution available from
http://ww. ntp.org. This descriptionis provided to offer a basis
for future work and a reference for the software rel ease. This
docunent al so describes the notivation for the extensions within the
pr ot ocol

NTP Security Mbdel

NTP security requirenents are even nore stringent than nost other
distributed services. First, the operation of the authentication
mechani sm and the tine synchronization nechanismare inextricably
intertwined. Reliable tine synchronization requires cryptographic
keys that are valid only over designated time intervals; but, time
interval s can be enforced only when participating servers and clients
are reliably synchronized to UTC. In addition, the NIP subnet is
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hi erarchi cal by nature, so tinme and trust flow fromthe prinmary
servers at the root through secondary servers to the clients at the
| eaves.

A client can claimauthentic to dependent applications only if al
servers on the path to the prinary servers are bona fide authentic.
In order to enphasize this requirenent, in this neno, the notion of
"authentic" is replaced by "proventic", an adjective new to English
and derived from "provenance", as in the provenance of a painting.
Havi ng abused the | anguage this far, the suffixes fixable to the
various derivatives of authentic will be adopted for proventic as
well. |In NTP, each server authenticates the next-Iower stratum
servers and proventicates (authenticates by induction) the | owest
stratum (primary) servers. Serious conputer |inguists would
correctly interpret the proventic relation as the transitive closure
of the authentic relation

It is inportant to note that the notion of proventic does not
necessarily inply the tinme is correct. An NTP client nobilizes a
nurmber of concurrent associations with different servers and uses a
crafted agreenment algorithmto pluck truechinmers fromthe popul ation
possi bly including fal setickers. A particular association is
proventic if the server certificate and identity have been verified
by the neans described in this neno. However, the statenment "the
client is synchronized to proventic sources" nmeans that the system
cl ock has been set using the time values of one or nore proventic
associ ati ons and according to the NTP nitigation algorithms.

Over the | ast several years, the |IETF has defined and evol ved the

| Psec infrastructure for privacy protection and source authentication
in the Internet. The infrastructure includes the Encapsul ating
Security Payload (ESP) [ RFC4303] and Aut hentication Header (AH)

[ RFC4302] for IPv4 and |1 Pv6. Cryptographic algorithnms that use these
headers for various purposes include those devel oped for the PKI

i ncludi ng various nessage digest, digital signature, and key
agreenent algorithns. This nenp takes no position on which nessage
digest or digital signature algorithmis used. This is established
by a profile for each community of users

It will facilitate the discussion in this neno to refer to the
reference inplenentation available at http://ww.ntp.org. It

i ncl udes Aut okey as described in this nmeno and is available to the
general public; however, it is not part of the specification itself.
The cryptographi c neans used by the reference inplenentation and its
user conmmunity are based on the QpenSSL cryptographic software
library available at http://ww.openssl.org, but other libraries with
equi val ent functionality could be used as well. It is inportant for
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di stribution and export purposes that the way in which these
al gorithnms are used precludes encryption of any data other than
i ncidental to the construction of digital signatures.

The fundanental assunption in NTP about the security nodel is that
packets transmtted over the Internet can be intercepted by those
other than the intended recipient, remanufactured in various ways,
and replayed in whole or part. These packets can cause the client to
bel i eve or produce incorrect information, cause protocol operations
to fail, interrupt network service, or consume precious network and
processor resources.

In the case of NTP, the assuned goal of the intruder is to inject
false tine values, disrupt the protocol or clog the network, servers,
or clients with spurious packets that exhaust resources and deny
service to legitimate applications. The mssion of the algorithns
and protocols described in this neno is to detect and discard
spurious packets sent by soneone other than the intended sender or
sent by the intended sender, but nodified or replayed by an intruder

There are a nunber of defense nmechanisns already built in the NTP
architecture, protocol, and algorithms. The on-wire timestanp
exchange schene is inherently resistant to spoofing, packet-loss, and
replay attacks. The engineered clock filter, selection, and
clustering algorithns are designed to defend against evil cliques of
Byzantine traitors. Wile not necessarily designed to defeat
determined intruders, these algorithnms and acconmpanyi ng sanity checks
have functioned well over the years to deflect inproperly operating
but presumably friendly scenarios. However, these nechanisns do not
securely identify and authenticate servers to clients. Wthout
specific further protection, an intruder can inject any or all of the
foll owi ng attacks.

1. An intruder can intercept and archive packets forever, as well as
all the public values ever generated and transnitted over the
net .

2. An intruder can generate packets faster than the server, network,
or client can process them especially if they require expensive
crypt ographi ¢ conput ati ons.

3. In awretap attack, the intruder can intercept, nodify, and
replay a packet. However, it cannot pernmanently prevent onward
transm ssion of the original packet; that is, it cannot break the
wire, only tell lies and congest it. Except in the unlikely
cases considered in Section 12, the nodified packet cannot arrive
at the victimbefore the original packet, nor does it have the
server private keys or identity paraneters
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4. In a man-in-the-niddle or masquerade attack, the intruder is
positioned between the server and client, so it can intercept,
nmodi fy, and replay a packet and prevent onward transni ssion of
the original packet. Except in unlikely cases considered in
Section 12, the middl enman does not have the server private keys.

The NTP security nodel assunes the foll owing possible linitations.

1. The running times for public key algorithms are relatively |ong
and highly variable. In general, the performance of the tine
synchroni zation function is badly degraded if these algorithns
nmust be used for every NTP packet.

2. In some nodes of operation, it is not feasible for a server to
retain state variables for every client. It is however feasible
to regenerated themfor a client upon arrival of a packet from
that client.

3. The lifetine of cryptographic val ues nust be enforced, which
requires a reliable systemclock. However, the sources that
synchroni ze the system cl ock nmust be cryptographically
proventicated. This circular interdependence of the tinmekeeping
and proventication functions requires special handling.

4, dient security functions must involve only public val ues
transmtted over the net. Private values nust never be disclosed
beyond the machine on which they were created, except in the case
of a special trusted agent (TA) assigned for this purpose.

Unli ke the Secure Shell (SSH) security nodel, where the client nust
be securely authenticated to the server, in NIP, the server nust be
securely authenticated to the client. |In SSH, each different

i nterface address can be bound to a different nane, as returned by a
reverse-DNS query. In this design, separate public/private key pairs
may be required for each interface address with a distinct nane. A
percei ved advantage of this design is that the security conpart nent

can be different for each interface. This allows a firewall, for
i nstance, to require sone interfaces to authenticate the client and
ot hers not.

3. Approach

The Aut okey protocol described in this meno is designed to neet the
foll owi ng objectives. |In-depth discussions on these objectives is in
the web briefings and will not be elaborated in this neno. Note that
here, and el sewhere in this neno, nmention of broadcast node neans
mul ti cast node as well, with exceptions as noted in the NTP software
docunent ati on [ RFC5905] .
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1. It nust interoperate with the existing NTP architecture nodel and
protocol design. |In particular, it must support the synmmetric
key scheme described in [RFCL305]. As a practical matter, the
reference inpl enentati on nust use the sane internal key
managenent system including the use of 32-bit key IDs and
exi sting nechanisns to store, activate, and revoke keys.

2. It must provide for the independent collection of cryptographic
val ues and tine values. An NTP packet is accepted for processing
only when the required cryptographi c val ues have been obt ai ned
and verified and the packet has passed all header sanity checks.

3. It nust not significantly degrade the potential accuracy of the
NTP synchroni zation algorithns. |In particular, it must not nake
unr easonabl e denmands on the network or host processor and nmenory
resour ces

4. It nust be resistant to cryptographic attacks, specifically those
identified in the security nodel above. |In particular, it nust
be tol erant of operational or inplenentation variances, such as
packet |oss or disorder, or suboptimal configurations.

5. It must build on a widely available suite of cryptographic
al gorithns, yet be independent of the particular choice. In
particular, it nust not require data encryption other than that
which is incidental to signature and cookie encryption
operati ons.

6. It must function in all the nodes supported by NTP, including
server, symmetric, and broadcast nobdes.

4. Aut okey Cryptography

Aut okey cryptography is based on the PKI algorithnms comonly used in
the Secure Shell and Secure Sockets Layer (SSL) applications. As in
these applications, Autokey uses nessage digests to detect packet

nodi fication, digital signatures to verify credentials, and public
certificates to provide traceable authority. Wat nakes Autokey
cryptography unique is the way in which these algorithns are used to
deflect intruder attacks while maintaining the integrity and accuracy
of the tine synchronization function

Aut okey, |ike nmany other renote procedure call (RPC) protocols,
depends on nessage digests for basic authentication; however, it is
i mportant to understand that message digests are al so used by NTP
when Autokey is not available or not configured. Selection of the
digest algorithmis a function of NTP configuration and is
transparent to Autokey.
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The protocol design and reference i nplenentation support both 128-bit
and 160-bit nessage digest algorithns, each with a 32-bit key ID. 1In
order to retain backwards conpatibility with NTPv3, the NTPv4 key ID
space is partitioned in tw subspaces at a pivot point of 65536.
Symmetric key I Ds have values |l ess than the pivot and indefinite
lifetinme. Autokey key |IDs have pseudo-random val ues equal to or
greater than the pivot and are expunged i nmedi ately after use.

Both symmetric key and public key cryptography authenticate as shown
in Figure 1. The server |ooks up the key associated with the key ID
and cal cul ates the nessage digest fromthe NTP header and extension
fields together with the key value. The key ID and digest formthe
message aut hentication code (MAC) included with the nessage. The
client does the sane conputation using its |local copy of the key and
conmpares the result with the digest in the MAC. If the val ues agree,
the message i s assuned authentic.

R R I s S S i
| | | Message Aut hentication Code |
\ |/ \ |/ + (MAC) +
khkkkkkhkhkhhhhkhkkkkhkh* | P + |
* Conput e Hash *<----| Key ID| Message Digest | +
khkkkkkkkhhhhkkkkkkkh* | o + |
| e il I R e e o
\ |/ \ |/
Fom e e e e e o + B S +
| Message Digest |------ >| Conpar e |
S + e +

Fi gure 1: Message Authentication

Aut okey uses specially contrived session keys, called autokeys, and a
preconput ed pseudo-random sequence of autokeys that are saved in the
aut okey list. The Autokey protocol operates separately for each
association, so there may be several autokey sequences operating

i ndependently at the sane tine.

Fi gure 2: NTPv4 Aut okey
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An autokey is conputed fromfour fields in network byte order as
shown in Figure 2. The four values are hashed using the M5
algorithmto produce the 128-bit autokey val ue, which in the
reference inplenentation is stored along with the key IDin a cache
used for symmetric keys as well as autokeys. Keys are retrieved from
the cache by key ID using hash tables and a fast | ookup al gorithm

For use with IPv4, the Src Address and Dst Address fields contain 32
bits; for use with I Pv6, these fields contain 128 bits. In either
case, the Key ID and Cookie fields contain 32 bits. Thus, an |IPv4
aut okey has four 32-bit words, while an | Pv6 autokey has ten 32-bit
words. The source and destination addresses and key ID are public
val ues visible in the packet, while the cookie can be a public val ue
or shared private val ue, depending on the NTP node.

The NTP packet format has been augnmented to include one or nore
extension fields piggybacked between the original NTP header and the
MAC. For packets wi thout extension fields, the cookie is a shared
private value. For packets with extension fields, the cookie has a
default public value of zero, since these packets are validated

i ndependently using digital signatures.

There are some scenari os where the use of endpoint |P addresses may
be difficult or inpossible. These include configurations where
networ k address translation (NAT) devices are in use or when
addresses are changed during an association lifetinme due to nobility
constraints. For Autokey, the only restriction is that the address
fields that are visible in the transmitted packet nust be the same as
those used to construct the autokey list and that these fields be the
sanme as those visible in the received packet. (The use of
alternative neans, such as Autokey host nanes (discussed |ater) or
hashes of these names may be a topic for future study.)
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S S R R + [ TS +  4----- R +
| Src Address| Dst Address| Key | D] Cooki e| -->| | | Final]|Final
L L +o----- +o----- + | Session | |Ilndex|Key ID
| | | | | Key ID | 4----- to----- +
\ |/ \ |/ \ |/ \|/ | List
kkkkhkkhkhkhkkhkkkhkkhkkhk kikhkkhkkkkkhkk kikikikikkkkkk kikikik*x*% . + \ / \ /
* COVPLJTE |_|ASH * kkkkkikkhkkhkkkkkkkikikhkkhkkk%x
R S I I Sk Ok b b S S I R I S I I kb S I I *COVF)LJTE SI G\lA\TURE*
| Index n kkhkkkkhkkhkkkhkhkxkkhkhxkkhkx*k
\ [/ |
[ S + |
| Next | \ [/
| Key ID | R +
R + | Sighature |
I ndex n+1 R +

Figure 3: Constructing the Key List

Fi gure 3 shows how the autokey |ist and autokey val ues are conput ed.
The key IDs used in the autokey list consist of a sequence starting
with a random 32-bit nonce (autokey seed) greater than or equal to
the pivot as the first key ID. The first autokey is conputed as
above using the given cooki e and aut okey seed and assigned index O.
The first 32 bits of the result in network byte order becone the next
key ID. The MD5 hash of the autokey is the key val ue saved in the
key cache along with the key ID. The first 32 bits of the key becone
the key ID for the next autokey assigned index 1

Operations continue to generate the entire list. It may happen that
a newy generated key IDis less than the pivot or collides with
anot her one already generated (birthday event). Wen this happens,
whi ch occurs only rarely, the key list is term nated at that point.

The lifetinme of each key is set to expire one poll interval after its
schedul ed use. In the reference inplenentation, the list is

term nated when the maxi num key lifetime is about one hour, so for
poll intervals above one hour, a new key list containing only a

single entry is regenerated for every poll.
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| NTP Header and
| Extension Fields

e +
I I
\ |/ \ |/ SRR +
khkkkhkkhxkkhkkdkkkx*x o e o + | Sessi on |
* COWUTE HASH *<---| Key ID|<---] Key ID |
kkkkhkhhhkhkkkkkkk** Fom e oo + | Li st |
| | oo +
\ |/ \ |/

o e e m e e e e e e e e e e e e e e e +

| Message Authentication Code (MAC) |

o oo +

Figure 4: Transmitting Messages

The index of the |last autokey in the list is saved along with the key
ID for that entry, collectively called the autokey values. The

aut okey val ues are then signed for use later. The list is used in
reverse order as shown in Figure 4, so that the first autokey used is
the | ast one generat ed.

The Aut okey protocol includes a nessage to retrieve the autokey

val ues and verify the signature, so that subsequent packets can be
val i dat ed using one or nore hashes that eventually match the |ast key
ID (valid) or exceed the index (invalid). This is called the autokey
test in the following and is done for every packet, including those
with and without extension fields. |In the reference inplenentation
the nost recent key ID received is saved for conparison with the
first 32 bits in network byte order of the next follow ng key val ue.
This mnimzes the nunber of hash operations in case a single packet
is |lost.

5. Autokey Protocol Overview

The Aut okey protocol includes a nunber of request/response exchanges
that nust be conpleted in order. |In each exchange, a client sends a
request message with data and expects a server response nessage with
data. Requests and responses are contained in extension fields, one
request or response in each field, as described later. An NIP packet
can contain one request message and one or nore response messages.
The following is a list of these nessages.

o Paraneter exchange. The request includes the client host name and
status word; the response includes the server host nane and status
word. The status word specifies the digest/signature schene to
use and the identity schenes supported.
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0 Certificate exchange. The request includes the subject nane of a
certificate; the response consists of a signed certificate with
that subject nanme. |f the issuer nane is not the same as the
subj ect name, it has been signed by a host one step closer to a
trusted host, so certificate retrieval continues for the issuer
nane. |If it is trusted and self-signed, the trail concludes at
the trusted host. |If nontrusted and sel f-signed, the host
certificate has not yet been signed, so the trail tenporarily
| oops. Conpletion of this exchange lights the VAL bit as
descri bed bel ow

o ldentity exchange. The certificate trail is generally not
consi dered sufficient protection agai nst man-in-the-niddle attacks
unl ess additional protection such as the proof-of-possession
schene described in [RFC2875] is available, but this is expensive
and requires servers to retain state. Autokey can use one of the
chal | enge/ response identity schemes described in Appendix B
Conpl etion of this exchange lights the IFF bit as described bel ow

0 Cooki e exchange. The request includes the public key of the
server. The response includes the server cookie encrypted wth
this key. The client uses this value when constructing the key
list. Conpletion of this exchange lights the COX bit as
descri bed bel ow

0 Autokey exchange. The request includes either no data or the
aut okey values in synmetric nodes. The response includes the
aut okey val ues of the server. These values are used to verify the
aut okey sequence. Conpletion of this exchange lights the AUT bit
as described bel ow.

0 Signh exchange. This exchange is executed only when the client has
synchroni zed to a proventic source. The request includes the
self-signed client certificate. The server acting as
certification authority (CA) interprets the certificate as a
X.509v3 certificate request. It extracts the subject, issuer, and
extension fields, builds a new certificate with these data al ong
with its own serial nunber and expiration time, then signs it
using its own private key and includes it in the response. The
client uses the signed certificate in its own role as server for
dependent clients. Conpletion of this exchange |ights the SIGN
bit as described bel ow.

0 Leapseconds exchange. This exchange is executed only when the
client has synchronized to a proventic source. This exchange
occurs when the server has the | eapseconds values, as indicated in
the host status word. |If so, the client requests the val ues and
conpares themwith its own values, if available. |If the server
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val ues are newer than the client values, the client replaces its
own with the server values. The client, acting as server, can now
provide the nost recent values to its dependent clients. In
symretric node, this results in both peers having the newest

val ues. Conpletion of this exchange lights the LPT bit as

descri bed bel ow

Once the certificates and identity have been validated, subsequent
packets are validated by digital signatures and the autokey sequence.
The association is now proventic with respect to the downstratum
trusted host, but is not yet selectable to discipline the system
clock. The associations accunulate tine values, and the nitigation
al gorithns continue in the usual way. Wen these algorithnms have
culled the falsetickers and cluster outliers and at |east three
survivors remain, the systemclock has been synchronized to a
proventic source

The tine values for truechi ner sources forma proventic partia
ordering relative to the applicable signature tinestanps. This
raises the interesting issue of howto differentiate between the

ti mestanps of different associations. It mght happen, for instance,
that the tinestanp of sone Autokey nessage is ahead of the system

cl ock by some presumably small amount. For this reason, tinestanp
conpari sons between different associations and between associ ati ons
and the systemclock are avoi ded, except in the NIP intersection and
clustering algorithnms and when deternining whether a certificate has
expired.

6. NTP Secure G oups

NTP secure groups are used to define cryptographic conpartnents and
security hierarchies. A secure group consists of a nunber of hosts
dynamni cally assenbled as a forest with roots the trusted hosts (THs)
at the I owest stratum of the group. The THs do not have to be, but
often are, primary (stratum 1) servers. A trusted authority (TA)

not necessarily a group host, generates private identity keys for
servers and public identity keys for clients at the | eaves of the
forest. The TA deploys the server keys to the THs and ot her

desi gnated servers using secure neans and posts the client keys on a
public web site.

For Aut okey purposes, all hosts belonging to a secure group have the
same group nane but different host nanmes, not necessarily related to
the DNS nanes. The group nane is used in the subject and issuer
fields of the TH certificates; the host name is used in these fields
for other hosts. Thus, all host certificates are self-signed.
During the use of the Autokey protocol, a client requests that the
server sign its certificate and caches the result. A certificate
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trail is constructed by each host, possibly via internediate hosts
and ending at a TH. Thus, each host along the trail retrieves the
entire trail fromits server(s) and provides this plus its own signed
certificates to its clients.

Secure groups can be configured as hierarchies where a TH of one
group can be a client of one or nore other groups operating at a

| ower stratum In one scenario, THs for groups RED and GREEN can be
cryptographically distinct, but both be clients of group BLUE
operating at a lower stratum |In another scenario, THs for group
CYAN can be clients of multiple groups YELLOW and MAGENTA, both
operating at a lower stratum There are nany other scenarios, but
all nust be configured to include only acyclic certificate trails.

In Figure 5, the Alice group consists of THs Alice, which is also the
TA, and Carol. Dependent servers Brenda and Deni se have confi gured
Alice and Carol, respectively, as their tine sources. Stratum 3
server Eileen has configured both Brenda and Denise as her tine
sources. Public certificates are identified by the subject and
signed by the issuer. Note that the server group keys have been
previously installed on Brenda and Deni se and the client group keys
installed on all machines.
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Figure 5: NTP Secure G oups

The steps in hiking the certificate trails and verifying identity are
Note the step nunber in the description matches the step
number in the figure.

as fol |l ows.

1. The girls start by |oading the host key,
certificate, and group key.

client starts the Autokey protoco

nane and di gest/signature.
described | ater.

sign key,

sel f-si gned
Each client and server acting as a
by retrieving the server host
This is done using the ASSOC exchange

2. They continue to load certificates recursively until a self-
signed trusted certificate is found.
i Mmediately find trusted certificates for Alice and Carol
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respectively, but Eileen will |oop because neither Brenda nor
Deni se have their own certificates signed by either Alice or
Carol. This is done using the CERT exchange described |ater

3. Brenda and Denise continue with the selected identity schenes to
verify that Alice and Carol have the correct group key previously
generated by Alice. This is done using one of the identity
schenes | FF, GQ or MW, described later. |f this succeeds, each
continues in step 4.

4. Brenda and Denise present their certificates for signature using
the SI GN exchange described later. |f this succeeds, either one
of or both Brenda and Deni se can now provi de these signed
certificates to Eileen, which nmay be looping in step 2. Eileen
can now verify the trail via either Brenda or Denise to the
trusted certificates for Alice and Carol. Once this is done,
Ei |l een can conplete the protocol just as Brenda and Deni se did.

For various reasons, it nmay be convenient for a server to have client
keys for nore than one group. For exanple, Figure 6 shows three
secure groups Alice, Helen, and Carol arranged in a hierarchy. Hosts
A B, C and D belong to Alice with A and B as her THs. Hosts R and
S belong to Helen with R as her TH Hosts X and Y bel ong to Carol
with X as her THA Note that the TH for a group is always the | owest
stratum and that the hosts of the conbined groups forman acyclic
graph. Note also that the certificate trail for each group

term nates on a TH for that group.

*kkk*k *kkk*k m

Stratum 1 * A * B * @R @
* % % % % * % % % % m
\ / /
\ / /
* k k k% m *kkkkkkx*k
2 * C* @S @ * Alice *
* % % % % m * %k k% k k k% k%
/ \ /
/ \ /
* %k k% #####
3 * D * # X #
* k k% k% #####
/ \ Bt
/ \ # Carol #
HHHHH HiHHH HHHHHHHHH
4 #Y # # Z#
HitH HitH

Figure 6: Hierarchical Overlapping G oups
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The intent of the scenario is to provide security separation, so that
servers cannot masquerade as clients in other groups and clients
cannot masquerade as servers. Assune, for exanple, that Aice and
Hel en belong to national standards |aboratories and their server keys
are used to confirmidentity between nenbers of each group. Carol is
a prominent corporation receiving standards products and requiring
cryptographi ¢ authentication. Perhaps under contract, host X

bel onging to Carol has client keys for both Alice and Hel en and
server keys for Carol. The Autokey protocol operates for each group
separately while preserving security separation. Host X can prove
identity in Carol to clients Y and Z, but cannot prove to anybody
that it belongs to either Alice or Helen

7. ldentity Schenes

A digital signature schene provides secure server authentication, but
it does not provide protection agai nst masquerade, unless the server
identity is verified by other neans. The PKI nobdel requires a server
to prove identity to the client by a certificate trail, but

i ndependent neans such as a driver’s license are required for a CAto
sign the server certificate. While Autokey supports this nodel by
default, in a hierarchical ad hoc network, especially with server

di scovery schenes |i ke NTP manycast, proving identity at each rest
stop on the trail nust be an intrinsic capability of Autokey itself.

While the identity schene described in [ RFC2875] is based on a

ubi quitous Diffie-Hell man infrastructure, it is expensive to generate
and use when conpared to others described in Appendix B. In
principle, an ordinary public key schene could be devised for this
pur pose, but the nobst stringent Autokey design requires that every
chal l enge, even if duplicated, results in a different acceptable
response.

1. The schene nust have a relatively long lifetine, certainly |onger
than a typical certificate, and have no specific lifetine or
expiration date. At the tine the schene is used, the host has
not yet synchronized to a proventic source, so the schene cannot
depend on tine.

2. As the schenme can be used nany times where the data m ght be
exposed to potential intruders, the data nust be either nonces or
encrypt ed nonces.

3. The schene should all ow desi gnated servers to prove identity to

designated clients, but not allow clients acting as servers to
prove identity to dependent clients.

Haberman & MI1s I nf or mat i onal [ Page 19]



RFC 5906 NTPv4 Aut okey June 2010

4., To the greatest extent possible, the schene should represent a
zer o- know edge proof; that is, the client should be able to
verify that the server has the correct group key, but w thout
knowi ng the key itself.

There are five schenes now i npl enented in the NTPv4 reference

i mpl enentation to prove identity: (1) private certificate (PC, (2)
trusted certificate (TC), (3) a nodified Schnorr algorithm (IFF aka
Identify Friendly or Foe), (4) a nodified Guillou-Quisquater (GQ
algorithm and (5) a nodified Mi-Varadharajan (MY) al gorithm Not

all of these provide the sane |evel of protection and one, TC,
provides no protection but is included for conparison. The follow ng
is a brief summary description of each; details are given in

Appendi x B

The PC schene involves a private certificate as group key. The
certificate is distributed to all other group nenbers by secure neans
and is never reveal ed outside the group. |In effect, the private
certificate is used as a symmetric key. This schene is used
primarily for testing and devel opnent and is not recomended for
regul ar use and is not considered further in this nmeno.

Al'l other schenes involve a conventional certificate trail as
described in [RFC5280]. This is the default schenme when an identity
schene is not required. Wiile the remaining identity schenes
incorporate TC, it is not by itself considered further in this neno.

The three remining schenes | FF, GQ and MV involve a

cryptographi cally strong chal |l enge-response exchange where an

i ntruder cannot deduce the server key, even after repeated
observations of multiple exchanges. |In addition, the MV schene is
properly described as a zero-know edge proof, because the client can
verify the server has the correct group key w thout either the server
or client knowing its value. These schenmes start when the client
sends a nonce to the server, which then rolls its own nonce, perforns
a mat hemati cal operation and sends the results to the client. The
client perforns another mathematical operation and verifies the
results are correct.

8. Tinestanps and Fil estanps

Whil e public key signatures provide strong protection agai nst

m srepresentation of source, conputing themis expensive. This
invites the opportunity for an intruder to clog the client or server
by replaying old nessages or originating bogus nmessages. A client
recei ving such nessages might be forced to verify what turns out to
be an invalid signature and consune significant processor resources.
In order to foil such attacks, every Autokey nessage carries a
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timestanp in the formof the NTP seconds when it was created. |If the
systemclock is synchronized to a proventic source, a signature is
produced with a valid (nonzero) tinmestanp. Oherwi se, there is no
signature and the timestanp is invalid (zero). The protocol detects
and di scards extension fields with old or duplicate tinestanps,
before any val ues are used or signatures are verified.

Si gnatures are conputed only when cryptographic values are created or
nmodi fied, which is by design not very often. Extension fields
carrying these signatures are copied to nessages as needed, but the
signatures are not reconmputed. There are three signature types:

1. Cookie signature/tinestanp. The cookie is signed when created by
the server and sent to the client.

2. Autokey signature/timestanp. The autokey values are signed when
the key list is created.

3. Public values signature/tinestanp. The public key, certificate,
and | eapsecond val ues are signed at the tinme of generation, which
occurs when the systemclock is first synchronized to a proventic
source, when the val ues have changed and about once per day after
that, even if these val ues have not changed.

The nost recent tinmestanp received of each type is saved for
conmparison. Once a signature with a valid tinestanp has been
received, messages with invalid timestanps or earlier valid

ti mestanps of the same type are di scarded before the signature is
verified. This is nobst inportant in broadcast node, which could be
vul nerable to a clogging attack without this test.

Al'l cryptographic values used by the protocol are tinme sensitive and

are regularly refreshed. |In particular, files containing
cryptographi ¢ val ues used by signature and encryption algorithns are
regenerated fromtinme to tinme. It is the intent that file

regenerations occur w thout specific advance warning and wi t hout
requiring prior distribution of the file contents. Wile
cryptographic data files are not specifically signed, every file is
associated with a filestanp showi ng the NTP seconds at the creation
epoch.

Fil estanps and tinestanps can be conpared in any conbi nation and use
the sane conventions. |t is necessary to conpare themfromtine to
time to determine which are earlier or later. Since these quantities
have a granularity only to the second, such conparisons are anbi guous
if the values are in the sanme second.
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It is inmportant that filestanps be proventic data; thus, they cannot
be produced unl ess the producer has been synchronized to a proventic
source. As such, the filestanps throughout the NTP subnet represent
a partial ordering of all creation epochs and serve as nmeans to
expunge ol d data and ensure new data are consistent. As the data are
forwarded fromserver to client, the filestanps are preserved
including those for certificate and | eapseconds val ues. Packets with
ol der filestanps are discarded before spending cycles to verify the
si gnature.

9. Autokey Operations

The NTP protocol has three principal nodes of operation: client/
server, symmetric, and broadcast and each has its own Autokey
program or dance. Autokey choreography is designed to be non-
intrusive and to require no additional packets other than for regul ar
NTP operations. The NTP and Autokey protocols operate sinmultaneously
and i ndependently. Wen the dance is conplete, subsequent packets
are validated by the autokey sequence and thus considered proventic

as well. Autokey assunes NTP clients poll servers at a relatively
low rate, such as once per minute or slower. |In particular, it
assunes that a request sent at one poll opportunity will normally

result in a response before the next poll opportunity; however, the
protocol is robust against a m ssed or duplicate response.

The server dance was suggested by Steve Kent over |unch sone tine
ago, but considerably nodified since that neal. The server keeps no
state for each client, but uses a fast algorithmand a 32-bit random
private value (server seed) to regenerate the cookie upon arrival of
a client packet. The cookie is calculated as the first 32 bits of

t he aut okey conputed fromthe client and server addresses, key ID
zero, and the server seed as cookie. The cookie is used for the
actual autokey cal culation by both the client and server and is thus
specific to each client separately.

In the server dance, the client uses the cookie and each key ID on
the key list inturn to retrieve the autokey and generate the MAC.
The server uses the sane values to generate the nessage di gest and
verifies it matches the MAC. It then generates the MAC for the
response using the same values, but with the client and server
addresses interchanged. The client generates the nessage digest and
verifies it matches the MAC. In order to deflect old replays, the
client verifies that the key ID matches the |last one sent. |In this
dance, the sequential structure of the key list is not exploited, but
doing it this way sinplifies and regul arizes the inplenmentation while
making it nearly inpossible for an intruder to guess the next key ID
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10.

In the broadcast dance, clients nornally do not send packets to the
server, except when first starting up. At that time, the client runs
the server dance to verify the server credentials and calibrate the
propagati on delay. The dance requires the association ID of the
particul ar server association, since there can be nore than one
operating in the sane server. For this purpose, the server packet

i ncludes the association IDin every response nessage sent and, when
sending the first packet after generating a new key list, it sends

t he aut okey values as well. After obtaining and verifying the

aut okey val ues, no extension fields are necessary and the client
verifies further server packets using the autokey sequence.

The synmmetric dance is simlar to the server dance and requires only
a smal|l amount of state between the arrival of a request and
departure of the response. The key list for each direction is
generated separately by each peer and used independently, but each is
generated with the sanme cookie. The cookie is conveyed in a way
simlar to the server dance, except that the cookie is a sinple
nonce. There exists a possible race condition where each peer sends
a cooki e request before receiving the cookie response fromthe other
peer. In this case, each peer winds up with two val ues, one it
generated and one the other peer generated. The anbiguity is

resol ved sinply by conputing the working cookie as the EXOR of the
two val ues.

Once the Autokey dance has conpleted, it is nornmally dormant. |In all
except the broadcast dance, packets are nornally sent w thout
extension fields, unless the packet is the first one sent after
generating a new key list or unless the client has requested the
cooki e or autokey values. |If for sonme reason the client clock is
stepped, rather than slewed, all cryptographic and tine val ues for
all associations are purged and the dances in all associations
restarted fromscratch. This ensures that stale val ues never
propagat e beyond a cl ock step

Aut okey Protocol Messages

The Aut okey protocol data unit is the extension field, one or nore of
whi ch can be piggybacked in the NTP packet. An extension field
contains either a request with optional data or a response wth
optional data. To avoid deadl ocks, any nunber of responses can be
included in a packet, but only one request can be. A response is
generated for every request, even if the requestor is not
synchroni zed to a proventic source, but nost contain neaningful data
only if the responder is synchronized to a proventic source. Sone
requests and nost responses carry tinestanped signatures. The
signature covers the entire extension field, including the tinmestanp
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and filestanp, where applicable. Only if the packet has correct
format, length, and nessage digest are cycles spent to verify the
si gnature.

There are currently eight Autokey requests and eight correspondi ng
responses. The NTP packet format is described in [ RFC5905] and the
extension field format used for these nessages is illustrated in

Fi gure 7.

01234567890123456789012345678901
B T e o i S I i i S S N iy St S I S S
| Rl E| Code | Field Type | Length |
B e i S T e i T e S R S e e e s i i T S
| Association | D |
B o i T e e T s i i T S TR S e S S i T S g e e

| Ti mest anp |
B T e o i S I i i S S N iy St S I S S
| Fi |l estanp |
s T e T e r e i e i it N S
| Val ue Length |
e T S i S o e e e i ik ol S SRR SR S R
\ /
Val ue \

/

B e S S i i i T e s aiks S S S S S S
Signature Length |

B s T T S S S T s sl T ot S o S S S S S e i
/

Si gnature \

/

B e S S i i i T e s aiks S S S S S S
/
\
/

Paddi ng (if needed)

+ -~~~ 4 — 4 —~

s T S e e O O e ol i it EIE R TR R TR S R i ol o S S S S S S
Figure 7: NTPv4 Extension Field Format

Wil e each extension field is zero-padded to a 4-octet (word)
boundary, the entire extension is not word-aligned. The Length field
covers the entire extension field, including the Length and Paddi ng
fields. Wile the minimumfield length is 8 octets, a maximumfield
length remains to be established. The reference inplenmentation

di scards any packet with a field I ength nore than 1024 octets.
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One or nore extension fields follow the NTP packet header and the
last followed by the MAC. The extension field parser initializes a
pointer to the first octet beyond the NTP packet header and

cal cul ates the nunber of octets remaining to the end of the packet.
If the remaining length is 20 (128-bit digest plus 4-octet key I1D) or
22 (160-bit digest plus 4-octet key ID), the renmmining data are the
MAC and parsing is conplete. |If the remaining length is greater than
22, an extension field is present. |If the remaining length is |ess
than 8 or not a nmultiple of 4, a format error has occurred and the
packet is discarded; otherwi se, the parser increments the pointer by
the extension field length and then uses the sanme rul es as above to
determ ne whether a MAC i s present or another extension field

In Autokey the 8-bit Field Type field is interpreted as the version
number, currently 2. For future versions, values 1-7 have been
reserved for Autokey; other values may be assigned for other
applications. The 6-bit Code field specifies the request or response
operation. There are two flag bits: bit 0 is the Response Flag (R)
and bit 1 is the Error Flag (E); the Reserved field is unused and
shoul d be set to 0. The remaining fields will be described |ater

In the nmost common protocol operations, a client sends a request to a
server with an operation code specified in the Code field and both
the Rbit and E bit dim The server returns a response with the same
operation code in the Code field and lights the Rbit. The server
can also light the E bit in case of error. Note that it is not
necessarily a protocol error to send an unsolicited response with no
mat ching request. |If the Rbit is dim the client sets the
Association ID field to the client association ID, which the server
returns for verification. |If the two values do not match, the
response is discarded as if never sent. |If the Rbit is lit, the
Association IDfield is set to the server association |ID obtained in
the initial protocol exchange. |If the Association ID field does not
mat ch any nobilized association ID, the request is discarded as if
never sent.

In sone cases, not all fields nmay be present. For requests, until a
client has synchronized to a proventic source, signatures are not
valid. In such cases, the Tinestanp field and Signature Length field
(which specifies the length of the Signature) are zero and the
Signature field is absent. Sone request and error response nessages
carry no value or signature fields, so in these nessages only the
first two words (8 octets) are present.

The Tinestanp and Fil estanp words carry the seconds field of an NTP
timestanp. The timestanp establishes the signature epoch of the data
field in the message, while the filestanp establishes the generation
epoch of the file that ultimtely produced the data that is signed.
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10.

10.

10.

A signature and tinmestanp are valid only when the signing host is
synchroni zed to a proventic source; otherwise, the tinmestanp is zero
A cryptographic data file can only be generated if a signature is
possi bl e; otherwise, the filestanp is zero, except in the ASSCC
response nessage, where it contains the server status word.

As in all other TCP/IP protocol designs, all data are sent in network
byte order. Unless specified otherwise in the descriptions to
follow, the data referred to are stored in the Value field. The

Val ue Length field specifies the length of the data in the Val ue
field.

1. No-OQperation

A No-operation request (Code 0) does nothing except return an enpty
response, which can be used as a crypto-ping.

2. Association Message (ASSQOC)

An Associ ation Message (Code 1) is used in the paranmeter exchange to
obtain the host name and status word. The request contains the
client status word in the Filestanp field and t he Aut okey host name
in the Value field. The response contains the server status word in
the Filestanp field and the Aut okey host nanme in the Value field.
The Aut okey host nane is not necessarily the DNS host nane. A valid
response lights the ENAB bit and possibly others in the association
stat us word.

When multiple identity schenes are supported, the host status word

det erm nes which ones are available. 1In server and synmretric nodes,
the response status word contains bits corresponding to the supported
schenes. In all nopdes, the schene is selected based on the client

identity paranmeters that are | oaded at startup
3. Certificate Message (CERT)

A Certificate Message (Code 2) is used in the certificate exchange to
obtain a certificate by subject nanme. The request contains the

subj ect name; the response contains the certificate encoded in X 509
format with ASN. 1 syntax as described in Appendix H

If the subject nane in the response does not match the issuer nane,
t he exchange continues with the issuer nane replacing the subject
nane in the request. The exchange continues until a trusted, self-
signed certificate is found and lights the CERT bit in the
associ ati on status word.
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10.

10.

10.

10.

10.

4. Cooki e Message (COXKIE)

The Cooki e Message (Code 3) is used in server and symetric nodes to
obtain the server cookie. The request contains the host public key
encoded with ASN. 1 syntax as described in Appendix H  The response
contains the cookie encrypted by the public key in the request. A

valid response lights the COXIE bit in the association status word.

5. Autokey Message (AUTO

The Aut okey Message (Code 4) is used to obtain the autokey val ues.
The request contains no value for a client or the autokey val ues for
a synmetric peer. The response contains two 32-bit words, the first
is the final key ID, while the second is the index of the final key
ID. Awvalid response lights the AUTO bit in the association status
wor d.

6. Leapseconds Val ues Message (LEAP)

The Leapseconds Val ues Message (Code 5) is used to obtain the

| eapseconds val ues as parsed fromthe | eapseconds table fromthe
National Institute of Standards and Technology (N ST). The request
contai ns no values. The response contains three 32-bit integers:
first the NTP seconds of the |atest |eap event followed by the NTP
seconds when the latest NI ST table expires and then the TAl offset
following the leap event. A valid response lights the LEAP bit in
t he association status word.

7. Sign Message (SIGN)

The Sign Message (Code 6) requests that the server sign and return a
certificate presented in the request. The request contains the
client certificate encoded in X. 509 format with ASN. 1 syntax as
described in Appendix H  The response contains the client
certificate signed by the server private key. A valid response
lights the SIGN bit in the association status word.

8. ldentity Messages (I FF, GQ W)

The ldentity Messages (Code 7 (IFF), 8 (GQ, or 9 (MV)) contains the
client challenge, usually a 160- or 512-bit nonce. The response
contains the result of the mathematical operation defined in
Appendi x B. The Response is encoded in ASN. 1 syntax as described in
Appendix H A valid response lights the VRFY bit in the association
status word.
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11. Autokey State Machine

This section describes the formal nodel of the Autokey state machine,
its state variables and the state transition functions.

11.1. Status Wrd

The server inplements a host status word, while each client

i mpl ements an associ ation status word. These words have the fornat
and content shown in Figure 8. The loworder 16 bits of the status
word define the state of the Autokey dance, while the high-order 16
bits specify the Nunerical ldentifier (NID) as generated by the
penSSL library of the O D for one of the nessage digest/signature
encryption schenmes defined in [ RFC3279]. The NI D values for the

di gest/signature algorithns defined in RFC 3279 are as foll ows:

o e e e e e e e e e e e e m o o e e e L +
| Al gorithm | OD | NID|
e e Fommnn +
| pkcs-1 | 1.2.840.113549.1.1 | 2|
| nd2 | 1.2.840.113549.2.2 | 3
| nd5 | 1.2.840.113549.2.5 | 4
| rsaEncryption | 1.2.840.113549.1.1.1 | 6 |
| md2Wt hRSAEncryption | 1.2.840.113549.1.1.2 | 7
| nd5Wt hRSAEncryption | 1.2.840.113549.1.1.4 | 8
| i d-shal | 1.3.14.3.2.26 | 64
| sha-1WthRSAEncryption | 1.2.840.113549.1.1.5 | 65
| i d-dsa-wt h-shal | 1.2.840.10040.4.3 | 113
| i d-dsa | 1.2.840.10040.4.1 | 116
o e e e e e e e e oo - o e e e e a - L +

Bits 24-31 are reserved for server use, while bits 16-23 are reserved
for client use. 1In the host portion, bits 24-27 specify the

avail able identity schemes, while bits 28-31 specify the server
capabilities. There are two additional bits inplenmented separately.

1 2 3
01234567890123456789012345678901
i T o T e e e et o S s S R R SR

| Di gest / Signature NID | dient | Ident | Host
B e s i e e e s i i ST RIE CRIE TR TR TR S T S S S s sl S S S

Figure 8: Status Wrd
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The host status word is included in the ASSOC request and response
messages. The client copies this word to the association status word
and then lights additional bits as the dance proceeds. Once enabl ed,
these bits ordinarily never becone dark unless a general reset occurs
and the protocol is restarted fromthe begi nni ng.

The host status bits are defined as follows:

0o ENAB (31) is lit if the server inplenments the Autokey protocol

o LVAL (30) is lit if the server has installed | eapseconds val ues,
either fromthe N ST | eapseconds file or from another server

0 Bits (28-29) are reserved - always dark
0 Bits 24-27 select which server identity schenmes are avail abl e.
VWil e specific coding for various schemes is yet to be determ ned,
the schenes available in the reference inplenentation and
descri bed in Appendi x B include the foll ow ng:
* none - Trusted Certificate (TC) Schene (default).
* PC (27) Private Certificate Schene.
* | FF (26) Schnorr aka Identify-Friendly-or-Foe Schene.
*  GQ (25) Cuillard-Quisquater Schene.
* W (24) Mi-Varadharajan Schene.

0 The PC schene is exclusive of any other schene. Qherw se, the
I FF, GQ and MW bits can be enabled in any conbinati on.

The association status bits are defined as foll ows:

0 CERT (23): Lit when the trusted host certificate and public key
are val i dated

0 VRFY (22): Lit when the trusted host identity credentials are
confirnmed.

o0 PROV (21): Lit when the server signature is verified using its
public key and identity credentials. Also called the proventic
bit elsewhere in this meno. Wen enabl ed, signed values in
subsequent messages are presumed proventic.
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0 COX (20): Lit when the cookie is received and validated. Wen
lit, key lists with nonzero cookies are generated; when dim the
cookie is zero

0 AUTO (19): Lit when the autokey values are received and val i dat ed.
When lit, clients can validate packets w thout extension fields
according to the autokey sequence.

0 SIGN (18): Lit when the host certificate is signed by the server

0 LEAP (17): Lit when the | eapseconds val ues are received and
val i dat ed.

0 Bit 16: Reserved - always dark

There are three additional bits: LIST, SYNC, and PEER not included in
the association status word. LIST is lit when the key list is
regenerated and di m when the aut okey val ues have been transmitted.
This is necessary to avoid |livel ock under sone conditions. SYNCis
it when the client has synchronized to a proventic source and never
dimafter that. PEER is |it when the server has synchroni zed, as
indicated in the NTP header, and never dimafter that.

2. Host State Variables

The following is a list of host state variabl es.

Host Nane: The nane of the host, by default the string
returned by the Unix gethostnanme() library

function. In the reference inplenentation, this
is a configurable val ue.

Host Status Wrd: This word is initialized when the host first
starts up. The format is described above.

Host Key: The RSA public/private key pair used to encrypt/
decrypt cookies. This is also the default sign
key.

Si gn Key: The RSA or Digital Signature Al gorithm (DSA)

public/private key pair used to encrypt/decrypt
si gnatures when the host key is not used for
this purpose.

Sign Digest: The message di gest algorithmused to conmpute the
message di gest before encryption
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| FF Par aneters:

GQ Paraneters:

MV Par anet ers:

Server Seed:

c s
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The paraneters used in the optional |IFF identity
scheme described in Appendix B

The paraneters used in the optional GQ identity
schene described in Appendix B

The paraneters used in the optional MV identity
scheme described in Appendix B

The private val ue hashed with the | P addresses
and key identifier to construct the cookie.

Certificate Information Structure. This
structure includes certain information fields
froman X 509v3 certificate, together with the
certificate itself. The fields extracted

i nclude the subject and issuer nanes, subject
public key and nessage di gest algorithm
(pointers), and the beginning and end of the
valid period in NTP seconds.

The certificate itself is stored as an extension
field in network byte order so it can be copied
intact to the nmessage. The structure is signed
using the sign key and carries the public val ues
tinmestanp at signature tinme and the filestanp of
the original certificate file. The structure is
used by the CERT response nmessage and Sl GN
request and response nessages.

A flags field in the CS deternines the status
of the certificate. The field is encoded as
foll ows:

*  TRUST (0x01) - The certificate has been
signed by a trusted issuer. |If the
certificate is self-signed and contains
"trustRoot" in the Extended Key Usage field,
this bit is lit when the CIS is constructed.

* SICGN (0x02) - The certificate signature has
been verified. |If the certificate is self-
signed and verified using the contained
public key, this bit is lit when the CISis
construct ed.
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Host Nane Val ues:

Publ i c Key Val ues:

Leapseconds Val ues:
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*  VALID (0x04) - The certificate is valid and
can be used to verify signatures. This bit
is lit when a trusted certificate has been
found on a valid certificate trail.

* PRIV (0x08) - The certificate is private and
not to be revealed. |If the certificate is
sel f-signed and contains "Private" in the
Ext ended Key Usage field, this bit is lit
when the CIS is constructed.

*  ERROR (0x80) - The certificate is defective
and not to be used in any way.

ClIS structures are stored on the certificate
list in order of arrival, with the nost recently
received CI'S placed first on the list. The list
isinitialized with the CS for the host
certificate, which is read fromthe host
certificate file. Additional CIS entries are
added to the list as certificates are obtained
fromthe servers during the certificate
exchange. ClS entries are discarded if
overtaken by newer ones.

The followi ng values are stored as an extension
field structure in network byte order so they
can be copied intact to the nmessage. They are
used to send sone Autokey requests and
responses. Al but the Host Nane Val ues
structure are signed using the sign key and all
carry the public values tinestanp at signature
time.

This is used to send ASSCOC request and response
messages. It contains the host status word and
host nane.

This is used to send the COXIE request nessage.
It contains the public encryption key used for
the COOXI E response nessage.

This is used to send the LEAP response nessage.

It contains the | eapseconds values in the LEAP
nmessage description
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Cient State Variables (all nodes)

The following is a list of state variables used by the various dances

in all nodes.

Associ ation | D

Associ ation Status Wrd:

Subj ect Nane:

| ssuer Nane:

Server Public Key:

Server Message Digest:

G oup Key:

Recei ve Cooki e Val ues:

Recei ve Aut okey Val ues:

Send Aut okey Val ues:

Haberman & M1 1s

The association ID used in responses. It
i s assigned when the association is
nmobi | i zed.

The status word copied fromthe ASSOC
response; subsequently nodified by the
state nmachi ne.

The server host nanme copied fromthe ASSOC
response.

The host nane signing the certificate. It
is extracted fromthe current server
certificate upon arrival and used to
request the next host on the certificate
trail

The public key used to decrypt signatures.
It is extracted fromthe server host
certificate.

The di gest/signature schene determned in
t he paraneter exchange

A set of values used by the identity
exchange. It identifies the cryptographic
conmpartment shared by the server and
client.

The cookie returned in a COXIE response,
together with its tinestanp and fil estanp.

The aut okey val ues returned in an AUTO
response, together with its tinestanp and
filestanp.

The aut okey val ues with signature and
ti mest anps.
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Key List: A sequence of key IDs starting with the
aut okey seed and each pointing to the next.
It is conputed, tinestanped, and signed at
the next poll opportunity when the key list
becones enpty.

Current Key Nunber: The index of the entry on the Key List to
be used at the next poll opportunity.

4, Protocol State Transitions

The protocol state nachine is very sinple but robust. The state is
determined by the client status word bits defined above. The state
transitions of the three dances are shown below. The capitalized
truth values represent the client status bits. Al bits are
initialized as dark and are lit upon the arrival of a specific
response nessage as detail ed above.

4.1. Server Dance

The server dance begins when the client sends an ASSCC request to the
server. The clock is updated when PREV is |lit and the dance ends
when LEAP is lit. 1In this dance, the autokey values are not used, so
an aut okey exchange is not necessary. Note that the SIGN and LEAP
requests are not issued until the client has synchronized to a
proventic source. Subsequent packets without extension fields are
val i dated by the autokey sequence. This exanple and others assunes
the IFF identity scheme has been selected in the paraneter exchange.
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while (1) {
wai t _for_next_pol | ;
make NTP_header
i f (response_ready)
send_r esponse;

i f (!ENB) /* paraneter exchange */
ASSCC r equest ;

else if (!CERT) /* certificate exchange */
CERT_r equest ( Host _Nan®e) ;

else if (!IFF) /* identity exchange */
| FF_chal | enge;

el se if (! COOK) /* cooki e exchange */
COXKI E_r equest ;

else if (!SYNQ) /* wait for synchronization */
conti nue;

else if (1SIGN /* sign exchange */
SI GN_request (Host _Certificate);

else if (!LEAP) /* | eapsecond val ues exchange */

LEAP_r equest ;
send packet;

Fi gure 9: Server Dance

If the server refreshes the private seed, the cookie becones invalid.
The server responds to an invalid cookie with a crypto-NAK nessage,
whi ch causes the client to restart the protocol fromthe beginning.

4. 2. Br oadcast Dance

The broadcast dance is simlar to the server dance with the cookie
exchange replaced by the autokey val ues exchange. The broadcast
dance begins when the client receives a broadcast packet including an
ASSOC response with the server association ID. This nobilizes a
client association in order to proventicate the source and calibrate
the propagati on delay. The dance ends when the LEAP bit is lit,
after which the client sends no further packets. Nornally, the
broadcast server includes an ASSCC response in each transnitted
packet. However, when the server generates a new key list, it

i ncl udes an AUTO response i nstead.

In the broadcast dance, extension fields are used with every packet,
so the cookie is always zero and no cooki e exchange is necessary. As
in the server dance, the clock is updated when PREV is |it and the
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dance ends when LEAP is |lit. Note that the SIGN and LEAP requests
are not issued until the client has synchronized to a proventic
source. Subsequent packets without extension fields are validated by
t he aut okey sequence.
while (1) {

wait_for_next_poll;

make NTP_header ;

i f (response_ready)

send_r esponse;

i f (!ENB) /* parameters exchange */
ASSCC r equest ;

el se if (!CERT) /* certificate exchange */
CERT_r equest (Host _Nane) ;

else if (!'IFF) /* identity exchange */
| FF_chal | enge;

else if (!AUT / * aut okey val ues exchange */
AUTO r equest;

else if (!SYNO /* wait for synchronization */
conti nue;

else if (!ISIGN /* sign exchange */
SI G\ _request (Host _Certificate);

else if (!LEAP) /* | eapsecond val ues exchange */

LEAP_r equest;
send NTP_packet;

Fi gure 10: Broadcast Dance

If a packet is lost and the autokey sequence is broken, the client
hashes the current autokey until either it matches the previous

aut okey or the nunber of hashes exceeds the count given in the

aut okey values. |If the latter, the client sends an AUTO request to
retrieve the autokey values. |If the client receives a crypto- NAK
during the dance, or if the association ID changes, the client
restarts the protocol fromthe begi nning.

4.3. Symetric Dance

The synmetric dance is intricately choreographed. It begins when the
active peer sends an ASSCC request to the passive peer. The passive
peer nobilizes an association and both peers step a three-way dance
where each peer conpletes a paraneter exchange with the other. Unti
one of the peers has synchronized to a proventic source (which could
be the other peer) and can sign nessages, the other peer |oops
waiting for a valid tinmestanp in the ensui ng CERT response.
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while (1) {
wai t _for_next_pol | ;
make NTP_header

i f (!ENB) /* parameters exchange */
ASSCC r equest ;

el se if (!CERT) /* certificate exchange */
CERT_r equest (Host _Nane) ;

else if (!'IFF) /* identity exchange */

| FF_chal | enge;
else if (I1COX & PEER) /* cooki e exchange */
COXI E_request);

else if (!AUTO /* aut okey val ues exchange */
AUTO request;

else if (LIST) / * aut okey val ues response */
AUTO r esponse;

else if (!SYNC) /* wait for synchronization */
conti nue;

else if (!1SIQN /* sign exchange */
SI GN_r equest ;

else if (!LEAP) /* | eapsecond val ues exchange */

LEAP_r equest;
send NTP_packet;

Figure 11: Synmetric Dance

Once a peer has synchronized to a proventic source, it includes

ti mestanped signatures in its nmessages. The other peer, which has
been stalled waiting for valid tinestanps, now mates the dance. It
retrieves the now nonzero cooki e using a cooki e exchange and then the
updat ed aut okey val ues usi ng an aut okey exchange.

As in the broadcast dance, if a packet is lost and the autokey
sequence broken, the peer hashes the current autokey until either it
mat ches the previous autokey or the nunber of hashes exceeds the
count given in the autokey values. |If the latter, the client sends
an AUTO request to retrieve the autokey values. |f the peer receives
a crypto-NAK during the dance, or if the association |ID changes, the
peer restarts the protocol fromthe beginning.

5. FError Recovery

The Aut okey protocol state nachine includes provisions for various
kinds of error conditions that can arise due to missing files,
corrupted data, protocol violations, and packet |oss or m sorder, not
to mention hostile intrusion. This section describes how the
protocol responds to reachability and tinmeout events that can occur
due to such errors
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A persistent NTP association is nobilized by an entry in the
configuration file, while an epheneral association is nobilized upon
the arrival of a broadcast or symmetric active packet with no

mat chi ng associ ation. Subsequently, a general reset reinitializes
all association variables to the initial state when first nobilized.
In addition, if the association is epheneral, the association is
denobi | i zed and all resources acquired are returned to the system

Every NTP association has two variables that maintain the |iveness
state of the protocol, the 8-bit reach register and the unreach
counter defined in [ RFC5905]. At every poll interval, the reach
register is shifted left, the low order bit is dinmed and the high
order bit is lost. At the sane tinme, the unreach counter is

increnented by one. If an arriving packet passes all authentication
and sanity checks, the rightnost bit of the reach register is lit and
the unreach counter is set to zero. |If any bit in the reach register

islit, the server is reachable; otherwise, it is unreachable.

When the first poll is sent froman association, the reach register
and unreach counter are set to zero. |If the unreach counter reaches
16, the poll interval is doubled. |In addition, if association is

persistent, it is denobilized. This reduces the network |oad for
packets that are unlikely to elicit a response.

At each state in the protocol, the client expects a particul ar
response fromthe server. A request is included in the NTP packet
sent at each poll interval until a valid response is received or a
general reset occurs, in which case the protocol restarts fromthe
begi nning. A general reset also occurs for an association when an
unrecover abl e protocol error occurs. A general reset occurs for al
associ ations when the systemclock is first synchroni zed or the cl ock
is stepped or when the server seed is refreshed.

There are special cases designed to quickly respond to broken

associ ations, such as when a server restarts or refreshes keys.

Since the client cookie is invalidated, the server rejects the next
client request and returns a crypto-NAK packet. Since the crypto-NAK
has no MAC, the problemfor the client is to deternine whether it is
legitimate or the result of intruder mischief. 1In order to reduce
the vulnerability in such cases, the crypto-NAK, as well as al
responses, is believed only if the result of a previous packet sent
by the client and not a replay, as confirned by the NTP on-wire
protocol. Wiile this defense can be easily circunvented by a nan-in-
the-mddle, it does deflect other kinds of intruder warfare.

There are a nunber of situations where sone event happens that causes

the remai ni ng aut okeys on the key list to become invalid. Wen one
of these situations happens, the key list and associ ated aut okeys in
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the key cache are purged. A new key list, signature, and tinestanp
are generated when the next NTP nessage is sent, assuming there is
one. The following is a list of these situations:

1. \When the cookie val ue changes for any reason

2. Wen the poll interval is changed. |In this case, the cal cul ated
expiration times for the keys becone invalid.

3. If a problemis detected when an entry is fetched fromthe key
list. This could happen if the key was marked non-trusted or
tinmed out, either of which inplies a software bug.

Security Considerations

This section discusses the nbst obvious security vulnerabilities in
the various Autokey dances. |In the follow ng discussion, the
cryptographic algorithns and private val ues thensel ves are assuned
secure; that is, a brute force cryptanalytic attack will not revea
the host private key, sign private key, cookie value, identity
paraneters, server seed or autokey seed. |In addition, an intruder
will not be able to predict random generator val ues.

1. Protocol Vulnerability

Whil e the protocol has not been subjected to a formal analysis, a few
prelimnary assertions can be made. |In the client/server and
symretri c dances, the underlying NTP on-wire protocol is resistant to
| ost, duplicate, and bogus packets, even if the clock is not
synchroni zed, so the protocol is not vulnerable to a wiretapper
attack. The on-wire protocol is resistant to replays of both the
client request packet and the server reply packet. A nman-in-the-
nmddle attack, even if it could sinmulate a valid cookie, could not
prove identity.

In the broadcast dance, the client begins with a volley in client/
server node to obtain the autokey val ues and signature, so has the
sane protection as in that node. \When continuing in receive-only
node, a wiretapper cannot produce a key list with valid signed

aut okey values. If it replays an old packet, the client will reject
it by the tinestanp check. The nost it can do is manufacture a
future packet causing clients to repeat the autokey hash operations
until exceedi ng the maxi num key nunber. |If this happens the
broadcast client tenporarily reverts to client node to refresh the
aut okey val ues.
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By assunption, a nman-in-the-mddle attacker that intercepts a packet
cannot break the wire or delay an intercepted packet. If this
assunption is renoved, the mddl eman could intercept a broadcast
packet and replace the data and nessage digest w thout detection by
the clients.

As nentioned previously in this neno, the TC identity schene is
vul nerable to a man-in-the-niddle attack where an intruder could
create a bogus certificate trail. To foil this kind of attack,
either the PC, IFF, GQ or W identity schenes nust be used.

A client instantiates cryptographic variables only if the server is
synchroni zed to a proventic source. A server does not sign val ues or
generate cryptographic data files unl ess synchronized to a proventic
source. This raises an interesting issue: how does a client generate
proventic cryptographic files before it has ever been synchronized to
a proventic source? (Who shaves the barber if the barber shaves
everybody in town who does not shave hinself?) In principle, this
paradox is resolved by assuming the primary (stratum 1) servers are
proventicated by external phenonenol ogi cal neans.

2. Cogging Vulnerability

A sel f-induced cl oggi ng incident cannot happen, since signatures are
conmput ed only when the data have changed and the data do not change
very often. For instance, the autokey values are signed only when
the key list is regenerated, which happens about once an hour, while
the public values are signed only when one of themis updated during
a dance or the server seed is refreshed, which happens about once per
day.

There are two clogging vulnerabilities exposed in the protoco

design: an encryption attack where the intruder hopes to clog the
victimserver w th needl ess cryptographic cal cul ations, and a
decryption attack where the intruder attenpts to clog the victim
client with needl ess cryptographic cal cul ations. Autokey uses public
key cryptography and the algorithns that performthese functions
consune significant resources

In client/server and peer dances, an encryption hazard exi sts when a
W retapper replays prior cookie request nmessages at speed. There is
no obvious way to deflect such attacks, as the server retains no
state between requests. Replays of cookie request or response
messages are detected and di scarded by the client on-wire protocol

In broadcast node, a decryption hazard exi sts when a w retapper
repl ays aut okey response nessages at speed. Once synchronized to a
proventic source, a legitimate extension field with tinestanp the
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same as or earlier than the nost recently received of that type is

i medi ately discarded. This foils a man-in-the-niddle cut-and-paste
attack using an earlier response, for exanple. A legitimte
extension field with tinmestanp in the future is unlikely, as that
woul d require predicting the autokey sequence. However, this causes
the client to refresh and verify the autokey val ues and si gnature.

A determ ned attacker can destabilize the on-wire protocol or an

Aut okey dance in various ways by replaying old nessages before the
client or peer has synchronized for the first tinme. For instance,
replaying an old symmetric node nessage before the peers have
synchroni ze will prevent the peers fromever synchronizing.

Repl ayi ng out of order Autokey nessages in any node during a dance
coul d prevent the dance fromever conpleting. There is nothing new
in these kinds of attack; a simlar vulnerability even exists in TCP
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13. | ANA Consi deration

June 2010

The |1 ANA has added the following entries to the NTP Extensions Field

Types registry:

0x0002
0x8002
0xC002
0x0102
0x8102
0xC102 |
0x0202
0x8202
0xC202
0x0302
0x8302
0xC302
0x0402
0x8402
0xC402
0x0502
0x8502
0xC502
0x0602
0x8602
0xC602
0x0702
0x8702
0xC702
0x0802
0x8802
0xC802
0x0902
0x8902
0xC902

14. Ref er ences

No- Oper ati on Request

No- Oper ati on Response

No- Operati on Error Response

Associ ati on Message Request

Associ ati on Message Response
Associ ati on Message Error Response
Certificate Message Request
Certificate Message Response
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Appendi x A Tinestanps, Filestanps, and Partial Ordering

When the host starts, it reads the host key and host certificate
files, which are required for continued operation. It also reads the
sign key and | eapseconds val ues, when avail able. Wen reading these
files, the host checks the file formats and fil estanps for validity;
for instance, all filestanps nust be later than the tinme the UTC
timescal e was established in 1972 and the certificate fil estanp nust
not be earlier than its associated sign key filestanp. At the tinme
the files are read, the host is not synchronized, so it cannot
determ ne whether the fil estanps are bogus ot her than by using these
sinmple checks. It nust not produce filestanps or tinmestanps unti
synchroni zed to a proventic source.

In the following, the relation A --> B is Lanport’s "happens before"
relation, which is true if event A happens before event B. When

ti mestanps are conpared to tinestanps, the relation is false if A
<--> B; that is, false if the events are simultaneous. For

ti mestanps conpared to filestanps and fil estanps conpared to
filestanps, the relation is true if A <--> B. Note that the current
time plays no part in these assertions except in (6) bel ow, however,
the NTP protocol itself ensures a correct partial ordering for al
current time val ues.

The followi ng assertions apply to all relevant responses:

1. The client saves the nost recent tinestanp TO and filestanp FO
for the respective signature type. For every received nmessage
carrying timestanp Tl and filestanp F1, the message is discarded
unless TO --> T1 and FO --> F1. The requirenent that TO --> T1
is the prinmary defense agai nst replays of old nessages.

2. For timestanp T and filestamp F, F --> T; that is, the filestanp

nmust happen before the tinestanp. |If not, this could be due to a
file generation error or a significant error in the systemclock
time.

3. For sign key filestanp S, certificate filestanp C, cookie
timestanp D and autokey tinmestamp A, S -->C-->D--> A, that
is, the autokey nmust be generated after the cookie, the cookie
after the certificate, and the certificate after the sign key.

4. For sign key filestanp S and certificate filestanp C specifying

begin tinme B and end tine E, S-->C->B -->E; that is, the
valid period nmust not be retroactive.
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5. Acertificate for subject S signed by issuer | and with filestanp
Cl obsol etes, but does not necessarily invalidate, another
certificate with the same subject and issuer but with filestanp
C0, where Q0 --> Cl.

6. Acertificate with begin tine B and end tine Eis invalid and
cannot be used to verify signatures if t --> B or E-->1t, where
t is the current proventic tine. Note that the public key
previously extracted fromthe certificate continues to be valid
for an indefinite time. This raises the interesting possibility
where a truechiner server with expired certificate or a
fal seticker with valid certificate are not detected until the
client has synchronized to a proventic source.

Appendi x B. ldentity Schenes

There are five identity schenmes in the NTPv4 reference

i npl ementation: (1) private certificate (PC), (2) trusted certificate
(TO, (3) a nodified Schnorr algorithm (IFF - Identify Friend or

Foe), (4) a nodified Guillou-Quisquater (GQ algorithm and (5) a
nodi fi ed Mu-Varadharajan (M) al gorithm

The PC schene is intended for testing and devel opment and not
recommended for general use. The TC schene uses a certificate trail
but not an identity schene. The IFF, GQ and W identity schenes use
a cryptographically strong chal |l enge-response exchange where an

i ntruder cannot |earn the group key, even after repeated observations
of multiple exchanges. These schenes begin when the client sends a
nonce to the server, which then rolls its own nonce, perfornms a

mat hemati cal operation and sends the results to the client. The
client perforns a second nathenatical operation to prove the server
has the sane group key as the client.
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Appendix C. Private Certificate (PC) Schene

The PC scheme shown in Figure 12 uses a private certificate as the
group key.

Trusted
Aut hority
Secure S + Secure
T | Certificate |------------- +
| R + |
| |
\ |/ \ |/
T + T +
| Certificate | | Certificate
B + B +
Server dient

Figure 12: Private Certificate (PC) ldentity Schene

A certificate is designated private when the X 509v3 Extended Key
Usage extension field is present and contains "Private". The private
certificate is distributed to all other group nenbers by secret

means, so in fact becomes a symetric key. Private certificates are
al so trusted, so there is no need for a certificate trail or identity
schene.

Appendi x D. Trusted Certificate (TC) Schene

Al'l other schenmes involve a conventional certificate trail as shown

in Figure 13.
Trusted
Host Host Host

I + I + I +

+--->| Subject | +--->| Subject | +--->| Subj ect
[ S + | [ S + | [ S +
---+ | Issuer [---+ | Issuer [---+ | Issuer |
. + . + . +
| Signature | | Signature | | Signature |
- + - + - +

Figure 13: Trusted Certificate (TC) ldentity Schene

As described in RFC 4210 [ RFC4210], each certificate is signed by an
i ssuer one step closer to the trusted host, which has a self-signed
trusted certificate. A certificate is designated trusted when an
X.509v3 Ext ended Key Usage extension field is present and contains
"trustRoot". If no identity schenme is specified in the paraneter
exchange, this is the default schene.
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Appendi x E.  Schnorr (IFF) Identity Schene

The | FF schenme is useful when the group key is conceal ed, so that
client keys need not be protected. The prinmary di sadvantage is that
when the server key is refreshed all hosts nust update the client
key. The schene shown in Figure 14 involves a set of public
paraneters and a group key including both private and public
conmponents. The public conponent is the client key.

Trusted
Aut hority
o m e oo oo - +
| Parameters
Secure SR + | nsecure
e | Goup Key |----------- +
| B SR + |
\|/ \|/
S + Chal | enge S +
| Parameters |<-------------"----------- | Paraneters
R + R +
| Goup Key |------------------------ > dient Key
S + Response S +
Ser ver Cient

Figure 14: Schnorr (IFF) ldentity Schemne

By happy coi nci dence, the mathematical principles on which IFF is
based are simlar to DSA. The schenme is a nodification an al gorithm
described in [ SCHNORR] and [ STINSON] (p. 285). The paraneters are
generated by routines in the QpenSSL library, but only the noduli p,
g and generator g are used. The p is a 512-bit prine, g a generator
of the nmultiplicative group Z p* and q a 160-bit prine that divides
(p-1) and is a qth root of 1 nod p; that is, g*"q =1 nod p. The TA
rolls a private randomgroup key b (0 < b < q), then conputes public
client key v = g*(g-b) mod p. The TA distributes (p, g, g, b) to al
servers using secure neans and (p, q, g, v) to all clients not
necessarily using secure neans.

The TA hides | FF paraneters and keys in an QpenSSL DSA cuckoo
structure. The |FF paraneters are identical to the DSA paraneters
so the OpenSSL |library can be used directly. The structure shown in
Figure 15 is witten to a file as a DSA private key encoded i n PEM
Unused structure nenbers are set to one.
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N . +
| | FF | DSA | [tem | I ncl ude |
+ + + + +
| p | p | nodul us | al |
Fomm e e o Fom e e - B S B S +
| q | q | nodul us | al |

N N N N +
| g | g | generator | al |

N N T N . N . +
| b | priv_key | group key | server
Fomm e e o Fom e e - B S B S +
| % | pub_key | client key | client |
N N N N +

Figure 15: IFF Identity Schene Structure

Alice challenges Bob to confirmidentity using the follow ng protocol
exchange.

1. Aicerolls randomr (0 <r < q) and sends to Bob

2. Bob rolls randomk (0 < k < q), conputes y =k + br nod q and x =
g"k nod p, then sends (y, hash(x)) to Alice.

3. Alice conputes z = g*y * v*r nod p and verifies hash(z) equals
hash(x) .

If the hashes match, Alice knows that Bob has the group key b

Besi des nmaki ng the response shorter, the hash makes it effectively
i npossible for an intruder to solve for b by observing a nunber of
t hese nessages. The signed response binds this know edge to Bob's
private key and the public key previously received in his
certificate.

Appendi x F. CGuillard-Quisquater (GQ ldentity Scheme

The GQ schene is useful when the server key nust be refreshed from
time to tinme without changing the group key. The NTP utility
prograns include the GQ client key in the X 509v3 Subject Key
Identifier extension field. The primary disadvantage of the schene
is that the group key nmust be protected in both the server and
client. A secondary disadvantage is that when a server key is
refreshed, old extension fields no | onger work. The schene shown in
Figure 16 involves a set of public paraneters and a group key used to
generate private server keys and client keys.
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Trusted
Aut hority
Fommemeeeaas +
| Parameters
Secure e LR + Secure
T | Goup Key |----------- +
| S RS + |
\[/ \[/
R + Chal | enge R +
| Parameters |<------------------------ | Parameters
S + S +
| Goup Key | | G oup Key
R + Response R +
| Server Key |--------------mmmmo > Cient Key
. + . +
Server dient

Figure 16: Schnorr (IFF) ldentity Schene

By happy coinci dence, the mathematical principles on which GQis
based are sinmilar to RSA. The schene is a nodification of an

al gorithm described in [GU LLOU and [STINSON] (p. 300) (with
errors). The paranmeters are generated by routines in the OpenSSL
library, but only the nmoduli p and q are used. The 512-bit public
nmodul us is n=pgq, where p and q are secret large prinmes. The TArolls
randomlarge prime b (0 < b < n) and distributes (n, b) to all group
servers and clients using secure neans, since an intruder in
possessi on of these values could inpersonate a legitimte server.

The private server key and public client key are constructed | ater

The TA hides GQ paraneters and keys in an OpenSSL RSA cuckoo
structure. The GQ paraneters are identical to the RSA paraneters, so
the OpenSSL library can be used directly. Wen generating a
certificate, the server rolls random server key u (0 < u < n) and
client key its inverse obscured by the group key v = (u®-1)”b nod n.
These val ues replace the private and public keys normally generated
by the RSA schene. The client key is conveyed in a X 509 certificate
extension. The updated GQ structure shown in Figure 17 is witten as
an RSA private key encoded in PEM Unused structure nmenbers are set
to one.
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e . +
| & | RSA | Item | I ncl ude |
+ + + + +
| n | n | nodul us | al |
Fomm e e o Fom e e - S B S +
| b | e | group key | al |

N N . N +
| u | p | server key | server

N N . N . +
| % | o} | client key | client
Fomm e e o Fom e e - S B S +

Figure 17: GQ ldentity Schene Structure

Al'ice challenges Bob to confirmidentity using the follow ng
exchange.

1. Alicerolls randomr (0 <r < n) and sends to Bob

2. Bob rolls randomk (0 < k < n) and conputes y = ku*r nod n and X
= kb nmod n, then sends (y, hash(x)) to Alice.

3. Alice conputes z = (v”r)*(y~b) nod n and verifies hash(z) equals
hash(x).

I f the hashes match, Alice knows that Bob has the correspondi ng
server key u. Besides making the response shorter, the hash nakes it
effectively inpossible for an intruder to solve for u by observing a
nunber of these nmessages. The signed response binds this know edge
to Bob’s private key and the client key previously received in his
certificate.

Appendi x G Mi-Varadharajan (M) ldentity Schemre

The MV schene is perhaps the nost interesting and flexible of the
three chal |l enge/ response schenes, but is devilishly conplicated. It
is nost useful when a snall nunber of servers provide synchronization
to a large client population where there night be considerable risk
of conprom se between and anong the servers and clients. The client
popul ati on can be partitioned into a nodest nunber of subgroups, each
associated with an individual client key.

The TA generates an intricate cryptosysteminvol ving encryption and
decryption keys, together with a nunber of activation keys and

associ ated client keys. The TA can activate and revoke i ndividua
client keys without changing the client keys thenselves. The TA
provides to the servers an encryption key E, and partial decryption
keys g-bar and g-hat which depend on the activated keys. The servers

Haberman & MI1s I nf or mat i onal [ Page 51]



RFC 5906 NTPv4 Aut okey June 2010

have no additional information and, in particular, cannot nasquerade
as a TA. In addition, the TA provides to each client j individua
partial decryption keys x-bar_j and x-hat_j, which do not need to be
changed if the TA activates or deactivates any client key. The
clients have no further information and, in particular, cannot
masquer ade as a server or TA

The schene uses an encryption algorithmsimlar to El Ganal
cryptography and a pol ynonial formed fromthe expansi on of product
terns (x-x_1)(x-x_2)(x-x_3)...(x-x_n), as described in [W]. The
paper has significant errors and serious om ssions. The cryptosystem
is constructed so that, for every encryption key Eits inverse is
(g-bar~x-hat _j)(g-hat~x-bar_j) nod p for every j. This renmins true
if both quantities are raised to the power k nod p. The difficulty
in finding Eis equivalent to the discrete | og problem

The schene is shown in Figure 18. The TA generates the paraneters,
group key, server keys, and client keys, one for each client, all of
whi ch nust be protected to prevent theft of service. Note that only
the TA has the group key, which is not known to either the servers or

clients. 1In this sense, the MV schene is a zero-know edge proof.
Trust ed
Aut hority
R +
| Paraneters
TR +
| Goup Key |
S +
| Server Key
Secure R T + Secure
R T | dient Key [----------- +
| R + |
\ |/ \ |/
T + Chal | enge T +
| Parameters |<----------mmmmmmiao | Paraneters
R + R +
| Server Key |------------------------ > dient Key
R R + Response R R +
Server dient

Fi gure 18: Mu-Varadharajan (M) ldentity Schene

The TA hides MW paraneters and keys in OpenSSL DSA cuckoo structures.
The MV paraneters are identical to the DSA paraneters, so the OpenSSL
library can be used directly. The structure shown in the figures

bel ow are witten to files as a the fkey encoded in PEM Unused
structure nmenbers are set to one. The Figure 19 shows the data
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structure used by the servers, while Figure 20 shows the client data
structure associated with each activation key.

e B TS +
| W | DSA | Item | I ncl ude |
+ + + + +
| p | p | nodul us | al | |
e S S oo +
| q | q | nodul us | server |
[ S [ TS B SR B TS +
| E | g | private | server |
| | | encrypt | |
e oo SR oo S +
| g-bar | priv_key | public | server |
| | | decrypt | |
[ S [ TS B SR B TS +
| g-hat | pub_key | public | server |
| | | decrypt | |
e oo SR oo S +

o e e e e e e e e e e e e e e oo S +
| W | DSA | Item | I ncl ude |
+ + + + +
| p | p | nodul us | al | |
f S S Fomm e e e o - Fom e e e e e o oo +
| x-bar_j | priv_key | public | client |
| | | decrypt | |
[ TS B R T +
| x-hat_j | pub_key | public | client |
| | decrypt | |
f S S Fomm e e e o - Fom e e e e e o oo +

Fi gure 20: MW Schene dient Structure
The devil is in the details, which are beyond the scope of this nmeno.
The steps in generating the cryptosystem activating the keys and
generating the partial decryption keys are in [ DASBUCH (page 170
ff).

Allice challenges Bob to confirmidentity using the foll ow ng
exchange.

1. Alicerolls randomr (0 <r < q) and sends to Bob.
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2. Bob rolls randomk (0 < k < ) and conputes the session
encryption key E-prime = E*k nod p and partial decryption keys
g-bar-prine = g-bar*"k nod p and g-hat-prinme = g-hat”k nod p. He
encrypts x = E-prime * r nod p and sends (x, g-bar-prine, g-hat-
prime) to Alice.

3. Alice conputes the session decryption key E*-1 = (g-bar-prinme) x-
hat _j (g-hat-prine)”*x-bar_j nod p and verifies that r = E*-1 x.

Appendi x H. ASN. 1 Encodi ng Rul es

Certain value fields in request and response nessages contain data
encoded in ASN. 1 distinguished encoding rules (DER). The BNF grammar
for each encoding rule is given below along with the OpenSSL routine
used for the encoding in the reference inplenentation. The object
identifiers for the encryption algorithnms and nessage di gest/
signature encryption schenes are specified in [ RFC3279]. The
particular algorithns required for confornance are not specified in

t hi s neno.

Appendi x |I. COXIE Request, |FF Response, GQ Response, MW Response

The value field of the COXIE request message contains a sequence of
two integers (n, e) encoded by the i2d RSAPublicKey() routine in the
QpenSSL distribution. In the request, nis the RSA nodulus in bits

and e is the public exponent.

RSAPubl i cKey ::= SEQUENCE ({
n ::= | NTEGER,
e ::= | NTEGER

}

The I FF and GQ responses contain a sequence of two integers (r, S)
encoded by the i2d_DSA SI ) routine in the QpenSSL distribution. 1In
the responses, r is the challenge response and s is the hash of the
private val ue.

DSAPubl i cKey :: = SEQUENCE {
r ::= | NTEGER
s ::= | NTEGER

}

The MV response contains a sequence of three integers (p, 4, Q)
encoded by the i2d DSAparans() routine in the OpenSSL library. In
the response, p is the hash of the encrypted chall enge value and (q,
g) is the client portion of the decryption key.
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DSApar aneters ::= SEQUENCE {
p ::= I NTEGER,
q ::= | NTEGER,
g ::= I NTEGER

}

Appendix J. Certificates

Certificate extension fields are used to convey infornmation used by
the identity schemes. Wile the semantics of these fields generally
conformw th conventional usage, there are subtle variations. The
fields used by Autokey version 2 include:

0 Basic Constraints. This field defines the basic functions of the
certificate. It contains the string "critical, CAATRUE", which
means the field nmust be interpreted and the associated private key
can be used to sign other certificates. Wile included for
conpati bility, Autokey nmakes no use of this field.

0 Key Usage. This field defines the intended use of the public key
contained in the certificate. It contains the string
"di gital Si gnature, keyCertSi gn", which neans the contained public
key can be used to verify signatures on data and ot her
certificates. Wiile included for conpatibility, Autokey nmakes no
use of this field.

0 Extended Key Usage. This field further refines the intended use
of the public key contained in the certificate and is present only
in self-signed certificates. It contains the string "Private" if
the certificate is designated private or the string "trustRoot" if
it is designated trusted. A private certificate is always
trust ed.

0 Subject Key ldentifier. This field contains the client identity
key used in the GQ identity schenme. It is present only if the GQ
schene is in use.

The value field contains an X. 509v3 certificate encoded by the

i 2d_X509() routine in the OpenSSL distribution. The encoding follows
the rules stated in [RFC5280], including the use of X 509v3 extension
fields.

Certificate ::= SEQUENCE ({
tbsCertificate TBSCertificate,
si gnat ur eAl gorithm Al gorithm dentifier,
si gnat ur eVal ue BIT STRI NG

}
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The signatureAlgorithmis the object identifier of the nessage

di gest/signature encryption schene used to sign the certificate. The
signatureValue is conputed by the certificate issuer using this

al gorithm and the issuer private key.

TBSCertificate ::= SEQUENCE {

versi on EXPLICI T v3(2),

seri al Nunber CertificateSerial Nunber,

signature Al gorithm dentifier

i ssuer Nare,

validity Validity,

subj ect Nane,

subj ect Publ i cKeyl nf o Subj ect Publ i cKeyl nf o,

ext ensi ons EXPLI CI T Ext ensi ons OPTI ONAL
}

The serial Nunber is an integer guaranteed to be unique for the
generating host. The reference inplenentation uses the NTP seconds
when the certificate was generated. The signature is the object
identifier of the nmessage digest/signature encryption schene used to
sign the certificate. It nust be identical to the

si gnat ur eAl gorithm

CertificateSerial Nunber

SET { ::= I NTEGER
Validity ::= SEQUENCE {
not Bef or e UTCTi e,
not Aft er UTCTi ne
}
}
The not Before and not After define the period of validity as defined
i n Appendi x B.
Subj ect Publ i cKeyl nfo ::= SEQUENCE {
al gorithm Al gorithmdentifier,
subj ect Publ i cKey BIT STRI NG
}

The Algorithm dentifier specifies the encryption algorithmfor the
subj ect public key. The subjectPublicKey is the public key of the
subj ect .
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Ext ensi ons ::= SEQUENCE SI ZE (1..MAX) OF Extension
Ext ensi on ::= SEQUENCE {
extnl D OBJECT | DENTI FI ER
critical BOOLEAN DEFAULT FALSE
ext nVal ue OCTET STRI NG
}
SET {
Name ::= SEQUENCE {
OBJECT | DENTI FI ER comonNanme
PrintableString Host Name
}
}

For trusted host certificates, the subject and issuer HostNane is the
NTP name of the group, while for all other host certificates the

subj ect and issuer HostNane is the NTP name of the host. 1In the
reference inplenentation, if these nanes are not explicitly
specified, they default to the string returned by the Unix
gethostnane() routine (trailing NUL renoved). For other than self-
signed certificates, the issuer HostNane is the uni que DNS nane of
the host signing the certificate.

It should be noted that the Autokey protocol itself has no provisions
to revoke certificates. The reference inplenentation is purposely
restarted about once a week, leading to the regeneration of the
certificate and a restart of the Autokey protocol. This restart is
not enforced for the Autokey protocol but rather for NTP
functionality reasons.

Each group host operates with only one certificate at a tinme and
constructs a trail by induction. Since the group configuration nust
forman acyclic graph, with roots at the trusted hosts, it does not
matter which, of possibly several, signed certificates is used. The
ref erence inplenentati on chooses a single certificate and operates
with only that certificate until the protocol is restarted.
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