
Internet Engineering Task Force (IETF) G. Lebovitz
Request for Comments: 5926 Juniper
Category: Standards Track E. Rescorla
ISSN: 2070-1721 RTFM
 June 2010

 Cryptographic Algorithms for the TCP Authentication Option (TCP-AO)

Abstract

 The TCP Authentication Option (TCP-AO) relies on security algorithms
 to provide authentication between two end-points. There are many
 such algorithms available, and two TCP-AO systems cannot interoperate
 unless they are using the same algorithms. This document specifies
 the algorithms and attributes that can be used in TCP-AO’s current
 manual keying mechanism and provides the interface for future message
 authentication codes (MACs).

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5926.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Lebovitz & Rescorla Standards Track [Page 1]

RFC 5926 Crypto for TCP-AO June 2010

Table of Contents

 1. Introduction ..2
 2. Requirements ..3
 2.1. Requirements Language3
 2.2. Algorithm Requirements3
 2.3. Requirements for Future MAC Algorithms3
 3. Algorithms Specified ..4
 3.1. Key Derivation Functions (KDFs)4
 3.1.1. Concrete KDFs5
 3.1.1.1. KDF_HMAC_SHA16
 3.1.1.2. KDF_AES_128_CMAC7
 3.1.1.3. Tips for User Interfaces Regarding KDFs9
 3.2. MAC Algorithms ...9
 3.2.1. The Use of HMAC-SHA-1-9610
 3.2.2. The Use of AES-128-CMAC-9611
 4. Security Considerations ..11
 5. IANA Considerations ..13
 6. Acknowledgements ...13
 7. References ...14
 7.1. Normative References14
 7.2. Informative References14

1. Introduction

 This document is a companion to [RFC5925]. Like most modern security
 protocols, TCP-AO allows users to choose which cryptographic
 algorithm(s) they want to use to meet their security needs.

 TCP-AO provides cryptographic authentication and message integrity
 verification between two end-points. In order to accomplish this
 function, message authentication codes (MACs) are used, which then
 rely on shared keys. There are various ways to create MACs. The use
 of hash-based MACs (HMACs) is defined in [RFC2104]. The use of
 cipher-based MACs (CMACs) is defined in [NIST-SP800-38B].

 This RFC defines the general requirements for MACs used in TCP-AO,
 both for currently specified MACs and for any future specified MACs.
 It specifies two MAC algorithms required in all TCP-AO
 implementations. It also specifies two key derivation functions
 (KDFs) used to create the traffic keys used by the MACs. These KDFs
 are also required by all TCP-AO implementations.

Lebovitz & Rescorla Standards Track [Page 2]

RFC 5926 Crypto for TCP-AO June 2010

2. Requirements

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 When used in lowercase, these words convey their typical use in
 common language, and they are not to be interpreted as described in
 [RFC2119].

2.2. Algorithm Requirements

 This is the initial specification of required cryptography for
 TCP-AO, and indicates two MAC algorithms and two KDFs. All four
 components MUST be implemented in order for the implementation to be
 fully compliant with this RFC.

 The following table indicates the required MAC algorithms and KDFs
 for TCP-AO:

 Requirement Authentication Algorithm

 ------------ ------------------------

 MUST HMAC-SHA-1-96 [RFC2104][FIPS-180-3]

 MUST AES-128-CMAC-96 [NIST-SP800-38B][FIPS197]

 Requirement Key Derivation Function (KDF)

 ------------- ------------------------

 MUST KDF_HMAC_SHA1

 MUST KDF_AES_128_CMAC

 For an explanation of why two MAC algorithms were mandated, see the
 Section 4.

2.3. Requirements for Future MAC Algorithms

 TCP-AO is intended to support cryptographic agility. As a result,
 this document includes recommendations in various places for future
 MAC and KDF algorithms when used for TCP-AO. For future MAC
 algorithms specifically, they SHOULD protect at least 2**48 messages
 with a collision probability of less than one in 10**9.

Lebovitz & Rescorla Standards Track [Page 3]

RFC 5926 Crypto for TCP-AO June 2010

3. Algorithms Specified

 TCP-AO requires two classes of cryptographic algorithms used on a
 particular connection, and refers to this document to define them
 both:

 (1) Key Derivation Functions (KDFs), which name a pseudorandom
 function (PRF) and use a Master_Key and some connection-
 specific input with that PRF to produce Traffic_Keys, the
 keys suitable for authenticating and integrity checking
 individual TCP segments, as described in TCP-AO.

 (2) Message Authentication Code (MAC) algorithms, which take a
 key and a message and produce an authentication tag that can
 be used to verify the integrity and authenticity of those
 messages.

 In TCP-AO, these algorithms are always used in pairs. Each MAC
 algorithm MUST specify the KDF to be used with that MAC algorithm.
 However, a KDF MAY be used with more than one MAC algorithm.

3.1. Key Derivation Functions (KDFs)

 TCP-AO’s Traffic_Keys are derived using KDFs. The KDFs used in TCP-
 AO’s current manual keying have the following interface:

 Traffic_Key = KDF_alg(Master_Key, Context, Output_Length)

 where:

 - KDF_alg: the specific pseudorandom function (PRF) that is
 the basic building block used in constructing the
 given Traffic_Key.

 - Master_Key: In TCP-AO’s manual key mode, this is a key shared
 by both peers, entered via some interface to their
 respective configurations. The Master_Key is used
 as the seed for the KDF. We assume that this is a
 human-readable pre-shared key (PSK); thus, we
 assume it is of variable length. Master_Keys
 SHOULD be random, but might not be (e.g., badly
 chosen by the user). For interoperability, the
 management interface by which the PSK is configured
 MUST accept ASCII strings, and SHOULD also allow
 for the configuration of any arbitrary binary
 string in hexadecimal form. Other configuration
 methods MAY be supported.

Lebovitz & Rescorla Standards Track [Page 4]

RFC 5926 Crypto for TCP-AO June 2010

 - Context: A binary string containing information related to
 the specific connection for this derived keying
 material, as defined in [RFC5925], Section 5.2.

 - Output_Length: The length, in bits, of the key that the KDF
 will produce. This length must be the size
 required for the MAC algorithm that will use the
 PRF result as a seed.

 When invoked, a KDF generates a string of length Output_Length bits
 based on the Master_Key and context value. This result may then be
 used as a cryptographic key for any algorithm that takes an
 Output_Length length key. A KDF MAY specify a maximum Output_Length
 parameter.

3.1.1. Concrete KDFs

 This document defines two KDF algorithms, each paired with a
 corresponding PRF algorithm as explained below:

 * KDF_HMAC_SHA1 based on PRF-HMAC-SHA1 [RFC2104][FIPS-180-3]

 * KDF_AES_128_CMAC based on AES-CMAC-PRF-128
 [NIST-SP800-38B][FIPS197]

 Both of these KDFs are based on the iteration-mode KDFs specified in
 [NIST-SP800-108]. This means that they use an underlying
 pseudorandom function (PRF) with a fixed-length output, 128 bits in
 the case of the AES-CMAC, and 160 bits in the case of HMAC-SHA1. The
 KDF generates an arbitrary number of output bits by operating the PRF
 in a "counter mode", where each invocation of the PRF uses a
 different input block differentiated by a block counter.

 Each input block is constructed as follows:

 (i || Label || Context || Output_Length)

 Where

 - "||": For any X || Y, "||" represents a concatenation
 operation of the binary strings X and Y.

 - i: A counter, a binary string that is an input to each
 iteration of the PRF in counter mode. The counter
 "i" is represented in a single octet. The number of
 iterations will depend on the specific size of the
 Output_Length desired for a given MAC. "i" always
 starts = 1.

Lebovitz & Rescorla Standards Track [Page 5]

RFC 5926 Crypto for TCP-AO June 2010

 - Label: A binary string that clearly identifies the purpose
 of this KDF’s derived keying material. For TCP-AO,
 we use the ASCII string "TCP-AO", where the last
 character is the capital letter "O", not to be
 confused with a zero. While this may seem like
 overkill in this specification since TCP-AO only
 describes one call to the KDF, it is included in
 order to comply with FIPS 140 certifications.

 - Context: The context argument provided to the KDF interface,
 as described above in Section 3.1 .

 - Output_Length: The length, in bits, of the key that the KDF
 will produce. The Output_length is represented
 within two octets. This length must be the size
 required for the MAC algorithm that will use the
 PRF result as a seed.

 The output of multiple PRF invocations is simply concatenated. For
 the Traffic_Key, values of multiple PRF invocations are concatenated
 and truncated as needed to create a Traffic_Key of the desired
 length. For instance, if one were using KDF_HMAC_SHA1, which uses a
 160-bit internal PRF to generate 320 bits of data, one would execute
 the PRF twice, once with i=1 and once with i=2. The result would be
 the entire output of the first invocation concatenated with the
 second invocation. For example,

 Traffic_Key =
 KDF_alg(Master_Key, 1 || Label || Context || Output_length) ||
 KDF_alg(Master_Key, 2 || Label || Context || Output_length)

 If the number of bits required is not an exact multiple of the output
 size of the PRF, then the output of the final invocation of the PRF
 is truncated as necessary.

3.1.1.1. KDF_HMAC_SHA1

 For KDF_HMAC_SHA1:

 - PRF for KDF_alg: HMAC-SHA1 [RFC2104][FIPS-180-3].

 - Use: HMAC-SHA1(Key, Input).

 - Key: Master_Key, configured by user, and passed to the KDF.

 - Input: (i || Label || Context || Output_Length)

 - Output_Length: 160 bits.

Lebovitz & Rescorla Standards Track [Page 6]

RFC 5926 Crypto for TCP-AO June 2010

 - Result: Traffic_Key, used in the MAC function by TCP-AO.

3.1.1.2. KDF_AES_128_CMAC

 For KDF_AES_128_CMAC:

 - PRF for KDF_alg: AES-CMAC-PRF-128 [NIST-SP800-38B][FIPS197].

 - Use: AES-CMAC(Key, Input).

 - Key: Master_Key (see usage below)

 - Input: (i || Label || Context || Output_Length)

 - Output_Length: 128 bits.

 - Result: Traffic_Key, used in the MAC function by TCP-AO

 The Master_Key in TCP-AO’s current manual keying mechanism is a
 shared secret, entered by an administrator. It is passed via an out-
 of-band mechanism between two devices, and often between two
 organizations. The shared secret does not have to be 16 octets, and
 the length may vary. However, AES_128_CMAC requires a key of exactly
 16 octets (128 bits) in length. We could mandate that
 implementations force administrators to input Master_Keys of exactly
 128-bit length when using AES_128_CMAC, and with sufficient
 randomness, but this places undue burden on the implementors and
 deployers. This specification RECOMMENDS that deployers use a
 randomly generated 128-bit string as the Master_Key, but acknowledges
 that deployers may not.

 To handle variable length Master_Keys, we use the same mechanism as
 described in [RFC4615], Section 3. First, we use AES_128_CMAC with a
 fixed key of all zeros as a "randomness extractor", while using the
 shared secret Master_Key, MK, as the message input, to produce a 128-
 bit key Derived_Master_Key (K). Second, we use the result as a key,
 and run AES-128_CMAC again, this time using the result K as the Key,
 and the true input block as the Input to yield the Traffic_Key (TK)
 used in the MAC over the message. The description follows:

Lebovitz & Rescorla Standards Track [Page 7]

RFC 5926 Crypto for TCP-AO June 2010

 +++
 + KDF-AES-128-CMAC +
 +++
 + +
 + Input : MK (Master_Key, the variable-length shared secret) +
 + : I (Input, i.e., the input data of the PRF) +
 + : MKlen (length of MK in octets) +
 + : len (length of M in octets) +
 + Output : TK (Traffic_Key, 128-bit Pseudo-Random Variable) +
 + +
 +---+
 + Variable: K (128-bit key for AES-CMAC) +
 + +
 + Step 1. If MKlen is equal to 16 +
 + Step 1a. then +
 + K := MK; +
 + Step 1b. else +
 + K := AES-CMAC(0^128, MK, MKlen); +
 + Step 2. TK := AES-CMAC(K, I, len); +
 + return TK; +
 + +
 +++

 Figure 1

 In step 1, the 128-bit key, K, for AES-CMAC is derived as follows:

 o If the Master_Key, MK, provided by the administrator is exactly 128
 bits, then we use it as is.

 o If it is longer or shorter than 128 bits, then we derive the key K
 by applying the AES-CMAC algorithm using the 128-bit all-zero string
 as the key and MK as the input message. This step is described in
 1b.

 In step 2, we apply the AES-CMAC algorithm again, this time using K
 as the key and I as the input message.

 The output of this algorithm returns TK, the Traffic_Key, which is
 128 bits and is suitable for use in the MAC function on each TCP
 segment of the connection.

Lebovitz & Rescorla Standards Track [Page 8]

RFC 5926 Crypto for TCP-AO June 2010

3.1.1.3. Tips for User Interfaces Regarding KDFs

 This section provides suggested representations for the KDFs in
 implementation user interfaces (UIs). Following these guidelines
 across common implementations will make interoperability easier and
 simpler for deployers.

 UIs SHOULD refer to the choice of KDF_HMAC_SHA1 as simply "SHA1".

 UIs SHOULD refer to the choice of KDF_AES_128_CMAC as simply
 "AES128".

 The initial IANA registry values reflect these two entries.

 UIs SHOULD use KDF_HMAC_SHA1 as the default selection in TCP-AO
 settings. KDF_HMAC_SHA1 is preferred at this time because it has
 wide support, being present in most implementations in the
 marketplace.

3.2. MAC Algorithms

 Each MAC_alg defined for TCP-AO has three fixed elements as part of
 its definition:

 - KDF_Alg: Name of the TCP-AO KDF algorithm used to generate the
 Traffic_Key.

 - Key_Length: Length, in bits, required for the Traffic_Key used in
 this MAC.

 - MAC_Length: The final length of the bits used in the TCP-AO MAC
 field. This value may be a truncation of the MAC
 function’s original output length.

 MACs computed for TCP-AO have the following interface:

 MAC = MAC_alg(Traffic_Key, Message)

 where:

 - MAC_alg: MAC Algorithm used.

 - Traffic_Key: Variable; the result of KDF.

 - Message The message to be authenticated, as specified in
 [RFC5925], Section 5.1.

Lebovitz & Rescorla Standards Track [Page 9]

RFC 5926 Crypto for TCP-AO June 2010

 This document specifies two MAC algorithm options for generating the
 MAC as used by TCP-AO:

 * HMAC-SHA-1-96 based on [RFC2104] and [FIPS-180-3].

 * AES-128-CMAC-96 based on [NIST-SP800-38B][FIPS197]

 Both provide a high level of security and efficiency. The AES-128-
 CMAC-96 is potentially more efficient, particularly in hardware, but
 HMAC-SHA-1-96 is more widely used in Internet protocols and in most
 cases could be supported with little or no additional code in today’s
 deployed software and devices.

 An important aspect to note about these algorithms’ definitions for
 use in TCP-AO is the fact that the MAC outputs are truncated to 96
 bits. AES-128-CMAC-96 produces a 128-bit MAC, and HMAC SHA-1
 produces a 160-bit result. The MAC output is then truncated to 96
 bits to provide a reasonable trade-off between security and message
 size, for fitting into the TCP-AO option field.

3.2.1. The Use of HMAC-SHA-1-96

 By definition, HMAC [RFC2104] requires a cryptographic hash function.
 SHA1 will be that hash function used for authenticating and providing
 integrity validation on TCP segments with HMAC.

 The three fixed elements for HMAC-SHA-1-96 are:

 - KDF_Alg: KDF_HMAC_SHA1.

 - Key_Length: 160 bits.

 - MAC_Length: 96 bits.

 For:

 MAC = MAC_alg (Traffic_Key, Message)

 HMAC-SHA-1-96 for TCP-AO has the following values:

 - MAC_alg: HMAC-SHA1.

 - Traffic_Key: Variable; the result of the KDF.

 - Message: The message to be authenticated, as specified in
 [RFC5925], Section 5.1.

Lebovitz & Rescorla Standards Track [Page 10]

RFC 5926 Crypto for TCP-AO June 2010

3.2.2. The Use of AES-128-CMAC-96

 In the context of TCP-AO, when we say "AES-128-CMAC-96", we actually
 define a usage of AES-128 as a cipher-based MAC according to
 [NIST-SP800-38B].

 The three fixed elements for AES-128-CMAC-96 are:

 - KDF_Alg: KDF_AES_128_CMAC.

 - Key_Length: 128 bits.

 - MAC_Length: 96 bits.

 For:

 MAC = MAC_alg (Traffic_Key, Message)

 AES-128-CMAC-96 for TCP-AO has the following values:

 - MAC_alg: AES-128-CMAC-96. [NIST-SP800-38B]

 - Traffic_Key: Variable; the result of the KDF.

 - Message: The message to be authenticated, as specified in
 [RFC5925], Section 5.1.

4. Security Considerations

 This document inherits all of the security considerations of the
 TCP-AO [RFC5925], the AES-CMAC [RFC4493], and the HMAC-SHA-1
 [RFC2104] documents.

 The security of cryptography-based systems depends on both the
 strength of the cryptographic algorithms chosen and the strength of
 the keys used with those algorithms. The security also depends on
 the engineering of the protocol used by the system to ensure that
 there are no non-cryptographic ways to bypass the security of the
 overall system.

 Care should also be taken to ensure that the selected key is
 unpredictable, avoiding any keys known to be weak for the algorithm
 in use. [RFC4086] contains helpful information on both key
 generation techniques and cryptographic randomness.

 Note that in the composition of KDF_AES_128_CMAC, the PRF needs a
 128-bit / 16-byte key as the seed. However, for convenience to the
 administrators/deployers, we did not want to force them to enter a

Lebovitz & Rescorla Standards Track [Page 11]

RFC 5926 Crypto for TCP-AO June 2010

 16-byte Master_Key. So we specified the sub-key routine that could
 handle a variable length Master_Key, one that might be less than 16
 bytes. This does NOT mean that it is safe for administrators to use
 weak keys. Administrators are encouraged to follow [RFC4086] as
 listed above. We simply attempted to "put a fence around
 foolishness", as much as possible.

 This document concerns itself with the selection of cryptographic
 algorithms for the use of TCP-AO. The algorithms identified in this
 document as "MUST implement" are not known to be broken at the
 current time, and cryptographic research so far leads us to believe
 that they will likely remain secure into the foreseeable future.
 Some of the algorithms may be found in the future to have properties
 significantly weaker than those that were believed at the time this
 document was produced. Expect that new revisions of this document
 will be issued from time to time. Be sure to search for more recent
 versions of this document before implementing.

 NOTE EXPLAINING WHY TWO MAC ALGORITHMS WERE MANDATED:

 Two MAC algorithms and two corresponding KDFs are mandated as a
 result of discussion in the TCPM WG, and in consultation with the
 Security Area Directors. SHA-1 was selected because it is widely
 deployed and currently has sufficient strength and reasonable
 computational cost, so it is a "MUST" for TCP-AO today. The security
 strength of SHA-1 HMACs should be sufficient for the foreseeable
 future, especially given that the tags are truncated to 96 bits.

 Recently exposed vulnerabilities in other MACs (e.g., MD5 or HMAC
 MD5) aren’t practical on HMAC-SHA-1, but these types of analyses are
 mounting and could potentially pose a concern for HMAC forgery if
 they were significantly improved, over time. The security issues
 driving the migration from SHA-1 to SHA-256 for digital signatures
 [HMAC-ATTACK] do not immediately render SHA-1 weak for this
 application of SHA-1 in HMAC mode.

 AES-128 CMAC is considered to be a stronger algorithm than SHA-1, but
 may not yet have very wide implementation. AES-128 CMAC is also a
 "MUST" to implement, in order to drive vendors toward its use, and to
 allow for another MAC option, if SHA-1 were to be compromised.

Lebovitz & Rescorla Standards Track [Page 12]

RFC 5926 Crypto for TCP-AO June 2010

5. IANA Considerations

 IANA has created the following registry (http://www.iana.org).

 Registry Name: Cryptographic Algorithms for TCP-AO Registration
 Procedure: RFC Publication after Expert Review

 Initial contents of this registry are:

 Algorithm | Reference
 ----------------|-----------
 SHA1 | [RFC5926]
 AES128 | [RFC5926]

6. Acknowledgements

 Eric "EKR" Rescorla, who provided a ton of input and feedback,
 including a somewhat heavy re-write of Section 3.1.x, earning him an
 author slot on the document.

 Paul Hoffman, from whose [RFC4308] I sometimes copied, to quickly
 create a first version here.

 Tim Polk, whose email summarizing SAAG’s guidance to TCPM on the two
 hash algorithms for TCP-AO is largely cut-and-pasted into various
 sections of this document.

 Jeff Schiller, Donald Eastlake, and the IPsec WG, whose [RFC4307] &
 [RFC4835] text was consulted and sometimes used in the Requirements
 Section 2 of this document.

 (In other words, I was truly only an editor of others’ text in
 creating this document.)

 Eric "EKR" Rescorla and Brian Weis, who brought to clarity the issues
 with the inputs to PRFs for the KDFs. EKR was also of great
 assistance in how to structure the text, as well as helping to guide
 good cryptographic decisions.

 The TCPM working group, who put up with all us crypto and routing
 folks DoS’ing their WG for 2 years, and who provided reviews of this
 document.

Lebovitz & Rescorla Standards Track [Page 13]

RFC 5926 Crypto for TCP-AO June 2010

7. References

7.1. Normative References

 [FIPS-180-3] FIPS Publication 180-3, "Secured Hash Standard",
 FIPS 180-3, October 2008.

 [FIPS197] FIPS Publications 197, "Advanced Encryption Standard
 (AES)", FIPS 197, November 2001.

 [NIST-SP800-108]
 National Institute of Standards and Technology,
 "Recommendation for Key Derivation Using Pseudorandom
 Functions, NIST SP800-108", SP 800- 108, October 2009.

 [NIST-SP800-38B]
 National Institute of Standards and Technology,
 "Recommendation for Block Cipher Modes of Operation:
 The CMAC Mode for Authentication", SP 800-38B,
 May 2005.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
 Keyed-Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4493] Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
 AES-CMAC Algorithm", RFC 4493, June 2006.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, June 2010.

7.2. Informative References

 [HMAC-ATTACK] "On the Security of HMAC and NMAC Based on HAVAL, MD4,
 MD5, SHA-0 and SHA-1", <http://
 www.springerlink.com/content/00w4v62651001303> , 2006,
 <http://eprint.iacr.org/2006/187>.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086,
 June 2005.

Lebovitz & Rescorla Standards Track [Page 14]

RFC 5926 Crypto for TCP-AO June 2010

 [RFC4307] Schiller, J., "Cryptographic Algorithms for Use in the
 Internet Key Exchange Version 2 (IKEv2)", RFC 4307,
 December 2005.

 [RFC4308] Hoffman, P., "Cryptographic Suites for IPsec",
 RFC 4308, December 2005.

 [RFC4615] Song, J., Poovendran, R., Lee, J., and T. Iwata, "The
 Advanced Encryption Standard-Cipher-based Message
 Authentication Code-Pseudo-Random Function-128
 (AES-CMAC-PRF-128) Algorithm for the Internet Key
 Exchange Protocol (IKE)", RFC 4615, August 2006.

 [RFC4835] Manral, V., "Cryptographic Algorithm Implementation
 Requirements for Encapsulating Security Payload (ESP)
 and Authentication Header (AH)", RFC 4835, April 2007.

Authors’ Addresses

 Gregory Lebovitz
 Juniper Networks, Inc.
 1194 North Mathilda Ave.
 Sunnyvale, CA 94089-1206
 US

 Phone:
 EMail: gregory.ietf@gmail.com

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303
 US

 Phone: 650-678-2350
 EMail: ekr@rtfm.com

Lebovitz & Rescorla Standards Track [Page 15]

