
Internet Engineering Task Force (IETF)                    H. Schulzrinne
Request for Comments: 5971                                   Columbia U.
Category: Experimental                                        R. Hancock
ISSN: 2070-1721                                                      RMR
                                                            October 2010

              GIST: General Internet Signalling Transport

Abstract

   This document specifies protocol stacks for the routing and transport
   of per-flow signalling messages along the path taken by that flow
   through the network.  The design uses existing transport and security
   protocols under a common messaging layer, the General Internet
   Signalling Transport (GIST), which provides a common service for
   diverse signalling applications.  GIST does not handle signalling
   application state itself, but manages its own internal state and the
   configuration of the underlying transport and security protocols to
   enable the transfer of messages in both directions along the flow
   path.  The combination of GIST and the lower layer transport and
   security protocols provides a solution for the base protocol
   component of the "Next Steps in Signalling" (NSIS) framework.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for examination, experimental implementation, and
   evaluation.

   This document defines an Experimental Protocol for the Internet
   community.  This document is a product of the Internet Engineering
   Task Force (IETF).  It represents the consensus of the IETF
   community.  It has received public review and has been approved for
   publication by the Internet Engineering Steering Group (IESG).  Not
   all documents approved by the IESG are a candidate for any level of
   Internet Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc5971.

Schulzrinne & Hancock         Experimental                      [Page 1]



RFC 5971                          GIST                      October 2010

Copyright Notice

   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
   2.  Requirements Notation and Terminology . . . . . . . . . . . .   5
   3.  Design Overview . . . . . . . . . . . . . . . . . . . . . . .   8
     3.1.  Overall Design Approach . . . . . . . . . . . . . . . . .   8
     3.2.  Modes and Messaging Associations  . . . . . . . . . . . .  10
     3.3.  Message Routing Methods . . . . . . . . . . . . . . . . .  11
     3.4.  GIST Messages . . . . . . . . . . . . . . . . . . . . . .  13
     3.5.  GIST Peering Relationships  . . . . . . . . . . . . . . .  14
     3.6.  Effect on Internet Transparency . . . . . . . . . . . . .  14
     3.7.  Signalling Sessions . . . . . . . . . . . . . . . . . . .  15
     3.8.  Signalling Applications and NSLPIDs . . . . . . . . . . .  16
     3.9.  GIST Security Services  . . . . . . . . . . . . . . . . .  17
     3.10. Example of Operation  . . . . . . . . . . . . . . . . . .  18
   4.  GIST Processing Overview  . . . . . . . . . . . . . . . . . .  20
     4.1.  GIST Service Interface  . . . . . . . . . . . . . . . . .  21
     4.2.  GIST State  . . . . . . . . . . . . . . . . . . . . . . .  23
     4.3.  Basic GIST Message Processing . . . . . . . . . . . . . .  25
     4.4.  Routing State and Messaging Association Maintenance . . .  33
   5.  Message Formats and Transport . . . . . . . . . . . . . . . .  45
     5.1.  GIST Messages . . . . . . . . . . . . . . . . . . . . . .  45
     5.2.  Information Elements  . . . . . . . . . . . . . . . . . .  48
     5.3.  D-mode Transport  . . . . . . . . . . . . . . . . . . . .  53
     5.4.  C-mode Transport  . . . . . . . . . . . . . . . . . . . .  58
     5.5.  Message Type/Encapsulation Relationships  . . . . . . . .  59
     5.6.  Error Message Processing  . . . . . . . . . . . . . . . .  60
     5.7.  Messaging Association Setup . . . . . . . . . . . . . . .  61
     5.8.  Specific Message Routing Methods  . . . . . . . . . . . .  66
   6.  Formal Protocol Specification . . . . . . . . . . . . . . . .  71
     6.1.  Node Processing . . . . . . . . . . . . . . . . . . . . .  73
     6.2.  Query Node Processing . . . . . . . . . . . . . . . . . .  75
     6.3.  Responder Node Processing . . . . . . . . . . . . . . . .  79

Schulzrinne & Hancock         Experimental                      [Page 2]



RFC 5971                          GIST                      October 2010

     6.4.  Messaging Association Processing  . . . . . . . . . . . .  83
   7.  Additional Protocol Features  . . . . . . . . . . . . . . . .  86
     7.1.  Route Changes and Local Repair  . . . . . . . . . . . . .  86
     7.2.  NAT Traversal . . . . . . . . . . . . . . . . . . . . . .  93
     7.3.  Interaction with IP Tunnelling  . . . . . . . . . . . . .  99
     7.4.  IPv4-IPv6 Transition and Interworking . . . . . . . . . . 100
   8.  Security Considerations . . . . . . . . . . . . . . . . . . . 101
     8.1.  Message Confidentiality and Integrity . . . . . . . . . . 102
     8.2.  Peer Node Authentication  . . . . . . . . . . . . . . . . 102
     8.3.  Routing State Integrity . . . . . . . . . . . . . . . . . 103
     8.4.  Denial-of-Service Prevention and Overload Protection  . . 104
     8.5.  Requirements on Cookie Mechanisms . . . . . . . . . . . . 106
     8.6.  Security Protocol Selection Policy  . . . . . . . . . . . 108
     8.7.  Residual Threats  . . . . . . . . . . . . . . . . . . . . 109
   9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . . 111
   10. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . 117
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . . 118
     11.1. Normative References  . . . . . . . . . . . . . . . . . . 118
     11.2. Informative References  . . . . . . . . . . . . . . . . . 119
   Appendix A.  Bit-Level Formats and Error Messages . . . . . . . . 122
     A.1.  The GIST Common Header  . . . . . . . . . . . . . . . . . 122
     A.2.  General Object Format . . . . . . . . . . . . . . . . . . 123
     A.3.  GIST TLV Objects  . . . . . . . . . . . . . . . . . . . . 125
     A.4.  Errors  . . . . . . . . . . . . . . . . . . . . . . . . . 134
   Appendix B.  API between GIST and Signalling Applications . . . . 143
     B.1.  SendMessage . . . . . . . . . . . . . . . . . . . . . . . 143
     B.2.  RecvMessage . . . . . . . . . . . . . . . . . . . . . . . 145
     B.3.  MessageStatus . . . . . . . . . . . . . . . . . . . . . . 146
     B.4.  NetworkNotification . . . . . . . . . . . . . . . . . . . 147
     B.5.  SetStateLifetime  . . . . . . . . . . . . . . . . . . . . 148
     B.6.  InvalidateRoutingState  . . . . . . . . . . . . . . . . . 148
   Appendix C.  Deployment Issues with Router Alert Options  . . . . 149
   Appendix D.  Example Routing State Table and Handshake  . . . . . 151

Schulzrinne & Hancock         Experimental                      [Page 3]



RFC 5971                          GIST                      October 2010

1.  Introduction

   Signalling involves the manipulation of state held in network
   elements.  ’Manipulation’ could mean setting up, modifying, and
   tearing down state; or it could simply mean the monitoring of state
   that is managed by other mechanisms.  This specification concentrates
   mainly on path-coupled signalling, controlling resources on network
   elements that are located on the path taken by a particular data
   flow, possibly including but not limited to the flow endpoints.
   Examples of state management include network resource reservation,
   firewall configuration, and state used in active networking; examples
   of state monitoring are the discovery of instantaneous path
   properties, such as available bandwidth or cumulative queuing delay.
   Each of these different uses of signalling is referred to as a
   signalling application.

   GIST assumes other mechanisms are responsible for controlling routing
   within the network, and GIST is not designed to set up or modify
   paths itself; therefore, it is complementary to protocols like
   Resource Reservation Protocol - Traffic Engineering (RSVP-TE) [22] or
   LDP [23] rather than an alternative.  There are almost always more
   than two participants in a path-coupled signalling session, although
   there is no need for every node on the path to participate; indeed,
   support for GIST and any signalling applications imposes a
   performance cost, and deployment for flow-level signalling is much
   more likely on edge devices than core routers.  GIST path-coupled
   signalling does not directly support multicast flows, but the current
   GIST design could be extended to do so, especially in environments
   where the multicast replication points can be made GIST-capable.
   GIST can also be extended to cover other types of signalling pattern,
   not related to any end-to-end flow in the network, in which case the
   distinction between GIST and end-to-end higher-layer signalling will
   be drawn differently or not at all.

   Every signalling application requires a set of state management
   rules, as well as protocol support to exchange messages along the
   data path.  Several aspects of this protocol support are common to
   all or a large number of signalling applications, and hence can be
   developed as a common protocol.  The NSIS framework given in [29]
   provides a rationale for a function split between the common and
   application-specific protocols, and gives outline requirements for
   the former, the NSIS Transport Layer Protocol (NTLP).  Several
   concepts in the framework are derived from RSVP [14], as are several
   aspects of the GIST protocol design.  The application-specific
   protocols are referred to as NSIS Signalling Layer Protocols (NSLPs),
   and are defined in separate documents.  The NSIS framework [29] and
   the accompanying threats document [30] provide important background
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   information to this specification, including information on how GIST
   is expected to be used in various network types and what role it is
   expected to perform.

   This specification provides a concrete solution for the NTLP.  It is
   based on the use of existing transport and security protocols under a
   common messaging layer, the General Internet Signalling Transport
   (GIST).  GIST does not handle signalling application state itself; in
   that crucial respect, it differs from higher layer signalling
   protocols such as SIP, the Real-time Streaming Protocol (RTSP), and
   the control component of FTP.  Instead, GIST manages its own internal
   state and the configuration of the underlying transport and security
   protocols to ensure the transfer of signalling messages on behalf of
   signalling applications in both directions along the flow path.  The
   purpose of GIST is thus to provide the common functionality of node
   discovery, message routing, and message transport in a way that is
   simple for multiple signalling applications to re-use.

   The structure of this specification is as follows.  Section 2 defines
   terminology, and Section 3 gives an informal overview of the protocol
   design principles and operation.  The normative specification is
   contained mainly in Section 4 to Section 8.  Section 4 describes the
   message sequences and Section 5 their format and contents.  Note that
   the detailed bit formats are given in Appendix A.  The protocol
   operation is captured in the form of state machines in Section 6.
   Section 7 describes some more advanced protocol features, and
   security considerations are contained in Section 8.  In addition,
   Appendix B describes an abstract API for the service that GIST
   provides to signalling applications, and Appendix D provides an
   example message flow.  Parts of the GIST design use packets with IP
   options to probe the network, that leads to some migration issues in
   the case of IPv4, and these are discussed in Appendix C.

   Because of the layered structure of the NSIS protocol suite, protocol
   extensions to cover a new signalling requirement could be carried out
   either within GIST, or within the signalling application layer, or
   both.  General guidelines on how to extend different layers of the
   protocol suite, and in particular when and how it is appropriate to
   extend GIST, are contained in a separate document [12].  In this
   document, Section 9 gives the formal IANA considerations for the
   registries defined by the GIST specification.

2.  Requirements Notation and Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [3].
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   The terminology used in this specification is defined in this
   section.  The basic entities relevant at the GIST level are shown in
   Figure 1.  In particular, this diagram distinguishes the different
   address types as being associated with a flow (end-to-end addresses)
   or signalling (addresses of adjacent signalling peers).

   Source                 GIST (adjacent) peer nodes         Destination

   IP address              IP addresses = Signalling         IP address
   = Flow                Source/Destination Addresses        = Flow
   Source             (depending on signalling direction)    Destination
   Address                  |                   |            Address
                            V                   V
   +--------+           +------+  Data Flow  +------+         +--------+
   |  Flow  |-----------|------|-------------|------|-------->|  Flow  |
   | Sender |           |      |             |      |         |Receiver|
   +--------+           | GIST |============>| GIST |         +--------+
                        | Node |<============| Node |
                        +------+  Signalling  +------+
                          GN1       Flow       GN2

                  >>>>>>>>>>>>>>>>>  =  Downstream direction
                  <<<<<<<<<<<<<<<<<  =  Upstream direction

                        Figure 1: Basic Terminology

   [Data] Flow:  A set of packets identified by some fixed combination
      of header fields.  Flows are unidirectional; a bidirectional
      communication is considered a pair of unidirectional flows.

   Session:  A single application layer exchange of information for
      which some state information is to be manipulated or monitored.
      See Section 3.7 for further detailed discussion.

   Session Identifier (SID):  An identifier for a session; the syntax is
      a 128-bit value that is opaque to GIST.

   [Flow] Sender:  The node in the network that is the source of the
      packets in a flow.  A sender could be a host, or a router if, for
      example, the flow is actually an aggregate.

   [Flow] Receiver:  The node in the network that is the sink for the
      packets in a flow.

   Downstream:  In the same direction as the data flow.

   Upstream:  In the opposite direction to the data flow.
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   GIST Node:  Any node supporting the GIST protocol, regardless of what
      signalling applications it supports.

   [Adjacent] Peer:  The next node along the signalling path, in the
      upstream or downstream direction, with which a GIST node
      explicitly interacts.

   Querying Node:  The GIST node that initiates the handshake process to
      discover the adjacent peer.

   Responding Node:  The GIST node that responds to the handshake,
      becoming the adjacent peer to the Querying node.

   Datagram Mode (D-mode):  A mode of sending GIST messages between
      nodes without using any transport layer state or security
      protection.  Datagram mode uses UDP encapsulation, with source and
      destination IP addresses derived either from the flow definition
      or previously discovered adjacency information.

   Connection Mode (C-mode):  A mode of sending GIST messages directly
      between nodes using point-to-point messaging associations (see
      below).  Connection mode allows the re-use of existing transport
      and security protocols where such functionality is required.

   Messaging Association (MA):  A single connection between two
      explicitly identified GIST adjacent peers, i.e., between a given
      signalling source and destination address.  A messaging
      association may use a transport protocol; if security protection
      is required, it may use a network layer security association, or
      use a transport layer security association internally.  A
      messaging association is bidirectional: signalling messages can be
      sent over it in either direction, referring to flows of either
      direction.

   [Message] Routing:  Message routing describes the process of
      determining which is the next GIST peer along the signalling path.
      For signalling along a flow path, the message routing carried out
      by GIST is built on top of normal IP routing, that is, forwarding
      packets within the network layer based on their destination IP
      address.  In this document, the term ’routing’ generally refers to
      GIST message routing unless particularly specified.

   Message Routing Method (MRM):  There can be different algorithms for
      discovering the route that signalling messages should take.  These
      are referred to as message routing methods, and GIST supports
      alternatives within a common protocol framework.  See Section 3.3.
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   Message Routing Information (MRI):  The set of data item values that
      is used to route a signalling message according to a particular
      MRM; for example, for routing along a flow path, the MRI includes
      flow source and destination addresses, and protocol and port
      numbers.  See Section 3.3.

   Router Alert Option (RAO):  An option that can be included in IPv4
      and v6 headers to assist in the packet interception process; see
      [13] and [17].

   Transfer Attributes:  A description of the requirements that a
      signalling application has for the delivery of a particular
      message; for example, whether the message should be delivered
      reliably.  See Section 4.1.2.

3.  Design Overview

3.1.  Overall Design Approach

   The generic requirements identified in the NSIS framework [29] for
   transport of signalling messages are essentially two-fold:

   Routing:  Determine how to reach the adjacent signalling node along
      each direction of the data path (the GIST peer), and if necessary
      explicitly establish addressing and identity information about
      that peer;

   Transport:  Deliver the signalling information to that peer.

   To meet the routing requirement, one possibility is for the node to
   use local routing state information to determine the identity of the
   GIST peer explicitly.  GIST defines a three-way handshake that probes
   the network to set up the necessary routing state between adjacent
   peers, during which signalling applications can also exchange data.
   Once the routing decision has been made, the node has to select a
   mechanism for transport of the message to the peer.  GIST divides the
   transport functionality into two parts, a minimal capability provided
   by GIST itself, with the use of well-understood transport protocols
   for the harder cases.  Here, with details discussed later, the
   minimal capability is restricted to messages that are sized well
   below the lowest maximum transmission unit (MTU) along a path, are
   infrequent enough not to cause concerns about congestion and flow
   control, and do not need security protection or guaranteed delivery.

   In [29], all of these routing and transport requirements are assigned
   to a single notional protocol, the NSIS Transport Layer Protocol
   (NTLP).  The strategy of splitting the transport problem leads to a
   layered structure for the NTLP, with a specialised GIST messaging
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   layer running over standard transport and security protocols.  The
   basic concept is shown in Figure 2.  Note that not every combination
   of transport and security protocols implied by the figure is actually
   possible for use in GIST; the actual combinations allowed by this
   specification are defined in Section 5.7.  The figure also shows GIST
   offering its services to upper layers at an abstract interface, the
   GIST API, further discussed in Section 4.1.

          ^^                      +-------------+
          ||                      |  Signalling |
         NSIS        +------------|Application 2|
       Signalling    | Signalling +-------------+
      Application    |Application 1|         |
         Level       +-------------+         |
          ||             |                   |
          VV             |                   |
                 ========|===================|=====  <-- GIST API
                         |                   |
          ^^       +------------------------------------------------+
          ||       |+-----------------------+      +--------------+ |
          ||       ||         GIST          |      | GIST State   | |
          ||       ||     Encapsulation     |<<<>>>| Maintenance  | |
          ||       |+-----------------------+      +--------------+ |
          ||       | GIST: Messaging Layer                          |
          ||       +------------------------------------------------+
         NSIS                 |       |       |       |
       Transport      ..........................................
         Level        . Transport Layer Security (TLS or DTLS) .
        (NTLP)        ..........................................
          ||                  |       |       |       |
          ||                +----+  +----+  +----+  +----+
          ||                |UDP |  |TCP |  |SCTP|  |DCCP| ... other
          ||                +----+  +----+  +----+  +----+     protocols
          ||                  |       |       |       |
          ||                .............................
          ||                .     IP Layer Security     .
          ||                .............................
          VV                  |       |       |       |
   ===========================|=======|=======|=======|============
                              |       |       |       |
                   +----------------------------------------------+
                   |                      IP                      |
                   +----------------------------------------------+

      Figure 2: Protocol Stack Architecture for Signalling Transport
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3.2.  Modes and Messaging Associations

   Internally, GIST has two modes of operation:

   Datagram mode (D-mode):  used for small, infrequent messages with
      modest delay constraints and no security requirements.  A special
      case of D-mode called Query-mode (Q-mode) is used when no routing
      state exists.

   Connection mode (C-mode):  used for all other signalling traffic.  In
      particular, it can support large messages and channel security and
      provides congestion control for signalling traffic.

   C-mode can in principle use any stream or message-oriented transport
   protocol; this specification defines TCP as the initial choice.  It
   can in principle employ specific network layer security associations,
   or an internal transport layer security association; this
   specification defines TLS as the initial choice.  When GIST messages
   are carried in C-mode, they are treated just like any other traffic
   by intermediate routers between the GIST peers.  Indeed, it would be
   impossible for intermediate routers to carry out any processing on
   the messages without terminating the transport and security protocols
   used.

   D-mode uses UDP, as a suitable NAT-friendly encapsulation that does
   not require per-message shared state to be maintained between the
   peers.  Long-term evolution of GIST is assumed to preserve the
   simplicity of the current D-mode design.  Any extension to the
   security or transport capabilities of D-mode can be viewed as the
   selection of a different protocol stack under the GIST messaging
   layer; this is then equivalent to defining another option within the
   overall C-mode framework.  This includes both the case of using
   existing protocols and the specific development of a message exchange
   and payload encapsulation to support GIST requirements.
   Alternatively, if any necessary parameters (e.g., a shared secret for
   use in integrity or confidentiality protection) can be negotiated
   out-of-band, then the additional functions can be added directly to
   D-mode by adding an optional object to the message (see
   Appendix A.2.1).  Note that in such an approach, downgrade attacks as
   discussed in Section 8.6 would need to be prevented by policy at the
   destination node.

   It is possible to mix these two modes along a path.  This allows, for
   example, the use of D-mode at the edges of the network and C-mode
   towards the core.  Such combinations may make operation more
   efficient for mobile endpoints, while allowing shared security
   associations and transport connections to be used for messages for
   multiple flows and signalling applications.  The setup for these
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   protocols imposes an initialisation cost for the use of C-mode, but
   in the long term this cost can be shared over all signalling sessions
   between peers; once the transport layer state exists, retransmission
   algorithms can operate much more aggressively than would be possible
   in a pure D-mode design.

   It must be understood that the routing and transport functions within
   GIST are not independent.  If the message transfer has requirements
   that require C-mode, for example, if the message is so large that
   fragmentation is required, this can only be used between explicitly
   identified nodes.  In such cases, GIST carries out the three-way
   handshake initially in D-mode to identify the peer and then sets up
   the necessary connections if they do not already exist.  It must also
   be understood that the signalling application does not make the
   D-mode/C-mode selection directly; rather, this decision is made by
   GIST on the basis of the message characteristics and the transfer
   attributes stated by the application.  The distinction is not visible
   at the GIST service interface.

   In general, the state associated with C-mode messaging to a
   particular peer (signalling destination address, protocol and port
   numbers, internal protocol configuration, and state information) is
   referred to as a messaging association (MA).  MAs are totally
   internal to GIST (they are not visible to signalling applications).
   Although GIST may be using an MA to deliver messages about a
   particular flow, there is no direct correspondence between them: the
   GIST message routing algorithms consider each message in turn and
   select an appropriate MA to transport it.  There may be any number of
   MAs between two GIST peers although the usual case is zero or one,
   and they are set up and torn down by management actions within GIST
   itself.

3.3.  Message Routing Methods

   The baseline message routing functionality in GIST is that signalling
   messages follow a route defined by an existing flow in the network,
   visiting a subset of the nodes through which it passes.  This is the
   appropriate behaviour for application scenarios where the purpose of
   the signalling is to manipulate resources for that flow.  However,
   there are scenarios for which other behaviours are applicable.  Two
   examples are:

   Predictive Routing:  Here, the intent is to signal along a path that
      the data flow may follow in the future.  Possible cases are pre-
      installation of state on the backup path that would be used in the
      event of a link failure, and predictive installation of state on
      the path that will be used after a mobile node handover.
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   NAT Address Reservations:  This applies to the case where a node
      behind a NAT wishes to reserve an address at which it can be
      reached by a sender on the other side.  This requires a message to
      be sent outbound from what will be the flow receiver although no
      reverse routing state for the flow yet exists.

   Most of the details of GIST operation are independent of the routing
   behaviour being used.  Therefore, the GIST design encapsulates the
   routing-dependent details as a message routing method (MRM), and
   allows multiple MRMs to be defined.  This specification defines the
   path-coupled MRM, corresponding to the baseline functionality
   described above, and a second ("Loose-End") MRM for the NAT Address
   Reservation case.  The detailed specifications are given in
   Section 5.8.

   The content of an MRM definition is as follows, using the path-
   coupled MRM as an example:

   o  The format of the information that describes the path that the
      signalling should take, the Message Routing Information (MRI).
      For the path-coupled MRM, this is just the flow identifier (see
      Section 5.8.1.1) and some additional control information.
      Specifically, the MRI always includes a flag to distinguish
      between the two directions that signalling messages can take,
      denoted ’upstream’ and ’downstream’.

   o  A specification of the IP-level encapsulation of the messages
      which probe the network to discover the adjacent peers.  A
      downstream encapsulation must be defined; an upstream
      encapsulation is optional.  For the path-coupled MRM, this
      information is given in Section 5.8.1.2 and Section 5.8.1.3.
      Current MRMs rely on the interception of probe messages in the
      data plane, but other mechanisms are also possible within the
      overall GIST design and would be appropriate for other types of
      signalling pattern.

   o  A specification of what validation checks GIST should apply to the
      probe messages, for example, to protect against IP address
      spoofing attacks.  The checks may be dependent on the direction
      (upstream or downstream) of the message.  For the path-coupled
      MRM, the downstream validity check is basically a form of ingress
      filtering, also discussed in Section 5.8.1.2.

   o  The mechanism(s) available for route change detection, i.e., any
      change in the neighbour relationships that the MRM discovers.  The
      default case for any MRM is soft-state refresh, but additional
      supporting techniques may be possible; see Section 7.1.2.
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   In addition, it should be noted that NAT traversal may require
   translation of fields in the MRI object carried in GIST messages (see
   Section 7.2.2).  The generic MRI format includes a flag that must be
   given as part of the MRM definition, to indicate if some kind of
   translation is necessary.  Development of a new MRM therefore
   includes updates to the GIST specification, and may include updates
   to specifications of NAT behaviour.  These updates may be done in
   separate documents as is the case for NAT traversal for the MRMs of
   the base GIST specification, as described in Section 7.2.3 and [44].

   The MRI is passed explicitly between signalling applications and
   GIST; therefore, signalling application specifications must define
   which MRMs they require.  Signalling applications may use fields in
   the MRI in their packet classifiers; if they use additional
   information for packet classification, this would be carried at the
   NSLP level and so would be invisible to GIST.  Any node hosting a
   particular signalling application needs to use a GIST implementation
   that supports the corresponding MRMs.  The GIST processing rules
   allow nodes not hosting the signalling application to ignore messages
   for it at the GIST level, so it does not matter if these nodes
   support the MRM or not.

3.4.  GIST Messages

   GIST has six message types: Query, Response, Confirm, Data, Error,
   and MA-Hello.  Apart from the invocation of the messaging association
   protocols used by C-mode, all GIST communication consists of these
   messages.  In addition, all signalling application data is carried as
   additional payloads in these messages, alongside the GIST
   information.

   The Query, Response, and Confirm messages implement the handshake
   that GIST uses to set up routing state and messaging associations.
   The handshake is initiated from the Querying node towards the
   Responding node.  The first message is the Query, which is
   encapsulated in a specific way depending on the message routing
   method, in order to probe the network infrastructure so that the
   correct peer will intercept it and become the Responding node.  A
   Query always triggers a Response in the reverse direction as the
   second message of the handshake.  The content of the Response
   controls whether a Confirm message is sent: as part of the defence
   against denial-of-service attacks, the Responding node can delay
   state installation until a return routability check has been
   performed, and require the Querying node to complete the handshake
   with the Confirm message.  In addition, if the handshake is being
   used to set up a new MA, the Response is required to request a
   Confirm.  All of these three messages can optionally carry signalling
   application data.  The handshake is fully described in Section 4.4.1.
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   The Data message is used purely to encapsulate and deliver signalling
   application data.  Usually, it is sent using pre-established routing
   state.  However, if there are no security or transport requirements
   and no need for persistent reverse routing state, it can also be sent
   in the same way as the Query.  Finally, Error messages are used to
   indicate error conditions at the GIST level, and the MA-Hello message
   can be used as a diagnostic and keepalive for the messaging
   association protocols.

3.5.  GIST Peering Relationships

   Peering is the process whereby two GIST nodes create message routing
   states that point to each other.

   A peering relationship can only be created by a GIST handshake.
   Nodes become peers when one issues a Query and gets a Response from
   another.  Issuing the initial Query is a result of an NSLP request on
   that node, and the Query itself is formatted according to the rules
   of the message routing method.  For current MRMs, the identity of the
   Responding node is not known explicitly at the time the Query is
   sent; instead, the message is examined by nodes along the path until
   one decides to send a Response, thereby becoming the peer.  If the
   node hosts the NSLP, local GIST and signalling application policy
   determine whether to peer; the details are given in Section 4.3.2.
   Nodes not hosting the NSLP forward the Query transparently
   (Section 4.3.4).  Note that the design of the Query message (see
   Section 5.3.2) is such that nodes have to opt-in specifically to
   carry out the message interception -- GIST-unaware nodes see the
   Query as a normal data packet and so forward it transparently.

   An existing peering relationship can only be changed by a new GIST
   handshake; in other words, it can only change when routing state is
   refreshed.  On a refresh, if any of the factors in the original
   peering process have changed, the peering relationship can also
   change.  As well as network-level rerouting, changes could include
   modifications to NSIS signalling functions deployed at a node, or
   alterations to signalling application policy.  A change could cause
   an existing node to drop out of the signalling path, or a new node to
   become part of it.  All these possibilities are handled as rerouting
   events by GIST; further details of the process are described in
   Section 7.1.

3.6.  Effect on Internet Transparency

   GIST relies on routers inside the network to intercept and process
   packets that would normally be transmitted end-to-end.  This
   processing may be non-transparent: messages may be forwarded with
   modifications, or not forwarded at all.  This interception applies
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   only to the encapsulation used for the Query messages that probe the
   network, for example, along a flow path; all other GIST messages are
   handled only by the nodes to which they are directly addressed, i.e.,
   as normal Internet traffic.

   Because this interception potentially breaks Internet transparency
   for packets that have nothing to do with GIST, the encapsulation used
   by GIST in this case (called Query-mode or Q-mode) has several
   features to avoid accidental collisions with other traffic:

   o  Q-mode messages are always sent as UDP traffic, and to a specific
      well-known port (270) allocated by IANA.

   o  All GIST messages sent as UDP have a magic number as the first 32-
      bit word of the datagram payload.

   Even if a node intercepts a packet as potentially a GIST message,
   unless it passes both these checks it will be ignored at the GIST
   level and forwarded transparently.  Further discussion of the
   reception process is in Section 4.3.1 and the encapsulation in
   Section 5.3.

3.7.  Signalling Sessions

   GIST requires signalling applications to associate each of their
   messages with a signalling session.  Informally, given an application
   layer exchange of information for which some network control state
   information is to be manipulated or monitored, the corresponding
   signalling messages should be associated with the same session.
   Signalling applications provide the session identifier (SID) whenever
   they wish to send a message, and GIST reports the SID when a message
   is received; on messages forwarded at the GIST level, the SID is
   preserved unchanged.  Usually, NSLPs will preserve the SID value
   along the entire signalling path, but this is not enforced by or even
   visible to GIST, which only sees the scope of the SID as the single
   hop between adjacent NSLP peers.

   Most GIST processing and state information is related to the flow
   (defined by the MRI; see above) and signalling application (given by
   the NSLP identifier, see below).  There are several possible
   relationships between flows and sessions, for example:

   o  The simplest case is that all signalling messages for the same
      flow have the same SID.

   o  Messages for more than one flow may use the same SID, for example,
      because one flow is replacing another in a mobility or multihoming
      scenario.
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   o  A single flow may have messages for different SIDs, for example,
      from independently operating signalling applications.

   Because of this range of options, GIST does not perform any
   validation on how signalling applications map between flows and
   sessions, nor does it perform any direct validation on the properties
   of the SID itself, such as any enforcement of uniqueness.  GIST only
   defines the syntax of the SID as an opaque 128-bit identifier.

   The SID assignment has the following impact on GIST processing:

   o  Messages with the same SID that are to be delivered reliably
      between the same GIST peers are delivered in order.

   o  All other messages are handled independently.

   o  GIST identifies routing state (upstream and downstream peer) by
      the MRI/SID/NSLPID combination.

   Strictly speaking, the routing state should not depend on the SID.
   However, if the routing state is keyed only by (MRI, NSLP), there is
   a trivial denial-of-service attack (see Section 8.3) where a
   malicious off-path node asserts that it is the peer for a particular
   flow.  Such an attack would not redirect the traffic but would
   reroute the signalling.  Instead, the routing state is also
   segregated between different SIDs, which means that the attacking
   node can only disrupt a signalling session if it can guess the
   corresponding SID.  Normative rules on the selection of SIDs are
   given in Section 4.1.3.

3.8.  Signalling Applications and NSLPIDs

   The functionality for signalling applications is supported by NSIS
   Signalling Layer Protocols (NSLPs).  Each NSLP is identified by a
   16-bit NSLP identifier (NSLPID), assigned by IANA (Section 9).  A
   single signalling application, such as resource reservation, may
   define a family of NSLPs to implement its functionality, for example,
   to carry out signalling operations at different levels in a hierarchy
   (cf. [21]).  However, the interactions between the different NSLPs
   (for example, to relate aggregation levels or aggregation region
   boundaries in the resource management case) are handled at the
   signalling application level; the NSLPID is the only information
   visible to GIST about the signalling application being used.
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3.9.  GIST Security Services

   GIST has two distinct security goals:

   o  to protect GIST state from corruption, and to protect the nodes on
      which it runs from resource exhaustion attacks; and

   o  to provide secure transport for NSLP messages to the signalling
      applications.

   The protocol mechanisms to achieve the first goal are mainly internal
   to GIST.  They include a cookie exchange and return routability check
   to protect the handshake that sets up routing state, and a random SID
   is also used to prevent off-path session hijacking by SID guessing.
   Further details are given in Section 4.1.3 and Section 4.4.1, and the
   overall security aspects are discussed in Section 8.

   A second level of protection is provided by the use of a channel
   security protocol in messaging associations (i.e., within C-mode).
   This mechanism serves two purposes: to protect against on-path
   attacks on GIST and to provide a secure channel for NSLP messages.
   For the mechanism to be effective, it must be able to provide the
   following functions:

   o  mutual authentication of the GIST peer nodes;

   o  ability to verify the authenticated identity against a database of
      nodes authorised to take part in GIST signalling;

   o  confidentiality and integrity protection for NSLP data, and
      provision of the authenticated identities used to the signalling
      application.

   The authorised peer database is described in more detail in
   Section 4.4.2, including the types of entries that it can contain and
   the authorisation checking algorithm that is used.  The only channel
   security protocol defined by this specification is a basic use of
   TLS, and Section 5.7.3 defines the TLS-specific aspects of how these
   functions (for example, authentication and identity comparison) are
   integrated with the rest of GIST operation.  At a high level, there
   are several alternative protocols with similar functionality, and the
   handshake (Section 4.4.1) provides a mechanism within GIST to select
   between them.  However, they differ in their identity schemes and
   authentication methods and dependencies on infrastructure support for
   the authentication process, and any GIST extension to incorporate
   them would need to define the details of the corresponding
   interactions with GIST operation.
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3.10.  Example of Operation

   This section presents an example of GIST usage in a relatively simple
   (in particular, NAT-free) signalling scenario, to illustrate its main
   features.

               GN1                                      GN2
          +------------+                           +------------+
  NSLP    |            |                           |            |
  Level   | >>>>>>>>>1 |                           | 5>>>>>>>>5 |
          | ^        V |       Intermediate        | ^        V |
          |-^--------2-|          Routers          |-^--------V-|
          | ^        V |                           | ^        V |
          | ^        V |    +-----+     +-----+    | ^        V |
  >>>>>>>>>>^        >3>>>>>>>>4>>>>>>>>>>>4>>>>>>>>>5        5>>>>>>>>>
          |            |    |     |     |     |    |            |
  GIST    |          6<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<6          |
  Level   +------------+    +-----+     +-----+    +------------+

               >>>>>, <<<<< = Signalling messages
               1 - 6        = Stages in the example
                              (stages 7 and 8 are not shown)

                      Figure 3: Example of Operation

   Consider the case of an RSVP-like signalling application that makes
   receiver-based resource reservations for a single unicast flow.  In
   general, signalling can take place along the entire end-to-end path
   (between flow source and destination), but the role of GIST is only
   to transfer signalling messages over a single segment of the path,
   between neighbouring resource-capable nodes.  Basic GIST operation is
   the same, whether it involves the endpoints or only interior nodes:
   in either case, GIST is triggered by a request from a local
   signalling application.  The example here describes how GIST
   transfers messages between two adjacent peers some distance along the
   path, GN1 and GN2 (see Figure 3).  We take up the story at the point
   where a message is being processed above the GIST layer by the
   signalling application in GN1.

   1.  The signalling application in GN1 determines that this message is
       a simple description of resources that would be appropriate for
       the flow.  It determines that it has no special security or
       transport requirements for the message, but simply that it should
       be transferred to the next downstream signalling application peer
       on the path that the flow will take.
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   2.  The message payload is passed to the GIST layer in GN1, along
       with a definition of the flow and description of the message
       transfer attributes (in this case, requesting no reliable
       transmission or channel security protection).  GIST determines
       that this particular message does not require fragmentation and
       that it has no knowledge of the next peer for this flow and
       signalling application; however, it also determines that this
       application is likely to require secured upstream and downstream
       transport of large messages in the future.  This determination is
       a function of node-internal policy interactions between GIST and
       the signalling application.

   3.  GN1 therefore constructs a GIST Query carrying the NSLP payload,
       and additional payloads at the GIST level which will be used to
       initiate a messaging association.  The Query is encapsulated in a
       UDP datagram and injected into the network.  At the IP level, the
       destination address is the flow receiver, and an IP Router Alert
       Option (RAO) is also included.

   4.  The Query passes through the network towards the flow receiver,
       and is seen by each router in turn.  GIST-unaware routers will
       not recognise the RAO value and will forward the message
       unchanged; GIST-aware routers that do not support the NSLP in
       question will also forward the message basically unchanged,
       although they may need to process more of the message to decide
       this after initial interception.

   5.  The message is intercepted at GN2.  The GIST layer identifies the
       message as relevant to a local signalling application, and passes
       the NSLP payload and flow description upwards to it.  This
       signalling application in GN2 indicates to GIST that it will peer
       with GN1 and so GIST should proceed to set up any routing state.
       In addition, the signalling application continues to process the
       message as in GN1 (compare step 1), passing the message back down
       to GIST so that it is sent further downstream, and this will
       eventually result in the message reaching the flow receiver.
       GIST itself operates hop-by-hop, and the signalling application
       joins these hops together to manage the end-to-end signalling
       operations.

   6.  In parallel, the GIST instance in GN2 now knows that it should
       maintain routing state and a messaging association for future
       signalling with GN1.  This is recognised because the message is a
       Query, and because the local signalling application has indicated
       that it will peer with GN1.  There are two possible cases for
       sending back the necessary GIST Response:
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       6.A - Association Exists:  GN1 and GN2 already have an
             appropriate MA.  GN2 simply records the identity of GN1 as
             its upstream peer for that flow and NSLP, and sends a
             Response back to GN1 over the MA identifying itself as the
             peer for this flow.

       6.B - No Association:  GN2 sends the Response in D-mode directly
             to GN1, identifying itself and agreeing to the messaging
             association setup.  The protocol exchanges needed to
             complete this will proceed in parallel with the following
             stages.

       In each case, the result is that GN1 and GN2 are now in a peering
       relationship for the flow.

   7.  Eventually, another NSLP message works its way upstream from the
       receiver to GN2.  This message contains a description of the
       actual resources requested, along with authorisation and other
       security information.  The signalling application in GN2 passes
       this payload to the GIST level, along with the flow definition
       and transfer attributes; in this case, it could request reliable
       transmission and use of a secure channel for integrity
       protection.  (Other combinations of attributes are possible.)

   8.  The GIST layer in GN2 identifies the upstream peer for this flow
       and NSLP as GN1, and determines that it has an MA with the
       appropriate properties.  The message is queued on the MA for
       transmission; this may incur some delay if the procedures begun
       in step 6.B have not yet completed.

   Further messages can be passed in each direction in the same way.
   The GIST layer in each node can in parallel carry out maintenance
   operations such as route change detection (see Section 7.1).

   It should be understood that several of these details of GIST
   operations can be varied, either by local policy or according to
   signalling application requirements.  The authoritative details are
   contained in the remainder of this document.

4.  GIST Processing Overview

   This section defines the basic structure and operation of GIST.
   Section 4.1 describes the way in which GIST interacts with local
   signalling applications in the form of an abstract service interface.
   Section 4.2 describes the per-flow and per-peer state that GIST
   maintains for the purpose of transferring messages.  Section 4.3
   describes how messages are processed in the case where any necessary
   messaging associations and routing state already exist; this includes
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   the simple scenario of pure D-mode operation, where no messaging
   associations are necessary.  Finally, Section 4.4 describes how
   routing state and messaging associations are created and managed.

4.1.  GIST Service Interface

   This section describes the interaction between GIST and signalling
   applications in terms of an abstract service interface, including a
   definition of the attributes of the message transfer that GIST can
   offer.  The service interface presented here is non-normative and
   does not constrain actual implementations of any interface between
   GIST and signalling applications; the interface is provided to aid
   understanding of how GIST can be used.  However, requirements on SID
   selection and internal GIST behaviour to support message transfer
   semantics (such as in-order delivery) are stated normatively here.

   The same service interface is presented at every GIST node; however,
   applications may invoke it differently at different nodes, depending
   for example on local policy.  In addition, the service interface is
   defined independently of any specific transport protocol, or even the
   distinction between D-mode and C-mode.  The initial version of this
   specification defines how to support the service interface using a
   C-mode based on TCP; if additional protocol support is added, this
   will support the same interface and so the change will be invisible
   to applications, except as a possible performance improvement.  A
   more detailed description of this service interface is given in
   Appendix B.

4.1.1.  Message Handling

   Fundamentally, GIST provides a simple message-by-message transfer
   service for use by signalling applications: individual messages are
   sent, and individual messages are received.  At the service
   interface, the NSLP payload, which is opaque to GIST, is accompanied
   by control information expressing the application’s requirements
   about how the message should be routed (the MRI), and the application
   also provides the session identifier (SID); see Section 4.1.3.
   Additional message transfer attributes control the specific transport
   and security properties that the signalling application desires.

   The distinction between GIST D- and C-mode is not visible at the
   service interface.  In addition, the functionality to handle
   fragmentation and reassembly, bundling together of small messages for
   efficiency, and congestion control are not visible at the service
   interface; GIST will take whatever action is necessary based on the
   properties of the messages and local node state.
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   A signalling application is free to choose the rate at which it
   processes inbound messages; an implementation MAY allow the
   application to block accepting messages from GIST.  In these
   circumstances, GIST MAY discard unreliably delivered messages, but
   for reliable messages MUST propagate flow-control condition back to
   the sender.  Therefore, applications must be aware that they may in
   turn be blocked from sending outbound messages themselves.

4.1.2.  Message Transfer Attributes

   Message transfer attributes are used by NSLPs to define minimum
   required levels of message processing.  The attributes available are
   as follows:

   Reliability:  This attribute may be ’true’ or ’false’.  When ’true’,
      the following rules apply:

      *  messages MUST be delivered to the signalling application in the
         peer exactly once or not at all;

      *  for messages with the same SID, the delivery MUST be in order;

      *  if there is a chance that the message was not delivered (e.g.,
         in the case of a transport layer error), an error MUST be
         indicated to the local signalling application identifying the
         routing information for the message in question.

      GIST implements reliability by using an appropriate transport
      protocol within a messaging association, so mechanisms for the
      detection of message loss depend on the protocol in question; for
      the current specification, the case of TCP is considered in
      Section 5.7.2.  When ’false’, a message may be delivered, once,
      several times, or not at all, with no error indications in any of
      these cases.

   Security:  This attribute defines the set of security properties that
      the signalling application requires for the message, including the
      type of protection required, and what authenticated identities
      should be used for the signalling source and destination.  This
      information maps onto the corresponding properties of the security
      associations established between the peers in C-mode.  Keying
      material for the security associations is established by the
      authentication mechanisms within the messaging association
      protocols themselves; see Section 8.2.  The attribute can be
      specified explicitly by the signalling application, or reported by
      GIST to the signalling application.  The latter can take place
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      either on receiving a message, or just before sending a message
      but after configuring or selecting the messaging association to be
      used for it.

      This attribute can also be used to convey information about any
      address validation carried out by GIST, such as whether a return
      routability check has been carried out.  Further details are
      discussed in Appendix B.

   Local Processing:  An NSLP may provide hints to GIST to enable more
      efficient or appropriate processing.  For example, the NSLP may
      select a priority from a range of locally defined values to
      influence the sequence in which messages leave a node.  Any
      priority mechanism MUST respect the ordering requirements for
      reliable messages within a session, and priority values are not
      carried in the protocol or available at the signalling peer or
      intermediate nodes.  An NSLP may also indicate that upstream path
      routing state will not be needed for this flow, to inhibit the
      node requesting its downstream peer to create it; conversely, even
      if routing state exists, the NSLP may request that it is not used,
      which will lead to GIST Data messages being sent Q-mode
      encapsulated instead.

   A GIST implementation MAY deliver messages with stronger attribute
   values than those explicitly requested by the application.

4.1.3.  SID Selection

   The fact that SIDs index routing state (see Section 4.2.1 below)
   means that there are requirements for how they are selected.
   Specifically, signalling applications MUST choose SIDs so that they
   are cryptographically random, and SHOULD NOT use several SIDs for the
   same flow, to avoid additional load from routing state maintenance.
   Guidance on secure randomness generation can be found in [31].

4.2.  GIST State

4.2.1.  Message Routing State

   For each flow, the GIST layer can maintain message routing state to
   manage the processing of outgoing messages.  This state is
   conceptually organised into a table with the following structure.
   Each row in the table corresponds to a unique combination of the
   following three items:
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   Message Routing Information (MRI):  This defines the method to be
      used to route the message, the direction in which to send the
      message, and any associated addressing information; see
      Section 3.3.

   Session Identifier (SID):  The signalling session with which this
      message should be associated; see Section 3.7.

   NSLP Identifier (NSLPID):  This is an IANA-assigned identifier
      associated with the NSLP that is generating messages for this
      flow; see Section 3.8.  The inclusion of this identifier allows
      the routing state to be different for different NSLPs.

   The information associated with a given MRI/SID/NSLPID combination
   consists of the routing state to reach the peer in the direction
   given by the MRI.  For any flow, there will usually be two entries in
   the table, one each for the upstream and downstream MRI.  The routing
   state includes information about the peer identity (see
   Section 4.4.3), and a UDP port number for D-mode, or a reference to
   one or more MAs for C-mode.  Entries in the routing state table are
   created by the GIST handshake, which is described in more detail in
   Section 4.4.

   It is also possible for the state information for either direction to
   be empty.  There are several possible cases:

   o  The signalling application has indicated that no messages will
      actually be sent in that direction.

   o  The node is the endpoint of the signalling path, for example,
      because it is acting as a proxy, or because it has determined that
      there are no further signalling nodes in that direction.

   o  The node is using other techniques to route the message.  For
      example, it can send it in Q-mode and rely on the peer to
      intercept it.

   In particular, if the node is a flow endpoint, GIST will refuse to
   create routing state for the direction beyond the end of the flow
   (see Section 4.3.3).  Each entry in the routing state table has an
   associated validity timer indicating for how long it can be
   considered accurate.  When this timer expires, the entry MUST be
   purged if it has not been refreshed.  Installation and maintenance of
   routing state are described in more detail in Section 4.4.
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4.2.2.  Peer-Peer Messaging Association State

   The per-flow message routing state is not the only state stored by
   GIST.  There is also the state required to manage the MAs.  Since
   these are not per-flow, they are stored separately from the routing
   state, including the following per-MA information:

   o  a queue of any messages that require the use of an MA, pending
      transmission while the MA is being established;

   o  the time since the peer re-stated its desire to keep the MA open
      (see Section 4.4.5).

   In addition, per-MA state, such as TCP port numbers or timer
   information, is held in the messaging association protocols
   themselves.  However, the details of this state are not directly
   visible to GIST, and they do not affect the rest of the protocol
   description.

4.3.  Basic GIST Message Processing

   This section describes how signalling application messages are
   processed in the case where any necessary messaging associations and
   routing state are already in place.  The description is divided into
   several parts.  First, message reception, local processing, and
   message transmission are described for the case where the node hosts
   the NSLPID identified in the message.  Second, in Section 4.3.4, the
   case where the message is handled directly in the IP or GIST layer
   (because there is no matching signalling application on the node) is
   given.  An overview is given in Figure 4.  This section concentrates
   on the GIST-level processing, with full details of IP and transport
   layer encapsulation in Section 5.3 and Section 5.4.
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       +---------------------------------------------------------+
       |        >>  Signalling Application Processing   >>       |
       |                                                         |
       +--------^---------------------------------------V--------+
                ^ NSLP                             NSLP V
                ^ Payloads                     Payloads V
       +--------^---------------------------------------V--------+
       |                    >>    GIST    >>                     |
       |  ^           ^  ^     Processing      V  V           V  |
       +--x-----------N--Q---------------------Q--N-----------x--+
          x           N  Q                     Q  N           x
          x           N  Q>>>>>>>>>>>>>>>>>>>>>Q  N           x
          x           N  Q      Bypass at      Q  N           x
       +--x-----+  +--N--Q--+  GIST level   +--Q--N--+  +-----x--+
       | C-mode |  | D-mode |               | D-mode |  | C-mode |
       |Handling|  |Handling|               |Handling|  |Handling|
       +--x-----+  +--N--Q--+               +--Q--N--+  +-----x--+
          x          N   Q                     Q   N          x
          x    NNNNNN    Q>>>>>>>>>>>>>>>>>>>>>Q    NNNNNN    x
          x   N          Q      Bypass at      Q          N   x
       +--x--N--+  +-----Q--+  IP (router   +--Q-----+  +--N--x--+
       |IP Host |  | Q-mode |  alert) level | Q-mode |  |IP Host |
       |Handling|  |Handling|               |Handling|  |Handling|
       +--x--N--+  +-----Q--+               +--Q-----+  +--N--x--+
          x  N           Q                     Q           N  x
       +--x--N-----------Q--+               +--Q-----------N--x--+
       |      IP Layer      |               |      IP Layer      |
       |   (Receive Side)   |               |  (Transmit Side)   |
       +--x--N-----------Q--+               +--Q-----------N--x--+
          x  N           Q                     Q           N  x
          x  N           Q                     Q           N  x

        NNNNNNNNNNNNNN = Normal D-mode messages
        QQQQQQQQQQQQQQ = D-mode messages that are Q-mode encapsulated
        xxxxxxxxxxxxxx = C-mode messages
                       RAO = Router Alert Option

                Figure 4: Message Paths through a GIST Node

4.3.1.  Message Reception

   Messages can be received in C-mode or D-mode.

   Reception in C-mode is simple: incoming packets undergo the security
   and transport treatment associated with the MA, and the MA provides
   complete messages to the GIST layer for further processing.

   Reception in D-mode depends on the message type.
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   Normal encapsulation:  Normal messages arrive UDP-encapsulated and
      addressed directly to the receiving signalling node, at an address
      and port learned previously.  Each datagram contains a single
      message, which is passed to the GIST layer for further processing,
      just as in the C-mode case.

   Q-mode encapsulation:  Where GIST is sending messages to be
      intercepted by the appropriate peer rather than directly addressed
      to it (in particular, Query messages), these are UDP encapsulated,
      and MAY include an IP Router Alert Option (RAO) if required by the
      MRM.  Each GIST node can therefore see every such message, but
      unless the message exactly matches the Q-mode encapsulation rules
      (Section 5.3.2) it MUST be forwarded transparently at the IP
      level.  If it does match, GIST MUST check the NSLPID in the common
      header.  The case where the NSLPID does not match a local
      signalling application at all is considered below in
      Section 4.3.4; otherwise, the message MUST be passed up to the
      GIST layer for further processing.

   Several different RAO values may be used by the NSIS protocol suite.
   GIST itself does not allocate any RAO values (for either IPv4 or
   IPv6); an assignment is made for each NSLP using MRMs that use the
   RAO in the Q-mode encapsulation.  The assignment rationale is
   discussed in a separate document [12].  The RAO value assigned for an
   NSLPID may be different for IPv4 and IPv6.  Note the different
   significance between the RAO and the NSLPID values: the meaning of a
   message (which signalling application it refers to, whether it should
   be processed at a node) is determined only from the NSLPID; the role
   of the RAO value is simply to allow nodes to pre-filter which IP
   datagrams are analysed to see if they might be Q-mode GIST messages.

   For all assignments associated with NSIS, the RAO-specific processing
   is the same and is as defined by this specification, here and in
   Section 4.3.4 and Section 5.3.2.

   Immediately after reception, the GIST hop count is checked.  Any
   message with a GIST hop count of zero MUST be rejected with a "Hop
   Limit Exceeded" error message (Appendix A.4.4.2); note that a correct
   GIST implementation will never send a message with a GIST hop count
   of zero.  Otherwise, the GIST hop count MUST be decremented by one
   before the next stage.

4.3.2.  Local Processing and Validation

   Once a message has been received, it is processed locally within the
   GIST layer.  Further processing depends on the message type and
   payloads carried; most of the GIST payloads are associated with
   internal state maintenance, and details are covered in Section 4.4.
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   This section concentrates on the interaction with the signalling
   application, in particular, the decision to peer and how data is
   delivered to the NSLP.

   In the case of a Query, there is an interaction with the signalling
   application to determine which of two courses to follow.  The first
   option (peering) MUST be chosen if the node is the final destination
   of the Query message.

   1.  The receiving signalling application wishes to become a
       signalling peer with the Querying node.  GIST MUST continue with
       the handshake process to set up message routing state, as
       described in Section 4.4.1.  The application MAY provide an NSLP
       payload for the same NSLPID, which GIST will transfer in the
       Response.

   2.  The signalling application does not wish to set up state with the
       Querying node and become its peer.  This includes the case where
       a node wishes to avoid taking part in the signalling for overload
       protection reasons.  GIST MUST propagate the Query, similar to
       the case described in Section 4.3.4.  No message is sent back to
       the Querying node.  The application MAY provide an updated NSLP
       payload for the same NSLPID, which will be used in the Query
       forwarded by GIST.  Note that if the node that finally processes
       the Query returns an Error message, this will be sent directly
       back to the originating node, bypassing any forwarders.  For
       these diagnostics to be meaningful, any GIST node forwarding a
       Query, or relaying it with modified NSLP payload, MUST NOT modify
       it except in the GIST hop count; in particular, it MUST NOT
       modify any other GIST payloads or their order.  An implementation
       MAY choose to achieve this by retaining the original message,
       rather than reconstructing it from some parsed internal
       representation.

   This interaction with the signalling application, including the
   generation or update of an NSLP payload, SHOULD take place
   synchronously as part of the Query processing.  In terms of the GIST
   service interface, this can be implemented by providing appropriate
   return values for the primitive that is triggered when such a message
   is received; see Appendix B.2 for further discussion.

   For all GIST message types other than Queries, if the message
   includes an NSLP payload, this MUST be delivered locally to the
   signalling application identified by the NSLPID.  The format of the
   payload is not constrained by GIST, and the content is not
   interpreted.  Delivery is subject to the following validation checks,
   which MUST be applied in the sequence given:
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   1.  if the message was explicitly routed (see Section 7.1.5) or is a
       Data message delivered without routing state (see Section 5.3.2),
       the payload is delivered but flagged to the receiving NSLP to
       indicate that routing state was not validated;

   2.  else, if the message arrived on an association that is not
       associated with the MRI/NSLPID/SID combination given in the
       message, the message MUST be rejected with an "Incorrectly
       Delivered Message" error message (Appendix A.4.4.4);

   3.  else, if there is no routing state for this MRI/SID/NSLPID
       combination, the message MUST either be dropped or be rejected
       with an error message (see Section 4.4.6 for further details);

   4.  else, the payload is delivered as normal.

4.3.3.  Message Transmission

   Signalling applications can generate their messages for transmission,
   either asynchronously or in reply to an input message delivered by
   GIST, and GIST can also generate messages autonomously.  GIST MUST
   verify that it is not the direct destination of an outgoing message,
   and MUST reject such messages with an error indication to the
   signalling application.  When the message is generated by a
   signalling application, it may be carried in a Query if local policy
   and the message transfer attributes allow it; otherwise, this may
   trigger setup of an MA over which the NSLP payload is sent in a Data
   message.

   Signalling applications may specify a value to be used for the GIST
   hop count; otherwise, GIST selects a value itself.  GIST MUST reject
   messages for which the signalling application has specified a value
   of zero.  Although the GIST hop count is only intended to control
   message looping at the GIST level, the GIST API (Appendix B) provides
   the incoming hop count to the NSLPs, which can preserve it on
   outgoing messages as they are forwarded further along the path.  This
   provides a lightweight loop-control mechanism for NSLPs that do not
   define anything more sophisticated.  Note that the count will be
   decremented on forwarding through every GIST-aware node.  Initial
   values for the GIST hop count are an implementation matter; one
   suitable approach is to use the same algorithm as for IP TTL setting
   [1].

   When a message is available for transmission, GIST uses internal
   policy and the stored routing state to determine how to handle it.
   The following processing applies equally to locally generated
   messages and messages forwarded from within the GIST or signalling
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   application levels.  However, see Section 5.6 for special rules
   applying to the transmission of Error messages by GIST.

   The main decision is whether the message must be sent in C-mode or
   D-mode.  Reasons for using C-mode are:

   o  message transfer attributes: for example, the signalling
      application has specified security attributes that require
      channel-secured delivery, or reliable delivery.

   o  message size: a message whose size (including the GIST header,
      GIST objects and any NSLP payload, and an allowance for the IP and
      transport layer encapsulation required by D-mode) exceeds a
      fragmentation-related threshold MUST be sent over C-mode, using a
      messaging association that supports fragmentation and reassembly
      internally.  The allowance for IP and transport layer
      encapsulation is 64 bytes.  The message size MUST NOT exceed the
      Path MTU to the next peer, if this is known.  If this is not
      known, the message size MUST NOT exceed the least of the first-hop
      MTU, and 576 bytes.  The same limit applies to IPv4 and IPv6.

   o  congestion control: D-mode SHOULD NOT be used for signalling where
      it is possible to set up routing state and use C-mode, unless the
      network can be engineered to guarantee capacity for D-mode traffic
      within the rate control limits imposed by GIST (see
      Section 5.3.3).

   In principle, as well as determining that some messaging association
   must be used, GIST MAY select between a set of alternatives, e.g.,
   for load sharing or because different messaging associations provide
   different transport or security attributes.  For the case of reliable
   delivery, GIST MUST NOT distribute messages for the same session over
   multiple messaging associations in parallel, but MUST use a single
   association at any given time.  The case of moving over to a new
   association is covered in Section 4.4.5.

   If the use of a messaging association (i.e., C-mode) is selected, the
   message is queued on the association found from the routing state
   table, and further output processing is carried out according to the
   details of the protocol stacks used.  If no appropriate association
   exists, the message is queued while one is created (see
   Section 4.4.1), which will trigger the exchange of additional GIST
   messages.  If no association can be created, this is an error
   condition, and should be indicated back to the local signalling
   application.
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   If a messaging association is not appropriate, the message is sent in
   D-mode.  The processing in this case depends on the message type,
   local policy, and whether or not routing state exists.

   o  If the message is not a Query, and local policy does not request
      the use of Q-mode for this message, and routing state exists, it
      is sent with the normal D-mode encapsulation directly to the
      address from the routing state table.

   o  If the message is a Query, or the message is Data and local policy
      as given by the message transfer attributes requests the use of
      Q-mode, then it is sent in Q-mode as defined in Section 5.3.2; the
      details depend on the message routing method.

   o  If no routing state exists, GIST can attempt to use Q-mode as in
      the Query case: either sending a Data message with the Q-mode
      encapsulation or using the event as a trigger for routing state
      setup (see Section 4.4).  If this is not possible, e.g., because
      the encapsulation for the MRM is only defined for one message
      direction, then this is an error condition that is reported back
      to the local signalling application.

4.3.4.  Nodes not Hosting the NSLP

   A node may receive messages where it has no signalling application
   corresponding to the message NSLPID.  There are several possible
   cases depending mainly on the encapsulation:

   1.  A message contains an RAO value that is relevant to NSIS, but it
       does not exactly match the Q-mode encapsulation rules of
       Section 5.3.2.  The message MUST be transparently forwarded at
       the IP layer.  See Section 3.6.

   2.  A Q-mode encapsulated message contains an RAO value that has been
       assigned to some NSIS signalling application but that is not used
       on this specific node, but the IP layer is unable to distinguish
       whether it needs to be passed to GIST for further processing or
       whether the packet should be forwarded just like a normal IP
       datagram.

   3.  A Q-mode encapsulated message contains an RAO value that has been
       assigned to an NSIS signalling application that is used on this
       node, but the signalling application does not process the NSLPID
       in the message.  (This covers the case where a signalling
       application uses a set of NSLPIDs.)
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   4.  A directly addressed message (in D-mode or C-mode) is delivered
       to a node for which there is no corresponding signalling
       application.  With the current specification, this should not
       happen in normal operation.  While future versions might find a
       use for such a feature, currently this MUST cause an "Unknown
       NSLPID" error message (Appendix A.4.4.6).

   5.  A Q-mode encapsulated message arrives at the end-system that does
       not handle the signalling application.  This is possible in
       normal operation, and MUST be indicated to the sender with an
       "Endpoint Found" informational message (Appendix A.4.4.7).  The
       end-system includes the MRI and SID from the original message in
       the error message without interpreting them.

   6.  The node is a GIST-aware NAT.  See Section 7.2.

   In case (2) and (3), the role of GIST is to forward the message
   essentially as though it were a normal IP datagram, and it will not
   become a peer to the node sending the message.  Forwarding with
   modified NSLP payloads is covered above in Section 4.3.2.  However, a
   GIST implementation MUST ensure that the IP-layer TTL field and GIST
   hop count are managed correctly to prevent message looping, and this
   should be done consistently independently of where in the packet
   processing path the decision is made.  The rules are that in cases
   (2) and (3), the IP-layer TTL MUST be decremented just as if the
   message was a normal IP forwarded packet.  In case (3), the GIST hop
   count MUST be decremented as in the case of normal input processing,
   which also applies to cases (4) and (5).

   A GIST node processing Q-mode encapsulated messages in this way
   SHOULD make the routing decision based on the full contents of the
   MRI and not only the IP destination address.  It MAY also apply a
   restricted set of sanity checks and under certain conditions return
   an error message rather than forward the message.  These conditions
   are:

   1.  The message is so large that it would be fragmented on downstream
       links, for example, because the downstream MTU is abnormally
       small (less than 576 bytes).  The error "Message Too Large"
       (Appendix A.4.4.8) SHOULD be returned to the sender, which SHOULD
       begin messaging association setup.

   2.  The GIST hop count has reached zero.  The error "Hop Limit
       Exceeded" (Appendix A.4.4.2) SHOULD be returned to the sender,
       which MAY retry with a larger initial hop count.

Schulzrinne & Hancock         Experimental                     [Page 32]



RFC 5971                          GIST                      October 2010

   3.  The MRI represents a flow definition that is too general to be
       forwarded along a unique path (e.g., the destination address
       prefix is too short).  The error "MRI Validation Failure"
       (Appendix A.4.4.12) with subcode 0 ("MRI Too Wild") SHOULD be
       returned to the sender, which MAY retry with restricted MRIs,
       possibly starting additional signalling sessions to do so.  If
       the GIST node does not understand the MRM in question, it MUST
       NOT apply this check, instead forwarding the message
       transparently.

   In the first two cases, only the common header of the GIST message is
   examined; in the third case, the MRI is also examined.  The rest of
   the message MUST NOT be inspected in any case.  Similar to the case
   of Section 4.3.2, the GIST payloads MUST NOT be modified or re-
   ordered; an implementation MAY choose to achieve this by retaining
   the original message, rather than reconstructing it from some parsed
   internal representation.

4.4.  Routing State and Messaging Association Maintenance

   The main responsibility of GIST is to manage the routing state and
   messaging associations that are used in the message processing
   described above.  Routing state is installed and refreshed by GIST
   handshake messages.  Messaging associations are set up by the normal
   procedures of the transport and security protocols that comprise
   them, using peer IP addresses from the routing state.  Once a
   messaging association has been created, its refresh and expiration
   can be managed independently from the routing state.

   There are two different cases for state installation and refresh:

   1.  Where routing state is being discovered or a new association is
       to be established; and

   2.  Where a suitable association already exists, including the case
       where routing state for the flow is being refreshed.

   These cases are now considered in turn, followed by the case of
   background general management procedures.

4.4.1.  Routing State and Messaging Association Creation

   The message sequence for GIST state setup between peers is shown in
   Figure 5 and described in detail below.  The figure informally
   summarises the contents of each message, including optional elements
   in square brackets.  An example is given in Appendix D.
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   The first message in any routing state maintenance operation is a
   Query, sent from the Querying node and intercepted at the responding
   node.  This message has addressing and other identifiers appropriate
   for the flow and signalling application that state maintenance is
   being done for, addressing information about the node that generated
   the Query itself, and MAY contain an NSLP payload.  It also includes
   a Query-Cookie, and optionally capability information about messaging
   association protocol stacks.  The role of the cookies in this and
   later messages is to protect against certain denial-of-service
   attacks and to correlate the events in the message sequence (see
   Section 8.5 for further details).
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            +----------+                     +----------+
            | Querying |                     |Responding|
            | Node(Q-N)|                     | Node(R-N)|
            +----------+                     +----------+
                               Query                  .............
                       ---------------------->        .           .
                       Router Alert Option            .  Routing  .
                       MRI/SID/NSLPID                 .   state   .
                       Q-N Network Layer Info         . installed .
                       Query-Cookie                   .    at     .
                       [Q-N Stack-Proposal            . Responding.
                        Q-N Stack-Config-Data]        .    node   .
                       [NSLP Payload]                 .  (case 1) .
                                                      .............
               ......................................
               .  The responder can use an existing .
               . messaging association if available .
               . from here onwards to short-circuit .
               .     messaging association setup    .
               ......................................

                             Response
   .............       <----------------------
   .  Routing  .       MRI/SID/NSLPID
   .   state   .       R-N Network Layer Info
   . installed .       Query-Cookie
   .    at     .       [Responder-Cookie
   .  Querying .        [R-N Stack-Proposal
   .   node    .         R-N Stack-Config-Data]]
   .............       [NSLP Payload]

                ....................................
                . If a messaging association needs .
                . to be created, it is set up here .
                .     and the Confirm uses it      .
                ....................................

                           Confirm                    .............
                     ---------------------->          .  Routing  .
                     MRI/SID/NSLPID                   .   state   .
                     Q-N Network Layer Info           . installed .
                     [Responder-Cookie                .    at     .
                      [R-N Stack-Proposal             . Responding.
                       [Q-N Stack-Config-Data]]]      .    node   .
                     [NSLP Payload]                   .  (case 2) .
                                                      .............

                 Figure 5: Message Sequence at State Setup
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   Provided that the signalling application has indicated that message
   routing state should be set up (see Section 4.3.2), reception of a
   Query MUST elicit a Response.  This is a normally encapsulated D-mode
   message with additional GIST payloads.  It contains network layer
   information about the Responding node, echoes the Query-Cookie, and
   MAY contain an NSLP payload, possibly a reply to the NSLP payload in
   the initial message.  In case a messaging association was requested,
   it MUST also contain a Responder-Cookie and its own capability
   information about messaging association protocol stacks.  Even if a
   messaging association is not requested, the Response MAY still
   include a Responder-Cookie if the node’s routing state setup policy
   requires it (see below).

   Setup of a new messaging association begins when peer addressing
   information is available and a new messaging association is actually
   needed.  Any setup MUST take place immediately after the specific
   Query/Response exchange, because the addressing information used may
   have a limited lifetime, either because it depends on limited
   lifetime NAT bindings or because it refers to agile destination ports
   for the transport protocols.  The Stack-Proposal and Stack-
   Configuration-Data objects carried in the exchange carry capability
   information about what messaging association protocols can be used,
   and the processing of these objects is described in more detail in
   Section 5.7.  With the protocol options currently defined, setup of
   the messaging association always starts from the Querying node,
   although more flexible configurations are possible within the overall
   GIST design.  If the messaging association includes a channel
   security protocol, each GIST node MUST verify the authenticated
   identity of the peer against its authorised peer database, and if
   there is no match the messaging association MUST be torn down.  The
   database and authorisation check are described in more detail in
   Section 4.4.2 below.  Note that the verification can depend on what
   the MA is to be used for (e.g., for which MRI or session), so this
   step may not be possible immediately after authentication has
   completed but some time later.

   Finally, after any necessary messaging association setup has
   completed, a Confirm MUST be sent if the Response requested it.  Once
   the Confirm has been sent, the Querying node assumes that routing
   state has been installed at the responder, and can send normal Data
   messages for the flow in question; recovery from a lost Confirm is
   discussed in Section 5.3.3.  If a messaging association is being
   used, the Confirm MUST be sent over it before any other messages for
   the same flow, and it echoes the Responder-Cookie and Stack-Proposal
   from the Response.  The former is used to allow the receiver to
   validate the contents of the message (see Section 8.5), and the
   latter is to prevent certain bidding-down attacks on messaging
   association security (see Section 8.6).  This first Confirm on a new
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   association MUST also contain a Stack-Configuration-Data object
   carrying an MA-Hold-Time value, which supersedes the value given in
   the original Query.  The association can be used in the upstream
   direction for the MRI and NSLPID carried in the Confirm, after the
   Confirm has been received.

   The Querying node MUST install the responder address, derived from
   the R-Node Network Layer info, as routing state information after
   verifying the Query-Cookie in the Response.  The Responding node MAY
   install the querying address as peer state information at two points
   in time:

   Case 1:  after the receipt of the initial Query, or

   Case 2:  after a Confirm containing the Responder-Cookie.

   The Responding node SHOULD derive the peer address from the Q-Node
   Network Layer Info if this was decoded successfully.  Otherwise, it
   MAY be derived from the IP source address of the message if the
   common header flags this as being the signalling source address.  The
   precise constraints on when state information is installed are a
   matter of security policy considerations on prevention of denial-of-
   service attacks and state poisoning attacks, which are discussed
   further in Section 8.  Because the Responding node MAY choose to
   delay state installation as in case (2), the Confirm must contain
   sufficient information to allow it to be processed in the same way as
   the original Query.  This places some special requirements on NAT
   traversal and cookie functionality, which are discussed in
   Section 7.2 and Section 8 respectively.

4.4.2.  GIST Peer Authorisation

   When two GIST nodes authenticate using a messaging association, both
   ends have to decide whether to accept the creation of the MA and
   whether to trust the information sent over it.  This can be seen as
   an authorisation decision:

   o  Authorised peers are trusted to install correct routing state
      about themselves and not, for example, to claim that they are on-
      path for a flow when they are not.

   o  Authorised peers are trusted to obey transport- and application-
      level flow control rules, and not to attempt to create overload
      situations.

   o  Authorised peers are trusted not to send erroneous or malicious
      error messages, for example, asserting that routing state has been
      lost when it has not.
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   This specification models the decision as verification by the
   authorising node of the peer’s identity against a local list of
   peers, the authorised peer database (APD).  The APD is an abstract
   construct, similar to the security policy database of IPsec [36].
   Implementations MAY provide the associated functionality in any way
   they choose.  This section defines only the requirements for APD
   administration and the consequences of successfully validating a
   peer’s identity against it.

   The APD consists of a list of entries.  Each entry includes an
   identity, the namespace from which the identity comes (e.g., DNS
   domains), the scope within which the entry is applicable, and whether
   authorisation is allowed or denied.  The following are example
   scopes:

   Peer Address Ownership:  The scope is the IP address at which the
      peer for this MRI should be; the APD entry denotes the identity as
      the owner of address.  If the authorising node can determine this
      address from local information (such as its own routing tables),
      matching this entry shows that the peer is the correct on-path
      node and so should be authorised.  The determination is simple if
      the peer is one IP hop downstream, since the IP address can be
      derived from the router’s forwarding tables.  If the peer is more
      than one hop away or is upstream, the determination is harder but
      may still be possible in some circumstances.  The authorising node
      may be able to determine a (small) set of possible peer addresses,
      and accept that any of these could be the correct peer.

   End-System Subnet:  The scope is an address range within which the
      MRI source or destination lies; the APD entry denotes the identity
      as potentially being on-path between the authorising node and that
      address range.  There may be different source and destination
      scopes, to account for asymmetric routing.

   The same identity may appear in multiple entries, and the order of
   entries in the APD is significant.  When a messaging association is
   authenticated and associated with an MRI, the authorising node scans
   the APD to find the first entry where the identity matches that
   presented by the peer, and where the scope information matches the
   circumstances for which the MA is being set up.  The identity
   matching process itself depends on the messaging association protocol
   that carries out the authentication, and details for TLS are given in
   Section 5.7.3.  Whenever the full set of possible peers for a
   specific scope is known, deny entries SHOULD be added for the
   wildcard identity to reject signalling associations from unknown
   nodes.  The ability of the authorising node to reject inappropriate
   MAs depends directly on the granularity of the APD and the precision
   of the scope matching process.
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   If authorisation is allowed, the MA can be used as normal; otherwise,
   it MUST be torn down without further GIST exchanges, and any routing
   state associated with the MA MUST also be deleted.  An error
   condition MAY be logged locally.  When an APD entry is modified or
   deleted, the node MUST re-validate existing MAs and the routing state
   table against the revised contents of the APD.  This may result in
   MAs being torn down or routing state entries being deleted.  These
   changes SHOULD be indicated to local signalling applications via the
   NetworkNotification API call (Appendix B.4).

   This specification does not define how the APD is populated.  As a
   minimum, an implementation MUST provide an administrative interface
   through which entries can be added, modified, or deleted.  More
   sophisticated mechanisms are possible in some scenarios.  For
   example, the fact that a node is legitimately associated with a
   specific IP address could be established by direct embedding of the
   IP address as a particular identity type in a certificate, or by a
   mapping that address to another identifier type via an additional
   database lookup (such as relating IP addresses in in-addr.arpa to
   domain names).  An enterprise network operator could generate a list
   of all the identities of its border nodes as authorised to be on the
   signalling path to external destinations, and this could be
   distributed to all hosts inside the network.  Regardless of the
   technique, it MUST be ensured that the source data justify the
   authorisation decisions listed at the start of this section, and that
   the security of the chain of operations on which the APD entry
   depends cannot be compromised.

4.4.3.  Messaging Association Multiplexing

   It is a design goal of GIST that, as far as possible, a single
   messaging association should be used for multiple flows and sessions
   between two peers, rather than setting up a new MA for each.  This
   re-use of existing MAs is referred to as messaging association
   multiplexing.  Multiplexing ensures that the MA cost scales only with
   the number of peers, and avoids the latency of new MA setup where
   possible.

   However, multiplexing requires the identification of an existing MA
   that matches the same routing state and desired properties that would
   be the result of a normal handshake in D-mode, and this
   identification must be done as reliably and securely as continuing
   with a normal D-mode handshake.  Note that this requirement is
   complicated by the fact that NATs may remap the node addresses in
   D-mode messages, and also interacts with the fact that some nodes may
   peer over multiple interfaces (and thus with different addresses).
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   MA multiplexing is controlled by the Network Layer Information (NLI)
   object, which is carried in Query, Response, and Confirm messages.
   The NLI object includes (among other elements):

   Peer-Identity:  For a given node, this is an interface-independent
      value with opaque syntax.  It MUST be chosen so as to have a high
      probability of uniqueness across the set of all potential peers,
      and SHOULD be stable at least until the next node restart.  Note
      that there is no cryptographic protection of this identity;
      attempting to provide this would essentially duplicate the
      functionality in the messaging association security protocols.
      For routers, the Router-ID [2], which is one of the router’s IP
      addresses, MAY be used as one possible value for the Peer-
      Identity.  In scenarios with nested NATs, the Router-ID alone may
      not satisfy the uniqueness requirements, in which case it MAY be
      extended with additional tokens, either chosen randomly or
      administratively coordinated.

   Interface-Address:  This is an IP address through which the
      signalling node can be reached.  There may be several choices
      available for the Interface-Address, and further discussion of
      this is contained in Section 5.2.2.

   A messaging association is associated with the NLI object that was
   provided by the peer in the Query/Response/Confirm at the time the
   association was first set up.  There may be more than one MA for a
   given NLI object, for example, with different security or transport
   properties.

   MA multiplexing is achieved by matching these two elements from the
   NLI provided in a new GIST message with one associated with an
   existing MA.  The message can be either a Query or Response, although
   the former is more likely:

   o  If there is a perfect match to an existing association, that
      association SHOULD be re-used, provided it meets the criteria on
      security and transport properties given at the end of
      Section 5.7.1.  This is indicated by sending the remaining
      messages in the handshake over that association.  This will lead
      to multiplexing on an association to the wrong node if signalling
      nodes have colliding Peer-Identities and one is reachable at the
      same Interface-Address as another.  This could be caused by an on-
      path attacker; on-path attacks are discussed further in
      Section 8.7.  When multiplexing is done, and the original MA
      authorisation was MRI-dependent, the verification steps of
      Section 4.4.2 MUST be repeated for the new flow.
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   o  In all other cases, the handshake MUST be executed in D-mode as
      usual.  There are in fact four possibilities:

      1.  Nothing matches: this is clearly a new peer.

      2.  Only the Peer-Identity matches: this may be either a new
          interface on an existing peer or a changed address mapping
          behind a NAT.  These should be rare events, so the expense of
          a new association setup is acceptable.  Another possibility is
          one node using another node’s Peer-Identity, for example, as
          some kind of attack.  Because the Peer-Identity is used only
          for this multiplexing process, the only consequence this has
          is to require a new association setup, and this is considered
          in Section 8.4.

      3.  Only the Interface-Address matches: this is probably a new
          peer behind the same NAT as an existing one.  A new
          association setup is required.

      4.  Both elements of the NLI object match: this is a degenerate
          case, where one node recognises an existing peer, but wishes
          to allow the option to set up a new association in any case,
          for example, to create an association with different
          properties.

4.4.4.  Routing State Maintenance

   Each item of routing state expires after a lifetime that is
   negotiated during the Query/Response/Confirm handshake.  The Network
   Layer Information (NLI) object in the Query contains a proposal for
   the lifetime value, and the NLI in the Response contains the value
   the Responding node requires.  A default timer value of 30 seconds is
   RECOMMENDED.  Nodes that can exploit alternative, more powerful,
   route change detection methods such as those described in
   Section 7.1.2 MAY choose to use much longer times.  Nodes MAY use
   shorter times to provide more rapid change detection.  If the number
   of active routing state items corresponds to a rate of Queries that
   will stress the rate limits applied to D-mode traffic
   (Section 5.3.3), nodes MUST increase the timer for new items and on
   the refresh of existing ones.  A suitable value is

         2 * (number of routing states) / (rate limit in packets/second)

   which leaves a factor of two headroom for new routing state creation
   and Query retransmissions.
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   The Querying node MUST ensure that a Query is received before this
   timer expires, if it believes that the signalling session is still
   active; otherwise, the Responding node MAY delete the state.  Receipt
   of the message at the Responding node will refresh peer addressing
   state for one direction, and receipt of a Response at the Querying
   node will refresh it for the other.  There is no mechanism at the
   GIST level for explicit teardown of routing state.  However, GIST
   MUST NOT refresh routing state if a signalling session is known to be
   inactive, either because upstream state has expired or because the
   signalling application has indicated via the GIST API (Appendix B.5)
   that the state is no longer required, because this would prevent
   correct state repair in the case of network rerouting at the IP
   layer.

   This specification defines precisely only the time at which routing
   state expires; it does not define when refresh handshakes should be
   initiated.  Implementations MUST select timer settings that take at
   least the following into account:

   o  the transmission latency between source and destination;

   o  the need for retransmissions of Query messages;

   o  the need to avoid network synchronisation of control traffic (cf.
      [42]).

   In most cases, a reasonable policy is to initiate the routing state
   refresh when between 1/2 and 3/4 of the validity time has elapsed
   since the last successful refresh.  The actual moment MUST be chosen
   randomly within this interval to avoid synchronisation effects.

4.4.5.  Messaging Association Maintenance

   Unneeded MAs are torn down by GIST, using the teardown mechanisms of
   the underlying transport or security protocols if available, for
   example, by simply closing a TCP connection.  The teardown can be
   initiated by either end.  Whether an MA is needed is a combination of
   two factors:

   o  local policy, which could take into account the cost of keeping
      the messaging association open, the level of past activity on the
      association, and the likelihood of future activity, e.g., if there
      is routing state still in place that might generate messages to
      use it.

   o  whether the peer still wants the MA to remain in place.  During MA
      setup, as part of the Stack-Configuration-Data, each node
      advertises its own MA-Hold-Time, i.e., the time for which it will
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      retain an MA that is not carrying signalling traffic.  A node MUST
      NOT tear down an MA if it has received traffic from its peer over
      that period.  A peer that has generated no traffic but still wants
      the MA retained can use a special null message (MA-Hello) to
      indicate the fact.  A default value for MA-Hold-Time of 30 seconds
      is RECOMMENDED.  Nodes MAY use shorter times to achieve more rapid
      peer failure detection, but need to take into account the load on
      the network created by the MA-Hello messages.  Nodes MAY use
      longer times, but need to take into account the cost of retaining
      idle MAs for extended periods.  Nodes MAY take signalling
      application behaviour (e.g., NSLP refresh times) into account in
      choosing an appropriate value.

      Because the Responding node can choose not to create state until a
      Confirm, an abbreviated Stack-Configuration-Data object containing
      just this information from the initial Query MUST be repeated by
      the Querying node in the first Confirm sent on a new MA.  If the
      object is missing in the Confirm, an "Object Type Error" message
      (Appendix A.4.4.9) with subcode 2 ("Missing Object") MUST be
      returned.

   Messaging associations can always be set up on demand, and messaging
   association status is not made directly visible outside the GIST
   layer.  Therefore, even if GIST tears down and later re-establishes a
   messaging association, signalling applications cannot distinguish
   this from the case where the MA is kept permanently open.  To
   maintain the transport semantics described in Section 4.1, GIST MUST
   close transport connections carrying reliable messages gracefully or
   report an error condition, and MUST NOT open a new association to be
   used for given session and peer while messages on a previous
   association could still be outstanding.  GIST MAY use an MA-Hello
   request/reply exchange on an existing association to verify that
   messages sent on it have reached the peer.  GIST MAY use the same
   technique to test the liveness of the underlying MA protocols
   themselves at arbitrary times.

   This specification defines precisely only the time at which messaging
   associations expire; it does not define when keepalives should be
   initiated.  Implementations MUST select timer settings that take at
   least the following into account:

   o  the transmission latency between source and destination;

   o  the need for retransmissions within the messaging association
      protocols;

   o  the need to avoid network synchronisation of control traffic (cf.
      [42]).
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   In most cases, a reasonable policy is to initiate the MA refresh when
   between 1/2 and 3/4 of the validity time has elapsed since the last
   successful refresh.  The actual moment MUST be chosen randomly within
   this interval to avoid synchronisation effects.

4.4.6.  Routing State Failures

   A GIST node can receive a message from a GIST peer that can only be
   correctly processed in the context of some routing state, but where
   no corresponding routing state exists.  Cases where this can arise
   include:

   o  Where the message is random traffic from an attacker, or
      backscatter (replies to such traffic).

   o  Where routing state has been correctly installed but the peer has
      since lost it, for example, because of aggressive timeout settings
      at the peer or because the node has crashed and restarted.

   o  Where the routing state was not correctly installed in the first
      place, but the sending node does not know this.  This can happen
      if the Confirm message of the handshake is lost.

   It is important for GIST to recover from such situations promptly
   where they represent genuine errors (node restarts, or lost messages
   that would not otherwise be retransmitted).  Note that only Response,
   Confirm, Data, and Error messages ever require routing state to
   exist, and these are considered in turn:

   Response:  A Response can be received at a node that never sent (or
      has forgotten) the corresponding Query.  If the node wants routing
      state to exist, it will initiate it itself; a diagnostic error
      would not allow the sender of the Response to take any corrective
      action, and the diagnostic could itself be a form of backscatter.
      Therefore, an error message MUST NOT be generated, but the
      condition MAY be logged locally.

   Confirm:  For a Responding node that implements delayed state
      installation, this is normal behaviour, and routing state will be
      created provided the Confirm is validated.  Otherwise, this is a
      case of a non-existent or forgotten Response, and the node may not
      have sufficient information in the Confirm to create the correct
      state.  The requirement is to notify the Querying node so that it
      can recover the routing state.
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   Data:  This arises when a node receives Data where routing state is
      required, but either it does not exist at all or it has not been
      finalised (no Confirm message).  To avoid Data being black-holed,
      a notification must be sent to the peer.

   Error:  Some error messages can only be interpreted in the context of
      routing state.  However, the only error messages that require a
      reply within the protocol are routing state error messages
      themselves.  Therefore, this case should be treated the same as a
      Response: an error message MUST NOT be generated, but the
      condition MAY be logged locally.

   For the case of Confirm or Data messages, if the state is required
   but does not exist, the node MUST reject the incoming message with a
   "No Routing State" error message (Appendix A.4.4.5).  There are then
   three cases at the receiver of the error message:

   No routing state:  The condition MAY be logged but a reply MUST NOT
      be sent (see above).

   Querying node:  The node MUST restart the GIST handshake from the
      beginning, with a new Query.

   Responding node:  The node MUST delete its own routing state and
      SHOULD report an error condition to the local signalling
      application.

   The rules at the Querying or Responding node make GIST open to
   disruption by randomly injected error messages, similar to blind
   reset attacks on TCP (cf. [46]), although because routing state
   matching includes the SID this is mainly limited to on-path
   attackers.  If a GIST node detects a significant rate of such
   attacks, it MAY adopt a policy of using secured messaging
   associations to communicate for the affected MRIs, and only accepting
   "No Routing State" error messages over such associations.

5.  Message Formats and Transport

5.1.  GIST Messages

   All GIST messages begin with a common header, followed by a sequence
   of type-length-value (TLV) objects.  This subsection describes the
   various GIST messages and their contents at a high level in ABNF
   [11]; a more detailed description of the header and each object is
   given in Section 5.2 and bit formats in Appendix A.  Note that the
   NAT traversal mechanism for GIST involves the insertion of an
   additional NAT-Traversal-Object in Query, Response, and some Data and
   Error messages; the rules for this are given in Section 7.2.
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   GIST-Message: The primary messages are either part of the three-way
   handshake or a simple message carrying NSLP data.  Additional types
   are defined for errors and keeping messaging associations alive.

       GIST-Message = Query / Response / Confirm /
                      Data / Error / MA-Hello

   The common header includes a version number, message type and size,
   and NSLPID.  It also carries a hop count to prevent infinite message
   looping and various control flags, including one (the R-flag) to
   indicate if a reply of some sort is requested.  The objects following
   the common header MUST be carried in a fixed order, depending on
   message type.  Messages with missing, duplicate, or invalid objects
   for the message type MUST be rejected with an "Object Type Error"
   message with the appropriate subcode (Appendix A.4.4.9).  Note that
   unknown objects indicate explicitly how they should be treated and
   are not covered by the above statement.

   Query: A Query MUST be sent in D-mode using the special Q-mode
   encapsulation.  In addition to the common header, it contains certain
   mandatory control objects, and MAY contain a signalling application
   payload.  A stack proposal and configuration data MUST be included if
   the message exchange relates to setup of a messaging association, and
   this is the case even if the Query is intended only for refresh
   (since a routing change might have taken place in the meantime).  The
   R-flag MUST always be set (R=1) in a Query, since this message always
   elicits a Response.

       Query = Common-Header
               [ NAT-Traversal-Object ]
               Message-Routing-Information
               Session-Identifier
               Network-Layer-Information
               Query-Cookie
               [ Stack-Proposal Stack-Configuration-Data ]
               [ NSLP-Data ]

   Response: A Response MUST be sent in D-mode if no existing messaging
   association can be re-used.  If one is being re-used, the Response
   MUST be sent in C-mode.  It MUST echo the MRI, SID, and Query-Cookie
   of the Query, and carries its own Network-Layer-Information.  If the
   message exchange relates to setup of a new messaging association,
   which MUST involve a D-mode Response, a Responder-Cookie MUST be
   included, as well as the Responder’s own stack proposal and
   configuration data.  The R-flag MUST be set (R=1) if a Responder-
   Cookie is present but otherwise is optional; if the R-flag is set, a
   Confirm MUST be sent as a reply.  Therefore, in particular, a Confirm
   will always be required if a new MA is being set up.  Note that the
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   direction of this MRI will be inverted compared to that in the Query,
   that is, an upstream MRI becomes downstream and vice versa (see
   Section 3.3).

       Response = Common-Header
                  [ NAT-Traversal-Object ]
                  Message-Routing-Information
                  Session-Identifier
                  Network-Layer-Information
                  Query-Cookie
                  [ Responder-Cookie
                    [ Stack-Proposal Stack-Configuration-Data ] ]
                  [ NSLP-Data ]

   Confirm: A Confirm MUST be sent in C-mode if a messaging association
   is being used for this routing state, and MUST be sent before other
   messages for this routing state if an association is being set up.
   If no messaging association is being used, the Confirm MUST be sent
   in D-mode.  The Confirm MUST include the MRI (with inverted
   direction) and SID, and echo the Responder-Cookie if the Response
   carried one.  In C-mode, the Confirm MUST also echo the Stack-
   Proposal from the Response (if present) so it can be verified that
   this has not been tampered with.  The first Confirm on a new
   association MUST also repeat the Stack-Configuration-Data from the
   original Query in an abbreviated form, just containing the MA-Hold-
   Time.

       Confirm = Common-Header
                 Message-Routing-Information
                 Session-Identifier
                 Network-Layer-Information
                 [ Responder-Cookie
                   [ Stack-Proposal
                     [ Stack-Configuration-Data ] ] ]
                 [ NSLP-Data ]

   Data: The Data message is used to transport NSLP data without
   modifying GIST state.  It contains no control objects, but only the
   MRI and SID associated with the NSLP data being transferred.
   Network-Layer-Information (NLI) MUST be carried in the D-mode case,
   but MUST NOT be included otherwise.

       Data = Common-Header
              [ NAT-Traversal-Object ]
              Message-Routing-Information
              Session-Identifier
              [ Network-Layer-Information ]
              NSLP-Data
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   Error: An Error message reports a problem determined at the GIST
   level.  (Errors generated by signalling applications are reported in
   NSLP-Data payloads and are not treated specially by GIST.)  If the
   message is being sent in D-mode, the originator of the error message
   MUST include its own Network-Layer-Information object.  All other
   information related to the error is carried in a GIST-Error-Data
   object.

       Error = Common-Header
               [ NAT-Traversal-Object ]
               [ Network-Layer-Information ]
               GIST-Error-Data

   MA-Hello: This message MUST be sent only in C-mode.  It contains the
   common header, with a NSLPID of zero, and a message identifier, the
   Hello-ID.  It always indicates that a node wishes to keep a messaging
   association open, and if sent with R=0 and zero Hello-ID this is its
   only function.  A node MAY also invoke a diagnostic request/reply
   exchange by setting R=1 and providing a non-zero Hello-ID; in this
   case, the peer MUST send another MA-Hello back along the messaging
   association echoing the same Hello-ID and with R=0.  Use of this
   diagnostic is entirely at the discretion of the initiating node.

       MA-Hello = Common-Header
                  Hello-ID

5.2.  Information Elements

   This section describes the content of the various objects that can be
   present in each GIST message, both the common header and the
   individual TLVs.  The bit formats are provided in Appendix A.

5.2.1.  The Common Header

   Each message begins with a fixed format common header, which contains
   the following information:

   Version:  The version number of the GIST protocol.  This
      specification defines GIST version 1.

   GIST hop count:  A hop count to prevent a message from looping
      indefinitely.

   Length:  The number of 32-bit words in the message following the
      common header.

   Upper layer identifier (NSLPID):  This gives the specific NSLP for
      which this message is used.
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   Context-free flag:  This flag is set (C=1) if the receiver has to be
      able to process the message without supporting routing state.  The
      C-flag MUST be set for Query messages, and also for Data messages
      sent in Q-mode.  The C-flag is important for NAT traversal
      processing.

   Message type:  The message type (Query, Response, etc.).

   Source addressing mode:  If set (S=1), this indicates that the IP
      source address of the message is the same as the IP address of the
      signalling peer, so replies to this message can be sent safely to
      this address.  S is always set in C-mode.  It is cleared (S=0) if
      the IP source address was derived from the message routing
      information in the payload and this is different from the
      signalling source address.

   Response requested:  A flag that if set (R=1) indicates that a GIST
      message should be sent in reply to this message.  The appropriate
      message type for the reply depends on the type of the initial
      message.

   Explicit routing:  A flag that if set (E=1) indicates that the
      message was explicitly routed (see Section 7.1.5).

   Note that in D-mode, Section 5.3, there is a 32-bit magic number
   before the header.  However, this is regarded as part of the
   encapsulation rather than part of the message itself.

5.2.2.  TLV Objects

   All data following the common header is encoded as a sequence of
   type-length-value objects.  Currently, each object can occur at most
   once; the set of required and permitted objects is determined by the
   message type and encapsulation (D-mode or C-mode).

   Message-Routing-Information (MRI):  Information sufficient to define
      how the signalling message should be routed through the network.

       Message-Routing-Information = message-routing-method
                                     method-specific-information

   The format of the method-specific-information depends on the
   message-routing-method requested by the signalling application.  Note
   that it always includes a flag defining the direction as either
   ’upstream’ or ’downstream’ (see Section 3.3).  It is provided by the
   NSLP in the message sender and used by GIST to select the message
   routing.
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   Session-Identifier (SID):  The GIST session identifier is a 128-bit,
      cryptographically random identifier chosen by the node that
      originates the signalling exchange.  See Section 3.7.

   Network-Layer-Information (NLI):  This object carries information
      about the network layer attributes of the node sending the
      message, including data related to the management of routing
      state.  This includes a peer identity and IP address for the
      sending node.  It also includes IP-TTL information to allow the IP
      hop count between GIST peers to be measured and reported, and a
      validity time (RS-validity-time) for the routing state.

       Network-Layer-Information = peer-identity
                                   interface-address
                                   RS-validity-time
                                   IP-TTL

   The use of the RS-validity-time field is described in Section 4.4.4.
   The peer-identity and interface-address are used for matching
   existing associations, as discussed in Section 4.4.3.

   The interface-address must be routable, i.e., it MUST be usable as a
   destination IP address for packets to be sent back to the node
   generating the signalling message, whether in D-mode or C-mode.  If
   this object is carried in a message with the source addressing mode
   flag S=1, the interface-address MUST match the source address used in
   the IP encapsulation, to assist in legacy NAT detection
   (Section 7.2.1).  If this object is carried in a Query or Confirm,
   the interface-address MUST specifically be set to an address bound to
   an interface associated with the MRI, to allow its use in route
   change handling as discussed in Section 7.1.  A suitable choice is
   the interface that is carrying the outbound flow.  A node may have
   several choices for which of its addresses to use as the
   interface-address.  For example, there may be a choice of IP
   versions, or addresses of limited scope (e.g., link-local), or
   addresses bound to different interfaces in the case of a router or
   multihomed host.  However, some of these interface addresses may not
   be usable by the peer.  A node MUST follow a policy of using a global
   address of the same IP version as in the MRI, unless it can establish
   that an alternative address would also be usable.

   The setting and interpretation of the IP-TTL field depends on the
   message direction (upstream/downstream as determined from the MRI as
   described above) and encapsulation.

      *  If the message is sent downstream, if the TTL that will be set
         in the IP header for the message can be determined, the IP-TTL
         value MUST be set to this value, or else set to 0.
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      *  On receiving a downstream message in D-mode, a non-zero IP-TTL
         is compared to the TTL in the IP header, and the difference is
         stored as the IP-hop-count-to-peer for the upstream peer in the
         routing state table for that flow.  Otherwise, the field is
         ignored.

      *  If the message is sent upstream, the IP-TTL MUST be set to the
         value of the IP-hop-count-to-peer stored in the routing state
         table, or 0 if there is no value yet stored.

      *  On receiving an upstream message, the IP-TTL is stored as the
         IP-hop-count-to-peer for the downstream peer.

      In all cases, the IP-TTL value reported to signalling applications
      is the one stored with the routing state for that flow, after it
      has been updated if necessary from processing the message in
      question.

   Stack-Proposal:  This field contains information about which
      combinations of transport and security protocols are available for
      use in messaging associations, and is also discussed further in
      Section 5.7.

       Stack-Proposal = 1*stack-profile

       stack-profile = protocol-count 1*protocol-layer
                       ;; padded on the right with 0 to 32-bit boundary

       protocol-count = %x01-FF
                       ;; number of the following <protocol-layer>,
                       ;; represented as one byte.  This doesn’t include
                       ;; padding.

       protocol-layer = %x01-FF

   Each protocol-layer field identifies a protocol with a unique tag;
   any additional data, such as higher-layer addressing or other options
   data associated with the protocol, will be carried in an
   MA-protocol-options field in the Stack-Configuration-Data TLV (see
   below).

   Stack-Configuration-Data (SCD):  This object carries information
      about the overall configuration of a messaging association.

       Stack-Configuration-Data = MA-Hold-Time
                                  0*MA-protocol-options
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   The MA-Hold-Time field indicates how long a node will hold open an
   inactive association; see Section 4.4.5 for more discussion.  The
   MA-protocol-options fields give the configuration of the protocols
   (e.g., TCP, TLS) to be used for new messaging associations, and they
   are described in more detail in Section 5.7.

   Query-Cookie/Responder-Cookie:  A Query-Cookie is contained in a
      Query and MUST be echoed in a Response; a Responder-Cookie MAY be
      sent in a Response, and if present MUST be echoed in the following
      Confirm.  Cookies are variable-length bit strings, chosen by the
      cookie generator.  See Section 8.5 for further details on
      requirements and mechanisms for cookie generation.

   Hello-ID:  The Hello-ID is a 32-bit quantity that is used to
      correlate messages in an MA-Hello request/reply exchange.  A non-
      zero value MUST be used in a request (messages sent with R=1) and
      the same value must be returned in the reply (which has R=0).  The
      value zero MUST be used for all other messages; if a message is
      received with R=1 and Hello-ID=0, an "Object Value Error" message
      (Appendix A.4.4.10) with subcode 1 ("Value Not Supported") MUST be
      returned and the message dropped.  Nodes MAY use any algorithm to
      generate the Hello-ID; a suitable approach is a local sequence
      number with a random starting point.

   NSLP-Data:  The NSLP payload to be delivered to the signalling
      application.  GIST does not interpret the payload content.

   GIST-Error-Data:  This contains the information to report the cause
      and context of an error.

       GIST-Error-Data = error-class error-code error-subcode
                         common-error-header
                         [ Message-Routing-Information-content ]
                         [ Session-Identification-content ]
                         0*additional-information
                         [ comment ]

   The error-class indicates the severity level, and the error-code and
   error-subcode identify the specific error itself.  A full list of
   GIST errors and their severity levels is given in Appendix A.4.  The
   common-error-header carries the Common-Header from the original
   message, and contents of the Message-Routing-Information (MRI) and
   Session-Identifier (SID) objects are also included if they were
   successfully decoded.  For some errors, additional information fields
   can be included, and these fields themselves have a simple TLV
   format.  Finally, an optional free-text comment may be added.
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5.3.  D-mode Transport

   This section describes the various encapsulation options for D-mode
   messages.  Although there are several possibilities, depending on
   message type, MRM, and local policy, the general design principle is
   that the sole purpose of the encapsulation is to ensure that the
   message is delivered to or intercepted at the correct peer.  Beyond
   that, minimal significance is attached to the type of encapsulation
   or the values of addresses or ports used for it.  This allows new
   options to be developed in the future to handle particular deployment
   requirements without modifying the overall protocol specification.

5.3.1.  Normal Encapsulation

   Normal encapsulation MUST be used for all D-mode messages where the
   signalling peer is already known from previous signalling.  This
   includes Response and Confirm messages, and Data messages except if
   these are being sent without using local routing state.  Normal
   encapsulation is simple: the message is carried in a single UDP
   datagram.  UDP checksums MUST be enabled.  The UDP payload MUST
   always begin with a 32-bit magic number with value 0x4e04 bda5 in
   network byte order; this is followed by the GIST common header and
   the complete set of payloads.  If the magic number is not present,
   the message MUST be silently dropped.  The normal encapsulation is
   shown in outline in Figure 6.

         0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       //                          IP Header                          //
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       //                         UDP Header                          //
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                GIST Magic Number (0x4e04bda5)                 |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       //                     GIST Common Header                      //
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       //                        GIST Payloads                        //
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 6: Normal Encapsulation Packet Format

   The message is IP addressed directly to the adjacent peer as given by
   the routing state table.  Where the message is a direct reply to a
   Query and no routing state exists, the destination address is derived
   from the input message using the same rules as in Section 4.4.1.  The
   UDP port numbering MUST be compatible with that used on Query
   messages (see below), that is, the same for messages in the same
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   direction and with source and destination port numbers swapped for
   messages in the opposite direction.  Messages with the normal
   encapsulation MUST be sent with source addressing mode flag S=1
   unless the message is a reply to a message that is known to have
   passed through a NAT, and the receiver MUST check the IP source
   address with the interface-address given in the NLI as part of legacy
   NAT detection.  Both these aspects of message processing are
   discussed further in Section 7.2.1.

5.3.2.  Q-mode Encapsulation

   Q-mode encapsulation MUST be used for messages where no routing state
   is available or where the routing state is being refreshed, in
   particular, for Query messages.  Q-mode can also be used when
   requested by local policy.  Q-mode encapsulation is similar to normal
   encapsulation, with changes in IP address selection, rules about IP
   options, and a defined method for selecting UDP ports.

   It is an essential property of the Q-mode encapsulation that it is
   possible for a GIST node to intercept these messages efficiently even
   when they are not directly addressed to it and, conversely, that it
   is possible for a non-GIST node to ignore these messages without
   overloading the slow path packet processing.  This document specifies
   that interception is done based on RAOs.

5.3.2.1.  Encapsulation and Interception in IPv4

   In general, the IP addresses are derived from information in the MRI;
   the exact rules depend on the MRM.  For the case of messages with
   source addressing mode flag S=1, the receiver MUST check the IP
   source address against the interface-address given in the NLI as part
   of legacy NAT detection; see Section 7.2.1.

   Current MRMs define the use of a Router Alert Option [13] to assist
   the peer in intercepting the message depending on the NSLPID.  If the
   MRM defines the use of RAO, the sender MUST include it unless it has
   been specifically configured not to (see below).  A node MAY make the
   initial interception decision based purely on IP-Protocol number
   transport header analysis.  Implementations MAY provide an option to
   disable the setting of RAO on Q-mode packets on a per-destination
   prefix basis; however, the option MUST be disabled by default and
   MUST only be enabled when it has been separately verified that the
   next GIST node along the path to the destination is capable of
   intercepting packets without RAO.  The purpose of this option is to
   allow operation across networks that do not properly support RAO;
   further details are discussed in Appendix C.
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   It is likely that fragmented datagrams will not be correctly
   intercepted in the network, since the checks that a datagram is a
   Q-mode packet depend on data beyond the IP header.  Therefore, the
   sender MUST set the Don’t Fragment (DF) bit in the IPv4 header.  Note
   that ICMP "packet too large" messages will be sent to the source
   address of the original IP datagram, and since all MRM definitions
   recommend S=1 for at least some retransmissions, ICMP errors related
   to fragmentation will be seen at the Querying node.

   The upper layer protocol, identified by the IP-Protocol field in the
   IP header, MUST be UDP.

5.3.2.2.  Encapsulation and Interception in IPv6

   As for IPv4, the IP addresses are derived from information in the
   MRI; the exact rules depend on the MRM.  For the case of messages
   with source addressing mode flag S=1, the receiver MUST check the IP
   source address with the interface-address given in the NLI as part of
   legacy NAT detection; see Section 7.2.1.

   For all current MRMs, the IP header is given a Router Alert Option
   [8] to assist the peer in intercepting the message depending on the
   NSLPID.  If the MRM defines the use of RAO, the sender MUST include
   it without exception.  It is RECOMMENDED that a node bases its
   initial interception decision purely on the presence of a hop-by-hop
   option header containing the RAO, which will be at the start of the
   header chain.

   The upper layer protocol MUST be UDP without intervening
   encapsulation layers.  Following any hop-by-hop option header, the IP
   header MUST NOT include any extension headers other than routing or
   destination options [5], and for the last extension header MUST have
   a next-header field of UDP.

5.3.2.3.  Upper Layer Encapsulation and Overall Interception
          Requirements

   For both IP versions, the above rules require that the upper layer
   protocol identified by the IP header MUST be UDP.  Other packets MUST
   NOT be identified as GIST Q-mode packets; this includes IP-in-IP
   tunnelled packets, other tunnelled packets (tunnel mode AH/ESP), or
   packets that have undergone some additional transport layer
   processing (transport mode AH/ESP).  If IP output processing at the
   originating node or an intermediate router causes such additional
   encapsulations to be added to a GIST Q-mode packet, this packet will
   not be identified as GIST until the encapsulation is terminated.  If
   the node wishes to signal for data over the network region where the
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   encapsulation applies, it MUST generate additional signalling with an
   MRI matching the encapsulated traffic, and the outbound GIST Q-mode
   messages for it MUST bypass the encapsulation processing.

   Therefore, the final stage of the interception process and the final
   part of encapsulation is at the UDP level.  The source UDP port is
   selected by the message sender as the port at which it is prepared to
   receive UDP messages in reply, and the sender MUST use the
   destination UDP port allocated for GIST by IANA (see Section 9).
   Note that for some MRMs, GIST nodes anywhere along the path can
   generate GIST packets with source addresses that spoof the source
   address of the data flow.  Therefore, destinations cannot distinguish
   these packets from genuine end-to-end data purely on address
   analysis.  Instead, it must be possible to distinguish such GIST
   packets by port analysis; furthermore, the mechanism to do so must
   remain valid even if the destination is GIST-unaware.  GIST solves
   this problem by using a fixed destination UDP port from the "well
   known" space for the Q-mode encapsulation.  This port should never be
   allocated on a GIST-unaware host, and therefore Q-mode encapsulated
   messages should always be rejected with an ICMP error.  The usage of
   this destination port by other applications will result in reduced
   performance due to increased delay and packet drop rates due to their
   interception by GIST nodes.

   A GIST node will need to be capable to filter out all IP/UDP packets
   that have a UDP destination port number equal to the one registered
   for GIST Q-mode encapsulation.  These packets SHOULD then be further
   verified to be GIST packets by checking the magic number (see
   Section 5.3.1).  The packets that meet both port and magic number
   requirements are further processed as GIST Q-mode packets.  Any
   filtered packets that fail this GIST magic number check SHOULD be
   forwarded towards the IP packet’s destination as a normal IP
   datagram.  To protect against denial-of-service attacks, a GIST node
   SHOULD have a rate limiter preventing more packets (filtered as
   potential Q-mode packets) from being processed than the system can
   safely handle.  Any excess packets SHOULD be discarded.

5.3.2.4.  IP Option Processing

   For both IPv4 and IPv6, for Q-mode packets with IP options allowed by
   the above requirements, IP options processing is intended to be
   carried out independently of GIST processing.  Note that for the
   options allowed by the above rules, the option semantics are
   independent of the payload: UDP payload modifications are not
   prevented by the options and do not affect the option content, and
   conversely the presence of the options does not affect the UDP
   payload.
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   On packets originated by GIST, IP options MAY be added according to
   node-local policies on outgoing IP data.  On packets forwarded by
   GIST without NSLP processing, IP options MUST be processed as for a
   normally forwarded IP packet.  On packets locally delivered to the
   NSLP, the IP options MAY be passed to the NSLP and equivalent options
   used on subsequently generated outgoing Q-mode packets.  In this
   case, routing related options SHOULD be processed identically as they
   would be for a normally forwarded IP packet.

5.3.3.  Retransmission and Rate Control

   D-mode uses UDP, and hence has no automatic reliability or congestion
   control capabilities.  Signalling applications requiring reliability
   should be serviced using C-mode, which should also carry the bulk of
   signalling traffic.  However, some form of messaging reliability is
   required for the GIST control messages themselves, as is rate control
   to handle retransmissions and also bursts of unreliable signalling or
   state setup requests from the signalling applications.

   Query messages that do not receive Responses MAY be retransmitted;
   retransmissions MUST use a binary exponential backoff.  The initial
   timer value is T1, which the backoff process can increase up to a
   maximum value of T2 seconds.  The default value for T1 is 500 ms.  T1
   is an estimate of the round-trip time between the Querying and
   Responding nodes.  Nodes MAY use smaller values of T1 if it is known
   that the Query should be answered within the local network.  T1 MAY
   be chosen larger, and this is RECOMMENDED if it is known in advance
   (such as on high-latency access links) that the round-trip time is
   larger.  The default value of T2 is 64*T1.  Note that Queries may go
   unanswered either because of message loss (in either direction) or
   because there is no reachable GIST peer.  Therefore, implementations
   MAY trade off reliability (large T2) against promptness of error
   feedback to applications (small T2).  If the NSLP has indicated a
   timeout on the validity of this payload (see Appendix B.1), T2 MUST
   be chosen so that the process terminates within this timeout.
   Retransmitted Queries MUST use different Query-Cookie values.  If the
   Query carries NSLP data, it may be delivered multiple times to the
   signalling application.  These rules apply equally to the message
   that first creates routing state, and those that refresh it.  In all
   cases, Responses MUST be sent promptly to avoid spurious
   retransmissions.  Nodes generating any type of retransmission MUST be
   prepared to receive and match a reply to any of them, not just the
   one most recently sent.  Although a node SHOULD terminate its
   retransmission process when any reply is received, it MUST continue
   to process further replies as normal.
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   This algorithm is sufficient to handle lost Queries and Responses.
   The case of a lost Confirm is more subtle.  The Responding node MAY
   run a retransmission timer to resend the Response until a Confirm is
   received; the timer MUST use the same backoff mechanism and
   parameters as for Responses.  The problem of an amplification attack
   stimulated by a malicious Query is handled by requiring the cookie
   mechanism to enable the node receiving the Response to discard it
   efficiently if it does not match a previously sent Query.  This
   approach is only appropriate if the Responding node is prepared to
   store per-flow state after receiving a single (Query) message, which
   includes the case where the node has queued NSLP data.  If the
   Responding node has delayed state installation, the error condition
   will only be detected when a Data message arrives.  This is handled
   as a routing state error (see Section 4.4.6) that causes the Querying
   node to restart the handshake.

   The basic rate-control requirements for D-mode traffic are
   deliberately minimal.  A single rate limiter applies to all traffic,
   for all interfaces and message types.  It applies to retransmissions
   as well as new messages, although an implementation MAY choose to
   prioritise one over the other.  Rate-control applies only to locally
   generated D-mode messages, not to messages that are being forwarded.
   When the rate limiter is in effect, D-mode messages MUST be queued
   until transmission is re-enabled, or they MAY be dropped with an
   error condition indicated back to local signalling applications.  In
   either case, the effect of this will be to reduce the rate at which
   new transactions can be initiated by signalling applications, thereby
   reducing the load on the network.

   The rate-limiting mechanism is implementation-defined, but it is
   RECOMMENDED that a token bucket limiter as described in [33] be used.
   The token bucket MUST be sized to ensure that a node cannot saturate
   the network with D-mode traffic, for example, when re-probing the
   network for multiple flows after a route change.  A suitable approach
   is to restrict the token bucket parameters so that the mean output
   rate is a small fraction of the node’s lowest-speed interface.  It is
   RECOMMENDED that this fraction is no more than 5%.  Note that
   according to the rules of Section 4.3.3, in general, D-mode SHOULD
   only be used for Queries and Responses rather than normal signalling
   traffic unless capacity for normal signalling traffic can be
   engineered.

5.4.  C-mode Transport

   It is a requirement of the NTLP defined in [29] that it should be
   able to support bundling of small messages, fragmentation of large
   messages, and message boundary delineation.  TCP provides both
   bundling and fragmentation, but not message boundaries.  However, the
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   length information in the GIST common header allows the message
   boundary to be discovered during parsing.  The bundling together of
   small messages either can be done within the transport protocol or
   can be carried out by GIST during message construction.  Either way,
   two approaches can be distinguished:

   1.  As messages arrive for transmission, they are gathered into a
       bundle until a size limit is reached or a timeout expires (cf.
       the Nagle algorithm of TCP).  This provides maximal efficiency at
       the cost of some latency.

   2.  Messages awaiting transmission are gathered together while the
       node is not allowed to send them, for example, because it is
       congestion controlled.

   The second type of bundling is always appropriate.  For GIST, the
   first type MUST NOT be used for trigger messages (i.e., messages that
   update GIST or signalling application state), but may be appropriate
   for refresh messages (i.e., messages that just extend timers).  These
   distinctions are known only to the signalling applications, but MAY
   be indicated (as an implementation issue) by setting the priority
   transfer attribute (Section 4.1.2).

   It can be seen that all of these transport protocol options can be
   supported by the basic GIST message format already presented.  The
   GIST message, consisting of common header and TLVs, is carried
   directly in the transport protocol, possibly incorporating transport
   layer security protection.  Further messages can be carried in a
   continuous stream.  This specification defines only the use of TCP,
   but other possibilities could be included without additional work on
   message formatting.

5.5.  Message Type/Encapsulation Relationships

   GIST has four primary message types (Query, Response, Confirm, and
   Data) and three possible encapsulation methods (normal D-mode,
   Q-mode, and C-mode).  The combinations of message type and
   encapsulation that are allowed for message transmission are given in
   the table below.  In some cases, there are several possible choices,
   depending on the existence of routing state or messaging
   associations.  The rules governing GIST policy, including whether or
   not to create such state to handle a message, are described
   normatively in the other sections of this specification.  If a
   message that can only be sent in Q-mode or D-mode arrives in C-mode
   or vice versa, this MUST be rejected with an "Incorrect
   Encapsulation" error message (Appendix A.4.4.3).  However, it should
   be noted that the processing of the message at the receiver is not
   otherwise affected by the encapsulation method used, except that the
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   decapsulation process may provide additional information, such as
   translated addresses or IP hop count to be used in the subsequent
   message processing.

   +----------+--------------+---------------------------+-------------+
   |  Message |    Normal    |   Query D-mode (Q-mode)   |    C-mode   |
   |          |    D-mode    |                           |             |
   +----------+--------------+---------------------------+-------------+
   |   Query  |     Never    |   Always, with C-flag=1   |    Never    |
   |          |              |                           |             |
   | Response |   Unless a   |           Never           |     If a    |
   |          |   messaging  |                           |  messaging  |
   |          |  association |                           | association |
   |          |   is being   |                           |   is being  |
   |          |    re-used   |                           |   re-used   |
   |          |              |                           |             |
   |  Confirm |  Only if no  |           Never           |     If a    |
   |          |   messaging  |                           |  messaging  |
   |          |  association |                           | association |
   |          | has been set |                           |   has been  |
   |          |   up or is   |                           |  set up or  |
   |          |     being    |                           |   is being  |
   |          |    re-used   |                           |   re-used   |
   |          |              |                           |             |
   |   Data   |  If routing  | If the MRI can be used to |     If a    |
   |          | state exists |     derive the Q-mode     |  messaging  |
   |          | for the flow | encapsulation, and either | association |
   |          |    but no    |  no routing state exists  |    exists   |
   |          |   messaging  |  or local policy requires |             |
   |          |  association |     Q-mode; MUST have     |             |
   |          |              |          C-flag=1         |             |
   +----------+--------------+---------------------------+-------------+

5.6.  Error Message Processing

   Special rules apply to the encapsulation and transmission of Error
   messages.

   GIST only generates Error messages in reaction to incoming messages.
   Error messages MUST NOT be generated in reaction to incoming Error
   messages.  The routing and encapsulation of the Error message are
   derived from that of the message that caused the error; in
   particular, local routing state is not consulted.  Routing state and
   messaging association state MUST NOT be created to handle the error,
   and Error messages MUST NOT be retransmitted explicitly by GIST,
   although they are subject to the same rate control as other messages.
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   o  If the incoming message was received in D-mode, the error MUST be
      sent in D-mode using the normal encapsulation, using the
      addressing information from the NLI object in the incoming
      message.  If the NLI could not be determined, the error MUST be
      sent to the IP source of the incoming message if the S-flag was
      set in it.  The NLI object in the Error message reports
      information about the originator of the error.

   o  If the incoming message was received over a messaging association,
      the error MUST be sent back over the same messaging association.

   The NSLPID in the common header of the Error message has the value
   zero.  If for any reason the message cannot be sent (for example,
   because it is too large to send in D-mode, or because the MA over
   which the original message arrived has since been closed), an error
   SHOULD be logged locally.  The receiver of the Error message can
   infer the NSLPID for the message that caused the error from the
   Common Header that is embedded in the Error Object.

5.7.  Messaging Association Setup

5.7.1.  Overview

   A key attribute of GIST is that it is flexible in its ability to use
   existing transport and security protocols.  Different transport
   protocols may have performance attributes appropriate to different
   environments; different security protocols may fit appropriately with
   different authentication infrastructures.  Even given an initial
   default mandatory protocol set for GIST, the need to support new
   protocols in the future cannot be ruled out, and secure feature
   negotiation cannot be added to an existing protocol in a backwards-
   compatible way.  Therefore, some sort of capability discovery is
   required.

   Capability discovery is carried out in Query and Response messages,
   using Stack-Proposal and Stack-Configuration-Data (SCD) objects.  If
   a new messaging association is required, it is then set up, followed
   by a Confirm.  Messaging association multiplexing is achieved by
   short-circuiting this exchange by sending the Response or Confirm
   messages on an existing association (Section 4.4.3); whether to do
   this is a matter of local policy.  The end result of this process is
   a messaging association that is a stack of protocols.  If multiple
   associations exist, it is a matter of local policy how to distribute
   messages over them, subject to respecting the transfer attributes
   requested for each message.
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   Every possible protocol for a messaging association has the following
   attributes:

   o  MA-Protocol-ID, a 1-byte IANA-assigned value (see Section 9).

   o  A specification of the (non-negotiable) policies about how the
      protocol should be used, for example, in which direction a
      connection should be opened.

   o  (Depending on the specific protocol:) Formats for an MA-protocol-
      options field to carry the protocol addressing and other
      configuration information in the SCD object.  The format may
      differ depending on whether the field is present in the Query or
      Response.  Some protocols do not require the definition of such
      additional data, in which case no corresponding MA-protocol-
      options field will occur in the SCD object.

   A Stack-Proposal object is simply a list of profiles; each profile is
   a sequence of MA-Protocol-IDs.  A profile lists the protocols in ’top
   to bottom’ order (e.g., TLS over TCP).  A Stack-Proposal is generally
   accompanied by an SCD object that carries an MA-protocol-options
   field for any protocol listed in the Stack-Proposal that needs it.
   An MA-protocol-options field may apply globally, to all instances of
   the protocol in the Stack-Proposal, or it can be tagged as applying
   to a specific instance.  The latter approach can for example be used
   to carry different port numbers for TCP depending on whether it is to
   be used with or without TLS.  An message flow that shows several of
   the features of Stack-Proposal and Stack-Configuration-Data formats
   can be found in Appendix D.

   An MA-protocol-options field may also be flagged as not usable; for
   example, a NAT that could not handle SCTP would set this in an MA-
   protocol-options field about SCTP.  A protocol flagged this way MUST
   NOT be used for a messaging association.  If the Stack-Proposal and
   SCD are both present but not consistent, for example, if they refer
   to different protocols, or an MA-protocol-options field refers to a
   non-existent profile, an "Object Value Error" message
   (Appendix A.4.4.10) with subcode 5 ("Stack-Proposal - Stack-
   Configuration-Data Mismatch") MUST be returned and the message
   dropped.

   A node generating an SCD object MUST honour the implied protocol
   configurations for the period during which a messaging association
   might be set up; in particular, it MUST be immediately prepared to
   accept incoming datagrams or connections at the protocol/port
   combinations advertised.  This MAY require the creation of listening
   endpoints for the transport and security protocols in question, or a
   node MAY keep a pool of such endpoints open for extended periods.
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   However, the received object contents MUST be retained only for the
   duration of the Query/Response exchange and to allow any necessary
   association setup to complete.  They may become invalid because of
   expired bindings at intermediate NATs, or because the advertising
   node is using agile ports.  Once the setup is complete, or if it is
   not necessary or fails for some reason, the object contents MUST be
   discarded.  A default time of 30 seconds to keep the contents is
   RECOMMENDED.

   A Query requesting messaging association setup always contains a
   Stack-Proposal and SCD object.  The Stack-Proposal MUST only include
   protocol configurations that are suitable for the transfer attributes
   of the messages for which the Querying node wishes to use the
   messaging association.  For example, it should not simply include all
   configurations that the Querying node is capable of supporting.

   The Response always contains a Stack-Proposal and SCD object, unless
   multiplexing (where the Responder decides to use an existing
   association) occurs.  For such a Response, the security protocols
   listed in the Stack-Proposal MUST NOT depend on the Query.  A node
   MAY make different proposals depending on the combination of
   interface and NSLPID.  If multiplexing does occur, which is indicated
   by sending the Response over an existing messaging association, the
   following rules apply:

   o  The re-used messaging association MUST NOT have weaker security
      properties than all of the options that would have been offered in
      the full Response that would have been sent without re-use.

   o  The re-used messaging association MUST have equivalent or better
      transport and security characteristics as at least one of the
      protocol configurations that was offered in the Query.

   Once the messaging association is set up, the Querying node repeats
   the responder’s Stack-Proposal over it in the Confirm.  The
   Responding node MUST verify that this has not been changed as part of
   bidding-down attack prevention, as well as verifying the Responder-
   Cookie (Section 8.5).  If either check fails, the Responding node
   MUST NOT create the message routing state (or MUST delete it if it
   already exists) and SHOULD log an error condition locally.  If this
   is the first message on a new MA, the MA MUST be torn down.  See
   Section 8.6 for further discussion.
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5.7.2.  Protocol Definition: Forwards-TCP

   This MA-Protocol-ID denotes a basic use of TCP between peers.
   Support for this protocol is REQUIRED.  If this protocol is offered,
   MA-protocol-options data MUST also be carried in the SCD object.  The
   MA-protocol-options field formats are:

   o  in a Query: no additional options data (the MA-protocol-options
      Length field is zero).

   o  in a Response: 2-byte port number at which the connection will be
      accepted, followed by 2 pad bytes.

   The connection is opened in the forwards direction, from the Querying
   node towards the responder.  The Querying node MAY use any source
   address and source port.  The destination information MUST be derived
   from information in the Response: the address from the interface-
   address from the Network-Layer-Information object and the port from
   the SCD object as described above.

   Associations using Forwards-TCP can carry messages with the transfer
   attribute Reliable=True.  If an error occurs on the TCP connection
   such as a reset, as can be detected for example by a socket exception
   condition, GIST MUST report this to NSLPs as discussed in
   Section 4.1.2.

5.7.3.  Protocol Definition: Transport Layer Security

   This MA-Protocol-ID denotes a basic use of transport layer channel
   security, initially in conjunction with TCP.  Support for this
   protocol in conjunction with TCP is REQUIRED; associations using it
   can carry messages with transfer attributes requesting
   confidentiality or integrity protection.  The specific TLS version
   will be negotiated within the TLS layer itself, but implementations
   MUST NOT negotiate to protocol versions prior to TLS1.0 [15] and MUST
   use the highest protocol version supported by both peers.
   Implementation of TLS1.2 [10] is RECOMMENDED.  GIST nodes supporting
   TLS1.0 or TLS1.1 MUST be able to negotiate the TLS ciphersuite
   TLS_RSA_WITH_3DES_EDE_CBC_SHA and SHOULD be able to negotiate the TLS
   ciphersuite TLS_RSA_WITH_AES_128_CBC_SHA.  They MAY negotiate any
   mutually acceptable ciphersuite that provides authentication,
   integrity, and confidentiality.

   The default mode of TLS authentication, which applies in particular
   to the above ciphersuites, uses a client/server X.509 certificate
   exchange.  The Querying node acts as a TLS client, and the Responding
   node acts as a TLS server.  Where one of the above ciphersuites is
   negotiated, the GIST node acting as a server MUST provide a
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   certificate, and MUST request one from the GIST node acting as a TLS
   client.  This allows either server-only or mutual authentication,
   depending on the certificates available to the client and the policy
   applied at the server.

   GIST nodes MAY negotiate other TLS ciphersuites.  In some cases, the
   negotiation of alternative ciphersuites is used to trigger
   alternative authentication procedures, such as the use of pre-shared
   keys [32].  The use of other authentication procedures may require
   additional specification work to define how they can be used as part
   of TLS within the GIST framework, and may or may not require the
   definition of additional MA-Protocol-IDs.

   No MA-protocol-options field is required for this TLS protocol
   definition.  The configuration information for the transport protocol
   over which TLS is running (e.g., TCP port number) is provided by the
   MA-protocol-options for that protocol.

5.7.3.1.  Identity Checking in TLS

   After TLS authentication, a node MUST check the identity presented by
   the peer in order to avoid man-in-the-middle attacks, and verify that
   the peer is authorised to take part in signalling at the GIST layer.
   The authorisation check is carried out by comparing the presented
   identity with each Authorised Peer Database (APD) entry in turn, as
   discussed in Section 4.4.2.  This section defines the identity
   comparison algorithm for a single APD entry.

   For TLS authentication with X.509 certificates, an identity from the
   DNS namespace MUST be checked against each subjectAltName extension
   of type dNSName present in the certificate.  If no such extension is
   present, then the identity MUST be compared to the (most specific)
   Common Name in the Subject field of the certificate.  When matching
   DNS names against dNSName or Common Name fields, matching is case-
   insensitive.  Also, a "*" wildcard character MAY be used as the left-
   most name component in the certificate or identity in the APD.  For
   example, *.example.com in the APD would match certificates for
   a.example.com, foo.example.com, *.example.com, etc., but would not
   match example.com.  Similarly, a certificate for *.example.com would
   be valid for APD identities of a.example.com, foo.example.com,
   *.example.com, etc., but not example.com.

   Additionally, a node MUST verify the binding between the identity of
   the peer to which it connects and the public key presented by that
   peer.  Nodes SHOULD implement the algorithm in Section 6 of [8] for
   general certificate validation, but MAY supplement that algorithm
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   with other validation methods that achieve equivalent levels of
   verification (such as comparing the server certificate against a
   local store of already-verified certificates and identity bindings).

   For TLS authentication with pre-shared keys, the identity in the
   psk_identity_hint (for the server identity, i.e., the Responding
   node) or psk_identity (for the client identity, i.e., the Querying
   node) MUST be compared to the identities in the APD.

5.8.  Specific Message Routing Methods

   Each message routing method (see Section 3.3) requires the definition
   of the format of the message routing information (MRI) and Q-mode
   encapsulation rules.  These are given in the following subsections
   for the MRMs currently defined.  A GIST implementation on a node MUST
   support whatever MRMs are required by the NSLPs on that node; GIST
   implementations SHOULD provide support for both the MRMs defined
   here, in order to minimise deployment barriers for new signalling
   applications that need them.

5.8.1.  The Path-Coupled MRM

5.8.1.1.  Message Routing Information

   For the path-coupled MRM, the message routing information (MRI) is
   conceptually the Flow Identifier as in the NSIS framework [29].
   Minimally, this could just be the flow destination address; however,
   to account for policy-based forwarding and other issues a more
   complete set of header fields SHOULD be specified if possible (see
   Section 4.3.4 and Section 7.2 for further discussion).

       MRI = network-layer-version
             source-address prefix-length
             destination-address prefix-length
             IP-protocol
             diffserv-codepoint
             [ flow-label ]
             [ ipsec-SPI / L4-ports]

   Additional control information defines whether the flow-label, IPsec
   Security Parameters Index (SPI), and port information are present,
   and whether the IP-protocol and diffserv-codepoint fields should be
   interpreted as significant.  The source and destination addresses
   MUST be real node addresses, but prefix lengths other than 32 or 128
   (for IPv4 and IPv6, respectively) MAY be used to implement address
   wildcarding, allowing the MRI to refer to traffic to or from a wider
   address range.  An additional flag defines the message direction
   relative to the MRI (upstream vs. downstream).

Schulzrinne & Hancock         Experimental                     [Page 66]



RFC 5971                          GIST                      October 2010

   The MRI format allows a potentially very large number of different
   flag and field combinations.  A GIST implementation that cannot
   interpret the MRI in a message MUST return an "Object Value Error"
   message (Appendix A.4.4.10) with subcodes 1 ("Value Not Supported")
   or 2 ("Invalid Flag-Field Combination") and drop the message.

5.8.1.2.  Downstream Q-mode Encapsulation

   Where the signalling message is travelling in the same (’downstream’)
   direction as the flow defined by the MRI, the IP addressing for
   Q-mode encapsulated messages is as follows.  Support for this
   encapsulation is REQUIRED.

   o  The destination IP address MUST be the flow destination address as
      given in the MRI of the message payload.

   o  By default, the source address is the flow source address, again
      from the MRI; therefore, the source addressing mode flag in the
      common header S=0.  This provides the best likelihood that the
      message will be correctly routed through any region performing
      per-packet policy-based forwarding or load balancing that takes
      the source address into account.  However, there may be
      circumstances where the use of the signalling source address (S=1)
      is preferable, such as:

      *  In order to receive ICMP error messages about the signalling
         message, such as unreachable port or address.  If these are
         delivered to the flow source rather than the signalling source,
         it will be very difficult for the querying node to detect that
         it is the last GIST node on the path.  Another case is where
         there is an abnormally low MTU along the path, in which case
         the querying node needs to see the ICMP error (recall that
         Q-mode packets are sent with DF set).

      *  In order to receive GIST Error messages where the error message
         sender could not interpret the NLI in the original message.

      *  In order to attempt to run GIST through an unmodified NAT,
         which will only process and translate IP addresses in the IP
         header (see Section 7.2.1).

      Because of these considerations, use of the signalling source
      address is allowed as an option, with use based on local policy.
      A node SHOULD use the flow source address for initial Query
      messages, but SHOULD transition to the signalling source address
      for some retransmissions or as a matter of static configuration,
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      for example, if a NAT is known to be in the path out of a certain
      interface.  The S-flag in the common header tells the message
      receiver which option was used.

   A Router Alert Option is also included in the IP header.  The option
   value depends on the NSLP being signalled for.  In addition, it is
   essential that the Query mimics the actual data flow as closely as
   possible, since this is the basis of how the signalling message is
   attached to the data path.  To this end, GIST SHOULD set the Diffserv
   codepoint and (for IPv6) flow label to match the values in the MRI.

   A GIST implementation SHOULD apply validation checks to the MRI, to
   reject Query messages that are being injected by nodes with no
   legitimate interest in the flow being signalled for.  In general, if
   the GIST node can detect that no flow could arrive over the same
   interface as the Query, it MUST be rejected with an appropriate error
   message.  Such checks apply only to messages with the Q-mode
   encapsulation, since only those messages are required to track the
   flow path.  The main checks are that the IP version used in the
   encapsulation should match that of the MRI and the version(s) used on
   that interface, and that the full range of source addresses (the
   source-address masked with its prefix-length) would pass ingress
   filtering checks.  For these cases, the error message is "MRI
   Validation Failure" (Appendix A.4.4.12) with subcodes 1 or 2 ("IP
   Version Mismatch" or "Ingress Filter Failure"), respectively.

5.8.1.3.  Upstream Q-mode Encapsulation

   In some deployment scenarios, it is desirable to set up routing state
   in the upstream direction (i.e., from flow receiver towards the
   sender).  This could be used to support firewall signalling to
   control traffic from an uncooperative sender, or signalling in
   general where the flow sender was not NSIS-capable.  This capability
   is incorporated into GIST by defining an encapsulation and processing
   rules for sending Query messages upstream.

   In general, it is not possible to determine the hop-by-hop route
   upstream because of asymmetric IP routing.  However, in particular
   cases, the upstream peer can be discovered with a high degree of
   confidence, for example:

   o  The upstream GIST peer is one IP hop away, and can be reached by
      tracing back through the interface on which the flow arrives.

   o  The upstream peer is a border router of a single-homed (stub)
      network.
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   This section defines an upstream Q-mode encapsulation and validation
   checks for when it can be used.  The functionality to generate
   upstream Queries is OPTIONAL, but if received they MUST be processed
   in the normal way with some additional IP TTL checks.  No special
   functionality is needed for this.

   It is possible for routing state at a given node, for a specific MRI
   and NSLPID, to be created by both an upstream Query exchange
   (initiated by the node itself) and a downstream Query exchange (where
   the node is the responder).  If the SIDs are different, these items
   of routing state MUST be considered as independent; if the SIDs
   match, the routing state installed by the downstream exchange MUST
   take precedence, provided that the downstream Query passed ingress
   filtering checks.  The rationale for this is that the downstream
   Query is in general a more reliable way to install state, since it
   directly probes the IP routing infrastructure along the flow path,
   whereas use of the upstream Query depends on the correctness of the
   Querying node’s understanding of the topology.

   The details of the encapsulation are as follows:

   o  The destination address SHOULD be the flow source address as given
      in the MRI of the message payload.  An implementation with more
      detailed knowledge of local IP routing MAY use an alternative
      destination address (e.g., the address of its default router).

   o  The source address SHOULD be the signalling node address, so in
      the common header S=1.

   o  A Router Alert Option is included as in the downstream case.

   o  The Diffserv codepoint and (for IPv6) flow label MAY be set to
      match the values from the MRI as in the downstream case, and the
      UDP port selection is also the same.

   o  The IP layer TTL of the message MUST be set to 255.

   The sending GIST implementation SHOULD attempt to send the Query via
   the same interface and to the same link layer neighbour from which
   the data packets of the flow are arriving.

   The receiving GIST node MAY apply validation checks to the message
   and MRI, to reject Query messages that have reached a node at which
   they can no longer be trusted.  In particular, a node SHOULD reject a
   message that has been propagated more than one IP hop, with an
   "Invalid IP layer TTL" error message (Appendix A.4.4.11).  This can
   be determined by examining the received IP layer TTL, similar to the
   generalised IP TTL security mechanism described in [41].
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   Alternatively, receipt of an upstream Query at the flow source MAY be
   used to trigger setup of GIST state in the downstream direction.
   These restrictions may be relaxed in a future version.

5.8.2.  The Loose-End MRM

   The Loose-End MRM is used to discover GIST nodes with particular
   properties in the direction of a given address, for example, to
   discover a NAT along the upstream data path as in [34].

5.8.2.1.  Message Routing Information

   For the loose-end MRM, only a simplified version of the Flow
   Identifier is needed.

       MRI = network-layer-version
             source-address
             destination-address

   The source address is the address of the node initiating the
   discovery process, for example, the node that will be the data
   receiver in the NAT discovery case.  The destination address is the
   address of a node that is expected to be the other side of the node
   to be discovered.  Additional control information defines the
   direction of the message relative to this flow as in the path-coupled
   case.

5.8.2.2.  Downstream Q-mode Encapsulation

   Only one encapsulation is defined for the loose-end MRM; by
   convention, this is referred to as the downstream encapsulation, and
   is defined as follows:

   o  The IP destination address MUST be the destination address as
      given in the MRI of the message payload.

   o  By default, the IP source address is the source address from the
      MRI (S=0).  However, the use of the signalling source address
      (S=1) is allowed as in the case of the path-coupled MRM.

   A Router Alert Option is included in the IP header.  The option value
   depends on the NSLP being signalled for.  There are no special
   requirements on the setting of the Diffserv codepoint, IP layer TTL,
   or (for IPv6) the flow label.  Nor are any special validation checks
   applied.
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6.  Formal Protocol Specification

   This section provides a more formal specification of the operation of
   GIST processing, in terms of rules for transitions between states of
   a set of communicating state machines within a node.  The following
   description captures only the basic protocol specification;
   additional mechanisms can be used by an implementation to accelerate
   route change processing, and these are captured in Section 7.1.  A
   more detailed description of the GIST protocol operation in state
   machine syntax can be found in [45].

   Conceptually, GIST processing at a node may be seen in terms of four
   types of cooperating state machine:

   1.  There is a top-level state machine that represents the node
       itself (Node-SM).  It is responsible for the processing of events
       that cannot be directed towards a more specific state machine,
       for example, inbound messages for which no routing state
       currently exists.  This machine exists permanently, and is
       responsible for creating per-MRI state machines to manage the
       GIST handshake and routing state maintenance procedures.

   2.  For each flow and signalling direction where the node is
       responsible for the creation of routing state, there is an
       instance of a Query-Node state machine (Querying-SM).  This
       machine sends Query and Confirm messages and waits for Responses,
       according to the requirements from local API commands or timer
       processing, such as message repetition or routing state refresh.

   3.  For each flow and signalling direction where the node has
       accepted the creation of routing state by a peer, there is an
       instance of a Responding-Node state machine (Responding-SM).
       This machine is responsible for managing the status of the
       routing state for that flow.  Depending on policy, it MAY be
       responsible for transmission or retransmission of Response
       messages, or this MAY be handled by the Node-SM, and a
       Responding-SM is not even created for a flow until a properly
       formatted Confirm has been accepted.

   4.  Messaging associations have their own lifecycle, represented by
       an MA-SM, from when they are first created (in an incomplete
       state, listening for an inbound connection or waiting for
       outbound connections to complete), to when they are active and
       available for use.

   Apart from the fact that the various machines can be created and
   destroyed by each other, there is almost no interaction between them.
   The machines for different flows do not interact; the Querying-SM and
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   Responding-SM for a single flow and signalling direction do not
   interact.  That is, the Responding-SM that accepts the creation of
   routing state for a flow on one interface has no direct interaction
   with the Querying-SM that sets up routing state on the next interface
   along the path.  This interaction is mediated instead through the
   NSLP.

   The state machine descriptions use the terminology rx_MMMM, tg_TTTT,
   and er_EEEE for incoming messages, API/lower layer triggers, and
   error conditions, respectively.  The possible events of these types
   are given in the table below.  In addition, timeout events denoted
   to_TTTT may also occur; the various timers are listed independently
   for each type of state machine in the following subsections.
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   +---------------------+---------------------------------------------+
   | Name                | Meaning                                     |
   +---------------------+---------------------------------------------+
   | rx_Query            | A Query has been received.                  |
   |                     |                                             |
   | rx_Response         | A Response has been received.               |
   |                     |                                             |
   | rx_Confirm          | A Confirm has been received.                |
   |                     |                                             |
   | rx_Data             | A Data message has been received.           |
   |                     |                                             |
   | rx_Message          | rx_Query||rx_Response||rx_Confirm||rx_Data. |
   |                     |                                             |
   | rx_MA-Hello         | An MA-Hello message has been received.      |
   |                     |                                             |
   | tg_NSLPData         | A signalling application has requested data |
   |                     | transfer (via API SendMessage).             |
   |                     |                                             |
   | tg_Connected        | The protocol stack for a messaging          |
   |                     | association has completed connecting.       |
   |                     |                                             |
   | tg_RawData          | GIST wishes to transfer data over a         |
   |                     | particular messaging association.           |
   |                     |                                             |
   | tg_MAIdle           | GIST decides that it is no longer necessary |
   |                     | to keep an MA open for itself.              |
   |                     |                                             |
   | er_NoRSM            | A "No Routing State" error was received.    |
   |                     |                                             |
   | er_MAConnect        | A messaging association protocol failed to  |
   |                     | complete a connection.                      |
   |                     |                                             |
   | er_MAFailure        | A messaging association failed.             |
   +---------------------+---------------------------------------------+

                              Incoming Events

6.1.  Node Processing

   The Node-level state machine is responsible for processing events for
   which no more appropriate messaging association state or routing
   state exists.  Its structure is trivial: there is a single state
   (’Idle’); all events cause a transition back to Idle.  Some events
   cause the creation of other state machines.  The only events that are
   processed by this state machine are incoming GIST messages (Query/
   Response/Confirm/Data) and API requests to send data; no other events
   are possible.  In addition to this event processing, the Node-level
   machine is responsible for managing listening endpoints for messaging
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   associations.  Although these relate to Responding node operation,
   they cannot be handled by the Responder state machine since they are
   not created per flow.  The processing rules for each event are as
   follows:

   Rule 1 (rx_Query):
   use the GIST service interface to determine the signalling
       application policy relating to this peer
       // note that this interaction delivers any NSLP-Data to
       // the NSLP as a side effect
   if (the signalling application indicates that routing state should
       be created) then
     if (routing state can be created without a 3-way handshake) then
       create Responding-SM and transfer control to it
     else
       send Response with R=1
   else
     propagate the Query with any updated NSLP payload provided

   Rule 2 (rx_Response):
   // a routing state error
   discard message

   Rule 3 (rx_Confirm):
   if (routing state can be created before receiving a Confirm) then
     // we should already have Responding-SM for it,
     // which would handle this message
     discard message
     send "No Routing State" error message
   else
     create Responding-SM and pass message to it

   Rule 4 (rx_Data):
   if (node policy will only process Data messages with matching
       routing state) then
     send "No Routing State" error message
   else
     pass directly to NSLP

   Rule 4 (er_NoRSM):
   discard the message
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   Rule 5 (tg_NSLPData):
   if Q-mode encapsulation is not possible for this MRI
     reject message with an error
   else
     if (local policy & transfer attributes say routing
         state is not needed) then
       send message statelessly
     else
       create Querying-SM and pass message to it

6.2.  Query Node Processing

   The Querying-Node state machine (Querying-SM) has three states:

   o  Awaiting Response

   o  Established

   o  Awaiting Refresh

   The Querying-SM is created by the Node-SM machine as a result of a
   request to send a message for a flow in a signalling direction where
   the appropriate state does not exist.  The Query is generated
   immediately and the No_Response timer is started.  The NSLP data MAY
   be carried in the Query if local policy and the transfer attributes
   allow it; otherwise, it MUST be queued locally pending MA
   establishment.  Then the machine transitions to the Awaiting Response
   state, in which timeout-based retransmissions are handled.  Data
   messages (rx_Data events) should not occur in this state; if they do,
   this may indicate a lost Response and a node MAY retransmit a Query
   for this reason.

   Once a Response has been successfully received and routing state
   created, the machine transitions to Established, during which NSLP
   data can be sent and received normally.  Further Responses received
   in this state (which may be the result of a lost Confirm) MUST be
   treated the same way.  The Awaiting Refresh state can be considered
   as a substate of Established, where a new Query has been generated to
   refresh the routing state (as in Awaiting Response) but NSLP data can
   be handled normally.
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   The timers relevant to this state machine are as follows:

   Refresh_QNode:  Indicates when the routing state stored by this state
      machine must be refreshed.  It is reset whenever a Response is
      received indicating that the routing state is still valid.
      Implementations MUST set the period of this timer based on the
      value in the RS-validity-time field of a Response to ensure that a
      Query is generated before the peer’s routing state expires (see
      Section 4.4.4).

   No_Response:  Indicates that a Response has not been received in
      answer to a Query.  This is started whenever a Query is sent and
      stopped when a Response is received.

   Inactive_QNode:  Indicates that no NSLP traffic is currently being
      handled by this state machine.  This is reset whenever the state
      machine handles NSLP data, in either direction.  When it expires,
      the state machine MAY be deleted.  The period of the timer can be
      set at any time via the API (SetStateLifetime), and if the period
      is reset in this way the timer itself MUST be restarted.

   The main events (including all those that cause state transitions)
   are shown in the figure below, tagged with the number of the
   processing rule that is used to handle the event.  These rules are
   listed after the diagram.  All events not shown or described in the
   text above are assumed to be impossible in a correct implementation
   and MUST be ignored.
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              [Initialisation]   +-----+
        -------------------------|Birth|
       |                         +-----+
       | er_NoRSM[3](from all states)                   rx_Response[4]
       |                                               || tg_NSLPData[5]
       |      tg_NSLPData[1]                           || rx_Data[7]
       |        --------                                    -------
       |       |        V                                  |       V
       |       |        V                                  |       V
       |      +----------+                               +-----------+
        ---->>| Awaiting |                               |Established|
        ------| Response |---------------------------->> |           |
       |      +----------+       rx_Response[4]          +-----------+
       |       ^        |                                     ^   |
       |       ^        |                                     ^   |
       |        --------                                      |   |
       |    to_No_Response[2]                                 |   |
       |    [!nResp_reached]     tg_NSLPData[5]               |   |
       |                         || rx_Data[7]                |   |
       |                          --------                    |   |
       |                         |        V                   |   |
       |    to_No_Response[2]    |        V                   |   |
       |     [nResp_reached]    +-----------+  rx_Response[4] |   |
        ----------   -----------|  Awaiting |-----------------    |
                  | |           |  Refresh  |<<-------------------
                  | |           +-----------+    to_Refresh_QNode[8]
                  | |            ^        |
                  V V            ^        | to_No_Response[2]
                  V V             --------  [!nResp_reached]
                +-----+
                |Death|<<---------------
                +-----+   to_Inactive_QNode[6]
                          (from all states)

                    Figure 7: Query Node State Machine
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   The processing rules are as follows:

   Rule 1:
      Store the message for later transmission

   Rule 2:
   if number of Queries sent has reached the threshold
     // nQuery_isMax is true
     indicate No Response error to NSLP
     destroy self
   else
     send Query
     start No_Response timer with new value

   Rule 3:
   // Assume the Confirm was lost in transit or the peer has reset;
   // restart the handshake
   send Query
   (re)start No_Response timer

   Rule 4:
   if a new MA-SM is needed create one
   if the R-flag was set send a Confirm
   send any stored Data messages
   stop No_Response timer
   start Refresh_QNode timer
   start Inactive_QNode timer if it was not running
   if there was piggybacked NSLP-Data
     pass it to the NSLP
     restart Inactive_QNode timer

   Rule 5:
   send Data message
   restart Inactive_QNode timer

   Rule 6:
      Terminate

   Rule 7:
   pass any data to the NSLP
   restart Inactive_QNode timer

   Rule 8:
   send Query
   start No_Response timer
   stop Refresh_QNode timer

Schulzrinne & Hancock         Experimental                     [Page 78]



RFC 5971                          GIST                      October 2010

6.3.  Responder Node Processing

   The Responding-Node state machine (Responding-SM) has three states:

   o  Awaiting Confirm

   o  Established

   o  Awaiting Refresh

   The policy governing the handling of Query messages and the creation
   of the Responding-SM has three cases:

   1.  No Confirm is required for a Query, and the state machine can be
       created immediately.

   2.  A Confirm is required for a Query, but the state machine can
       still be created immediately.  A timer is used to retransmit
       Response messages and the Responding-SM is destroyed if no valid
       Confirm is received.

   3.  A Confirm is required for a Query, and the state machine can only
       be created when it is received; the initial Query will have been
       handled by the Node-level machine.

   In case 2, the Responding-SM is created in the Awaiting Confirm
   state, and remains there until a Confirm is received, at which point
   it transitions to Established.  In cases 1 and 3, the Responding-SM
   is created directly in the Established state.  Note that if the
   machine is created on receiving a Query, some of the message
   processing will already have been performed in the node state
   machine.  In principle, an implementation MAY change its policy on
   handling a Query message at any time; however, the state machine
   descriptions here cover only the case where the policy is fixed while
   waiting for a Confirm message.

   In the Established state, the NSLP can send and receive data
   normally, and any additional rx_Confirm events MUST be silently
   ignored.  The Awaiting Refresh state can be considered a substate of
   Established, where a Query has been received to begin the routing
   state refresh.  In the Awaiting Refresh state, the Responding-SM
   behaves as in the Awaiting Confirm state, except that the NSLP can
   still send and receive data.  In particular, in both states there is
   timer-based retransmission of Response messages until a Confirm is
   received; additional rx_Query events in these states MUST also
   generate a reply and restart the no_Confirm timer.
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   The timers relevant to the operation of this state machine are as
   follows:

   Expire_RNode:  Indicates when the routing state stored by this state
      machine needs to be expired.  It is reset whenever a Query or
      Confirm (depending on local policy) is received indicating that
      the routing state is still valid.  Note that state cannot be
      refreshed from the R-Node.  If this timer fires, the routing state
      machine is deleted, regardless of whether a No_Confirm timer is
      running.

   No_Confirm:  Indicates that a Confirm has not been received in answer
      to a Response.  This is started/reset whenever a Response is sent
      and stopped when a Confirm is received.

   The detailed state transitions and processing rules are described
   below as in the Query node case.
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               rx_Query[1]                      rx_Query[5]
            [confirmRequired]    +-----+    [!confirmRequired]
        -------------------------|Birth|----------------------------
       |                         +-----+                            |
       |                            |         rx_Confirm[2]         |
       |                             ----------------------------   |
       |                                                         |  |
       |                                       rx_Query[5]       |  |
       |     tg_NSLPData[7]                   || rx_Confirm[10]  |  |
       |      || rx_Query[1]                  || rx_Data[4]      |  |
       |      || rx_Data[6]                   || tg_NSLPData[3]  |  |
       |        --------                        --------------   |  |
       |       |        V                      |              V  V  V
       |       |        V                      |              V  V  V
       |      +----------+                     |           +-----------+
        ---->>| Awaiting |     rx_Confirm[8]    -----------|Established|
        ------| Confirm  |------------------------------>> |           |
       |      +----------+                                 +-----------+
       |       ^        |                                      ^   |
       |       ^        |         tg_NSLPData[3]               ^   |
       |        --------          || rx_Query[1]               |   |
       |    to_No_Confirm[9]      || rx_Data[4]                |   |
       |    [!nConf_reached]       --------                    |   |
       |                          |        V                   |   |
       |    to_No_Confirm[9]      |        V                   |   |
       |    [nConf_reached]      +-----------+  rx_Confirm[8]  |   |
        ----------   ------------|  Awaiting |-----------------    |
                  | |            |  Refresh  |<<-------------------
                  | |            +-----------+      rx_Query[1]
                  | |             ^        |     [confirmRequired]
                  | |             ^        |
                  | |              --------
                  V V          to_No_Confirm[9]
                  V V          [!nConf_reached]
                +-----+
                |Death|<<---------------------
                +-----+    er_NoRSM[11]
                           to_Expire_RNode[11]
                               (from Established/Awaiting Refresh)

                  Figure 8: Responder Node State Machine
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   The processing rules are as follows:

   Rule 1:
   // a Confirm is required
   send Response with R=1
   (re)start No_Confirm timer with the initial timer value

   Rule 2:
   pass any NSLP-Data object to the NSLP
   start Expire_RNode timer

   Rule 3:  send the Data message

   Rule 4:  pass data to NSLP

   Rule 5:
   // no Confirm is required
   send Response with R=0
   start Expire_RNode timer

   Rule 6:
   drop incoming data
   send "No Routing State" error message

   Rule 7:  store Data message

   Rule 8:
   pass any NSLP-Data object to the NSLP
   send any stored Data messages
   stop No_Confirm timer
   start Expire_RNode timer

   Rule 9:
   if number of Responses sent has reached threshold
     // nResp_isMax is true
     destroy self
   else
     send Response
     start No_Response timer

   Rule 10:
 // can happen e.g., a retransmitted Response causes a duplicate Confirm
 silently ignore

   Rule 11:  destroy self
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6.4.  Messaging Association Processing

   Messaging associations (MAs) are modelled for use within GIST with a
   simple three-state process.  The Awaiting Connection state indicates
   that the MA is waiting for the connection process(es) for every
   protocol in the messaging association to complete; this might involve
   creating listening endpoints or attempting active connects.  Timers
   may also be necessary to detect connection failure (e.g., no incoming
   connection within a certain period), but these are not modelled
   explicitly.

   The Connected state indicates that the MA is open and ready to use
   and that the node wishes it to remain open.  In this state, the node
   operates a timer (SendHello) to ensure that messages are regularly
   sent to the peer, to ensure that the peer does not tear down the MA.
   The node transitions from Connected to Idle (indicating that it no
   longer needs the association) as a matter of local policy; one way to
   manage the policy is to use an activity timer but this is not
   specified explicitly by the state machine (see also Section 4.4.5).

   In the Idle state, the node no longer requires the messaging
   association but the peer still requires it and is indicating this by
   sending periodic MA-Hello messages.  A different timer (NoHello)
   operates to purge the MA when these messages stop arriving.  If real
   data is transferred over the MA, the state machine transitions back
   to Connected.

   At any time in the Connected or Idle states, a node MAY test the
   connectivity to its peer and the liveness of the GIST instance at
   that peer by sending an MA-Hello request with R=1.  Failure to
   receive a reply with a matching Hello-ID within a timeout MAY be
   taken as a reason to trigger er_MAFailure.  Initiation of such a test
   and the timeout setting are left to the discretion of the
   implementation.  Note that er_MAFailure may also be signalled by
   indications from the underlying messaging association protocols.  If
   a messaging association fails, this MUST be indicated back to the
   routing state machines that use it, and these MAY generate
   indications to signalling applications.  In particular, if the
   messaging association was being used to deliver messages reliably,
   this MUST be reported as a NetworkNotification error (Appendix B.4).

   Clearly, many internal details of the messaging association protocols
   are hidden in this model, especially where the messaging association
   uses multiple protocol layers.  Note also that although the existence
   of messaging associations is not directly visible to signalling
   applications, there is some interaction between the two because
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   security-related information becomes available during the open
   process, and this may be indicated to signalling applications if they
   have requested it.

   The timers relevant to the operation of this state machine are as
   follows:

   SendHello:  Indicates that an MA-Hello message should be sent to the
      remote node.  The period of this timer is determined by the MA-
      Hold-Time sent by the remote node during the Query/Response/
      Confirm exchange.

   NoHello:  Indicates that no MA-Hello has been received from the
      remote node for a period of time.  The period of this timer is
      sent to the remote node as the MA-Hold-Time during the Query/
      Response exchange.

   The detailed state transitions and processing rules are described
   below as in the Query node case.

            [Initialisation]       +-----+
       ----------------------------|Birth|
      |                            +-----+       tg_RawData[1]
      |                                          || rx_Message[2]
      |                                          || rx_MA-Hello[3]
      |       tg_RawData[5]                      || to_SendHello[4]
      |        --------                             --------
      |       |        V                           |        V
      |       |        V                           |        V
      |      +----------+                         +-----------+
       ---->>| Awaiting |    tg_Connected[6]      | Connected |
       ------|Connection|----------------------->>|           |
      |      +----------+                         +-----------+
      |                                              ^    |
      |                              tg_RawData[1]   ^    |
      |                            || rx_Message[2]  |    | tg_MAIdle[7]
      |                                              |    V
      |                                              |    V
      | er_MAConnect[8]  +-----+   to_NoHello[8]  +-----------+
       ---------------->>|Death|<<----------------|   Idle    |
                         +-----+                  +-----------+
                           ^                       ^        |
                           ^                       ^        |
                            ---------------         --------
                            er_MAFailure[8]        rx_MA-Hello[9]
                         (from Connected/Idle)

               Figure 9: Messaging Association State Machine
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   The processing rules are as follows:

   Rule 1:
   pass message to transport layer
   if the NoHello timer was running, stop it
   (re)start SendHello

   Rule 2:
   pass message to Node-SM, or R-SM (for a Confirm),
      or Q-SM (for a Response)
   if the NoHello timer was running, stop it

   Rule 3:
   if reply requested
     send MA-Hello
     restart SendHello timer

   Rule 4:
   send MA-Hello message
   restart SendHello timer

   Rule 5:
      queue message for later transmission

   Rule 6:
   pass outstanding queued messages to transport layer
   stop any timers controlling connection establishment
   start SendHello timer

   Rule 7:
   stop SendHello timer
   start NoHello timer

   Rule 8:
   report failure to routing state machines and signalling applications
   destroy self

   Rule 9:
   if reply requested
     send MA-Hello
   restart NoHello timer
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7.  Additional Protocol Features

7.1.  Route Changes and Local Repair

7.1.1.  Introduction

   When IP layer rerouting takes place in the network, GIST and
   signalling application state need to be updated for all flows whose
   paths have changed.  The updates to signalling application state
   depend mainly on the signalling application: for example, if the path
   characteristics have changed, simply moving state from the old to the
   new path is not sufficient.  Therefore, GIST cannot complete the path
   update processing by itself.  Its responsibilities are to detect the
   route change, update its local routing state consistently, and inform
   interested signalling applications at affected nodes.

                        xxxxxxxxxxxxxxxxxxxxxxxxxxxx
                       x  +--+      +--+      +--+  x      Initial
                      x  .|C1|_.....|D1|_.....|E1|   x     Configuration
                     x  . +--+.    .+--+.    .+--+\.  x
      >>xxxxxxxxxxxxx  .       .  .      .  .       .  xxxxxx>>
        +-+       +-+ .         ..        ..         . +-+
     ...|A|_......|B|/          ..        ..          .|F|_....
        +-+       +-+ .        .  .      .  .        . +-+
                       .      .    .    .    .      .
                        . +--+      +--+      +--+ .
                         .|C2|_.....|D2|_.....|E2|/
                          +--+      +--+      +--+

                          +--+      +--+      +--+         Configuration
                         .|C1|......|D1|......|E1|         after failure
                        . +--+     .+--+      +--+         of E1-F link
                       .      \.  .     \.  ./
        +-+       +-+ .         ..        ..           +-+
     ...|A|_......|B|.          ..        ..          .|F|_....
        +-+       +-+\         .  .      .  .        . +-+
      >>xxxxxxxxxxxxx .       .    .    .    .      .  xxxxxx>>
                     x  . +--+      +--+      +--+ .  x
                      x  .|C2|_.....|D2|_.....|E2|/  x
                       x  +--+      +--+      +--+  x
                        xxxxxxxxxxxxxxxxxxxxxxxxxxxx

               ........... = physical link topology
               >>xxxxxxx>> = flow direction
               _.......... = outgoing link for flow xxxxxx given
                             by local forwarding table

                       Figure 10: A Rerouting Event
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   Route change management is complicated by the distributed nature of
   the problem.  Consider the rerouting event shown in Figure 10.  An
   external observer can tell that the main responsibility for
   controlling the updates will probably lie with nodes B and F;
   however, E1 is best placed to detect the event quickly at the GIST
   level, and C1 and D1 could also attempt to initiate the repair.

   The NSIS framework [29] makes the assumption that signalling
   applications are soft-state based and operate end to end.  In this
   case, because GIST also periodically updates its picture of routing
   state, route changes will eventually be repaired automatically.  The
   specification as already given includes this functionality.  However,
   especially if upper layer refresh times are extended to reduce
   signalling load, the duration of inconsistent state may be very long
   indeed.  Therefore, GIST includes logic to exchange prompt
   notifications with signalling applications, to allow local repair if
   possible.  The additional mechanisms to achieve this are described in
   the following subsections.  To a large extent, these additions can be
   seen as implementation issues; the protocol messages and their
   significance are not changed, but there are extra interactions
   through the API between GIST and signalling applications, and
   additional triggers for transitions between the various GIST states.

7.1.2.  Route Change Detection Mechanisms

   There are two aspects to detecting a route change at a single node:

   o  Detecting that the outgoing path, in the direction of the Query,
      has or may have changed.

   o  Detecting that the incoming path, in the direction of the
      Response, has (or may have) changed, in which case the node may no
      longer be on the path at all.

   At a single node, these processes are largely independent, although
   clearly a change in one direction at a node corresponds to a change
   in the opposite direction at its peer.  Note that there are two
   possible forms for a route change: the interface through which a flow
   leaves or enters a node may change, and the adjacent peer may change.
   In general, a route change can include one or the other or both (or
   indeed neither, although such changes are very hard to detect).

   The route change detection mechanisms available to a node depend on
   the MRM in use and the role the node played in setting up the routing
   state in the first place (i.e., as Querying or Responding node).  The
   following discussion is specific to the case of the path-coupled MRM
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   using downstream Queries only; other scenarios may require other
   methods.  However, the repair logic described in the subsequent
   subsections is intended to be universal.

   There are five mechanisms for a node to detect that a route change
   has occurred, which are listed below.  They apply differently
   depending on whether the change is in the Query or Response
   direction, and these differences are summarised in the following
   table.

   Local Trigger:  In local trigger mode, GIST finds out from the local
      forwarding table that the next hop has changed.  This only works
      if the routing change is local, not if it happens a few IP routing
      hops away, including the case that it happens at a GIST-unaware
      node.

   Extended Trigger:  Here, GIST checks a link-state topology database
      to discover that the path has changed.  This makes certain
      assumptions on consistency of IP route computation and only works
      within a single area for OSPF [16] and similar link-state
      protocols.  Where available, this offers the most accurate and
      rapid indication of route changes, but requires more access to the
      routing internals than a typical operating system may provide.

   GIST C-mode Monitoring:  GIST may find that C-mode packets are
      arriving (from either peer) with a different IP layer TTL or on a
      different interface.  This provides no direct information about
      the new flow path, but indicates that routing has changed and that
      rediscovery may be required.

   Data Plane Monitoring:  The signalling application on a node may
      detect a change in behaviour of the flow, such as IP layer TTL
      change, arrival on a different interface, or loss of the flow
      altogether.  The signalling application on the node is allowed to
      convey this information to the local GIST instance (Appendix B.6).

   GIST Probing:  According to the specification, each GIST node MUST
      periodically repeat the discovery (Query/Response) operation.
      Values for the probe frequency are discussed in Section 4.4.4.
      The period can be negotiated independently for each GIST hop, so
      nodes that have access to the other techniques listed above MAY
      use long periods between probes.  The Querying node will discover
      the route change by a modification in the Network-Layer-
      Information in the Response.  The Responding node can detect a
      change in the upstream peer similarly; further, if the Responding
      node can store the interface on which Queries arrive, it can
      detect if this interface changes even when the peer does not.
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   +-------------+--------------------------+--------------------------+
   | Method      | Query direction          | Response direction       |
   +-------------+--------------------------+--------------------------+
   | Local       | Discovers new interface  | Not applicable           |
   | Trigger     | (and peer if local)      |                          |
   |             |                          |                          |
   | Extended    | Discovers new interface  | May determine that route |
   | Trigger     | and may determine new    | from peer will have      |
   |             | peer                     | changed                  |
   |             |                          |                          |
   | C-mode      | Provides hint that       | Provides hint that       |
   | Monitoring  | change has occurred      | change has occurred      |
   |             |                          |                          |
   | Data Plane  | Not applicable           | NSLP informs GIST that a |
   | Monitoring  |                          | change may have occurred |
   |             |                          |                          |
   | Probing     | Discovers changed NLI in | Discovers changed NLI in |
   |             | Response                 | Query                    |
   +-------------+--------------------------+--------------------------+

7.1.3.  GIST Behaviour Supporting Rerouting

   The basic GIST behaviour necessary to support rerouting can be
   modelled using a three-level classification of the validity of each
   item of current routing state.  (In addition to current routing
   state, NSIS can maintain past routing state, described in
   Section 7.1.4 below.)  This classification applies separately to the
   Querying and Responding nodes for each pair of GIST peers.  The
   levels are:

   Bad:  The routing state is either missing altogether or not safe to
      use to send data.

   Tentative:  The routing state may have changed, but it is still
      usable for sending NSLP data pending verification.

   Good:  The routing state has been established and no events affecting
      it have since been detected.

   These classifications are not identical to the states described in
   Section 6, but there are dependencies between them.  Specifically,
   routing state is considered Bad until the state machine first enters
   the Established state, at which point it becomes Good.  Thereafter,
   the status may be invalidated for any of the reasons discussed above;
   it is an implementation issue to decide which techniques to implement
   in any given node, and how to reclassify routing state (as Bad or
   Tentative) for each.  The status returns to Good, either when the
   state machine re-enters the Established state or if GIST can
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   determine from direct examination of the IP routing or forwarding
   tables that the peer has not changed.  When the status returns to
   Good, GIST MUST if necessary update its routing state table so that
   the relationships between MRI/SID/NSLPID tuples and messaging
   associations are up to date.

   When classification of the routing state for the downstream direction
   changes to Bad/Tentative because of local IP routing indications,
   GIST MAY automatically change the classification in the upstream
   direction to Tentative unless local routing indicates that this is
   not necessary.  This SHOULD NOT be done in the case where the initial
   change was indicated by the signalling application.  This mechanism
   accounts for the fact that a routing change may affect several nodes,
   and so can be an indication that upstream routing may also have
   changed.  In any case, whenever GIST updates the routing status, it
   informs the signalling application with the NetworkNotification API
   (Appendix B.4), unless the change was caused via the API in the first
   place.

   The GIST behaviour for state repair is different for the Querying and
   Responding nodes.  At the Responding node, there is no additional
   behaviour, since the Responding node cannot initiate protocol
   transitions autonomously.  (It can only react to the Querying node.)
   The Querying node has three options, depending on how the transition
   from Good was initially caused:

   1.  To inspect the IP routing/forwarding table and verifying that the
       next peer has not changed.  This technique MUST NOT be used if
       the transition was caused by a signalling application, but SHOULD
       be used otherwise if available.

   2.  To move to the Awaiting Refresh state.  This technique MUST NOT
       be used if the current status is Bad, since data is being
       incorrectly delivered.

   3.  To move to the Awaiting Response state.  This technique may be
       used at any time, but has the effect of freezing NSLP
       communication while GIST state is being repaired.

   The second and third techniques trigger the execution of a GIST
   handshake to carry out the repair.  It may be desirable to delay the
   start of the handshake process, either to wait for the network to
   stabilise, to avoid flooding the network with Query traffic for a
   large number of affected flows, or to wait for confirmation that the
   node is still on the path from the upstream peer.  One approach is to
   delay the handshake until there is NSLP data to be transmitted.
   Implementation of such delays is a matter of local policy; however,
   GIST MUST begin the handshake immediately if the status change was
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   caused by an InvalidateRoutingState API call marked as ’Urgent’, and
   SHOULD begin it if the upstream routing state is still known to be
   Good.

7.1.4.  Load Splitting and Route Flapping

   The Q-mode encapsulation rules of Section 5.8 try to ensure that the
   Query messages discovering the path mimic the flow as accurately as
   possible.  However, in environments where there is load balancing
   over multiple routes, and this is based on header fields differing
   between flow and Q-mode packets or done on a round-robin basis, the
   path discovered by the Query may vary from one handshake to the next
   even though the underlying network is stable.  This will appear to
   GIST as a route flap; route flapping can also be caused by problems
   in the basic network connectivity or routing protocol operation.  For
   example, a mobile node might be switching back and forth between two
   links, or might appear to have disappeared even though it is still
   attached to the network via a different route.

   This specification does not define mechanisms for GIST to manage
   multiple parallel routes or an unstable route; instead, GIST MAY
   expose this to the NSLP, which can then manage it according to
   signalling application requirements.  The algorithms already
   described always maintain the concept of the current route, i.e., the
   latest peer discovered for a particular flow.  Instead, GIST allows
   the use of prior signalling paths for some period while the
   signalling applications still need them.  Since NSLP peers are a
   single GIST hop apart, the necessary information to represent a path
   can be just an entry in the node’s routing state table for that flow
   (more generally, anything that uniquely identifies the peer, such as
   the NLI, could be used).  Rather than requiring GIST to maintain
   multiple generations of this information, it is provided to the
   signalling application in the same node in an opaque form for each
   message that is received from the peer.  The signalling application
   can store it if necessary and provide it back to the GIST layer in
   case it needs to be used.  Because this is a reference to information
   about the source of a prior signalling message, it is denoted ’SII-
   Handle’ (for Source Identification Information) in the abstract API
   of Appendix B.

   Note that GIST if possible SHOULD use the same SII-Handle for
   multiple sessions to the same peer, since this then allows signalling
   applications to aggregate some signalling, such as summary refreshes
   or bulk teardowns.  Messages sent using the SII-Handle MUST bypass
   the routing state tables at the sender, and this MUST be indicated by
   setting the E-flag in the common header (Appendix A.1).  Messages
   other than Data messages MUST NOT be sent in this way.  At the
   receiver, GIST MUST NOT validate the MRI/SID/NSLPID against local
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   routing state and instead indicates the mode of reception to
   signalling applications through the API (Appendix B.2).  Signalling
   applications should validate the source and effect of the message
   themselves, and if appropriate should in particular indicate to GIST
   (see Appendix B.5) that routing state is no longer required for this
   flow.  This is necessary to prevent GIST in nodes on the old path
   initiating routing state refresh and thus causing state conflicts at
   the crossover router.

   GIST notifies signalling applications about route modifications as
   two types of event, additions and deletions.  An addition is notified
   as a change of the current routing state according to the Bad/
   Tentative/Good classification above, while deletion is expressed as a
   statement that an SII-Handle no longer lies on the path.  Both can be
   reported through the NetworkNotification API call (Appendix B.4).  A
   minimal implementation MAY notify a route change as a single (add,
   delete) operation; however, a more sophisticated implementation MAY
   delay the delete notification, for example, if it knows that the old
   route continues to be used in parallel or that the true route is
   flapping between the two.  It is then a matter of signalling
   application design whether to tear down state on the old path, leave
   it unchanged, or modify it in some signalling application specific
   way to reflect the fact that multiple paths are operating in
   parallel.

7.1.5.  Signalling Application Operation

   Signalling applications can use these functions as provided by GIST
   to carry out rapid local repair following rerouting events.  The
   signalling application instances carry out the multi-hop aspects of
   the procedure, including crossover node detection, and tear-down/
   reinstallation of signalling application state; they also trigger
   GIST to carry out the local routing state maintenance operations over
   each individual hop.  The local repair procedures depend heavily on
   the fact that stateful NSLP nodes are a single GIST hop apart; this
   is enforced by the details of the GIST peer discovery process.

   The following outline description of a possible set of NSLP actions
   takes the scenario of Figure 10 as an example.

   1.  The signalling application at node E1 is notified by GIST of
       route changes affecting the downstream and upstream directions.
       The downstream status was updated to Bad because of a trigger
       from the local forwarding tables, and the upstream status changed
       automatically to Tentative as a consequence.  The signalling
       application at E1 MAY begin local repair immediately, or MAY
       propagate a notification upstream to D1 that rerouting has
       occurred.
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   2.  The signalling application at node D1 is notified of the route
       change, either by signalling application notifications or from
       the GIST level (e.g., by a trigger from a link-state topology
       database).  If the information propagates faster within the IP
       routing protocol, GIST will change the upstream/downstream
       routing state to Tentative/Bad automatically, and this will cause
       the signalling application to propagate the notification further
       upstream.

   3.  This process continues until the notification reaches node A.
       Here, there is no downstream routing change, so GIST only learns
       of the update via the signalling application trigger.  Since the
       upstream status is still Good, it therefore begins the repair
       handshake immediately.

   4.  The handshake initiated by node A causes its downstream routing
       state to be confirmed as Good and unchanged there; it also
       confirms the (Tentative) upstream routing state at B as Good.
       This is enough to identify B as the crossover router, and the
       signalling application and GIST can begin the local repair
       process.

   An alternative way to reach step (4) is that node B is able to
   determine autonomously that there is no likelihood of an upstream
   route change.  For example, it could be an area border router and the
   route change is only intra-area.  In this case, the signalling
   application and GIST will see that the upstream state is Good and can
   begin the local repair directly.

   After a route deletion, a signalling application may wish to remove
   state at another node that is no longer on the path.  However, since
   it is no longer on the path, in principle GIST can no longer send
   messages to it.  In general, provided this state is soft, it will
   time out anyway; however, the timeouts involved may have been set to
   be very long to reduce signalling load.  Instead, signalling
   applications MAY use the SII-Handle described above to route explicit
   teardown messages.

7.2.  NAT Traversal

   GIST messages, for example, for the path-coupled MRM, must carry
   addressing and higher layer information as payload data in order to
   define the flow signalled for.  (This applies to all GIST messages,
   regardless of how they are encapsulated or which direction they are
   travelling in.)  At an addressing boundary, the data flow packets
   will have their headers translated; if the signalling payloads are
   not translated consistently, the signalling messages will refer to
   incorrect (and probably meaningless) flows after passing through the

Schulzrinne & Hancock         Experimental                     [Page 93]



RFC 5971                          GIST                      October 2010

   boundary.  In addition, GIST handshake messages carry additional
   addressing information about the GIST nodes themselves, and this must
   also be processed appropriately when traversing a NAT.

   There is a dual problem of whether the GIST peers on either side of
   the boundary can work out how to address each other, and whether they
   can work out what translation to apply to the signalling packet
   payloads.  Existing generic NAT traversal techniques such as Session
   Traversal Utilities for NAT (STUN) [26] or Traversal Using Relays
   around NAT (TURN) [27] can operate only on the two addresses visible
   in the IP header.  It is therefore intrinsically difficult to use
   these techniques to discover a consistent translation of the three or
   four interdependent addresses for the flow and signalling source and
   destination.

   For legacy NATs and MRMs that carry addressing information, the base
   GIST specification is therefore limited to detecting the situation
   and triggering the appropriate error conditions to terminate the
   signalling path.  (MRMs that do not contain addressing information
   could traverse such NATs safely, with some modifications to the GIST
   processing rules.  Such modifications could be described in the
   documents defining such MRMs.)  Legacy NAT handling is covered in
   Section 7.2.1 below.  A more general solution can be constructed
   using GIST-awareness in the NATs themselves; this solution is
   outlined in Section 7.2.2 with processing rules in Section 7.2.3.

   In all cases, GIST interaction with the NAT is determined by the way
   the NAT handles the Query/Response messages in the initial GIST
   handshake; these messages are UDP datagrams.  Best current practice
   for NAT treatment of UDP traffic is defined in [38], and the legacy
   NAT handling defined in this specification is fully consistent with
   that document.  The GIST-aware NAT traversal technique is equivalent
   to requiring an Application Layer Gateway in the NAT for a specific
   class of UDP transactions -- namely, those where the destination UDP
   port for the initial message is the GIST port (see Section 9).

7.2.1.  Legacy NAT Handling

   Legacy NAT detection during the GIST handshake depends on analysis of
   the IP header and S-flag in the GIST common header, and the NLI
   object included in the handshake messages.  The message sequence
   proceeds differently depending on whether the Querying node is on the
   internal or external side of the NAT.

   For the case of the Querying node on the internal side of the NAT, if
   the S-flag is not set in the Query (S=0), a legacy NAT cannot be
   detected.  The receiver will generate a normal Response to the
   interface-address given in the NLI in the Query, but the interface-
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   address will not be routable and the Response will not be delivered.
   If retransmitted Queries keep S=0, this behaviour will persist until
   the Querying node times out.  The signalling path will thus terminate
   at this point, not traversing the NAT.

   The situation changes once S=1 in a Query; note the Q-mode
   encapsulation rules recommend that S=1 is used at least for some
   retransmissions (see Section 5.8).  If S=1, the receiver MUST check
   the source address in the IP header against the interface-address in
   the NLI.  A legacy NAT has been found if these addresses do not
   match.  For MRMs that contain addressing information that needs
   translation, legacy NAT traversal is not possible.  The receiver MUST
   return an "Object Type Error" message (Appendix A.4.4.9) with subcode
   4 ("Untranslated Object") indicating the MRI as the object in
   question.  The error message MUST be addressed to the source address
   from the IP header of the incoming message.  The Responding node
   SHOULD use the destination IP address of the original datagram as the
   source address for IP header of the Response; this makes it more
   likely that the NAT will accept the incoming message, since it looks
   like a normal UDP/IP request/reply exchange.  If this message is able
   to traverse back through the NAT, the Querying node will terminate
   the handshake immediately; otherwise, this reduces to the previous
   case of a lost Response and the Querying node will give up on
   reaching its retransmission limit.

   When the Querying node is on the external side of the NAT, the Query
   will only traverse the NAT if some static configuration has been
   carried out on the NAT to forward GIST Q-mode traffic to a node on
   the internal network.  Regardless of the S-flag in the Query, the
   Responding node cannot directly detect the presence of the NAT.  It
   MUST send a normal Response with S=1 to an address derived from the
   Querying node’s NLI that will traverse the NAT as normal UDP traffic.
   The Querying node MUST check the source address in the IP header with
   the NLI in the Response, and when it finds a mismatch it MUST
   terminate the handshake.

   Note that in either of the error cases (internal or external Querying
   node), an alternative to terminating the handshake could be to invoke
   some legacy NAT traversal procedure.  This specification does not
   define any such procedure, although one possible approach is
   described in [43].  Any such traversal procedure MUST be incorporated
   into GIST using the existing GIST extensibility capabilities.  Note
   also that this detection process only functions with the handshake
   exchange; it cannot operate on simple Data messages, whether they are
   Q-mode or normally encapsulated.  Nodes SHOULD NOT send Data messages
   outside a messaging association if they cannot ensure that they are
   operating in an environment free of legacy NATs.
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7.2.2.  GIST-Aware NAT Traversal

   The most robust solution to the NAT traversal problem is to require
   that a NAT is GIST-aware, and to allow it to modify messages based on
   the contents of the MRI.  This makes the assumption that NATs only
   rewrite the header fields included in the MRI, and not other higher
   layer identifiers.  Provided this is done consistently with the data
   flow header translation, signalling messages can be valid each side
   of the boundary, without requiring the NAT to be signalling
   application aware.  Note, however, that if the NAT does not
   understand the MRI, and the N-flag in the MRI is clear (see
   Appendix A.3.1), it should reject the message with an "Object Type
   Error" message (Appendix A.4.4.9) with subcode 4 ("Untranslated
   Object").

   The basic concept is that GIST-aware NATs modify any signalling
   messages that have to be able to be interpreted without routing state
   being available; these messages are identified by the context-free
   flag C=1 in the common header, and include the Query in the GIST
   handshake.  In addition, NATs have to modify the remaining handshake
   messages that set up routing state.  When routing state is set up,
   GIST records how subsequent messages related to that routing state
   should be translated; if no routing state is being used for a
   message, GIST directly uses the modifications made by the NAT to
   translate it.

   This specification defines an additional NAT traversal object that a
   NAT inserts into all Q-mode encapsulated messages with the context-
   free flag C=1, and which GIST echoes back in any replies, i.e.,
   Response or Error messages.  NATs apply GIST-specific processing only
   to Q-mode encapsulated messages with C=1, or D-mode messages carrying
   the NAT traversal object.  All other GIST messages, either those in
   C-mode or those in D-mode with no NAT-Traversal object, should be
   treated as normal data traffic by the NAT, i.e., with IP and
   transport layer header translation but no GIST-specific processing.
   Note that the distinction between Q-mode and D-mode encapsulation may
   not be observable to the NAT, which is why the setting of the C-flag
   or presence of the NAT traversal object is used as interception
   criteria.  The NAT decisions are based purely on the value of the
   C-flag and the presence of the NAT traversal object, not on the
   message type.

   The NAT-Traversal object (Appendix A.3.9), carries the translation
   between the MRIs that are appropriate for the internal and external
   sides of the NAT.  It also carries a list of which other objects in
   the message have been translated.  This should always include the
   NLI, and the Stack-Configuration-Data if present; if GIST is extended
   with further objects that carry addressing data, this list allows a
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   message receiver to know if the new objects were supported by the
   NAT.  Finally, the NAT-Traversal object MAY be used to carry data to
   assist the NAT in back-translating D-mode responses; this could be
   the original NLI or SCD, or opaque equivalents in the case of
   topology hiding.

   A consequence of this approach is that the routing state tables at
   the signalling application peers on each side of the NAT are no
   longer directly compatible.  In particular, they use different MRI
   values to refer to the same flow.  However, messages after the Query/
   Response (the initial Confirm and subsequent Data messages) need to
   use a common MRI, since the NAT does not rewrite these, and this is
   chosen to be the MRI of the Querying node.  It is the responsibility
   of the Responding node to translate between the two MRIs on inbound
   and outbound messages, which is why the unmodified MRI is propagated
   in the NAT-Traversal object.

7.2.3.  Message Processing Rules

   This specification normatively defines the behaviour of a GIST node
   receiving a message containing a NAT-Traversal object.  However, it
   does not define normative behaviour for a NAT translating GIST
   messages, since much of this will depend on NAT implementation and
   policy about allocating bindings.  In addition, it is not necessary
   for a GIST implementation itself.  Therefore, those aspects of the
   following description are informative; full details of NAT behaviour
   for handling GIST messages can be found in [44].

   A possible set of operations for a NAT to process a message with C=1
   is as follows.  Note that for a Data message, only a subset of the
   operations is applicable.

   1.  Verify that bindings for any data flow are actually in place.

   2.  Create a new Message-Routing-Information object with fields
       modified according to the data flow bindings.

   3.  Create bindings for subsequent C-mode signalling based on the
       information in the Network-Layer-Information and Stack-
       Configuration-Data objects.

   4.  Create new Network-Layer-Information and if necessary Stack-
       Configuration-Data objects with fields to force D-mode response
       messages through the NAT, and to allow C-mode exchanges using the
       C-mode signalling bindings.
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   5.  Add a NAT-Traversal object, listing the objects that have been
       modified and including the unmodified MRI and any other data
       needed to interpret the response.  If a NAT-Traversal object is
       already present, in the case of a sequence of NATs, the list of
       modified objects may be updated and further opaque data added,
       but the MRI contained in it is left unchanged.

   6.  Encapsulate the message according to the normal rules of this
       specification for the Q-mode encapsulation.  If the S-flag was
       set in the original message, the same IP source address selection
       policy should be applied to the forwarded message.

   7.  Forward the message with these new payloads.

   A GIST node receiving such a message MUST verify that all mandatory
   objects containing addressing have been translated correctly, or else
   reject the message with an "Object Type Error" message
   (Appendix A.4.4.9) with subcode 4 ("Untranslated Object").  The error
   message MUST include the NAT-Traversal object as the first TLV after
   the common header, and this is also true for any other error message
   generated as a reply.  Otherwise, the message is processed
   essentially as normal.  If no state needs to be updated for the
   message, the NAT-Traversal object can be effectively ignored.  The
   other possibility is that a Response must be returned, because the
   message is either the beginning of a handshake for a new flow or a
   refresh for existing state.  In both cases, the GIST node MUST create
   the Response in the normal way using the local form of the MRI, and
   its own NLI and (if necessary) SCD.  It MUST also include the NAT-
   Traversal object as the first object in the Response after the common
   header.

   A NAT will intercept D-mode messages containing such echoed NAT-
   Traversal objects.  The NAT processing is a subset of the processing
   for the C=1 case:

   1.  Verify the existence of bindings for the data flow.

   2.  Leave the Message-Routing-Information object unchanged.

   3.  Modify the NLI and SCD objects for the Responding node if
       necessary, and create or update any bindings for C-mode
       signalling traffic.

   4.  Forward the message.
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   A GIST node receiving such a message (Response or Error) MUST use the
   MRI from the NAT-Traversal object as the key to index its internal
   routing state; it MAY also store the translated MRI for additional
   (e.g., diagnostic) information, but this is not used in the GIST
   processing.  The remainder of GIST processing is unchanged.

   Note that Confirm messages are not given GIST-specific processing by
   the NAT.  Thus, a Responding node that has delayed state installation
   until receiving the Confirm only has available the untranslated MRI
   describing the flow, and the untranslated NLI as peer routing state.
   This would prevent the correct interpretation of the signalling
   messages; also, subsequent Query (refresh) messages would always be
   seen as route changes because of the NLI change.  Therefore, a
   Responding node that wishes to delay state installation until
   receiving a Confirm must somehow reconstruct the translations when
   the Confirm arrives.  How to do this is an implementation issue; one
   approach is to carry the translated objects as part of the Responder-
   Cookie that is echoed in the Confirm.  Indeed, for one of the cookie
   constructions in Section 8.5 this is automatic.

7.3.  Interaction with IP Tunnelling

   The interaction between GIST and IP tunnelling is very simple.  An IP
   packet carrying a GIST message is treated exactly the same as any
   other packet with the same source and destination addresses: in other
   words, it is given the tunnel encapsulation and forwarded with the
   other data packets.

   Tunnelled packets will not be identifiable as GIST messages until
   they leave the tunnel, since any Router Alert Option and the standard
   GIST protocol encapsulation (e.g., port numbers) will be hidden
   within the standard tunnel encapsulation.  If signalling is needed
   for the tunnel itself, this has to be initiated as a separate
   signalling session by one of the tunnel endpoints -- that is, the
   tunnel counts as a new flow.  Because the relationship between
   signalling for the microflow and signalling for the tunnel as a whole
   will depend on the signalling application in question, it is a
   signalling application responsibility to be aware of the fact that
   tunnelling is taking place and to carry out additional signalling if
   necessary; in other words, at least one tunnel endpoint must be
   signalling application aware.

   In some cases, it is the tunnel exit point (i.e., the node where
   tunnelled data and downstream signalling packets leave the tunnel)
   that will wish to carry out the tunnel signalling, but this node will
   not have knowledge or control of how the tunnel entry point is
   carrying out the data flow encapsulation.  The information about how
   the inner MRI/SID relate to the tunnel MRI/SID needs to be carried in
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   the signalling data from the tunnel entry point; this functionality
   is the equivalent to the RSVP SESSION_ASSOC object of [18].  In the
   NSIS protocol suite, these bindings are managed by the signalling
   applications, either implicitly (e.g., by SID re-use) or explicitly
   by carrying objects that bind the inner and outer SIDs as part of the
   NSLP payload.

7.4.  IPv4-IPv6 Transition and Interworking

   GIST itself is essentially IP version neutral: version dependencies
   are isolated in the formats of the Message-Routing-Information,
   Network-Layer-Information, and Stack-Configuration-Data objects, and
   GIST also depends on the version independence of the protocols that
   support messaging associations.  In mixed environments, GIST
   operation will be influenced by the IP transition mechanisms in use.
   This section provides a high level overview of how GIST is affected,
   considering only the currently predominant mechanisms.

   Dual Stack:  (As described in [35].)  In mixed environments, GIST
      MUST use the same IP version for Q-mode encapsulated messages as
      given by the MRI of the flow for which it is signalling, and
      SHOULD do so for other signalling also (see Section 5.2.2).
      Messages with mismatching versions MUST be rejected with an "MRI
      Validation Failure" error message (Appendix A.4.4.12) with subcode
      1 ("IP Version Mismatch").  The IP version used in D-mode is
      closely tied to the IP version used by the data flow, so it is
      intrinsically impossible for an IPv4-only or IPv6-only GIST node
      to support signalling for flows using the other IP version.  Hosts
      that are dual stack for applications and routers that are dual
      stack for forwarding need GIST implementations that can support
      both IP versions.  Applications with a choice of IP versions might
      select a version based on which could be supported in the network
      by GIST, which could be established by invoking parallel discovery
      procedures.

   Packet Translation:  (Applicable to SIIT [7].)  Some transition
      mechanisms allow IPv4 and IPv6 nodes to communicate by placing
      packet translators between them.  From the GIST perspective, this
      should be treated essentially the same way as any other NAT
      operation (e.g., between internal and external addresses) as
      described in Section 7.2.  The translating node needs to be GIST-
      aware; it will have to translate the addressing payloads between
      IPv4 and IPv6 formats for flows that cross between the two.  The
      translation rules for the fields in the MRI payload (including,
      e.g., diffserv-codepoint and flow-label) are as defined in [7].
      The same analysis applies to NAT-PT, although this technique is no
      longer proposed as a general purpose transition mechanism [40].
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   Tunnelling:  (Applicable to 6to4 [19].)  Many transition mechanisms
      handle the problem of how an end-to-end IPv6 (or IPv4) flow can be
      carried over intermediate IPv4 (or IPv6) regions by tunnelling;
      the methods tend to focus on minimising the tunnel administration
      overhead.  For GIST, the treatment should be similar to any other
      IP tunnelling mechanism, as described in Section 7.3.  In
      particular, the end-to-end flow signalling will pass transparently
      through the tunnel, and signalling for the tunnel itself will have
      to be managed by the tunnel endpoints.  However, additional
      considerations may arise because of special features of the tunnel
      management procedures.  In particular, [20] is based on using an
      anycast address as the destination tunnel endpoint.  GIST MAY use
      anycast destination addresses in the Q-mode encapsulation of
      D-mode messages if necessary, but MUST NOT use them in the
      Network-Layer-Information addressing field; unicast addresses MUST
      be used instead.  Note that the addresses from the IP header are
      not used by GIST in matching requests and replies, so there is no
      requirement to use anycast source addresses.

8.  Security Considerations

   The security requirement for GIST is to protect the signalling plane
   against identified security threats.  For the signalling problem as a
   whole, these threats have been outlined in [30]; the NSIS framework
   [29] assigns a subset of the responsibilities to the NTLP.  The main
   issues to be handled can be summarised as:

   Message Protection:  Signalling message content can be protected
      against eavesdropping, modification, injection, and replay while
      in transit.  This applies to GIST payloads, and GIST should also
      provide such protection as a service to signalling applications
      between adjacent peers.

   Routing State Integrity Protection:  It is important that signalling
      messages are delivered to the correct nodes, and nowhere else.
      Here, ’correct’ is defined as ’the appropriate nodes for the
      signalling given the Message-Routing-Information’.  In the case
      where the MRI is based on the flow identification for path-coupled
      signalling, ’appropriate’ means ’the same nodes that the
      infrastructure will route data flow packets through’.  GIST has no
      role in deciding whether the data flow itself is being routed
      correctly; all it can do is to ensure that signalling and data
      routing are consistent with each other.  GIST uses internal state
      to decide how to route signalling messages, and this state needs
      to be protected against corruption.
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   Prevention of Denial-of-Service Attacks:  GIST nodes and the network
      have finite resources (state storage, processing power,
      bandwidth).  The protocol tries to minimise exhaustion attacks
      against these resources and not allow GIST nodes to be used to
      launch attacks on other network elements.

   The main additional issue is handling authorisation for executing
   signalling operations (e.g., allocating resources).  This is assumed
   to be done in each signalling application.

   In many cases, GIST relies on the security mechanisms available in
   messaging associations to handle these issues, rather than
   introducing new security measures.  Obviously, this requires the
   interaction of these mechanisms with the rest of the GIST protocol to
   be understood and verified, and some aspects of this are discussed in
   Section 5.7.

8.1.  Message Confidentiality and Integrity

   GIST can use messaging association functionality, specifically in
   this version TLS (Section 5.7.3), to ensure message confidentiality
   and integrity.  Implementation of this functionality is REQUIRED but
   its use for any given flow or signalling application is OPTIONAL.  In
   some cases, confidentiality of GIST information itself is not likely
   to be a prime concern, in particular, since messages are often sent
   to parties that are unknown ahead of time, although the content
   visible even at the GIST level gives significant opportunities for
   traffic analysis.  Signalling applications may have their own
   mechanism for securing content as necessary; however, they may find
   it convenient to rely on protection provided by messaging
   associations, since it runs unbroken between signalling application
   peers.

8.2.  Peer Node Authentication

   Cryptographic protection (of confidentiality or integrity) requires a
   security association with session keys.  These can be established by
   an authentication and key exchange protocol based on shared secrets,
   public key techniques, or a combination of both.  Authentication and
   key agreement are possible using the protocols associated with the
   messaging association being secured.  TLS incorporates this
   functionality directly.  GIST nodes rely on the messaging association
   protocol to authenticate the identity of the next hop, and GIST has
   no authentication capability of its own.

   With routing state discovery, there are few effective ways to know
   what is the legitimate next or previous hop as opposed to an
   impostor.  In other words, cryptographic authentication here only
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   provides assurance that a node is ’who’ it is (i.e., the legitimate
   owner of identity in some namespace), not ’what’ it is (i.e., a node
   which is genuinely on the flow path and therefore can carry out
   signalling for a particular flow).  Authentication provides only
   limited protection, in that a known peer is unlikely to lie about its
   role.  Additional methods of protection against this type of attack
   are considered in Section 8.3 below.

   It is an implementation issue whether peer node authentication should
   be made signalling application dependent, for example, whether
   successful authentication could be made dependent on presenting
   credentials related to a particular signalling role (e.g., signalling
   for QoS).  The abstract API of Appendix B leaves open such policy and
   authentication interactions between GIST and the NSLP it is serving.
   However, it does allow applications to inspect the authenticated
   identity of the peer to which a message will be sent before
   transmission.

8.3.  Routing State Integrity

   Internal state in a node (see Section 4.2) is used to route messages.
   If this state is corrupted, signalling messages may be misdirected.

   In the case where the MRM is path-coupled, the messages need to be
   routed identically to the data flow described by the MRI, and the
   routing state table is the GIST view of how these flows are being
   routed through the network in the immediate neighbourhood of the
   node.  Routes are only weakly secured (e.g., there is no
   cryptographic binding of a flow to a route), and there is no
   authoritative information about flow routes other than the current
   state of the network itself.  Therefore, consistency between GIST and
   network routing state has to be ensured by directly interacting with
   the IP routing mechanisms to ensure that the signalling peers are the
   appropriate ones for any given flow.  An overview of security issues
   and techniques in this context is provided in [37].

   In one direction, peer identification is installed and refreshed only
   on receiving a Response (compare Figure 5).  This MUST echo the
   cookie from a previous Query, which will have been sent along the
   flow path with the Q-mode encapsulation, i.e., end-to-end addressed.
   Hence, only the true next peer or an on-path attacker will be able to
   generate such a message, provided freshness of the cookie can be
   checked at the Querying node.

   In the other direction, peer identification MAY be installed directly
   on receiving a Query containing addressing information for the
   signalling source.  However, any node in the network could generate
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   such a message; indeed, many nodes in the network could be the
   genuine upstream peer for a given flow.  To protect against this,
   four strategies are used:

   Filtering:  The receiving node MAY reject signalling messages that
      claim to be for flows with flow source addresses that could be
      ruled out by ingress filtering.  An extension of this technique
      would be for the receiving node to monitor the data plane and to
      check explicitly that the flow packets are arriving over the same
      interface and if possible from the same link layer neighbour as
      the D-mode signalling packets.  If they are not, it is likely that
      at least one of the signalling or flow packets is being spoofed.

   Return routability checking:  The receiving node MAY refuse to
      install upstream state until it has completed a Confirm handshake
      with the peer.  This echoes the Responder-Cookie of the Response,
      and discourages nodes from using forged source addresses.  This
      also plays a role in denial-of-service prevention; see below.

   Authorisation:  A stronger approach is to carry out a peer
      authorisation check (see Section 4.4.2) as part of messaging
      association setup.  The ideal situation is that the receiving node
      can determine the correct upstream node address from routing table
      analysis or knowledge of local topology constraints, and then
      verify from the authorised peer database (APD) that the peer has
      this IP address.  This is only technically feasible in a limited
      set of deployment environments.  The APD can also be used to list
      the subsets of nodes that are feasible peers for particular source
      or destination subnets, or to blacklist nodes that have previously
      originated attacks or exist in untrustworthy networks, which
      provide weaker levels of authorisation checking.

   SID segregation:  The routing state lookup for a given MRI and NSLPID
      MUST also take the SID into account.  A malicious node can only
      overwrite existing GIST routing state if it can guess the
      corresponding SID; it can insert state with random SID values, but
      generally this will not be used to route signalling messages for
      which state has already been legitimately established.

8.4.  Denial-of-Service Prevention and Overload Protection

   GIST is designed so that in general each Query only generates at most
   one Response that is at most only slightly larger than the Query, so
   that a GIST node cannot become the source of a denial-of-service
   amplification attack.  (There is a special case of retransmitted
   Response messages; see Section 5.3.3.)
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   However, GIST can still be subjected to denial-of-service attacks
   where an attacker using forged source addresses forces a node to
   establish state without return routability, causing a problem similar
   to TCP SYN flood attacks.  Furthermore, an adversary might use
   modified or replayed unprotected signalling messages as part of such
   an attack.  There are two types of state attacks and one
   computational resource attack.  In the first state attack, an
   attacker floods a node with messages that the node has to store until
   it can determine the next hop.  If the destination address is chosen
   so that there is no GIST-capable next hop, the node would accumulate
   messages for several seconds until the discovery retransmission
   attempt times out.  The second type of state-based attack causes GIST
   state to be established by bogus messages.  A related computational/
   network-resource attack uses unverified messages to cause a node
   query an authentication or authorisation infrastructure, or attempt
   to cryptographically verify a digital signature.

   We use a combination of two defences against these attacks:

   1.  The Responding node need not establish a session or discover its
       next hop on receiving the Query, but MAY wait for a Confirm,
       possibly on a secure channel.  If the channel exists, the
       additional delay is one one-way delay and the total is no more
       than the minimal theoretically possible delay of a three-way
       handshake, i.e., 1.5 node-to-node round-trip times.  The delay
       gets significantly larger if a new connection needs to be
       established first.

   2.  The Response to the Query contains a cookie, which is repeated in
       the Confirm.  State is only established for messages that contain
       a valid cookie.  The setup delay is also 1.5 round-trip times.
       This mechanism is similar to that in SCTP [39] and other modern
       protocols.

   There is a potential overload condition if a node is flooded with
   Query or Confirm messages.  One option is for the node to bypass
   these messages altogether as described in Section 4.3.2, effectively
   falling back to being a non-NSIS node.  If this is not possible, a
   node MAY still choose to limit the rate at which it processes Query
   messages and discard the excess, although it SHOULD first adapt its
   policy to one of sending Responses statelessly if it is not already
   doing so.  A conformant GIST node will automatically decrease the
   load by retransmitting Queries with an exponential backoff.  A non-
   conformant node (launching a DoS attack) can generate uncorrelated
   Queries at an arbitrary rate, which makes it hard to apply rate-
   limiting without also affecting genuine handshake attempts.  However,
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   if Confirm messages are requested, the cookie binds the message to a
   Querying node address that has been validated by a return routability
   check and rate-limits can be applied per source.

   Once a node has decided to establish routing state, there may still
   be transport and security state to be established between peers.
   This state setup is also vulnerable to denial-of-service attacks.
   GIST relies on the implementations of the lower layer protocols that
   make up messaging associations to mitigate such attacks.  In the
   current specification, the Querying node is always the one wishing to
   establish a messaging association, so it is the Responding node that
   needs to be protected.  It is possible for an attacking node to
   execute these protocols legally to set up large numbers of
   associations that were never used, and Responding node
   implementations MAY use rate-limiting or other techniques to control
   the load in such cases.

   Signalling applications can use the services provided by GIST to
   defend against certain (e.g., flooding) denial-of-service attacks.
   In particular, they can elect to process only messages from peers
   that have passed a return routability check or been authenticated at
   the messaging association level (see Appendix B.2).  Signalling
   applications that accept messages under other circumstances (in
   particular, before routing state has been fully established at the
   GIST level) need to take this into account when designing their
   denial-of-service prevention mechanisms, for example, by not creating
   local state as a result of processing such messages.  Signalling
   applications can also manage overload by invoking flow control, as
   described in Section 4.1.1.

8.5.  Requirements on Cookie Mechanisms

   The requirements on the Query-Cookie can be summarised as follows:

   Liveness:  The cookie must be live; that is, it must change from one
      handshake to the next.  This prevents replay attacks.

   Unpredictability:  The cookie must not be guessable, e.g., from a
      sequence or timestamp.  This prevents direct forgery after
      capturing a set of earlier messages.

   Easily validated:  It must be efficient for the Q-Node to validate
      that a particular cookie matches an in-progress handshake, for a
      routing state machine that already exists.  This allows to discard
      responses that have been randomly generated by an adversary, or to
      discard responses to queries that were generated with forged
      source addresses or an incorrect address in the included NLI
      object.
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   Uniqueness:  Each handshake must have a unique cookie since the
      cookie is used to match responses within a handshake, e.g., when
      multiple messaging associations are multiplexed over the same
      transport connection.

   Likewise, the requirements on the Responder-Cookie can be summarised
   as follows:

   Liveness:  The cookie must be live as above, to prevent replay
      attacks.

   Creation simplicity:  The cookie must be lightweight to generate in
      order to avoid resource exhaustion at the responding node.

   Validation simplicity:  It must be simple for the R-node to validate
      that an R-Cookie was generated by itself and no one else, without
      storing state about the handshake for which it was generated.

   Binding:  The cookie must be bound to the routing state that will be
      installed, to prevent use with different routing state, e.g., in a
      modified Confirm.  The routing state here includes the Peer-
      Identity and Interface-Address given in the NLI of the Query, and
      the MRI/NSLPID for the messaging.

      It can also include the interface on which the Query was received
      for use later in route change detection (Section 7.1.2).  Since a
      Q-mode encapsulated message is the one that will best follow the
      data path, subsequent changes in this arrival interface indicate
      route changes between the peers.

   A suitable implementation for the Q-Cookie is a cryptographically
   strong random number that is unique for this routing state machine
   handshake.  A node MUST implement this or an equivalently strong
   mechanism.  Guidance on random number generation can be found in
   [31].

   A suitable basic implementation for the R-Cookie is as follows:

        R-Cookie = liveness data + reception interface
                   + hash (locally known secret,
                           Q-Node NLI identity and address, MRI, NSLPID,
                           liveness data)

   A node MUST implement this or an equivalently strong mechanism.
   There are several alternatives for the liveness data.  One is to use
   a timestamp like SCTP.  Another is to give the local secret a (rapid)
   rollover, with the liveness data as the generation number of the
   secret, like IKEv2.  In both cases, the liveness data has to be
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   carried outside the hash, to allow the hash to be verified at the
   Responder.  Another approach is to replace the hash with encryption
   under a locally known secret, in which case the liveness data does
   not need to be carried in the clear.  Any symmetric cipher immune to
   known plaintext attacks can be used.  In the case of GIST-aware NAT
   traversal with delayed state installation, it is necessary to carry
   additional data in the cookie; appropriate constructions are
   described in [44].

   To support the validation simplicity requirement, the Responder can
   check the liveness data to filter out some blind (flooding) attacks
   before beginning any cryptographic cookie verification.  To support
   this usage, the liveness data must be carried in the clear and not be
   easily guessable; this rules out the timestamp approach and suggests
   the use of sequence of secrets with the liveness data identifying the
   position in the sequence.  The secret strength and rollover frequency
   must be high enough that the secret cannot be brute-forced during its
   lifetime.  Note that any node can use a Query to discover the current
   liveness data, so it remains hard to defend against sophisticated
   attacks that disguise such probes within a flood of Queries from
   forged source addresses.  Therefore, it remains important to use an
   efficient hashing mechanism or equivalent.

   If a node receives a message for which cookie validation fails, it
   MAY return an "Object Value Error" message (Appendix A.4.4.10) with
   subcode 4 ("Invalid Cookie") to the sender and SHOULD log an error
   condition locally, as well as dropping the message.  However, sending
   the error in general makes a node a source of backscatter.
   Therefore, this MUST only be enabled selectively, e.g., during
   initial deployment or debugging.

8.6.  Security Protocol Selection Policy

   This specification defines a single mandatory-to-implement security
   protocol (TLS; Section 5.7.3).  However, it is possible to define
   additional security protocols in the future, for example, to allow
   re-use with other types of credentials, or migrate towards protocols
   with stronger security properties.  In addition, use of any security
   protocol for a messaging association is optional.  Security protocol
   selection is carried out as part of the GIST handshake mechanism
   (Section 4.4.1).

   The selection process may be vulnerable to downgrade attacks, where a
   man in the middle modifies the capabilities offered in the Query or
   Response to mislead the peers into accepting a lower level of
   protection than is achievable.  There is a two-part defence against
   such attacks (the following is based the same concepts as [25]):
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   1.  The Response does not depend on the Stack-Proposal in the Query
       (see Section 5.7.1).  Therefore, tampering with the Query has no
       effect on the resulting messaging association configuration.

   2.  The Responding node’s Stack-Proposal is echoed in the Confirm.
       The Responding node checks this to validate that the proposal it
       made in the Response is the same as the one received by the
       Querying node.  Note that as a consequence of the previous point,
       the Responding node does not have to remember the proposal
       explicitly, since it is a static function of local policy.

   The validity of the second part depends on the strength of the
   security protection provided for the Confirm.  If the Querying node
   is prepared to create messaging associations with null security
   properties (e.g., TCP only), the defence is ineffective, since the
   man in the middle can re-insert the original Responder’s Stack-
   Proposal, and the Responding node will assume that the minimal
   protection is a consequence of Querying node limitations.  However,
   if the messaging association provides at least integrity protection
   that cannot be broken in real-time, the Confirm cannot be modified in
   this way.  Therefore, if the Querying node does not apply a security
   policy to the messaging association protocols to be created that
   ensures at least this minimal level of protection is met, it remains
   open to the threat that a downgrade has occurred.  Applying such a
   policy ensures capability discovery process will result in the setup
   of a messaging association with the correct security properties for
   the two peers involved.

8.7.  Residual Threats

   Taking the above security mechanisms into account, the main residual
   threats against NSIS are three types of on-path attack,
   vulnerabilities from particular limited modes of TLS usage, and
   implementation-related weaknesses.

   An on-path attacker who can intercept the initial Query can do most
   things it wants to the subsequent signalling.  It is very hard to
   protect against this at the GIST level; the only defence is to use
   strong messaging association security to see whether the Responding
   node is authorised to take part in NSLP signalling exchanges.  To
   some extent, this behaviour is logically indistinguishable from
   correct operation, so it is easy to see why defence is difficult.
   Note that an on-path attacker of this sort can do anything to the
   traffic as well as the signalling.  Therefore, the additional threat
   induced by the signalling weakness seems tolerable.
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   At the NSLP level, there is a concern about transitivity of trust of
   correctness of routing along the signalling chain.  The NSLP at the
   querying node can have good assurance that it is communicating with
   an on-path peer or a node delegated by the on-path node by depending
   on the security protection provided by GIST.  However, it has no
   assurance that the node beyond the responder is also on-path, or that
   the MRI (in particular) is not being modified by the responder to
   refer to a different flow.  Therefore, if it sends signalling
   messages with payloads (e.g., authorisation tokens) that are valuable
   to nodes beyond the adjacent hop, it is up to the NSLP to ensure that
   the appropriate chain of trust exists.  This could be achieved using
   higher layer security protection such as Cryptographic Message Syntax
   (CMS) [28].

   There is a further residual attack by a node that is not on the path
   of the Query, but is on the path of the Response, or is able to use a
   Response from one handshake to interfere with another.  The attacker
   modifies the Response to cause the Querying node to form an adjacency
   with it rather than the true peer.  In principle, this attack could
   be prevented by including an additional cryptographic object in the
   Response that ties the Response to the initial Query and the routing
   state and can be verified by the Querying node.

   GIST depends on TLS for peer node authentication, and subsequent
   channel security.  The analysis in [30] indicates the threats that
   arise when the peer node authentication is incomplete --
   specifically, when unilateral authentication is performed (one node
   authenticates the other, but not vice versa).  In this specification,
   mutual authentication can be supported either by certificate exchange
   or the use of pre-shared keys (see Section 5.7.3); if some other TLS
   authentication mechanism is negotiated, its properties would have to
   be analysed to determine acceptability for use with GIST.  If mutual
   authentication is performed, the requirements for NTLP security are
   met.

   However, in the case of certificate exchange, this specification
   allows the possibility that only a server certificate is provided,
   which means that the Querying node authenticates the Responding node
   but not vice versa.  Accepting such unilateral authentication allows
   for partial security in environments where client certificates are
   not widespread, and is better than no security at all; however, it
   does expose the Responding node to certain threats described in
   Section 3.1 of [30].  For example, the Responding node cannot verify
   whether there is a man-in-the-middle between it and the Querying
   node, which could be manipulating the signalling messages, and it
   cannot verify the identity of the Querying node if it requests
   authorisation of resources.  Note that in the case of host-network
   signalling, the Responding node could be either the host or the first
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   hop router, depending on the signalling direction.  Because of these
   vulnerabilities, modes or deployments of TLS which do not provide
   mutual authentication can be considered as at best transitional
   stages rather than providing a robust security solution.

   Certain security aspects of GIST operation depend on signalling
   application behaviour: a poorly implemented or compromised NSLP could
   degrade GIST security.  However, the degradation would only affect
   GIST handling of the NSLP’s own signalling traffic or overall
   resource usage at the node where the weakness occurred, and
   implementation weakness or compromise could have just as great an
   effect within the NSLP itself.  GIST depends on NSLPs to choose SIDs
   appropriately (Section 4.1.3).  If NSLPs choose non-random SIDs, this
   makes off-path attacks based on SID guessing easier to carry out.
   NSLPs can also leak information in structured SIDs, but they could
   leak similar information in the NSLP payload data anyway.

9.  IANA Considerations

   This section defines the registries and initial codepoint assignments
   for GIST.  It also defines the procedural requirements to be followed
   by IANA in allocating new codepoints.  Note that the guidelines on
   the technical criteria to be followed in evaluating requests for new
   codepoint assignments are covered normatively in a separate document
   that considers the NSIS protocol suite in a unified way.  That
   document discusses the general issue of NSIS extensibility, as well
   as the technical criteria for particular registries; see [12] for
   further details.

   The registry definitions that follow leave large blocks of codes
   marked "Reserved".  This is to allow a future revision of this
   specification or another Experimental document to modify the relative
   space given to different allocation policies, without having to
   change the initial rules retrospectively if they turn out to have
   been inappropriate, e.g., if the space for one particular policy is
   exhausted too quickly.

   The allocation policies used in this section follow the guidance
   given in [4].  In addition, for a number of the GIST registries, this
   specification also defines private/experimental ranges as discussed
   in [9].  Note that the only environment in which these codepoints can
   validly be used is a closed one in which the experimenter knows all
   the experiments in progress.
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   This specification allocates the following codepoints in existing
   registries:

      Well-known UDP port 270 as the destination port for Q-mode
      encapsulated GIST messages (Section 5.3).

   This specification creates the following registries with the
   structures as defined below:

   NSLP Identifiers:  Each signalling application requires the
      assignment of one or more NSLPIDs.  The following NSLPID is
      allocated by this specification:

   +---------+---------------------------------------------------------+
   | NSLPID  | Application                                             |
   +---------+---------------------------------------------------------+
   | 0       | Used for GIST messages not related to any signalling    |
   |         | application.                                            |
   +---------+---------------------------------------------------------+

      Every other NSLPID that uses an MRM that requires RAO usage MUST
      be associated with a specific RAO value; multiple NSLPIDs MAY be
      associated with the same RAO value.  RAO value assignments require
      a specification of the processing associated with messages that
      carry the value.  NSLP specifications MUST normatively depend on
      this document for the processing, specifically Sections 4.3.1,
      4.3.4 and 5.3.2.  The NSLPID is a 16-bit integer, and the
      registration procedure is IESG Aproval.  Further values are as
      follows:

      1-32703:  Unassigned

      32704-32767:  Private/Experimental Use

      32768-65536:  Reserved
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   GIST Message Type:  The GIST common header (Appendix A.1) contains a
      7-bit message type field.  The following values are allocated by
      this specification:

                          +---------+----------+
                          | MType   | Message  |
                          +---------+----------+
                          | 0       | Query    |
                          |         |          |
                          | 1       | Response |
                          |         |          |
                          | 2       | Confirm  |
                          |         |          |
                          | 3       | Data     |
                          |         |          |
                          | 4       | Error    |
                          |         |          |
                          | 5       | MA-Hello |
                          +---------+----------+

      Registration procedures are as follows:

      0-31:  IETF Review

      32-55:  Expert Review

      Further values are as follows:

      6-55:  Unassigned

      56-63:  Private/Experimental Use

      64-127:  Reserved
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   Object Types:  There is a 12-bit field in the object header
      (Appendix A.2).  The following values for object type are defined
      by this specification:

                 +---------+-----------------------------+
                 | OType   | Object Type                 |
                 +---------+-----------------------------+
                 | 0       | Message Routing Information |
                 |         |                             |
                 | 1       | Session ID                  |
                 |         |                             |
                 | 2       | Network Layer Information   |
                 |         |                             |
                 | 3       | Stack Proposal              |
                 |         |                             |
                 | 4       | Stack Configuration Data    |
                 |         |                             |
                 | 5       | Query-Cookie                |
                 |         |                             |
                 | 6       | Responder-Cookie            |
                 |         |                             |
                 | 7       | NAT Traversal               |
                 |         |                             |
                 | 8       | NSLP Data                   |
                 |         |                             |
                 | 9       | Error                       |
                 |         |                             |
                 | 10      | Hello ID                    |
                 +---------+-----------------------------+

      Registration procedures are as follows:

      0-1023:  IETF Review

      1024-1999:  Specification Required

      Further values are as follows:

      11-1999:  Unassigned

      2000-2047:  Private/Experimental Use

      2048-4095:  Reserved

      When a new object type is allocated according to one of the
      procedures, the specification MUST provide the object format and
      define the setting of the extensibility bits (A/B; see
      Appendix A.2.1).
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   Message Routing Methods:  GIST allows multiple message routing
      methods (see Section 3.3).  The MRM is indicated in the leading
      byte of the MRI object (Appendix A.3.1).  This specification
      defines the following values:

                  +------------+------------------------+
                  | MRM-ID     | Message Routing Method |
                  +------------+------------------------+
                  | 0          | Path-Coupled MRM       |
                  |            |                        |
                  | 1          | Loose-End MRM          |
                  +------------+------------------------+

      Registration procedures are as follows:

      0-63:  IETF Review

      64-119:  Specification Required

      Further values are as follows:

      2-119:  Unassigned

      120-127:  Private/Experimental Use

      128-255:  Reserved

      When a new MRM is allocated according to one of the registration
      procedures, the specification MUST provide the information
      described in Section 3.3.

   MA-Protocol-IDs:  Each protocol that can be used in a messaging
      association is identified by a 1-byte MA-Protocol-ID
      (Section 5.7).  Note that the MA-Protocol-ID is not an IP protocol
      number; indeed, some of the messaging association protocols --
      such as TLS -- do not have an IP protocol number.  This is used as
      a tag in the Stack-Proposal and Stack-Configuration-Data objects
      (Appendix A.3.4 and Appendix A.3.5).  The following values are
      defined by this specification:
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     +---------------------+-----------------------------------------+
     | MA-Protocol-ID      | Protocol                                |
     +---------------------+-----------------------------------------+
     | 0                   | Reserved                                |
     |                     |                                         |
     | 1                   | TCP opened in the forwards direction    |
     |                     |                                         |
     | 2                   | TLS initiated in the forwards direction |
     +---------------------+-----------------------------------------+

      Registration procedures are as follows:

      0-63:  IETF Review

      64-119:  Expert Review

      Further values are as follows:

      3-119:  Unassigned

      120-127:  Private/Experimental Use

      128-255:  Reserved

      When a new MA-Protocol-ID is allocated according to one of the
      registration procedures, a specification document will be
      required.  This MUST define the format for the MA-protocol-options
      field (if any) in the Stack-Configuration-Data object that is
      needed to define its configuration.  If a protocol is to be used
      for reliable message transfer, it MUST be described how delivery
      errors are to be detected by GIST.  Extensions to include new
      channel security protocols MUST include a description of how to
      integrate the functionality described in Section 3.9 with the rest
      of GIST operation.  If the new MA-Protocol-ID can be used in
      conjunction with existing ones (for example, a new transport
      protocol that could be used with Transport Layer Security), the
      specification MUST define the interaction between the two.

   Error Codes/Subcodes:  There is a 2-byte error code and 1-byte
      subcode in the Value field of the Error Object (Appendix A.4.1).
      Error codes 1-12 are defined in Appendix A.4.4 together with
      subcodes 0-5 (code 1), 0-5 (code 9), 0-5 (code 10), and 0-2 (code
      12).  Additional codes and subcodes are allocated on a first-come,
      first-served basis.  When a new code/subcode combination is
      allocated, the following information MUST be provided:
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      Error case:  textual name of error

      Error class:  from the categories given in Appendix A.4.3

      Error code:  allocated by IANA, if a new code is required

      Error subcode:  subcode point, also allocated by IANA

      Additional information:  what Additional Information fields are
         mandatory to include in the error message, from Appendix A.4.2

   Additional Information Types:  An Error Object (Appendix A.4.1) may
      contain Additional Information fields.  Each possible field type
      is identified by a 16-bit AI-Type.  AI-Types 1-4 are defined in
      Appendix A.4.2; additional AI-Types are allocated on a first-come,
      first-served basis.
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Appendix A.  Bit-Level Formats and Error Messages

   This appendix provides formats for the various component parts of the
   GIST messages defined abstractly in Section 5.2.  The whole of this
   appendix is normative.

   Each GIST message consists of a header and a sequence of objects.
   The GIST header has a specific format, described in more detail in
   Appendix A.1 below.  An NSLP message is one object within a GIST
   message.  Note that GIST itself provides the NSLP message length
   information and signalling application identification.  General
   object formatting guidelines are provided in Appendix A.2 below,
   followed in Appendix A.3 by the format for each object.  Finally,
   Appendix A.4 provides the formats used for error reporting.

   In the following object diagrams, ’//’ is used to indicate a
   variable-sized field and ’:’ is used to indicate a field that is
   optionally present.  Any part of the object used for padding or
   defined as reserved (marked ’Reserved’ or ’Rsv’ or, in the case of
   individual bits, ’r’ in the diagrams below) MUST be set to 0 on
   transmission and MUST be ignored on reception.

   The objects are encoded using big endian (network byte order).

A.1.  The GIST Common Header

   This header begins all GIST messages.  It has a fixed format, as
   shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Version    |   GIST hops   |        Message Length         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           NSLPID              |C|   Type      |S|R|E| Reserved|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Version (8 bits):  The GIST protocol version number.  This
      specification defines version number 1.

   GIST hops (8 bits):  A hop count for the number of GIST-aware nodes
      this message can still be processed by (including the
      destination).

   Message Length (16 bits):  The total number of 32-bit words in the
      message after the common header itself.
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   NSLPID (16 bits):  IANA-assigned identifier of the signalling
      application to which the message refers.

   C-flag:  C=1 if the message has to be able to be interpreted in the
      absence of routing state (Section 5.2.1).

   Type (7 bits):  The GIST message type (Query, Response, etc.).

   S-flag:  S=1 if the IP source address is the same as the signalling
      source address, S=0 if it is different.

   R-flag:  R=1 if a reply to this message is explicitly requested.

   E-flag:  E=1 if the message was explicitly routed (Section 7.1.5).

   The rules governing the use of the R-flag depend on the GIST message
   type.  It MUST always be set (R=1) in Query messages, since these
   always elicit a Response, and never in Confirm, Data, or Error
   messages.  It MAY be set in an MA-Hello; if set, another MA-Hello
   MUST be sent in reply.  It MAY be set in a Response, but MUST be set
   if the Response contains a Responder-Cookie; if set, a Confirm MUST
   be sent in reply.  The E-flag MUST NOT be set unless the message type
   is a Data message.

   Parsing failures may be caused by unknown Version or Type values;
   inconsistent setting of the C-flag, R-flag, or E-flag; or a Message
   Length inconsistent with the set of objects carried.  In all cases,
   the receiver MUST if possible return a "Common Header Parse Error"
   message (Appendix A.4.4.1) with the appropriate subcode, and not
   process the message further.

A.2.  General Object Format

   Each object begins with a fixed header giving the object Type and
   object Length.  This is followed by the object Value, which is a
   whole number of 32-bit words long.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |A|B|r|r|         Type          |r|r|r|r|        Length         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                             Value                           //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   A/B flags:  The bits marked ’A’ and ’B’ are extensibility flags,
      which are defined in Appendix A.2.1 below; the remaining bits
      marked ’r’ are reserved.
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   Type (12 bits):  An IANA-assigned identifier for the type of object.

   Length (12 bits):  Length has the units of 32-bit words, and measures
      the length of Value.  If there is no Value, Length=0.  If the
      Length is not consistent with the contents of the object, an
      "Object Value Error" message (Appendix A.4.4.10) with subcode 0
      "Incorrect Length" MUST be returned and the message dropped.

   Value (variable):  Value is (therefore) a whole number of 32-bit
      words.  If there is any padding required, the length and location
      are be defined by the object-specific format information; objects
      that contain variable-length (e.g., string) types may need to
      include additional length subfields to do so.

A.2.1.  Object Extensibility

   The leading 2 bits of the TLV header are used to signal the desired
   treatment for objects whose Type field is unknown at the receiver.
   The following three categories of objects have been identified and
   are described here.

   AB=00 ("Mandatory"):  If the object is not understood, the entire
      message containing it MUST be rejected with an "Object Type Error"
      message (Appendix A.4.4.9) with subcode 1 ("Unrecognised Object").

   AB=01 ("Ignore"):  If the object is not understood, it MUST be
      deleted and the rest of the message processed as usual.

   AB=10 ("Forward"):  If the object is not understood, it MUST be
      retained unchanged in any message forwarded as a result of message
      processing, but not stored locally.

   The combination AB=11 is reserved.  If a message is received
   containing an object with AB=11, it MUST be rejected with an "Object
   Type Error" message (Appendix A.4.4.9) with subcode 5 ("Invalid
   Extensibility Flags").

   These extensibility rules define only the processing within the GIST
   layer.  There is no requirement on GIST implementations to support an
   extensible service interface to signalling applications, so
   unrecognised objects with AB=01 or AB=10 do not need to be indicated
   to NSLPs.
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A.3.  GIST TLV Objects

A.3.1.  Message-Routing-Information (MRI)

   Type:  Message-Routing-Information

   Length:  Variable (depends on MRM)

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     MRM-ID    |N|  Reserved   |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   //     Method-specific addressing information (variable)       //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   MRM-ID (8 bits):  An IANA-assigned identifier for the message routing
      method.

   N-flag:  If set (N=1), this means that NATs do not need to translate
      this MRM; if clear (N=0), it means that the method-specific
      information contains network or transport layer information that a
      NAT must process.

   The remainder of the object contains method-specific addressing
   information, which is described below.

A.3.1.1.  Path-Coupled MRM

   In the case of basic path-coupled routing, the addressing information
   takes the following format.  The N-flag has a value of 0 for this
   MRM.
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    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                   |IP-Ver |P|T|F|S|A|B|D|Reserved |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                       Source Address                        //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                      Destination Address                    //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Source Prefix |  Dest Prefix  |   Protocol    | DS-field  |Rsv|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   :       Reserved        |              Flow Label               :
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   :                              SPI                              :
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   :          Source Port          :       Destination Port        :
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   IP-Ver (4 bits):  The IP version number, 4 or 6.

   Source/Destination address (variable):  The source and destination
      addresses are always present and of the same type; their length
      depends on the value in the IP-Ver field.

   Source/Dest Prefix (each 8 bits):  The length of the mask to be
      applied to the source and destination addresses for address
      wildcarding.  In the normal case where the MRI refers only to
      traffic between specific host addresses, the Source/Dest Prefix
      values would both be 32 or 128 for IPv4 and IPv6, respectively.

   P-flag:  P=1 means that the Protocol field is significant.

   Protocol (8 bits):  The IP protocol number.  This MUST be ignored if
      P=0.  In the case of IPv6, the Protocol field refers to the true
      upper layer protocol carried by the packets, i.e., excluding any
      IP option headers.  This is therefore not necessarily the same as
      the Next Header value from the base IPv6 header.

   T-flag:  T=1 means that the Diffserv field (DS-field) is significant.

   DS-field (6 bits):  The Diffserv field.  See [6] and [24].

   F-flag:  F=1 means that flow label is present and is significant.  F
      MUST NOT be set if IP-Ver is not 6.

   Flow Label (20 bits):  The flow label; only present if F=1.  If F=0,
      the entire 32-bit word containing the Flow Label is absent.
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   S-flag:  S=1 means that the SPI field is present and is significant.
      The S-flag MUST be 0 if the P-flag is 0.

   SPI field (32 bits):  The SPI field; see [36].  If S=0, the entire
      32-bit word containing the SPI is absent.

   A/B flags:  These can only be set if P=1.  If either is set, the port
      fields are also present.  The A flag indicates the presence of a
      source port, the B flag that of a destination port.  If P=0, the
      A/B flags MUST both be zero and the word containing the port
      numbers is absent.

   Source/Destination Port (each 16 bits):  If either of A (source), B
      (destination) is set, the word containing the port numbers is
      included in the object.  However, the contents of each field is
      only significant if the corresponding flag is set; otherwise, the
      contents of the field is regarded as padding, and the MRI refers
      to all ports (i.e., acts as a wildcard).  If the flag is set and
      Port=0x0000, the MRI will apply to a specific port, whose value is
      not yet known.  If neither of A or B is set, the word is absent.

   D-flag:  The Direction flag has the following meaning: the value 0
      means ’in the same direction as the flow’ (i.e., downstream), and
      the value 1 means ’in the opposite direction to the flow’ (i.e.,
      upstream).

   The MRI format defines a number of constraints on the allowed
   combinations of flags and fields in the object.  If these constraints
   are violated, this constitutes a parse error, and an "Object Value
   Error" message (Appendix A.4.4.10) with subcode 2 ("Invalid Flag-
   Field Combination") MUST be returned.

A.3.1.2.  Loose-End MRM

   In the case of the loose-end MRM, the addressing information takes
   the following format.  The N-flag has a value of 0 for this MRM.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                   |IP-Ver |D|      Reserved       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                       Source Address                        //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                      Destination Address                    //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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   IP-Ver (4 bits):  The IP version number, 4 or 6.

   Source/Destination address (variable):  The source and destination
      addresses are always present and of the same type; their length
      depends on the value in the IP-Ver field.

   D-flag:  The Direction flag has the following meaning: the value 0
      means ’towards the edge of the network’, and the value 1 means
      ’from the edge of the network’.  Note that for Q-mode messages,
      the only valid value is D=0 (see Section 5.8.2).

A.3.2.  Session Identifier

   Type:  Session-Identifier

   Length:  Fixed (4 32-bit words)

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                                                               +
   |                                                               |
   +                          Session ID                           +
   |                                                               |
   +                                                               +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.3.3.  Network-Layer-Information (NLI)

   Type:  Network-Layer-Information

   Length:  Variable (depends on length of Peer-Identity and IP version)

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   PI-Length   |    IP-TTL     |IP-Ver |        Reserved       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Routing State Validity Time                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                       Peer Identity                         //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                     Interface Address                       //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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   PI-Length (8 bits):  The byte length of the Peer Identity field.

   Peer Identity (variable):  The Peer Identity field.  Note that the
      Peer-Identity field itself is padded to a whole number of words.

   IP-TTL (8 bits):  Initial or reported IP layer TTL.

   IP-Ver (4 bits):  The IP version for the Interface Address field.

   Interface Address (variable):  The IP address allocated to the
      interface, matching the IP-Ver field.

   Routing State Validity Time (32 bits):  The time for which the
      routing state for this flow can be considered correct without a
      refresh.  Given in milliseconds.  The value 0 (zero) is reserved
      and MUST NOT be used.

A.3.4.  Stack-Proposal

   Type:  Stack-Proposal

   Length:  Variable (depends on number of profiles and size of each
      profile)

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Prof-Count   |     Reserved                                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                    Profile 1                                //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   :                                                               :
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                    Profile N                                //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Prof-Count (8 bits): The number of profiles listed.  MUST be > 0.

   Each profile is itself a sequence of protocol layers, and the profile
   is formatted as a list as follows:

   o  The first byte is a count of the number of layers in the profile.
      MUST be > 0.

   o  This is followed by a sequence of 1-byte MA-Protocol-IDs as
      described in Section 5.7.
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   o  The profile is padded to a word boundary with 0, 1, 2, or 3 zero
      bytes.  These bytes MUST be ignored at the receiver.

   If there are no profiles (Prof-Count=0), then an "Object Value Error"
   message (Appendix A.4.4.10) with subcode 1 ("Value Not Supported")
   MUST be returned; if a particular profile is empty (the leading byte
   of the profile is zero), then subcode 3 ("Empty List") MUST be used.
   In both cases, the message MUST be dropped.

A.3.5.  Stack-Configuration-Data

   Type:  Stack-Configuration-Data

   Length:  Variable (depends on number of protocols and size of each
      MA-protocol-options field)

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   MPO-Count   |     Reserved                                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           MA-Hold-Time                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                     MA-protocol-options 1                   //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   :                                                               :
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                     MA-protocol-options N                   //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   MPO-Count (8 bits):  The number of MA-protocol-options fields present
      (these contain their own length information).  The MPO-Count MAY
      be zero, but this will only be the case if none of the MA-
      protocols referred to in the Stack-Proposal require option data.

   MA-Hold-Time (32 bits):  The time for which the messaging association
      will be held open without traffic or a hello message.  Note that
      this value is given in milliseconds, so the default time of 30
      seconds (Section 4.4.5) corresponds to a value of 30000.  The
      value 0 (zero) is reserved and MUST NOT be used.

Schulzrinne & Hancock         Experimental                    [Page 130]



RFC 5971                          GIST                      October 2010

   The MA-protocol-options fields are formatted as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |MA-Protocol-ID |     Profile   |    Length     |D|  Reserved   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                         Options Data                        //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   MA-Protocol-ID (8 bits):  Protocol identifier as described in
      Section 5.7.

   Profile (8 bits):  Tag indicating which profile from the accompanying
      Stack-Proposal object this applies to.  Profiles are numbered from
      1 upwards; the special value 0 indicates ’applies to all
      profiles’.

   Length (8 bits):  The byte length of MA-protocol-options field that
      follows.  This will be zero-padded up to the next word boundary.

   D-flag:  If set (D=1), this protocol MUST NOT be used for a messaging
      association.

   Options Data (variable):  Any options data for this protocol.  Note
      that the format of the options data might differ depending on
      whether the field is in a Query or Response.

A.3.6.  Query-Cookie

   Type:  Query-Cookie

   Length:  Variable (selected by Querying node)

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                        Query-Cookie                         //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The content is defined by the implementation.  See Section 8.5 for
   further discussion.

Schulzrinne & Hancock         Experimental                    [Page 131]



RFC 5971                          GIST                      October 2010

A.3.7.  Responder-Cookie

   Type:  Responder-Cookie

   Length:  Variable (selected by Responding node)

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                      Responder-Cookie                       //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The content is defined by the implementation.  See Section 8.5 for
   further discussion.

A.3.8.  Hello-ID

   Type:  Hello-ID

   Length:  Fixed (1 32-bit word)

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          Hello-ID                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The content is defined by the implementation.  See Section 5.2.2 for
   further discussion.

A.3.9.  NAT-Traversal

   Type:  NAT-Traversal

   Length:  Variable (depends on length of contained fields)

   This object is used to support the NAT traversal mechanisms described
   in Section 7.2.2.
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    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | MRI-Length    | Type-Count    |  NAT-Count    |  Reserved     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //            Original Message-Routing-Information             //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                 List of translated objects                  //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Length of opaque information  |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                              //
   //                Information replaced by NAT #1                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   :                                                               :
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Length of opaque information  |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                              //
   //                Information replaced by NAT #N                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   MRI-Length (8 bits):  The length of the included MRI payload in
      32-bit words.

   Original Message-Routing-Information (variable):  The MRI data from
      when the message was first sent, not including the object header.

   Type-Count (8 bits):  The number of objects in the ’List of
      translated objects’ field.

   List of translated objects (variable):  This field lists the types of
      objects that were translated by every NAT through which the
      message has passed.  Each element in the list is a 16-bit field
      containing the first 16 bits of the object TLV header, including
      the AB extensibility flags, 2 reserved bits, and 12-bit object
      type.  The list is initialised by the first NAT on the path;
      subsequent NATs may delete elements in the list.  Padded with 2
      null bytes if necessary.

   NAT-Count (8 bits):  The number of NATs traversed by the message, and
      the number of opaque payloads at the end of the object.  The
      length fields for each opaque payload are byte counts, not
      including the 2 bytes of the length field itself.  Note that each
      opaque information field is zero-padded to the next 32-bit word
      boundary if necessary.
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A.3.10.  NSLP-Data

   Type:  NSLP-Data

   Length:  Variable (depends on NSLP)

   This object is used to deliver data between NSLPs.  GIST regards the
   data as a number of complete 32-bit words, as given by the length
   field in the TLV; any padding to a word boundary must be carried out
   within the NSLP itself.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                          NSLP Data                          //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.4.  Errors

A.4.1.  Error Object

   Type:  Error

   Length:  Variable (depends on error)

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Error Class  |           Error Code          | Error Subcode |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |S|M|C|D|Q|       Reserved      |  MRI Length   |  Info Count   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                         Common Header                         +
   |                    (of original message)                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   :                          Session ID                           :
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   :                    Message Routing Information                :
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   :                 Additional Information Fields                 :
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   :                       Debugging Comment                       :
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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   The flags are:
   S - S=1 means the Session ID object is present.
   M - M=1 means MRI object is present.
   C - C=1 means a debug Comment is present after header.
   D - D=1 means the original message was received in D-mode.
   Q - Q=1 means the original message was received Q-mode encapsulated
       (can’t be set if D=0).

   A GIST Error Object contains an 8-bit error-class (see
   Appendix A.4.3), a 16-bit error-code, an 8-bit error-subcode, and as
   much information about the message that triggered the error as is
   available.  This information MUST include the common header of the
   original message and MUST also include the Session ID and MRI objects
   if these could be decoded correctly.  These objects are included in
   their entirety, except for their TLV Headers.  The MRI Length field
   gives the length of the MRI object in 32-bit words.

   The Info Count field contains the number of Additional Information
   fields in the object, and the possible formats for these fields are
   given in Appendix A.4.2.  The precise set of fields to include
   depends on the error code/subcode.  For every error description in
   the error catalogue Appendix A.4.4, the line "Additional Info:"
   states what fields MUST be included; further fields beyond these MAY
   be included by the sender, and the fields may be included in any
   order.  The Debugging Comment is a null-terminated UTF-8 string,
   padded if necessary to a whole number of 32-bit words with more null
   characters.

A.4.2.  Additional Information Fields (AI)

   The Common Error Header may be followed by some Additional
   Information fields.  Each Additional Information field has a simple
   TLV format as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          AI-Type              |         AI-Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                          AI-Value                           //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The AI-Type is a 16-bit IANA-assigned value.  The AI-Length gives the
   number of 32-bit words in AI-Value; if an AI-Value is not present,
   AI-Length=0.  The AI-Types and AI-Lengths and AI-Value formats of the
   currently defined Additional Information fields are shown below.
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   Message Length Info:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Calculated Length         |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   AI-Type: 1
   AI-Length: 1
   Calculated Length (16 bits): the length of the original message
   calculated by adding up all the objects in the message.  Measured in
   32-bit words.

   MTU Info:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Link MTU            |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   AI-Type: 2
   AI-Length: 1
   Link MTU (16 bits): the IP MTU for a link along which a message
                       could not be sent.  Measured in bytes.

   Object Type Info:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Object Type           |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   AI-Type: 3
   AI-Length: 1
   Object type (16 bits): This provides information about the type
                          of object that caused the error.

   Object Value Info:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Rsv  |  Real Object Length   |            Offset             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   //                           Object                            //
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   AI-Type: 4
   AI-Length: variable (depends on object length)
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   This object carries information about a TLV object that was found
   to be invalid in the original message.  An error message MAY contain
   more than one Object Value Info object.

   Real Object Length (12 bits):  Since the length in the original TLV
      header may be inaccurate, this field provides the actual length of
      the object (including the TLV header) included in the error
      message.  Measured in 32-bit words.

   Offset (16 bits):  The byte in the object at which the GIST node
      found the error.  The first byte in the object has offset=0.

   Object (variable):  The invalid TLV object (including the TLV
      header).

A.4.3.  Error Classes

   The first byte of the Error Object, "Error Class", indicates the
   severity level.  The currently defined severity levels are:

   0 (Informational):  reply data that should not be thought of as
      changing the condition of the protocol state machine.

   1 (Success):  reply data that indicates that the message being
      responded to has been processed successfully in some sense.

   2 (Protocol-Error):  the message has been rejected because of a
      protocol error (e.g., an error in message format).

   3 (Transient-Failure):  the message has been rejected because of a
      particular local node status that may be transient (i.e., it may
      be worthwhile to retry after some delay).

   4 (Permanent-Failure):  the message has been rejected because of
      local node status that will not change without additional out-of-
      band (e.g., management) operations.

   Additional error class values are reserved.

   The allocation of error classes to particular errors is not precise;
   the above descriptions are deliberately informal.  Actual error
   processing SHOULD take into account the specific error in question;
   the error class may be useful supporting information (e.g., in
   network debugging).
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A.4.4.  Error Catalogue

   This section lists all the possible GIST errors, including when they
   are raised and what Additional Information fields MUST be carried in
   the Error Object.

A.4.4.1.  Common Header Parse Error

   Class:              Protocol-Error
   Code:               1
   Additional Info:    For subcode 3 only, Message Length Info carries
                       the calculated message length.

   This message is sent if a GIST node receives a message where the
   common header cannot be parsed correctly, or where an error in the
   overall message format is detected.  Note that in this case the
   original MRI and Session ID MUST NOT be included in the Error Object.
   This error code is split into subcodes as follows:

   0: Unknown Version:  The GIST version is unknown.  The (highest)
      supported version supported by the node can be inferred from the
      common header of the Error message itself.

   1: Unknown Type:  The GIST message type is unknown.

   2: Invalid R-flag:  The R-flag in the header is inconsistent with the
      message type.

   3: Incorrect Message Length:  The overall message length is not
      consistent with the set of objects carried.

   4: Invalid E-flag:  The E-flag is set in the header, but this is not
      a Data message.

   5: Invalid C-flag:  The C-flag was set on something other than a
      Query message or Q-mode Data message, or was clear on a Query
      message.
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A.4.4.2.  Hop Limit Exceeded

   Class:              Permanent-Failure
   Code:               2
   Additional Info:    None

   This message is sent if a GIST node receives a message with a GIST
   hop count of zero, or a GIST node tries to forward a message after
   its GIST hop count has been decremented to zero on reception.  This
   message indicates either a routing loop or too small an initial hop
   count value.

A.4.4.3.  Incorrect Encapsulation

   Class:              Protocol-Error
   Code:               3
   Additional Info:    None

   This message is sent if a GIST node receives a message that uses an
   incorrect encapsulation method (e.g., a Query arrives over an MA, or
   the Confirm for a handshake that sets up a messaging association
   arrives in D-mode).

A.4.4.4.  Incorrectly Delivered Message

   Class:              Protocol-Error
   Code:               4
   Additional Info:    None

   This message is sent if a GIST node receives a message over an MA
   that is not associated with the MRI/NSLPID/SID combination in the
   message.

A.4.4.5.  No Routing State

   Class:              Protocol-Error
   Code:               5
   Additional Info:    None

   This message is sent if a node receives a message for which routing
   state should exist, but has not yet been created and thus there is no
   appropriate Querying-SM or Responding-SM.  This can occur on
   receiving a Data or Confirm message at a node whose policy requires
   routing state to exist before such messages can be accepted.  See
   also Section 6.1 and Section 6.3.
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A.4.4.6.  Unknown NSLPID

   Class:              Permanent-Failure
   Code:               6
   Additional Info:    None

   This message is sent if a router receives a directly addressed
   message for an NSLP that it does not support.

A.4.4.7.  Endpoint Found

   Class:              Permanent-Failure
   Code:               7
   Additional Info:    None

   This message is sent if a GIST node at a flow endpoint receives a
   Query message for an NSLP that it does not support.

A.4.4.8.  Message Too Large

   Class:              Permanent-Failure
   Code:               8
   Additional Info:    MTU Info

   This message is sent if a router receives a message that it can’t
   forward because it exceeds the IP MTU on the next or subsequent hops.

A.4.4.9.  Object Type Error

   Class:              Protocol-Error
   Code:               9
   Additional Info:    Object Type Info

   This message is sent if a GIST node receives a message containing a
   TLV object with an invalid type.  The message indicates the object
   type at fault in the additional info field.  This error code is split
   into subcodes as follows:

   0: Duplicate Object:  This subcode is used if a GIST node receives a
      message containing multiple instances of an object that may only
      appear once in a message.  In the current specification, this
      applies to all objects.

   1: Unrecognised Object:  This subcode is used if a GIST node receives
      a message containing an object that it does not support, and the
      extensibility flags AB=00.
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   2: Missing Object:  This subcode is used if a GIST node receives a
      message that is missing one or more mandatory objects.  This
      message is also sent if a Stack-Proposal is sent without a
      matching Stack-Configuration-Data object when one was necessary,
      or vice versa.

   3: Invalid Object Type:  This subcode is used if the object type is
      known, but it is not valid for this particular GIST message type.

   4: Untranslated Object:  This subcode is used if the object type is
      known and is mandatory to interpret, but it contains addressing
      data that has not been translated by an intervening NAT.

   5: Invalid Extensibility Flags:  This subcode is used if an object is
      received with the extensibility flags AB=11.

A.4.4.10.  Object Value Error

   Class:              Protocol-Error
   Code:               10
   Additional Info:    1 or 2 Object Value Info fields as given below

   This message is sent if a node receives a message containing an
   object that cannot be properly parsed.  The error message contains a
   single Object Value Info object, except for subcode 5 as stated
   below.  This error code is split into subcodes as follows:

   0: Incorrect Length:  The overall length does not match the object
      length calculated from the object contents.

   1: Value Not Supported:  The value of a field is not supported by the
      GIST node.

   2: Invalid Flag-Field Combination:  An object contains an invalid
      combination of flags and/or fields.  At the moment, this only
      relates to the Path-Coupled MRI (Appendix A.3.1.1), but in future
      there may be more.

   3: Empty List:  At the moment, this only relates to Stack-Proposals.
      The error message is sent if a stack proposal with a length > 0
      contains only null bytes (a length of 0 is handled as "Value Not
      Supported").

   4: Invalid Cookie:  The message contains a cookie that could not be
      verified by the node.
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   5: Stack-Proposal - Stack-Configuration-Data Mismatch:  This subcode
      is used if a GIST node receives a message in which the data in the
      Stack-Proposal object is inconsistent with the information in the
      Stack Configuration Data object.  In this case, both the Stack-
      Proposal object and Stack-Configuration-Data object MUST be
      included in separate Object Value Info fields in that order.

A.4.4.11.  Invalid IP-Layer TTL

   Class:              Permanent-Failure
   Code:               11
   Additional Info:    None

   This error indicates that a message was received with an IP-layer TTL
   outside an acceptable range, for example, that an upstream Query was
   received with an IP layer TTL of less than 254 (i.e., more than one
   IP hop from the sender).  The actual IP distance can be derived from
   the IP-TTL information in the NLI object carried in the same message.

A.4.4.12.  MRI Validation Failure

   Class:              Permanent-Failure
   Code:               12
   Additional Info:    Object Value Info

   This error indicates that a message was received with an MRI that
   could not be accepted, e.g., because of too much wildcarding or
   failing some validation check (cf. Section 5.8.1.2).  The Object
   Value Info includes the MRI so the error originator can indicate the
   part of the MRI that caused the problem.  The error code is divided
   into subcodes as follows:

   0: MRI Too Wild:  The MRI contained too much wildcarding (e.g., too
      short a destination address prefix) to be forwarded correctly down
      a single path.

   1: IP Version Mismatch:  The MRI in a path-coupled Query message
      refers to an IP version that is not implemented on the interface
      used, or is different from the IP version of the Query
      encapsulation (see Section 7.4).

   2: Ingress Filter Failure:  The MRI in a path-coupled Query message
      describes a flow that would not pass ingress filtering on the
      interface used.
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Appendix B.  API between GIST and Signalling Applications

   This appendix provides an abstract API between GIST and signalling
   applications.  It should not constrain implementers, but rather help
   clarify the interface between the different layers of the NSIS
   protocol suite.  In addition, although some of the data types carry
   the information from GIST information elements, this does not imply
   that the format of that data as sent over the API has to be the same.

   Conceptually, the API has similarities to the sockets API,
   particularly that for unconnected UDP sockets.  An extension for an
   API like that for UDP connected sockets could be considered.  In this
   case, for example, the only information needed in a SendMessage
   primitive would be NSLP-Data, NSLP-Data-Size, and NSLP-Message-Handle
   (which can be null).  Other information that was persistent for a
   group of messages could be configured once for the socket.  Such
   extensions may make a concrete implementation more efficient but do
   not change the API semantics, and so are not considered further here.

B.1.  SendMessage

   This primitive is passed from a signalling application to GIST.  It
   is used whenever the signalling application wants to initiate sending
   a message.

   SendMessage ( NSLP-Data, NSLP-Data-Size, NSLP-Message-Handle,
                 NSLPID, Session-ID, MRI, SII-Handle,
                 Transfer-Attributes, Timeout, IP-TTL, GIST-Hop-Count )

   The following arguments are mandatory:

   NSLP-Data:  The NSLP message itself.

   NSLP-Data-Size:  The length of NSLP-Data.

   NSLP-Message-Handle:  A handle for this message that can be used by
      GIST as a reference in subsequent MessageStatus notifications
      (Appendix B.3).  Notifications could be about error conditions or
      about the security attributes that will be used for the message.
      A NULL handle may be supplied if the NSLP is not interested in
      such notifications.

   NSLPID:  An identifier indicating which NSLP this is.

   Session-ID:  The NSIS session identifier.  Note that it is assumed
      that the signalling application provides this to GIST rather than
      GIST providing a value itself.
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   MRI:  Message routing information for use by GIST in determining the
      correct next GIST hop for this message.  The MRI implies the
      message routing method to be used and the message direction.

   The following arguments are optional:

   SII-Handle:  A handle, previously supplied by GIST, to a data
      structure that should be used to route the message explicitly to a
      particular GIST next hop.

   Transfer-Attributes:  Attributes defining how the message should be
      handled (see Section 4.1.2).  The following attributes can be
      considered:

      Reliability:  Values ’unreliable’ or ’reliable’.

      Security:  This attribute allows the NSLP to specify what level of
         security protection is requested for the message (such as
         ’integrity’ or ’confidentiality’) and can also be used to
         specify what authenticated signalling source and destination
         identities should be used to send the message.  The
         possibilities can be learned by the signalling application from
         prior MessageStatus or RecvMessage notifications.  If an NSLP-
         Message-Handle is provided, GIST will inform the signalling
         application of what values it has actually chosen for this
         attribute via a MessageStatus callback.  This might take place
         either synchronously (where GIST is selecting from available
         messaging associations) or asynchronously (when a new messaging
         association needs to be created).

      Local Processing:  This attribute contains hints from the
         signalling application about what local policy should be
         applied to the message -- in particular, its transmission
         priority relative to other messages, or whether GIST should
         attempt to set up or maintain forward routing state.

   Timeout:  Length of time GIST should attempt to send this message
      before indicating an error.

   IP-TTL:  The value of the IP layer TTL that should be used when
      sending this message (may be overridden by GIST for particular
      messages).

   GIST-Hop-Count:  The value for the hop count when sending the
      message.
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B.2.  RecvMessage

   This primitive is passed from GIST to a signalling application.  It
   is used whenever GIST receives a message from the network, including
   the case of null messages (zero-length NSLP payload), typically
   initial Query messages.  For Queries, the results of invoking this
   primitive are used by GIST to check whether message routing state
   should be created (see the discussion of the ’Routing-State-Check’
   argument below).

   RecvMessage ( NSLP-Data, NSLP-Data-Size, NSLPID, Session-ID, MRI,
                 Routing-State-Check, SII-Handle, Transfer-Attributes,
                 IP-TTL, IP-Distance, GIST-Hop-Count,
                 Inbound-Interface )

   NSLP-Data:  The NSLP message itself (may be empty).

   NSLP-Data-Size:  The length of NSLP-Data (may be zero).

   NSLPID:  An identifier indicating which NSLP this message is for.

   Session-ID:  The NSIS session identifier.

   MRI:  Message routing information that was used by GIST in forwarding
      this message.  Implicitly defines the message routing method that
      was used and the direction of the message relative to the MRI.

   Routing-State-Check:  This boolean is True if GIST is checking with
      the signalling application to see if routing state should be
      created with the peer or the message should be forwarded further
      (see Section 4.3.2).  If True, the signalling application should
      return the following values via the RecvMessage call:

         A boolean indicating whether to set up the state.

         Optionally, an NSLP-Payload to carry in the generated Response
         or forwarded Query respectively.

      This mechanism could be extended to enable the signalling
      application to indicate to GIST whether state installation should
      be immediate or deferred (see Section 5.3.3 and Section 6.3 for
      further discussion).

   SII-Handle:  A handle to a data structure, identifying a peer address
      and interface.  Can be used to identify route changes and for
      explicit routing to a particular GIST next hop.
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   Transfer-Attributes:  The reliability and security attributes that
      were associated with the reception of this particular message.  As
      well as the attributes associated with SendMessage, GIST may
      indicate the level of verification of the addresses in the MRI.
      Three attributes can be indicated:

      *  Whether the signalling source address is one of the flow
         endpoints (i.e., whether this is the first or last GIST hop).

      *  Whether the signalling source address has been validated by a
         return routability check.

      *  Whether the message was explicitly routed (and so has not been
         validated by GIST as delivered consistently with local routing
         state).

   IP-TTL:  The value of the IP layer TTL this message was received with
      (if available).

   IP-Distance:  The number of IP hops from the peer signalling node
      that sent this message along the path, or 0 if this information is
      not available.

   GIST-Hop-Count:  The value of the hop count the message was received
      with, after being decremented in the GIST receive-side processing.

   Inbound-Interface:  Attributes of the interface on which the message
      was received, such as whether it lies on the internal or external
      side of a NAT.  These attributes have only local significance and
      are defined by the implementation.

B.3.  MessageStatus

   This primitive is passed from GIST to a signalling application.  It
   is used to notify the signalling application that a message that it
   requested to be sent could not be dispatched, or to inform the
   signalling application about the transfer attributes that have been
   selected for the message (specifically, security attributes).  The
   signalling application can respond to this message with a return code
   to abort the sending of the message if the attributes are not
   acceptable.

  MessageStatus ( NSLP-Message-Handle, Transfer-Attributes, Error-Type )

   NSLP-Message-Handle:  A handle for the message provided by the
      signalling application in SendMessage.
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   Transfer-Attributes:  The reliability and security attributes that
      will be used to transmit this particular message.

   Error-Type:  Indicates the type of error that occurred, for example,
      ’no next node found’.

B.4.  NetworkNotification

   This primitive is passed from GIST to a signalling application.  It
   indicates that a network event of possible interest to the signalling
   application occurred.

   NetworkNotification ( NSLPID, MRI, Network-Notification-Type )

   NSLPID:  An identifier indicating which NSLP this is message is for.

   MRI:  Provides the message routing information to which the network
      notification applies.

   Network-Notification-Type:  Indicates the type of event that caused
      the notification and associated additional data.  Five events have
      been identified:

      Last Node:  GIST has detected that this is the last NSLP-aware
         node in the path.  See Section 4.3.4.

      Routing Status Change:  GIST has installed new routing state, has
         detected that existing routing state may no longer be valid, or
         has re-established existing routing state.  See Section 7.1.3.
         The new status is reported; if the status is Good, the SII-
         Handle of the peer is also reported, as for RecvMessage.

      Route Deletion:  GIST has determined that an old route is now
         definitely invalid, e.g., that flows are definitely not using
         it (see Section 7.1.4).  The SII-Handle of the peer is also
         reported.

      Node Authorisation Change:  The authorisation status of a peer has
         changed, meaning that routing state is no longer valid or that
         a signalling peer is no longer reachable; see Section 4.4.2.

      Communication Failure:  Communication with the peer has failed;
         messages may have been lost.
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B.5.  SetStateLifetime

   This primitive is passed from a signalling application to GIST.  It
   indicates the duration for which the signalling application would
   like GIST to retain its routing state.  It can also give a hint that
   the signalling application is no longer interested in the state.

   SetStateLifetime ( NSLPID, MRI, SID, State-Lifetime )

   NSLPID:  Provides the NSLPID to which the routing state lifetime
      applies.

   MRI:  Provides the message routing information to which the routing
      state lifetime applies; includes the direction (in the D-flag).

   SID:  The session ID that the signalling application will be using
      with this routing state.  Can be wildcarded.

   State-Lifetime:  Indicates the lifetime for which the signalling
      application wishes GIST to retain its routing state (may be zero,
      indicating that the signalling application has no further interest
      in the GIST state).

B.6.  InvalidateRoutingState

   This primitive is passed from a signalling application to GIST.  It
   indicates that the signalling application has knowledge that the next
   signalling hop known to GIST may no longer be valid, either because
   of changes in the network routing or the processing capabilities of
   signalling application nodes.  See Section 7.1.

   InvalidateRoutingState ( NSLPID, MRI, Status, NSLP-Data,
                            NSLP-Data-Size, Urgent )

   NSLPID:  The NSLP originating the message.  May be null (in which
      case, the invalidation applies to all signalling applications).

   MRI:  The flow for which routing state should be invalidated;
      includes the direction of the change (in the D-flag).

   Status:  The new status that should be assumed for the routing state,
      one of Bad or Tentative (see Section 7.1.3).

   NSLP-Data, NSLP-Data-Size:  (optional) A payload provided by the NSLP
      to be used the next GIST handshake.  This can be used as part of a
      conditional peering process (see Section 4.3.2).  The payload will
      be transmitted without security protection.
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   Urgent:  A hint as to whether rediscovery should take place
      immediately or only with the next signalling message.

Appendix C.  Deployment Issues with Router Alert Options

   The GIST peer discovery handshake (Section 4.4.1) depends on the
   interception of Q-mode encapsulated IP packets (Section 4.3.1 and
   Section 5.3.2) by routers.  There are two fundamental requirements on
   the process:

   1.  Packets relevant to GIST must be intercepted.

   2.  Packets not relevant to GIST must be forwarded transparently.

   This specification defines the GIST behaviour to ensure that both
   requirements are met for a GIST-capable node.  However, GIST packets
   will also encounter non-GIST nodes, for which requirement (2) still
   applies.  If non-GIST nodes block Q-mode packets, GIST will not
   function.  It is always possible for middleboxes to block specific
   traffic types; by using a normal UDP encapsulation for Q-mode
   traffic, GIST allows NATs at least to pass these messages
   (Section 7.2.1), and firewalls can be configured with standard
   policies.  However, where the Q-mode encapsulation uses a Router
   Alert Option (RAO) at the IP level this can lead to additional
   problems.  The situation is different for IPv4 and IPv6.

   The IPv4 RAO is defined by [13], which defines the RAO format with a
   2-byte value field; however, only one value (zero) is defined and
   there is no IANA registry for further allocations.  It states that
   unknown values should be ignored (i.e., the packets forwarded as
   normal IP traffic); however, it has also been reported that some
   existing implementations simply ignore the RAO value completely (i.e.
   process any packet with an RAO as though the option value was zero).
   Therefore, the use of non-zero RAO values cannot be relied on to make
   GIST traffic transparent to existing implementations.  (Note that it
   may still be valuable to be able to allocate non-zero RAO values for
   IPv4: this makes the interception process more efficient for nodes
   that do examine the value field, and makes no difference to nodes
   that *incorrectly* ignore it.  Whether or not non-zero RAO values are
   used does not change the GIST protocol operation, but needs to be
   decided when new NSLPs are registered.)

   The second stage of the analysis is therefore what happens when a
   non-GIST node that implements RAO handling sees a Q-mode packet.  The
   RAO specification simply states "Routers that recognize this option
   shall examine packets carrying it more closely (check the IP Protocol
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   field, for example) to determine whether or not further processing is
   necessary".  There are two possible basic behaviours for GIST
   traffic:

   1.  The "closer examination" of the packet is sufficiently
       intelligent to realise that the node does not need to process it
       and should forward it.  This could either be by virtue of the
       fact that the node has not been configured to match IP-
       Protocol=UDP for RAO packets at all or that even if UDP traffic
       is intercepted the port numbers do not match anything locally
       configured.

   2.  The "closer examination" of the packet identifies it as UDP, and
       delivers it to the UDP stack on the node.  In this case, it can
       no longer be guaranteed to be processed appropriately.  Most
       likely, it will simply be dropped or rejected with an ICMP error
       (because there is no GIST process on the destination port to
       which to deliver it).

   Analysis of open-source operating system source code shows the first
   type of behaviour, and this has also been seen in direct GIST
   experiments with commercial routers, including the case when they
   process other uses of the RAO (i.e., RSVP).  However, it has also
   been reported that other RAO implementations will exhibit the second
   type of behaviour.  The consequence of this would be that Q-mode
   packets are blocked in the network and GIST could not be used.  Note
   that although this is caused by some subtle details in the RAO
   processing rules, the end result is the same as if the packet was
   simply blocked for other reasons (for example, many IPv4 firewalls
   drop packets with options by default).

   The GIST specification allows two main options for circumventing
   nodes that block Q-mode traffic in IPv4.  Whether to use these
   options is a matter of implementation and configuration choice.

   o  A GIST node can be configured to send Q-mode packets without the
      RAO at all.  This should avoid the above problems, but should only
      be done if it is known that nodes on the path to the receiver are
      able to intercept such packets.  (See Section 5.3.2.1.)

   o  If a GIST node can identify exactly where the packets are being
      blocked (e.g., from ICMP messages), or can discover some point on
      the path beyond the blockage (e.g., by use of traceroute or by
      routing table analysis), it can send the Q-mode messages to that
      point using IP-in-IP tunelling without any RAO.  This bypasses the
      input side processing on the blocking node, but picks up normal
      GIST behaviour beyond it.
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   If in the light of deployment experience the problem of blocked
   Q-mode traffic turns out to be widespread and these techniques turn
   out to be insufficient, a further possibility is to define an
   alternative Q-mode encapsulation that does not use UDP.  This would
   require a specification change.  Such an option would be restricted
   to network-internal use, since operation through NATs and firewalls
   would be much harder with it.

   The situation with IPv6 is rather different, since in that case the
   use of non-zero RAO values is well established in the specification
   ([17]) and an IANA registry exists.  The main problem is that several
   implementations are still immature: for example, some treat any RAO-
   marked packet as though it was for local processing without further
   analysis.  Since this prevents any RAO usage at all (including the
   existing standardised ones) in such a network, it seems reasonable to
   assume that such implementations will be fixed as part of the general
   deployment of IPv6.

Appendix D.  Example Routing State Table and Handshake

   Figure 11 shows a signalling scenario for a single flow being managed
   by two signalling applications using the path-coupled message routing
   method.  The flow sender and receiver and one router support both;
   two other routers support one each.  The figure also shows the
   routing state table at node B.
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       A                        B          C          D           E
   +------+                  +-----+    +-----+    +-----+    +--------+
   | Flow |    +-+    +-+    |NSLP1|    |NSLP1|    |     |    |  Flow  |
   |Sender|====|R|====|R|====|NSLP2|====|     |====|NSLP2|====|Receiver|
   |      |    +-+    +-+    |GIST |    |GIST |    |GIST |    |        |
   +------+                  +-----+    +-----+    +-----+    +--------+
             Flow Direction ------------------------------>>

   +------------------------------------+---------+--------+-----------+
   |     Message Routing Information    | Session | NSLPID |  Routing  |
   |                                    |    ID   |        |   State   |
   +------------------------------------+---------+--------+-----------+
   |    MRM = Path-Coupled; Flow ID =   |  0xABCD |  NSLP1 |    IP-A   |
   |   {IP-A, IP-E, proto/ports}; D=up  |         |        |           |
   |                                    |         |        |           |
   |    MRM = Path-Coupled; Flow ID =   |  0xABCD |  NSLP1 |   (null)  |
   |  {IP-A, IP-E, proto/ports}; D=down |         |        |           |
   |                                    |         |        |           |
   |    MRM = Path-Coupled; Flow ID =   |  0x1234 |  NSLP2 |    IP-A   |
   |   {IP-A, IP-E, proto/ports}; D=up  |         |        |           |
   |                                    |         |        |           |
   |    MRM = Path-Coupled; Flow ID =   |  0x1234 |  NSLP2 | Points to |
   |  {IP-A, IP-E, proto/ports}; D=down |         |        |   B-D MA  |
   +------------------------------------+---------+--------+-----------+

                     Figure 11: A Signalling Scenario

   The upstream state is just the same address for each application.
   For the downstream direction, NSLP1 only requires D-mode messages and
   so no explicit routing state towards C is needed.  NSLP2 requires a
   messaging association for its messages towards node D, and node C
   does not process NSLP2 at all, so the peer state for NSLP2 is a
   pointer to a messaging association that runs directly from B to D.
   Note that E is not visible in the state table (except implicitly in
   the address in the message routing information); routing state is
   stored only for adjacent peers.  (In addition to the peer
   identification, IP hop counts are stored for each peer where the
   state itself if not null; this is not shown in the table.)

   Figure 12 shows a GIST handshake setting up a messaging association
   for B-D signalling, with the exchange of Stack Proposals and MA-
   protocol-options in each direction.  The Querying node selects TLS/
   TCP as the stack configuration and sets up the messaging association
   over which it sends the Confirm.
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    -------------------------- Query ---------------------------->
    IP(Src=IP#A; Dst=IP#E; RAO for NSLP2); UDP(Src=6789; Dst=GIST)
    D-mode magic number (0x4e04 bda5)
    GIST(Header(Type=Query; NSLPID=NSLP2; C=1; R=1; S=0)
         MRI(MRM=Path-Coupled; Flow=F; Direction=down)
         SessionID(0x1234) NLI(Peer=’string1’; IA=IP#B)
         QueryCookie(0x139471239471923526)
         StackProposal(#Proposals=3;1=TLS/TCP; 2=TLS/SCTP; 3=TCP)
         StackConfigurationData(HoldTime=300; #MPO=2;
           TCP(Applicable: all; Data: null)
           SCTP(Applicable: all; Data: null)))

    <---------------------- Response ----------------------------
    IP(Src=IP#D; Dst=IP#B); UDP(Src=GIST; Dst=6789)
    D-mode magic number (0x4e04 bda5)
    GIST(Header(Type=Response; NSLPID=NSLP2; C=0; R=1; S=1)
         MRI(MRM=Path-Coupled; Flow=F; Direction=up)
         SessionID(0x1234) NLI(Peer=’stringr2’, IA=IP#D)
         QueryCookie(0x139471239471923526)
         ResponderCookie(0xacdefedcdfaeeeded)
         StackProposal(#Proposals=3; 1=TCP; 2=SCTP; 3=TLS/TCP)
         StackConfigurationData(HoldTime=200; #MPO=3;
           TCP(Applicable: 3; Data: port=6123)
           TCP(Applicable: 1; Data: port=5438)
           SCTP(Applicable: all; Data: port=3333)))

    -------------------------TCP SYN----------------------->
    <----------------------TCP SYN/ACK----------------------
    -------------------------TCP ACK----------------------->
    TCP connect(IP Src=IP#B; IP Dst=IP#D; Src Port=9166; Dst Port=6123)
    <-----------------------TLS INIT----------------------->

    ------------------------ Confirm ---------------------------->
    [Sent within messaging association]
    GIST(Header(Type=Confirm; NSLPID=NSLP2; C=0; R=0; S=1)
         MRI(MRM=Path-Coupled; Flow=F; Direction=down)
         SessionID(0x1234) NLI(Peer=’string1’; IA=IP#B)
         ResponderCookie(0xacdefedcdfaeeeded)
         StackProposal(#Proposals=3; 1=TCP; 2=SCTP; 3=TLS/TCP)
         StackConfigurationData(HoldTime=300))

                Figure 12: GIST Handshake Message Sequence
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