
Internet Engineering Task Force (IETF) H. Schulzrinne
Request for Comments: 5971 Columbia U.
Category: Experimental R. Hancock
ISSN: 2070-1721 RMR
 October 2010

 GIST: General Internet Signalling Transport

Abstract

 This document specifies protocol stacks for the routing and transport
 of per-flow signalling messages along the path taken by that flow
 through the network. The design uses existing transport and security
 protocols under a common messaging layer, the General Internet
 Signalling Transport (GIST), which provides a common service for
 diverse signalling applications. GIST does not handle signalling
 application state itself, but manages its own internal state and the
 configuration of the underlying transport and security protocols to
 enable the transfer of messages in both directions along the flow
 path. The combination of GIST and the lower layer transport and
 security protocols provides a solution for the base protocol
 component of the "Next Steps in Signalling" (NSIS) framework.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5971.

Schulzrinne & Hancock Experimental [Page 1]

RFC 5971 GIST October 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 2. Requirements Notation and Terminology 5
 3. Design Overview . 8
 3.1. Overall Design Approach 8
 3.2. Modes and Messaging Associations 10
 3.3. Message Routing Methods 11
 3.4. GIST Messages . 13
 3.5. GIST Peering Relationships 14
 3.6. Effect on Internet Transparency 14
 3.7. Signalling Sessions 15
 3.8. Signalling Applications and NSLPIDs 16
 3.9. GIST Security Services 17
 3.10. Example of Operation 18
 4. GIST Processing Overview 20
 4.1. GIST Service Interface 21
 4.2. GIST State . 23
 4.3. Basic GIST Message Processing 25
 4.4. Routing State and Messaging Association Maintenance . . . 33
 5. Message Formats and Transport 45
 5.1. GIST Messages . 45
 5.2. Information Elements 48
 5.3. D-mode Transport . 53
 5.4. C-mode Transport . 58
 5.5. Message Type/Encapsulation Relationships 59
 5.6. Error Message Processing 60
 5.7. Messaging Association Setup 61
 5.8. Specific Message Routing Methods 66
 6. Formal Protocol Specification 71
 6.1. Node Processing . 73
 6.2. Query Node Processing 75
 6.3. Responder Node Processing 79

Schulzrinne & Hancock Experimental [Page 2]

RFC 5971 GIST October 2010

 6.4. Messaging Association Processing 83
 7. Additional Protocol Features 86
 7.1. Route Changes and Local Repair 86
 7.2. NAT Traversal . 93
 7.3. Interaction with IP Tunnelling 99
 7.4. IPv4-IPv6 Transition and Interworking 100
 8. Security Considerations 101
 8.1. Message Confidentiality and Integrity 102
 8.2. Peer Node Authentication 102
 8.3. Routing State Integrity 103
 8.4. Denial-of-Service Prevention and Overload Protection . . 104
 8.5. Requirements on Cookie Mechanisms 106
 8.6. Security Protocol Selection Policy 108
 8.7. Residual Threats . 109
 9. IANA Considerations . 111
 10. Acknowledgements . 117
 11. References . 118
 11.1. Normative References 118
 11.2. Informative References 119
 Appendix A. Bit-Level Formats and Error Messages 122
 A.1. The GIST Common Header 122
 A.2. General Object Format 123
 A.3. GIST TLV Objects . 125
 A.4. Errors . 134
 Appendix B. API between GIST and Signalling Applications 143
 B.1. SendMessage . 143
 B.2. RecvMessage . 145
 B.3. MessageStatus . 146
 B.4. NetworkNotification 147
 B.5. SetStateLifetime . 148
 B.6. InvalidateRoutingState 148
 Appendix C. Deployment Issues with Router Alert Options 149
 Appendix D. Example Routing State Table and Handshake 151

Schulzrinne & Hancock Experimental [Page 3]

RFC 5971 GIST October 2010

1. Introduction

 Signalling involves the manipulation of state held in network
 elements. ’Manipulation’ could mean setting up, modifying, and
 tearing down state; or it could simply mean the monitoring of state
 that is managed by other mechanisms. This specification concentrates
 mainly on path-coupled signalling, controlling resources on network
 elements that are located on the path taken by a particular data
 flow, possibly including but not limited to the flow endpoints.
 Examples of state management include network resource reservation,
 firewall configuration, and state used in active networking; examples
 of state monitoring are the discovery of instantaneous path
 properties, such as available bandwidth or cumulative queuing delay.
 Each of these different uses of signalling is referred to as a
 signalling application.

 GIST assumes other mechanisms are responsible for controlling routing
 within the network, and GIST is not designed to set up or modify
 paths itself; therefore, it is complementary to protocols like
 Resource Reservation Protocol - Traffic Engineering (RSVP-TE) [22] or
 LDP [23] rather than an alternative. There are almost always more
 than two participants in a path-coupled signalling session, although
 there is no need for every node on the path to participate; indeed,
 support for GIST and any signalling applications imposes a
 performance cost, and deployment for flow-level signalling is much
 more likely on edge devices than core routers. GIST path-coupled
 signalling does not directly support multicast flows, but the current
 GIST design could be extended to do so, especially in environments
 where the multicast replication points can be made GIST-capable.
 GIST can also be extended to cover other types of signalling pattern,
 not related to any end-to-end flow in the network, in which case the
 distinction between GIST and end-to-end higher-layer signalling will
 be drawn differently or not at all.

 Every signalling application requires a set of state management
 rules, as well as protocol support to exchange messages along the
 data path. Several aspects of this protocol support are common to
 all or a large number of signalling applications, and hence can be
 developed as a common protocol. The NSIS framework given in [29]
 provides a rationale for a function split between the common and
 application-specific protocols, and gives outline requirements for
 the former, the NSIS Transport Layer Protocol (NTLP). Several
 concepts in the framework are derived from RSVP [14], as are several
 aspects of the GIST protocol design. The application-specific
 protocols are referred to as NSIS Signalling Layer Protocols (NSLPs),
 and are defined in separate documents. The NSIS framework [29] and
 the accompanying threats document [30] provide important background

Schulzrinne & Hancock Experimental [Page 4]

RFC 5971 GIST October 2010

 information to this specification, including information on how GIST
 is expected to be used in various network types and what role it is
 expected to perform.

 This specification provides a concrete solution for the NTLP. It is
 based on the use of existing transport and security protocols under a
 common messaging layer, the General Internet Signalling Transport
 (GIST). GIST does not handle signalling application state itself; in
 that crucial respect, it differs from higher layer signalling
 protocols such as SIP, the Real-time Streaming Protocol (RTSP), and
 the control component of FTP. Instead, GIST manages its own internal
 state and the configuration of the underlying transport and security
 protocols to ensure the transfer of signalling messages on behalf of
 signalling applications in both directions along the flow path. The
 purpose of GIST is thus to provide the common functionality of node
 discovery, message routing, and message transport in a way that is
 simple for multiple signalling applications to re-use.

 The structure of this specification is as follows. Section 2 defines
 terminology, and Section 3 gives an informal overview of the protocol
 design principles and operation. The normative specification is
 contained mainly in Section 4 to Section 8. Section 4 describes the
 message sequences and Section 5 their format and contents. Note that
 the detailed bit formats are given in Appendix A. The protocol
 operation is captured in the form of state machines in Section 6.
 Section 7 describes some more advanced protocol features, and
 security considerations are contained in Section 8. In addition,
 Appendix B describes an abstract API for the service that GIST
 provides to signalling applications, and Appendix D provides an
 example message flow. Parts of the GIST design use packets with IP
 options to probe the network, that leads to some migration issues in
 the case of IPv4, and these are discussed in Appendix C.

 Because of the layered structure of the NSIS protocol suite, protocol
 extensions to cover a new signalling requirement could be carried out
 either within GIST, or within the signalling application layer, or
 both. General guidelines on how to extend different layers of the
 protocol suite, and in particular when and how it is appropriate to
 extend GIST, are contained in a separate document [12]. In this
 document, Section 9 gives the formal IANA considerations for the
 registries defined by the GIST specification.

2. Requirements Notation and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [3].

Schulzrinne & Hancock Experimental [Page 5]

RFC 5971 GIST October 2010

 The terminology used in this specification is defined in this
 section. The basic entities relevant at the GIST level are shown in
 Figure 1. In particular, this diagram distinguishes the different
 address types as being associated with a flow (end-to-end addresses)
 or signalling (addresses of adjacent signalling peers).

 Source GIST (adjacent) peer nodes Destination

 IP address IP addresses = Signalling IP address
 = Flow Source/Destination Addresses = Flow
 Source (depending on signalling direction) Destination
 Address | | Address
 V V
 +--------+ +------+ Data Flow +------+ +--------+
 | Flow |-----------|------|-------------|------|-------->| Flow |
 | Sender | | | | | |Receiver|
 +--------+ | GIST |============>| GIST | +--------+
 | Node |<============| Node |
 +------+ Signalling +------+
 GN1 Flow GN2

 >>>>>>>>>>>>>>>>> = Downstream direction
 <<<<<<<<<<<<<<<<< = Upstream direction

 Figure 1: Basic Terminology

 [Data] Flow: A set of packets identified by some fixed combination
 of header fields. Flows are unidirectional; a bidirectional
 communication is considered a pair of unidirectional flows.

 Session: A single application layer exchange of information for
 which some state information is to be manipulated or monitored.
 See Section 3.7 for further detailed discussion.

 Session Identifier (SID): An identifier for a session; the syntax is
 a 128-bit value that is opaque to GIST.

 [Flow] Sender: The node in the network that is the source of the
 packets in a flow. A sender could be a host, or a router if, for
 example, the flow is actually an aggregate.

 [Flow] Receiver: The node in the network that is the sink for the
 packets in a flow.

 Downstream: In the same direction as the data flow.

 Upstream: In the opposite direction to the data flow.

Schulzrinne & Hancock Experimental [Page 6]

RFC 5971 GIST October 2010

 GIST Node: Any node supporting the GIST protocol, regardless of what
 signalling applications it supports.

 [Adjacent] Peer: The next node along the signalling path, in the
 upstream or downstream direction, with which a GIST node
 explicitly interacts.

 Querying Node: The GIST node that initiates the handshake process to
 discover the adjacent peer.

 Responding Node: The GIST node that responds to the handshake,
 becoming the adjacent peer to the Querying node.

 Datagram Mode (D-mode): A mode of sending GIST messages between
 nodes without using any transport layer state or security
 protection. Datagram mode uses UDP encapsulation, with source and
 destination IP addresses derived either from the flow definition
 or previously discovered adjacency information.

 Connection Mode (C-mode): A mode of sending GIST messages directly
 between nodes using point-to-point messaging associations (see
 below). Connection mode allows the re-use of existing transport
 and security protocols where such functionality is required.

 Messaging Association (MA): A single connection between two
 explicitly identified GIST adjacent peers, i.e., between a given
 signalling source and destination address. A messaging
 association may use a transport protocol; if security protection
 is required, it may use a network layer security association, or
 use a transport layer security association internally. A
 messaging association is bidirectional: signalling messages can be
 sent over it in either direction, referring to flows of either
 direction.

 [Message] Routing: Message routing describes the process of
 determining which is the next GIST peer along the signalling path.
 For signalling along a flow path, the message routing carried out
 by GIST is built on top of normal IP routing, that is, forwarding
 packets within the network layer based on their destination IP
 address. In this document, the term ’routing’ generally refers to
 GIST message routing unless particularly specified.

 Message Routing Method (MRM): There can be different algorithms for
 discovering the route that signalling messages should take. These
 are referred to as message routing methods, and GIST supports
 alternatives within a common protocol framework. See Section 3.3.

Schulzrinne & Hancock Experimental [Page 7]

RFC 5971 GIST October 2010

 Message Routing Information (MRI): The set of data item values that
 is used to route a signalling message according to a particular
 MRM; for example, for routing along a flow path, the MRI includes
 flow source and destination addresses, and protocol and port
 numbers. See Section 3.3.

 Router Alert Option (RAO): An option that can be included in IPv4
 and v6 headers to assist in the packet interception process; see
 [13] and [17].

 Transfer Attributes: A description of the requirements that a
 signalling application has for the delivery of a particular
 message; for example, whether the message should be delivered
 reliably. See Section 4.1.2.

3. Design Overview

3.1. Overall Design Approach

 The generic requirements identified in the NSIS framework [29] for
 transport of signalling messages are essentially two-fold:

 Routing: Determine how to reach the adjacent signalling node along
 each direction of the data path (the GIST peer), and if necessary
 explicitly establish addressing and identity information about
 that peer;

 Transport: Deliver the signalling information to that peer.

 To meet the routing requirement, one possibility is for the node to
 use local routing state information to determine the identity of the
 GIST peer explicitly. GIST defines a three-way handshake that probes
 the network to set up the necessary routing state between adjacent
 peers, during which signalling applications can also exchange data.
 Once the routing decision has been made, the node has to select a
 mechanism for transport of the message to the peer. GIST divides the
 transport functionality into two parts, a minimal capability provided
 by GIST itself, with the use of well-understood transport protocols
 for the harder cases. Here, with details discussed later, the
 minimal capability is restricted to messages that are sized well
 below the lowest maximum transmission unit (MTU) along a path, are
 infrequent enough not to cause concerns about congestion and flow
 control, and do not need security protection or guaranteed delivery.

 In [29], all of these routing and transport requirements are assigned
 to a single notional protocol, the NSIS Transport Layer Protocol
 (NTLP). The strategy of splitting the transport problem leads to a
 layered structure for the NTLP, with a specialised GIST messaging

Schulzrinne & Hancock Experimental [Page 8]

RFC 5971 GIST October 2010

 layer running over standard transport and security protocols. The
 basic concept is shown in Figure 2. Note that not every combination
 of transport and security protocols implied by the figure is actually
 possible for use in GIST; the actual combinations allowed by this
 specification are defined in Section 5.7. The figure also shows GIST
 offering its services to upper layers at an abstract interface, the
 GIST API, further discussed in Section 4.1.

 ^^ +-------------+
 || | Signalling |
 NSIS +------------|Application 2|
 Signalling | Signalling +-------------+
 Application |Application 1| |
 Level +-------------+ |
 || | |
 VV | |
 ========|===================|===== <-- GIST API
 | |
 ^^ +--+
 || |+-----------------------+ +--------------+ | | | | |
 || || GIST | | GIST State | |
 || || Encapsulation |<<<>>>| Maintenance | |
 || |+-----------------------+ +--------------+ |
 || | GIST: Messaging Layer |
 || +--+
 NSIS | | | |
 Transport ..
 Level . Transport Layer Security (TLS or DTLS) .
 (NTLP) ..
 || | | | |
 || +----+ +----+ +----+ +----+
 || |UDP | |TCP | |SCTP| |DCCP| ... other
 || +----+ +----+ +----+ +----+ protocols
 || | | | |
 ||
 || . IP Layer Security .
 ||
 VV | | | |
 ===========================|=======|=======|=======|============
 | | | |
 +--+
 | IP |
 +--+

 Figure 2: Protocol Stack Architecture for Signalling Transport

Schulzrinne & Hancock Experimental [Page 9]

RFC 5971 GIST October 2010

3.2. Modes and Messaging Associations

 Internally, GIST has two modes of operation:

 Datagram mode (D-mode): used for small, infrequent messages with
 modest delay constraints and no security requirements. A special
 case of D-mode called Query-mode (Q-mode) is used when no routing
 state exists.

 Connection mode (C-mode): used for all other signalling traffic. In
 particular, it can support large messages and channel security and
 provides congestion control for signalling traffic.

 C-mode can in principle use any stream or message-oriented transport
 protocol; this specification defines TCP as the initial choice. It
 can in principle employ specific network layer security associations,
 or an internal transport layer security association; this
 specification defines TLS as the initial choice. When GIST messages
 are carried in C-mode, they are treated just like any other traffic
 by intermediate routers between the GIST peers. Indeed, it would be
 impossible for intermediate routers to carry out any processing on
 the messages without terminating the transport and security protocols
 used.

 D-mode uses UDP, as a suitable NAT-friendly encapsulation that does
 not require per-message shared state to be maintained between the
 peers. Long-term evolution of GIST is assumed to preserve the
 simplicity of the current D-mode design. Any extension to the
 security or transport capabilities of D-mode can be viewed as the
 selection of a different protocol stack under the GIST messaging
 layer; this is then equivalent to defining another option within the
 overall C-mode framework. This includes both the case of using
 existing protocols and the specific development of a message exchange
 and payload encapsulation to support GIST requirements.
 Alternatively, if any necessary parameters (e.g., a shared secret for
 use in integrity or confidentiality protection) can be negotiated
 out-of-band, then the additional functions can be added directly to
 D-mode by adding an optional object to the message (see
 Appendix A.2.1). Note that in such an approach, downgrade attacks as
 discussed in Section 8.6 would need to be prevented by policy at the
 destination node.

 It is possible to mix these two modes along a path. This allows, for
 example, the use of D-mode at the edges of the network and C-mode
 towards the core. Such combinations may make operation more
 efficient for mobile endpoints, while allowing shared security
 associations and transport connections to be used for messages for
 multiple flows and signalling applications. The setup for these

Schulzrinne & Hancock Experimental [Page 10]

RFC 5971 GIST October 2010

 protocols imposes an initialisation cost for the use of C-mode, but
 in the long term this cost can be shared over all signalling sessions
 between peers; once the transport layer state exists, retransmission
 algorithms can operate much more aggressively than would be possible
 in a pure D-mode design.

 It must be understood that the routing and transport functions within
 GIST are not independent. If the message transfer has requirements
 that require C-mode, for example, if the message is so large that
 fragmentation is required, this can only be used between explicitly
 identified nodes. In such cases, GIST carries out the three-way
 handshake initially in D-mode to identify the peer and then sets up
 the necessary connections if they do not already exist. It must also
 be understood that the signalling application does not make the
 D-mode/C-mode selection directly; rather, this decision is made by
 GIST on the basis of the message characteristics and the transfer
 attributes stated by the application. The distinction is not visible
 at the GIST service interface.

 In general, the state associated with C-mode messaging to a
 particular peer (signalling destination address, protocol and port
 numbers, internal protocol configuration, and state information) is
 referred to as a messaging association (MA). MAs are totally
 internal to GIST (they are not visible to signalling applications).
 Although GIST may be using an MA to deliver messages about a
 particular flow, there is no direct correspondence between them: the
 GIST message routing algorithms consider each message in turn and
 select an appropriate MA to transport it. There may be any number of
 MAs between two GIST peers although the usual case is zero or one,
 and they are set up and torn down by management actions within GIST
 itself.

3.3. Message Routing Methods

 The baseline message routing functionality in GIST is that signalling
 messages follow a route defined by an existing flow in the network,
 visiting a subset of the nodes through which it passes. This is the
 appropriate behaviour for application scenarios where the purpose of
 the signalling is to manipulate resources for that flow. However,
 there are scenarios for which other behaviours are applicable. Two
 examples are:

 Predictive Routing: Here, the intent is to signal along a path that
 the data flow may follow in the future. Possible cases are pre-
 installation of state on the backup path that would be used in the
 event of a link failure, and predictive installation of state on
 the path that will be used after a mobile node handover.

Schulzrinne & Hancock Experimental [Page 11]

RFC 5971 GIST October 2010

 NAT Address Reservations: This applies to the case where a node
 behind a NAT wishes to reserve an address at which it can be
 reached by a sender on the other side. This requires a message to
 be sent outbound from what will be the flow receiver although no
 reverse routing state for the flow yet exists.

 Most of the details of GIST operation are independent of the routing
 behaviour being used. Therefore, the GIST design encapsulates the
 routing-dependent details as a message routing method (MRM), and
 allows multiple MRMs to be defined. This specification defines the
 path-coupled MRM, corresponding to the baseline functionality
 described above, and a second ("Loose-End") MRM for the NAT Address
 Reservation case. The detailed specifications are given in
 Section 5.8.

 The content of an MRM definition is as follows, using the path-
 coupled MRM as an example:

 o The format of the information that describes the path that the
 signalling should take, the Message Routing Information (MRI).
 For the path-coupled MRM, this is just the flow identifier (see
 Section 5.8.1.1) and some additional control information.
 Specifically, the MRI always includes a flag to distinguish
 between the two directions that signalling messages can take,
 denoted ’upstream’ and ’downstream’.

 o A specification of the IP-level encapsulation of the messages
 which probe the network to discover the adjacent peers. A
 downstream encapsulation must be defined; an upstream
 encapsulation is optional. For the path-coupled MRM, this
 information is given in Section 5.8.1.2 and Section 5.8.1.3.
 Current MRMs rely on the interception of probe messages in the
 data plane, but other mechanisms are also possible within the
 overall GIST design and would be appropriate for other types of
 signalling pattern.

 o A specification of what validation checks GIST should apply to the
 probe messages, for example, to protect against IP address
 spoofing attacks. The checks may be dependent on the direction
 (upstream or downstream) of the message. For the path-coupled
 MRM, the downstream validity check is basically a form of ingress
 filtering, also discussed in Section 5.8.1.2.

 o The mechanism(s) available for route change detection, i.e., any
 change in the neighbour relationships that the MRM discovers. The
 default case for any MRM is soft-state refresh, but additional
 supporting techniques may be possible; see Section 7.1.2.

Schulzrinne & Hancock Experimental [Page 12]

RFC 5971 GIST October 2010

 In addition, it should be noted that NAT traversal may require
 translation of fields in the MRI object carried in GIST messages (see
 Section 7.2.2). The generic MRI format includes a flag that must be
 given as part of the MRM definition, to indicate if some kind of
 translation is necessary. Development of a new MRM therefore
 includes updates to the GIST specification, and may include updates
 to specifications of NAT behaviour. These updates may be done in
 separate documents as is the case for NAT traversal for the MRMs of
 the base GIST specification, as described in Section 7.2.3 and [44].

 The MRI is passed explicitly between signalling applications and
 GIST; therefore, signalling application specifications must define
 which MRMs they require. Signalling applications may use fields in
 the MRI in their packet classifiers; if they use additional
 information for packet classification, this would be carried at the
 NSLP level and so would be invisible to GIST. Any node hosting a
 particular signalling application needs to use a GIST implementation
 that supports the corresponding MRMs. The GIST processing rules
 allow nodes not hosting the signalling application to ignore messages
 for it at the GIST level, so it does not matter if these nodes
 support the MRM or not.

3.4. GIST Messages

 GIST has six message types: Query, Response, Confirm, Data, Error,
 and MA-Hello. Apart from the invocation of the messaging association
 protocols used by C-mode, all GIST communication consists of these
 messages. In addition, all signalling application data is carried as
 additional payloads in these messages, alongside the GIST
 information.

 The Query, Response, and Confirm messages implement the handshake
 that GIST uses to set up routing state and messaging associations.
 The handshake is initiated from the Querying node towards the
 Responding node. The first message is the Query, which is
 encapsulated in a specific way depending on the message routing
 method, in order to probe the network infrastructure so that the
 correct peer will intercept it and become the Responding node. A
 Query always triggers a Response in the reverse direction as the
 second message of the handshake. The content of the Response
 controls whether a Confirm message is sent: as part of the defence
 against denial-of-service attacks, the Responding node can delay
 state installation until a return routability check has been
 performed, and require the Querying node to complete the handshake
 with the Confirm message. In addition, if the handshake is being
 used to set up a new MA, the Response is required to request a
 Confirm. All of these three messages can optionally carry signalling
 application data. The handshake is fully described in Section 4.4.1.

Schulzrinne & Hancock Experimental [Page 13]

RFC 5971 GIST October 2010

 The Data message is used purely to encapsulate and deliver signalling
 application data. Usually, it is sent using pre-established routing
 state. However, if there are no security or transport requirements
 and no need for persistent reverse routing state, it can also be sent
 in the same way as the Query. Finally, Error messages are used to
 indicate error conditions at the GIST level, and the MA-Hello message
 can be used as a diagnostic and keepalive for the messaging
 association protocols.

3.5. GIST Peering Relationships

 Peering is the process whereby two GIST nodes create message routing
 states that point to each other.

 A peering relationship can only be created by a GIST handshake.
 Nodes become peers when one issues a Query and gets a Response from
 another. Issuing the initial Query is a result of an NSLP request on
 that node, and the Query itself is formatted according to the rules
 of the message routing method. For current MRMs, the identity of the
 Responding node is not known explicitly at the time the Query is
 sent; instead, the message is examined by nodes along the path until
 one decides to send a Response, thereby becoming the peer. If the
 node hosts the NSLP, local GIST and signalling application policy
 determine whether to peer; the details are given in Section 4.3.2.
 Nodes not hosting the NSLP forward the Query transparently
 (Section 4.3.4). Note that the design of the Query message (see
 Section 5.3.2) is such that nodes have to opt-in specifically to
 carry out the message interception -- GIST-unaware nodes see the
 Query as a normal data packet and so forward it transparently.

 An existing peering relationship can only be changed by a new GIST
 handshake; in other words, it can only change when routing state is
 refreshed. On a refresh, if any of the factors in the original
 peering process have changed, the peering relationship can also
 change. As well as network-level rerouting, changes could include
 modifications to NSIS signalling functions deployed at a node, or
 alterations to signalling application policy. A change could cause
 an existing node to drop out of the signalling path, or a new node to
 become part of it. All these possibilities are handled as rerouting
 events by GIST; further details of the process are described in
 Section 7.1.

3.6. Effect on Internet Transparency

 GIST relies on routers inside the network to intercept and process
 packets that would normally be transmitted end-to-end. This
 processing may be non-transparent: messages may be forwarded with
 modifications, or not forwarded at all. This interception applies

Schulzrinne & Hancock Experimental [Page 14]

RFC 5971 GIST October 2010

 only to the encapsulation used for the Query messages that probe the
 network, for example, along a flow path; all other GIST messages are
 handled only by the nodes to which they are directly addressed, i.e.,
 as normal Internet traffic.

 Because this interception potentially breaks Internet transparency
 for packets that have nothing to do with GIST, the encapsulation used
 by GIST in this case (called Query-mode or Q-mode) has several
 features to avoid accidental collisions with other traffic:

 o Q-mode messages are always sent as UDP traffic, and to a specific
 well-known port (270) allocated by IANA.

 o All GIST messages sent as UDP have a magic number as the first 32-
 bit word of the datagram payload.

 Even if a node intercepts a packet as potentially a GIST message,
 unless it passes both these checks it will be ignored at the GIST
 level and forwarded transparently. Further discussion of the
 reception process is in Section 4.3.1 and the encapsulation in
 Section 5.3.

3.7. Signalling Sessions

 GIST requires signalling applications to associate each of their
 messages with a signalling session. Informally, given an application
 layer exchange of information for which some network control state
 information is to be manipulated or monitored, the corresponding
 signalling messages should be associated with the same session.
 Signalling applications provide the session identifier (SID) whenever
 they wish to send a message, and GIST reports the SID when a message
 is received; on messages forwarded at the GIST level, the SID is
 preserved unchanged. Usually, NSLPs will preserve the SID value
 along the entire signalling path, but this is not enforced by or even
 visible to GIST, which only sees the scope of the SID as the single
 hop between adjacent NSLP peers.

 Most GIST processing and state information is related to the flow
 (defined by the MRI; see above) and signalling application (given by
 the NSLP identifier, see below). There are several possible
 relationships between flows and sessions, for example:

 o The simplest case is that all signalling messages for the same
 flow have the same SID.

 o Messages for more than one flow may use the same SID, for example,
 because one flow is replacing another in a mobility or multihoming
 scenario.

Schulzrinne & Hancock Experimental [Page 15]

RFC 5971 GIST October 2010

 o A single flow may have messages for different SIDs, for example,
 from independently operating signalling applications.

 Because of this range of options, GIST does not perform any
 validation on how signalling applications map between flows and
 sessions, nor does it perform any direct validation on the properties
 of the SID itself, such as any enforcement of uniqueness. GIST only
 defines the syntax of the SID as an opaque 128-bit identifier.

 The SID assignment has the following impact on GIST processing:

 o Messages with the same SID that are to be delivered reliably
 between the same GIST peers are delivered in order.

 o All other messages are handled independently.

 o GIST identifies routing state (upstream and downstream peer) by
 the MRI/SID/NSLPID combination.

 Strictly speaking, the routing state should not depend on the SID.
 However, if the routing state is keyed only by (MRI, NSLP), there is
 a trivial denial-of-service attack (see Section 8.3) where a
 malicious off-path node asserts that it is the peer for a particular
 flow. Such an attack would not redirect the traffic but would
 reroute the signalling. Instead, the routing state is also
 segregated between different SIDs, which means that the attacking
 node can only disrupt a signalling session if it can guess the
 corresponding SID. Normative rules on the selection of SIDs are
 given in Section 4.1.3.

3.8. Signalling Applications and NSLPIDs

 The functionality for signalling applications is supported by NSIS
 Signalling Layer Protocols (NSLPs). Each NSLP is identified by a
 16-bit NSLP identifier (NSLPID), assigned by IANA (Section 9). A
 single signalling application, such as resource reservation, may
 define a family of NSLPs to implement its functionality, for example,
 to carry out signalling operations at different levels in a hierarchy
 (cf. [21]). However, the interactions between the different NSLPs
 (for example, to relate aggregation levels or aggregation region
 boundaries in the resource management case) are handled at the
 signalling application level; the NSLPID is the only information
 visible to GIST about the signalling application being used.

Schulzrinne & Hancock Experimental [Page 16]

RFC 5971 GIST October 2010

3.9. GIST Security Services

 GIST has two distinct security goals:

 o to protect GIST state from corruption, and to protect the nodes on
 which it runs from resource exhaustion attacks; and

 o to provide secure transport for NSLP messages to the signalling
 applications.

 The protocol mechanisms to achieve the first goal are mainly internal
 to GIST. They include a cookie exchange and return routability check
 to protect the handshake that sets up routing state, and a random SID
 is also used to prevent off-path session hijacking by SID guessing.
 Further details are given in Section 4.1.3 and Section 4.4.1, and the
 overall security aspects are discussed in Section 8.

 A second level of protection is provided by the use of a channel
 security protocol in messaging associations (i.e., within C-mode).
 This mechanism serves two purposes: to protect against on-path
 attacks on GIST and to provide a secure channel for NSLP messages.
 For the mechanism to be effective, it must be able to provide the
 following functions:

 o mutual authentication of the GIST peer nodes;

 o ability to verify the authenticated identity against a database of
 nodes authorised to take part in GIST signalling;

 o confidentiality and integrity protection for NSLP data, and
 provision of the authenticated identities used to the signalling
 application.

 The authorised peer database is described in more detail in
 Section 4.4.2, including the types of entries that it can contain and
 the authorisation checking algorithm that is used. The only channel
 security protocol defined by this specification is a basic use of
 TLS, and Section 5.7.3 defines the TLS-specific aspects of how these
 functions (for example, authentication and identity comparison) are
 integrated with the rest of GIST operation. At a high level, there
 are several alternative protocols with similar functionality, and the
 handshake (Section 4.4.1) provides a mechanism within GIST to select
 between them. However, they differ in their identity schemes and
 authentication methods and dependencies on infrastructure support for
 the authentication process, and any GIST extension to incorporate
 them would need to define the details of the corresponding
 interactions with GIST operation.

Schulzrinne & Hancock Experimental [Page 17]

RFC 5971 GIST October 2010

3.10. Example of Operation

 This section presents an example of GIST usage in a relatively simple
 (in particular, NAT-free) signalling scenario, to illustrate its main
 features.

 GN1 GN2
 +------------+ +------------+
 NSLP | | | |
 Level | >>>>>>>>>1 | | 5>>>>>>>>5 |
 | ^ V | Intermediate | ^ V |
 |-^--------2-| Routers |-^--------V-|
 | ^ V | | ^ V |
 | ^ V | +-----+ +-----+ | ^ V |
 >>>>>>>>>>^ >3>>>>>>>>4>>>>>>>>>>>4>>>>>>>>>5 5>>>>>>>>>
 | | | | | | | |
 GIST | 6<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<6 |
 Level +------------+ +-----+ +-----+ +------------+

 >>>>>, <<<<< = Signalling messages
 1 - 6 = Stages in the example
 (stages 7 and 8 are not shown)

 Figure 3: Example of Operation

 Consider the case of an RSVP-like signalling application that makes
 receiver-based resource reservations for a single unicast flow. In
 general, signalling can take place along the entire end-to-end path
 (between flow source and destination), but the role of GIST is only
 to transfer signalling messages over a single segment of the path,
 between neighbouring resource-capable nodes. Basic GIST operation is
 the same, whether it involves the endpoints or only interior nodes:
 in either case, GIST is triggered by a request from a local
 signalling application. The example here describes how GIST
 transfers messages between two adjacent peers some distance along the
 path, GN1 and GN2 (see Figure 3). We take up the story at the point
 where a message is being processed above the GIST layer by the
 signalling application in GN1.

 1. The signalling application in GN1 determines that this message is
 a simple description of resources that would be appropriate for
 the flow. It determines that it has no special security or
 transport requirements for the message, but simply that it should
 be transferred to the next downstream signalling application peer
 on the path that the flow will take.

Schulzrinne & Hancock Experimental [Page 18]

RFC 5971 GIST October 2010

 2. The message payload is passed to the GIST layer in GN1, along
 with a definition of the flow and description of the message
 transfer attributes (in this case, requesting no reliable
 transmission or channel security protection). GIST determines
 that this particular message does not require fragmentation and
 that it has no knowledge of the next peer for this flow and
 signalling application; however, it also determines that this
 application is likely to require secured upstream and downstream
 transport of large messages in the future. This determination is
 a function of node-internal policy interactions between GIST and
 the signalling application.

 3. GN1 therefore constructs a GIST Query carrying the NSLP payload,
 and additional payloads at the GIST level which will be used to
 initiate a messaging association. The Query is encapsulated in a
 UDP datagram and injected into the network. At the IP level, the
 destination address is the flow receiver, and an IP Router Alert
 Option (RAO) is also included.

 4. The Query passes through the network towards the flow receiver,
 and is seen by each router in turn. GIST-unaware routers will
 not recognise the RAO value and will forward the message
 unchanged; GIST-aware routers that do not support the NSLP in
 question will also forward the message basically unchanged,
 although they may need to process more of the message to decide
 this after initial interception.

 5. The message is intercepted at GN2. The GIST layer identifies the
 message as relevant to a local signalling application, and passes
 the NSLP payload and flow description upwards to it. This
 signalling application in GN2 indicates to GIST that it will peer
 with GN1 and so GIST should proceed to set up any routing state.
 In addition, the signalling application continues to process the
 message as in GN1 (compare step 1), passing the message back down
 to GIST so that it is sent further downstream, and this will
 eventually result in the message reaching the flow receiver.
 GIST itself operates hop-by-hop, and the signalling application
 joins these hops together to manage the end-to-end signalling
 operations.

 6. In parallel, the GIST instance in GN2 now knows that it should
 maintain routing state and a messaging association for future
 signalling with GN1. This is recognised because the message is a
 Query, and because the local signalling application has indicated
 that it will peer with GN1. There are two possible cases for
 sending back the necessary GIST Response:

Schulzrinne & Hancock Experimental [Page 19]

RFC 5971 GIST October 2010

 6.A - Association Exists: GN1 and GN2 already have an
 appropriate MA. GN2 simply records the identity of GN1 as
 its upstream peer for that flow and NSLP, and sends a
 Response back to GN1 over the MA identifying itself as the
 peer for this flow.

 6.B - No Association: GN2 sends the Response in D-mode directly
 to GN1, identifying itself and agreeing to the messaging
 association setup. The protocol exchanges needed to
 complete this will proceed in parallel with the following
 stages.

 In each case, the result is that GN1 and GN2 are now in a peering
 relationship for the flow.

 7. Eventually, another NSLP message works its way upstream from the
 receiver to GN2. This message contains a description of the
 actual resources requested, along with authorisation and other
 security information. The signalling application in GN2 passes
 this payload to the GIST level, along with the flow definition
 and transfer attributes; in this case, it could request reliable
 transmission and use of a secure channel for integrity
 protection. (Other combinations of attributes are possible.)

 8. The GIST layer in GN2 identifies the upstream peer for this flow
 and NSLP as GN1, and determines that it has an MA with the
 appropriate properties. The message is queued on the MA for
 transmission; this may incur some delay if the procedures begun
 in step 6.B have not yet completed.

 Further messages can be passed in each direction in the same way.
 The GIST layer in each node can in parallel carry out maintenance
 operations such as route change detection (see Section 7.1).

 It should be understood that several of these details of GIST
 operations can be varied, either by local policy or according to
 signalling application requirements. The authoritative details are
 contained in the remainder of this document.

4. GIST Processing Overview

 This section defines the basic structure and operation of GIST.
 Section 4.1 describes the way in which GIST interacts with local
 signalling applications in the form of an abstract service interface.
 Section 4.2 describes the per-flow and per-peer state that GIST
 maintains for the purpose of transferring messages. Section 4.3
 describes how messages are processed in the case where any necessary
 messaging associations and routing state already exist; this includes

Schulzrinne & Hancock Experimental [Page 20]

RFC 5971 GIST October 2010

 the simple scenario of pure D-mode operation, where no messaging
 associations are necessary. Finally, Section 4.4 describes how
 routing state and messaging associations are created and managed.

4.1. GIST Service Interface

 This section describes the interaction between GIST and signalling
 applications in terms of an abstract service interface, including a
 definition of the attributes of the message transfer that GIST can
 offer. The service interface presented here is non-normative and
 does not constrain actual implementations of any interface between
 GIST and signalling applications; the interface is provided to aid
 understanding of how GIST can be used. However, requirements on SID
 selection and internal GIST behaviour to support message transfer
 semantics (such as in-order delivery) are stated normatively here.

 The same service interface is presented at every GIST node; however,
 applications may invoke it differently at different nodes, depending
 for example on local policy. In addition, the service interface is
 defined independently of any specific transport protocol, or even the
 distinction between D-mode and C-mode. The initial version of this
 specification defines how to support the service interface using a
 C-mode based on TCP; if additional protocol support is added, this
 will support the same interface and so the change will be invisible
 to applications, except as a possible performance improvement. A
 more detailed description of this service interface is given in
 Appendix B.

4.1.1. Message Handling

 Fundamentally, GIST provides a simple message-by-message transfer
 service for use by signalling applications: individual messages are
 sent, and individual messages are received. At the service
 interface, the NSLP payload, which is opaque to GIST, is accompanied
 by control information expressing the application’s requirements
 about how the message should be routed (the MRI), and the application
 also provides the session identifier (SID); see Section 4.1.3.
 Additional message transfer attributes control the specific transport
 and security properties that the signalling application desires.

 The distinction between GIST D- and C-mode is not visible at the
 service interface. In addition, the functionality to handle
 fragmentation and reassembly, bundling together of small messages for
 efficiency, and congestion control are not visible at the service
 interface; GIST will take whatever action is necessary based on the
 properties of the messages and local node state.

Schulzrinne & Hancock Experimental [Page 21]

RFC 5971 GIST October 2010

 A signalling application is free to choose the rate at which it
 processes inbound messages; an implementation MAY allow the
 application to block accepting messages from GIST. In these
 circumstances, GIST MAY discard unreliably delivered messages, but
 for reliable messages MUST propagate flow-control condition back to
 the sender. Therefore, applications must be aware that they may in
 turn be blocked from sending outbound messages themselves.

4.1.2. Message Transfer Attributes

 Message transfer attributes are used by NSLPs to define minimum
 required levels of message processing. The attributes available are
 as follows:

 Reliability: This attribute may be ’true’ or ’false’. When ’true’,
 the following rules apply:

 * messages MUST be delivered to the signalling application in the
 peer exactly once or not at all;

 * for messages with the same SID, the delivery MUST be in order;

 * if there is a chance that the message was not delivered (e.g.,
 in the case of a transport layer error), an error MUST be
 indicated to the local signalling application identifying the
 routing information for the message in question.

 GIST implements reliability by using an appropriate transport
 protocol within a messaging association, so mechanisms for the
 detection of message loss depend on the protocol in question; for
 the current specification, the case of TCP is considered in
 Section 5.7.2. When ’false’, a message may be delivered, once,
 several times, or not at all, with no error indications in any of
 these cases.

 Security: This attribute defines the set of security properties that
 the signalling application requires for the message, including the
 type of protection required, and what authenticated identities
 should be used for the signalling source and destination. This
 information maps onto the corresponding properties of the security
 associations established between the peers in C-mode. Keying
 material for the security associations is established by the
 authentication mechanisms within the messaging association
 protocols themselves; see Section 8.2. The attribute can be
 specified explicitly by the signalling application, or reported by
 GIST to the signalling application. The latter can take place

Schulzrinne & Hancock Experimental [Page 22]

RFC 5971 GIST October 2010

 either on receiving a message, or just before sending a message
 but after configuring or selecting the messaging association to be
 used for it.

 This attribute can also be used to convey information about any
 address validation carried out by GIST, such as whether a return
 routability check has been carried out. Further details are
 discussed in Appendix B.

 Local Processing: An NSLP may provide hints to GIST to enable more
 efficient or appropriate processing. For example, the NSLP may
 select a priority from a range of locally defined values to
 influence the sequence in which messages leave a node. Any
 priority mechanism MUST respect the ordering requirements for
 reliable messages within a session, and priority values are not
 carried in the protocol or available at the signalling peer or
 intermediate nodes. An NSLP may also indicate that upstream path
 routing state will not be needed for this flow, to inhibit the
 node requesting its downstream peer to create it; conversely, even
 if routing state exists, the NSLP may request that it is not used,
 which will lead to GIST Data messages being sent Q-mode
 encapsulated instead.

 A GIST implementation MAY deliver messages with stronger attribute
 values than those explicitly requested by the application.

4.1.3. SID Selection

 The fact that SIDs index routing state (see Section 4.2.1 below)
 means that there are requirements for how they are selected.
 Specifically, signalling applications MUST choose SIDs so that they
 are cryptographically random, and SHOULD NOT use several SIDs for the
 same flow, to avoid additional load from routing state maintenance.
 Guidance on secure randomness generation can be found in [31].

4.2. GIST State

4.2.1. Message Routing State

 For each flow, the GIST layer can maintain message routing state to
 manage the processing of outgoing messages. This state is
 conceptually organised into a table with the following structure.
 Each row in the table corresponds to a unique combination of the
 following three items:

Schulzrinne & Hancock Experimental [Page 23]

RFC 5971 GIST October 2010

 Message Routing Information (MRI): This defines the method to be
 used to route the message, the direction in which to send the
 message, and any associated addressing information; see
 Section 3.3.

 Session Identifier (SID): The signalling session with which this
 message should be associated; see Section 3.7.

 NSLP Identifier (NSLPID): This is an IANA-assigned identifier
 associated with the NSLP that is generating messages for this
 flow; see Section 3.8. The inclusion of this identifier allows
 the routing state to be different for different NSLPs.

 The information associated with a given MRI/SID/NSLPID combination
 consists of the routing state to reach the peer in the direction
 given by the MRI. For any flow, there will usually be two entries in
 the table, one each for the upstream and downstream MRI. The routing
 state includes information about the peer identity (see
 Section 4.4.3), and a UDP port number for D-mode, or a reference to
 one or more MAs for C-mode. Entries in the routing state table are
 created by the GIST handshake, which is described in more detail in
 Section 4.4.

 It is also possible for the state information for either direction to
 be empty. There are several possible cases:

 o The signalling application has indicated that no messages will
 actually be sent in that direction.

 o The node is the endpoint of the signalling path, for example,
 because it is acting as a proxy, or because it has determined that
 there are no further signalling nodes in that direction.

 o The node is using other techniques to route the message. For
 example, it can send it in Q-mode and rely on the peer to
 intercept it.

 In particular, if the node is a flow endpoint, GIST will refuse to
 create routing state for the direction beyond the end of the flow
 (see Section 4.3.3). Each entry in the routing state table has an
 associated validity timer indicating for how long it can be
 considered accurate. When this timer expires, the entry MUST be
 purged if it has not been refreshed. Installation and maintenance of
 routing state are described in more detail in Section 4.4.

Schulzrinne & Hancock Experimental [Page 24]

RFC 5971 GIST October 2010

4.2.2. Peer-Peer Messaging Association State

 The per-flow message routing state is not the only state stored by
 GIST. There is also the state required to manage the MAs. Since
 these are not per-flow, they are stored separately from the routing
 state, including the following per-MA information:

 o a queue of any messages that require the use of an MA, pending
 transmission while the MA is being established;

 o the time since the peer re-stated its desire to keep the MA open
 (see Section 4.4.5).

 In addition, per-MA state, such as TCP port numbers or timer
 information, is held in the messaging association protocols
 themselves. However, the details of this state are not directly
 visible to GIST, and they do not affect the rest of the protocol
 description.

4.3. Basic GIST Message Processing

 This section describes how signalling application messages are
 processed in the case where any necessary messaging associations and
 routing state are already in place. The description is divided into
 several parts. First, message reception, local processing, and
 message transmission are described for the case where the node hosts
 the NSLPID identified in the message. Second, in Section 4.3.4, the
 case where the message is handled directly in the IP or GIST layer
 (because there is no matching signalling application on the node) is
 given. An overview is given in Figure 4. This section concentrates
 on the GIST-level processing, with full details of IP and transport
 layer encapsulation in Section 5.3 and Section 5.4.

Schulzrinne & Hancock Experimental [Page 25]

RFC 5971 GIST October 2010

 +---+
 | >> Signalling Application Processing >> |
 | |
 +--------^---------------------------------------V--------+
 ^ NSLP NSLP V
 ^ Payloads Payloads V
 +--------^---------------------------------------V--------+
 | >> GIST >> |
 | ^ ^ ^ Processing V V V |
 +--x-----------N--Q---------------------Q--N-----------x--+
 x N Q Q N x
 x N Q>>>>>>>>>>>>>>>>>>>>>Q N x
 x N Q Bypass at Q N x
 +--x-----+ +--N--Q--+ GIST level +--Q--N--+ +-----x--+
 | C-mode | | D-mode | | D-mode | | C-mode |
 |Handling| |Handling| |Handling| |Handling|
 +--x-----+ +--N--Q--+ +--Q--N--+ +-----x--+
 x N Q Q N x
 x NNNNNN Q>>>>>>>>>>>>>>>>>>>>>Q NNNNNN x
 x N Q Bypass at Q N x
 +--x--N--+ +-----Q--+ IP (router +--Q-----+ +--N--x--+
 |IP Host | | Q-mode | alert) level | Q-mode | |IP Host |
 |Handling| |Handling| |Handling| |Handling|
 +--x--N--+ +-----Q--+ +--Q-----+ +--N--x--+
 x N Q Q N x
 +--x--N-----------Q--+ +--Q-----------N--x--+
 | IP Layer | | IP Layer |
 | (Receive Side) | | (Transmit Side) |
 +--x--N-----------Q--+ +--Q-----------N--x--+
 x N Q Q N x
 x N Q Q N x

 NNNNNNNNNNNNNN = Normal D-mode messages
 QQQQQQQQQQQQQQ = D-mode messages that are Q-mode encapsulated
 xxxxxxxxxxxxxx = C-mode messages
 RAO = Router Alert Option

 Figure 4: Message Paths through a GIST Node

4.3.1. Message Reception

 Messages can be received in C-mode or D-mode.

 Reception in C-mode is simple: incoming packets undergo the security
 and transport treatment associated with the MA, and the MA provides
 complete messages to the GIST layer for further processing.

 Reception in D-mode depends on the message type.

Schulzrinne & Hancock Experimental [Page 26]

RFC 5971 GIST October 2010

 Normal encapsulation: Normal messages arrive UDP-encapsulated and
 addressed directly to the receiving signalling node, at an address
 and port learned previously. Each datagram contains a single
 message, which is passed to the GIST layer for further processing,
 just as in the C-mode case.

 Q-mode encapsulation: Where GIST is sending messages to be
 intercepted by the appropriate peer rather than directly addressed
 to it (in particular, Query messages), these are UDP encapsulated,
 and MAY include an IP Router Alert Option (RAO) if required by the
 MRM. Each GIST node can therefore see every such message, but
 unless the message exactly matches the Q-mode encapsulation rules
 (Section 5.3.2) it MUST be forwarded transparently at the IP
 level. If it does match, GIST MUST check the NSLPID in the common
 header. The case where the NSLPID does not match a local
 signalling application at all is considered below in
 Section 4.3.4; otherwise, the message MUST be passed up to the
 GIST layer for further processing.

 Several different RAO values may be used by the NSIS protocol suite.
 GIST itself does not allocate any RAO values (for either IPv4 or
 IPv6); an assignment is made for each NSLP using MRMs that use the
 RAO in the Q-mode encapsulation. The assignment rationale is
 discussed in a separate document [12]. The RAO value assigned for an
 NSLPID may be different for IPv4 and IPv6. Note the different
 significance between the RAO and the NSLPID values: the meaning of a
 message (which signalling application it refers to, whether it should
 be processed at a node) is determined only from the NSLPID; the role
 of the RAO value is simply to allow nodes to pre-filter which IP
 datagrams are analysed to see if they might be Q-mode GIST messages.

 For all assignments associated with NSIS, the RAO-specific processing
 is the same and is as defined by this specification, here and in
 Section 4.3.4 and Section 5.3.2.

 Immediately after reception, the GIST hop count is checked. Any
 message with a GIST hop count of zero MUST be rejected with a "Hop
 Limit Exceeded" error message (Appendix A.4.4.2); note that a correct
 GIST implementation will never send a message with a GIST hop count
 of zero. Otherwise, the GIST hop count MUST be decremented by one
 before the next stage.

4.3.2. Local Processing and Validation

 Once a message has been received, it is processed locally within the
 GIST layer. Further processing depends on the message type and
 payloads carried; most of the GIST payloads are associated with
 internal state maintenance, and details are covered in Section 4.4.

Schulzrinne & Hancock Experimental [Page 27]

RFC 5971 GIST October 2010

 This section concentrates on the interaction with the signalling
 application, in particular, the decision to peer and how data is
 delivered to the NSLP.

 In the case of a Query, there is an interaction with the signalling
 application to determine which of two courses to follow. The first
 option (peering) MUST be chosen if the node is the final destination
 of the Query message.

 1. The receiving signalling application wishes to become a
 signalling peer with the Querying node. GIST MUST continue with
 the handshake process to set up message routing state, as
 described in Section 4.4.1. The application MAY provide an NSLP
 payload for the same NSLPID, which GIST will transfer in the
 Response.

 2. The signalling application does not wish to set up state with the
 Querying node and become its peer. This includes the case where
 a node wishes to avoid taking part in the signalling for overload
 protection reasons. GIST MUST propagate the Query, similar to
 the case described in Section 4.3.4. No message is sent back to
 the Querying node. The application MAY provide an updated NSLP
 payload for the same NSLPID, which will be used in the Query
 forwarded by GIST. Note that if the node that finally processes
 the Query returns an Error message, this will be sent directly
 back to the originating node, bypassing any forwarders. For
 these diagnostics to be meaningful, any GIST node forwarding a
 Query, or relaying it with modified NSLP payload, MUST NOT modify
 it except in the GIST hop count; in particular, it MUST NOT
 modify any other GIST payloads or their order. An implementation
 MAY choose to achieve this by retaining the original message,
 rather than reconstructing it from some parsed internal
 representation.

 This interaction with the signalling application, including the
 generation or update of an NSLP payload, SHOULD take place
 synchronously as part of the Query processing. In terms of the GIST
 service interface, this can be implemented by providing appropriate
 return values for the primitive that is triggered when such a message
 is received; see Appendix B.2 for further discussion.

 For all GIST message types other than Queries, if the message
 includes an NSLP payload, this MUST be delivered locally to the
 signalling application identified by the NSLPID. The format of the
 payload is not constrained by GIST, and the content is not
 interpreted. Delivery is subject to the following validation checks,
 which MUST be applied in the sequence given:

Schulzrinne & Hancock Experimental [Page 28]

RFC 5971 GIST October 2010

 1. if the message was explicitly routed (see Section 7.1.5) or is a
 Data message delivered without routing state (see Section 5.3.2),
 the payload is delivered but flagged to the receiving NSLP to
 indicate that routing state was not validated;

 2. else, if the message arrived on an association that is not
 associated with the MRI/NSLPID/SID combination given in the
 message, the message MUST be rejected with an "Incorrectly
 Delivered Message" error message (Appendix A.4.4.4);

 3. else, if there is no routing state for this MRI/SID/NSLPID
 combination, the message MUST either be dropped or be rejected
 with an error message (see Section 4.4.6 for further details);

 4. else, the payload is delivered as normal.

4.3.3. Message Transmission

 Signalling applications can generate their messages for transmission,
 either asynchronously or in reply to an input message delivered by
 GIST, and GIST can also generate messages autonomously. GIST MUST
 verify that it is not the direct destination of an outgoing message,
 and MUST reject such messages with an error indication to the
 signalling application. When the message is generated by a
 signalling application, it may be carried in a Query if local policy
 and the message transfer attributes allow it; otherwise, this may
 trigger setup of an MA over which the NSLP payload is sent in a Data
 message.

 Signalling applications may specify a value to be used for the GIST
 hop count; otherwise, GIST selects a value itself. GIST MUST reject
 messages for which the signalling application has specified a value
 of zero. Although the GIST hop count is only intended to control
 message looping at the GIST level, the GIST API (Appendix B) provides
 the incoming hop count to the NSLPs, which can preserve it on
 outgoing messages as they are forwarded further along the path. This
 provides a lightweight loop-control mechanism for NSLPs that do not
 define anything more sophisticated. Note that the count will be
 decremented on forwarding through every GIST-aware node. Initial
 values for the GIST hop count are an implementation matter; one
 suitable approach is to use the same algorithm as for IP TTL setting
 [1].

 When a message is available for transmission, GIST uses internal
 policy and the stored routing state to determine how to handle it.
 The following processing applies equally to locally generated
 messages and messages forwarded from within the GIST or signalling

Schulzrinne & Hancock Experimental [Page 29]

RFC 5971 GIST October 2010

 application levels. However, see Section 5.6 for special rules
 applying to the transmission of Error messages by GIST.

 The main decision is whether the message must be sent in C-mode or
 D-mode. Reasons for using C-mode are:

 o message transfer attributes: for example, the signalling
 application has specified security attributes that require
 channel-secured delivery, or reliable delivery.

 o message size: a message whose size (including the GIST header,
 GIST objects and any NSLP payload, and an allowance for the IP and
 transport layer encapsulation required by D-mode) exceeds a
 fragmentation-related threshold MUST be sent over C-mode, using a
 messaging association that supports fragmentation and reassembly
 internally. The allowance for IP and transport layer
 encapsulation is 64 bytes. The message size MUST NOT exceed the
 Path MTU to the next peer, if this is known. If this is not
 known, the message size MUST NOT exceed the least of the first-hop
 MTU, and 576 bytes. The same limit applies to IPv4 and IPv6.

 o congestion control: D-mode SHOULD NOT be used for signalling where
 it is possible to set up routing state and use C-mode, unless the
 network can be engineered to guarantee capacity for D-mode traffic
 within the rate control limits imposed by GIST (see
 Section 5.3.3).

 In principle, as well as determining that some messaging association
 must be used, GIST MAY select between a set of alternatives, e.g.,
 for load sharing or because different messaging associations provide
 different transport or security attributes. For the case of reliable
 delivery, GIST MUST NOT distribute messages for the same session over
 multiple messaging associations in parallel, but MUST use a single
 association at any given time. The case of moving over to a new
 association is covered in Section 4.4.5.

 If the use of a messaging association (i.e., C-mode) is selected, the
 message is queued on the association found from the routing state
 table, and further output processing is carried out according to the
 details of the protocol stacks used. If no appropriate association
 exists, the message is queued while one is created (see
 Section 4.4.1), which will trigger the exchange of additional GIST
 messages. If no association can be created, this is an error
 condition, and should be indicated back to the local signalling
 application.

Schulzrinne & Hancock Experimental [Page 30]

RFC 5971 GIST October 2010

 If a messaging association is not appropriate, the message is sent in
 D-mode. The processing in this case depends on the message type,
 local policy, and whether or not routing state exists.

 o If the message is not a Query, and local policy does not request
 the use of Q-mode for this message, and routing state exists, it
 is sent with the normal D-mode encapsulation directly to the
 address from the routing state table.

 o If the message is a Query, or the message is Data and local policy
 as given by the message transfer attributes requests the use of
 Q-mode, then it is sent in Q-mode as defined in Section 5.3.2; the
 details depend on the message routing method.

 o If no routing state exists, GIST can attempt to use Q-mode as in
 the Query case: either sending a Data message with the Q-mode
 encapsulation or using the event as a trigger for routing state
 setup (see Section 4.4). If this is not possible, e.g., because
 the encapsulation for the MRM is only defined for one message
 direction, then this is an error condition that is reported back
 to the local signalling application.

4.3.4. Nodes not Hosting the NSLP

 A node may receive messages where it has no signalling application
 corresponding to the message NSLPID. There are several possible
 cases depending mainly on the encapsulation:

 1. A message contains an RAO value that is relevant to NSIS, but it
 does not exactly match the Q-mode encapsulation rules of
 Section 5.3.2. The message MUST be transparently forwarded at
 the IP layer. See Section 3.6.

 2. A Q-mode encapsulated message contains an RAO value that has been
 assigned to some NSIS signalling application but that is not used
 on this specific node, but the IP layer is unable to distinguish
 whether it needs to be passed to GIST for further processing or
 whether the packet should be forwarded just like a normal IP
 datagram.

 3. A Q-mode encapsulated message contains an RAO value that has been
 assigned to an NSIS signalling application that is used on this
 node, but the signalling application does not process the NSLPID
 in the message. (This covers the case where a signalling
 application uses a set of NSLPIDs.)

Schulzrinne & Hancock Experimental [Page 31]

RFC 5971 GIST October 2010

 4. A directly addressed message (in D-mode or C-mode) is delivered
 to a node for which there is no corresponding signalling
 application. With the current specification, this should not
 happen in normal operation. While future versions might find a
 use for such a feature, currently this MUST cause an "Unknown
 NSLPID" error message (Appendix A.4.4.6).

 5. A Q-mode encapsulated message arrives at the end-system that does
 not handle the signalling application. This is possible in
 normal operation, and MUST be indicated to the sender with an
 "Endpoint Found" informational message (Appendix A.4.4.7). The
 end-system includes the MRI and SID from the original message in
 the error message without interpreting them.

 6. The node is a GIST-aware NAT. See Section 7.2.

 In case (2) and (3), the role of GIST is to forward the message
 essentially as though it were a normal IP datagram, and it will not
 become a peer to the node sending the message. Forwarding with
 modified NSLP payloads is covered above in Section 4.3.2. However, a
 GIST implementation MUST ensure that the IP-layer TTL field and GIST
 hop count are managed correctly to prevent message looping, and this
 should be done consistently independently of where in the packet
 processing path the decision is made. The rules are that in cases
 (2) and (3), the IP-layer TTL MUST be decremented just as if the
 message was a normal IP forwarded packet. In case (3), the GIST hop
 count MUST be decremented as in the case of normal input processing,
 which also applies to cases (4) and (5).

 A GIST node processing Q-mode encapsulated messages in this way
 SHOULD make the routing decision based on the full contents of the
 MRI and not only the IP destination address. It MAY also apply a
 restricted set of sanity checks and under certain conditions return
 an error message rather than forward the message. These conditions
 are:

 1. The message is so large that it would be fragmented on downstream
 links, for example, because the downstream MTU is abnormally
 small (less than 576 bytes). The error "Message Too Large"
 (Appendix A.4.4.8) SHOULD be returned to the sender, which SHOULD
 begin messaging association setup.

 2. The GIST hop count has reached zero. The error "Hop Limit
 Exceeded" (Appendix A.4.4.2) SHOULD be returned to the sender,
 which MAY retry with a larger initial hop count.

Schulzrinne & Hancock Experimental [Page 32]

RFC 5971 GIST October 2010

 3. The MRI represents a flow definition that is too general to be
 forwarded along a unique path (e.g., the destination address
 prefix is too short). The error "MRI Validation Failure"
 (Appendix A.4.4.12) with subcode 0 ("MRI Too Wild") SHOULD be
 returned to the sender, which MAY retry with restricted MRIs,
 possibly starting additional signalling sessions to do so. If
 the GIST node does not understand the MRM in question, it MUST
 NOT apply this check, instead forwarding the message
 transparently.

 In the first two cases, only the common header of the GIST message is
 examined; in the third case, the MRI is also examined. The rest of
 the message MUST NOT be inspected in any case. Similar to the case
 of Section 4.3.2, the GIST payloads MUST NOT be modified or re-
 ordered; an implementation MAY choose to achieve this by retaining
 the original message, rather than reconstructing it from some parsed
 internal representation.

4.4. Routing State and Messaging Association Maintenance

 The main responsibility of GIST is to manage the routing state and
 messaging associations that are used in the message processing
 described above. Routing state is installed and refreshed by GIST
 handshake messages. Messaging associations are set up by the normal
 procedures of the transport and security protocols that comprise
 them, using peer IP addresses from the routing state. Once a
 messaging association has been created, its refresh and expiration
 can be managed independently from the routing state.

 There are two different cases for state installation and refresh:

 1. Where routing state is being discovered or a new association is
 to be established; and

 2. Where a suitable association already exists, including the case
 where routing state for the flow is being refreshed.

 These cases are now considered in turn, followed by the case of
 background general management procedures.

4.4.1. Routing State and Messaging Association Creation

 The message sequence for GIST state setup between peers is shown in
 Figure 5 and described in detail below. The figure informally
 summarises the contents of each message, including optional elements
 in square brackets. An example is given in Appendix D.

Schulzrinne & Hancock Experimental [Page 33]

RFC 5971 GIST October 2010

 The first message in any routing state maintenance operation is a
 Query, sent from the Querying node and intercepted at the responding
 node. This message has addressing and other identifiers appropriate
 for the flow and signalling application that state maintenance is
 being done for, addressing information about the node that generated
 the Query itself, and MAY contain an NSLP payload. It also includes
 a Query-Cookie, and optionally capability information about messaging
 association protocol stacks. The role of the cookies in this and
 later messages is to protect against certain denial-of-service
 attacks and to correlate the events in the message sequence (see
 Section 8.5 for further details).

Schulzrinne & Hancock Experimental [Page 34]

RFC 5971 GIST October 2010

 +----------+ +----------+
 | Querying | |Responding|
 | Node(Q-N)| | Node(R-N)|
 +----------+ +----------+
 Query
 ----------------------> . .
 Router Alert Option . Routing .
 MRI/SID/NSLPID . state .
 Q-N Network Layer Info . installed .
 Query-Cookie . at .
 [Q-N Stack-Proposal . Responding.
 Q-N Stack-Config-Data] . node .
 [NSLP Payload] . (case 1) .

 . The responder can use an existing .
 . messaging association if available .
 . from here onwards to short-circuit .
 . messaging association setup .

 Response
 <----------------------
 . Routing . MRI/SID/NSLPID
 . state . R-N Network Layer Info
 . installed . Query-Cookie
 . at . [Responder-Cookie
 . Querying . [R-N Stack-Proposal
 . node . R-N Stack-Config-Data]]
 [NSLP Payload]

 . If a messaging association needs .
 . to be created, it is set up here .
 . and the Confirm uses it .

 Confirm
 ----------------------> . Routing .
 MRI/SID/NSLPID . state .
 Q-N Network Layer Info . installed .
 [Responder-Cookie . at .
 [R-N Stack-Proposal . Responding.
 [Q-N Stack-Config-Data]]] . node .
 [NSLP Payload] . (case 2) .

 Figure 5: Message Sequence at State Setup

Schulzrinne & Hancock Experimental [Page 35]

RFC 5971 GIST October 2010

 Provided that the signalling application has indicated that message
 routing state should be set up (see Section 4.3.2), reception of a
 Query MUST elicit a Response. This is a normally encapsulated D-mode
 message with additional GIST payloads. It contains network layer
 information about the Responding node, echoes the Query-Cookie, and
 MAY contain an NSLP payload, possibly a reply to the NSLP payload in
 the initial message. In case a messaging association was requested,
 it MUST also contain a Responder-Cookie and its own capability
 information about messaging association protocol stacks. Even if a
 messaging association is not requested, the Response MAY still
 include a Responder-Cookie if the node’s routing state setup policy
 requires it (see below).

 Setup of a new messaging association begins when peer addressing
 information is available and a new messaging association is actually
 needed. Any setup MUST take place immediately after the specific
 Query/Response exchange, because the addressing information used may
 have a limited lifetime, either because it depends on limited
 lifetime NAT bindings or because it refers to agile destination ports
 for the transport protocols. The Stack-Proposal and Stack-
 Configuration-Data objects carried in the exchange carry capability
 information about what messaging association protocols can be used,
 and the processing of these objects is described in more detail in
 Section 5.7. With the protocol options currently defined, setup of
 the messaging association always starts from the Querying node,
 although more flexible configurations are possible within the overall
 GIST design. If the messaging association includes a channel
 security protocol, each GIST node MUST verify the authenticated
 identity of the peer against its authorised peer database, and if
 there is no match the messaging association MUST be torn down. The
 database and authorisation check are described in more detail in
 Section 4.4.2 below. Note that the verification can depend on what
 the MA is to be used for (e.g., for which MRI or session), so this
 step may not be possible immediately after authentication has
 completed but some time later.

 Finally, after any necessary messaging association setup has
 completed, a Confirm MUST be sent if the Response requested it. Once
 the Confirm has been sent, the Querying node assumes that routing
 state has been installed at the responder, and can send normal Data
 messages for the flow in question; recovery from a lost Confirm is
 discussed in Section 5.3.3. If a messaging association is being
 used, the Confirm MUST be sent over it before any other messages for
 the same flow, and it echoes the Responder-Cookie and Stack-Proposal
 from the Response. The former is used to allow the receiver to
 validate the contents of the message (see Section 8.5), and the
 latter is to prevent certain bidding-down attacks on messaging
 association security (see Section 8.6). This first Confirm on a new

Schulzrinne & Hancock Experimental [Page 36]

RFC 5971 GIST October 2010

 association MUST also contain a Stack-Configuration-Data object
 carrying an MA-Hold-Time value, which supersedes the value given in
 the original Query. The association can be used in the upstream
 direction for the MRI and NSLPID carried in the Confirm, after the
 Confirm has been received.

 The Querying node MUST install the responder address, derived from
 the R-Node Network Layer info, as routing state information after
 verifying the Query-Cookie in the Response. The Responding node MAY
 install the querying address as peer state information at two points
 in time:

 Case 1: after the receipt of the initial Query, or

 Case 2: after a Confirm containing the Responder-Cookie.

 The Responding node SHOULD derive the peer address from the Q-Node
 Network Layer Info if this was decoded successfully. Otherwise, it
 MAY be derived from the IP source address of the message if the
 common header flags this as being the signalling source address. The
 precise constraints on when state information is installed are a
 matter of security policy considerations on prevention of denial-of-
 service attacks and state poisoning attacks, which are discussed
 further in Section 8. Because the Responding node MAY choose to
 delay state installation as in case (2), the Confirm must contain
 sufficient information to allow it to be processed in the same way as
 the original Query. This places some special requirements on NAT
 traversal and cookie functionality, which are discussed in
 Section 7.2 and Section 8 respectively.

4.4.2. GIST Peer Authorisation

 When two GIST nodes authenticate using a messaging association, both
 ends have to decide whether to accept the creation of the MA and
 whether to trust the information sent over it. This can be seen as
 an authorisation decision:

 o Authorised peers are trusted to install correct routing state
 about themselves and not, for example, to claim that they are on-
 path for a flow when they are not.

 o Authorised peers are trusted to obey transport- and application-
 level flow control rules, and not to attempt to create overload
 situations.

 o Authorised peers are trusted not to send erroneous or malicious
 error messages, for example, asserting that routing state has been
 lost when it has not.

Schulzrinne & Hancock Experimental [Page 37]

RFC 5971 GIST October 2010

 This specification models the decision as verification by the
 authorising node of the peer’s identity against a local list of
 peers, the authorised peer database (APD). The APD is an abstract
 construct, similar to the security policy database of IPsec [36].
 Implementations MAY provide the associated functionality in any way
 they choose. This section defines only the requirements for APD
 administration and the consequences of successfully validating a
 peer’s identity against it.

 The APD consists of a list of entries. Each entry includes an
 identity, the namespace from which the identity comes (e.g., DNS
 domains), the scope within which the entry is applicable, and whether
 authorisation is allowed or denied. The following are example
 scopes:

 Peer Address Ownership: The scope is the IP address at which the
 peer for this MRI should be; the APD entry denotes the identity as
 the owner of address. If the authorising node can determine this
 address from local information (such as its own routing tables),
 matching this entry shows that the peer is the correct on-path
 node and so should be authorised. The determination is simple if
 the peer is one IP hop downstream, since the IP address can be
 derived from the router’s forwarding tables. If the peer is more
 than one hop away or is upstream, the determination is harder but
 may still be possible in some circumstances. The authorising node
 may be able to determine a (small) set of possible peer addresses,
 and accept that any of these could be the correct peer.

 End-System Subnet: The scope is an address range within which the
 MRI source or destination lies; the APD entry denotes the identity
 as potentially being on-path between the authorising node and that
 address range. There may be different source and destination
 scopes, to account for asymmetric routing.

 The same identity may appear in multiple entries, and the order of
 entries in the APD is significant. When a messaging association is
 authenticated and associated with an MRI, the authorising node scans
 the APD to find the first entry where the identity matches that
 presented by the peer, and where the scope information matches the
 circumstances for which the MA is being set up. The identity
 matching process itself depends on the messaging association protocol
 that carries out the authentication, and details for TLS are given in
 Section 5.7.3. Whenever the full set of possible peers for a
 specific scope is known, deny entries SHOULD be added for the
 wildcard identity to reject signalling associations from unknown
 nodes. The ability of the authorising node to reject inappropriate
 MAs depends directly on the granularity of the APD and the precision
 of the scope matching process.

Schulzrinne & Hancock Experimental [Page 38]

RFC 5971 GIST October 2010

 If authorisation is allowed, the MA can be used as normal; otherwise,
 it MUST be torn down without further GIST exchanges, and any routing
 state associated with the MA MUST also be deleted. An error
 condition MAY be logged locally. When an APD entry is modified or
 deleted, the node MUST re-validate existing MAs and the routing state
 table against the revised contents of the APD. This may result in
 MAs being torn down or routing state entries being deleted. These
 changes SHOULD be indicated to local signalling applications via the
 NetworkNotification API call (Appendix B.4).

 This specification does not define how the APD is populated. As a
 minimum, an implementation MUST provide an administrative interface
 through which entries can be added, modified, or deleted. More
 sophisticated mechanisms are possible in some scenarios. For
 example, the fact that a node is legitimately associated with a
 specific IP address could be established by direct embedding of the
 IP address as a particular identity type in a certificate, or by a
 mapping that address to another identifier type via an additional
 database lookup (such as relating IP addresses in in-addr.arpa to
 domain names). An enterprise network operator could generate a list
 of all the identities of its border nodes as authorised to be on the
 signalling path to external destinations, and this could be
 distributed to all hosts inside the network. Regardless of the
 technique, it MUST be ensured that the source data justify the
 authorisation decisions listed at the start of this section, and that
 the security of the chain of operations on which the APD entry
 depends cannot be compromised.

4.4.3. Messaging Association Multiplexing

 It is a design goal of GIST that, as far as possible, a single
 messaging association should be used for multiple flows and sessions
 between two peers, rather than setting up a new MA for each. This
 re-use of existing MAs is referred to as messaging association
 multiplexing. Multiplexing ensures that the MA cost scales only with
 the number of peers, and avoids the latency of new MA setup where
 possible.

 However, multiplexing requires the identification of an existing MA
 that matches the same routing state and desired properties that would
 be the result of a normal handshake in D-mode, and this
 identification must be done as reliably and securely as continuing
 with a normal D-mode handshake. Note that this requirement is
 complicated by the fact that NATs may remap the node addresses in
 D-mode messages, and also interacts with the fact that some nodes may
 peer over multiple interfaces (and thus with different addresses).

Schulzrinne & Hancock Experimental [Page 39]

RFC 5971 GIST October 2010

 MA multiplexing is controlled by the Network Layer Information (NLI)
 object, which is carried in Query, Response, and Confirm messages.
 The NLI object includes (among other elements):

 Peer-Identity: For a given node, this is an interface-independent
 value with opaque syntax. It MUST be chosen so as to have a high
 probability of uniqueness across the set of all potential peers,
 and SHOULD be stable at least until the next node restart. Note
 that there is no cryptographic protection of this identity;
 attempting to provide this would essentially duplicate the
 functionality in the messaging association security protocols.
 For routers, the Router-ID [2], which is one of the router’s IP
 addresses, MAY be used as one possible value for the Peer-
 Identity. In scenarios with nested NATs, the Router-ID alone may
 not satisfy the uniqueness requirements, in which case it MAY be
 extended with additional tokens, either chosen randomly or
 administratively coordinated.

 Interface-Address: This is an IP address through which the
 signalling node can be reached. There may be several choices
 available for the Interface-Address, and further discussion of
 this is contained in Section 5.2.2.

 A messaging association is associated with the NLI object that was
 provided by the peer in the Query/Response/Confirm at the time the
 association was first set up. There may be more than one MA for a
 given NLI object, for example, with different security or transport
 properties.

 MA multiplexing is achieved by matching these two elements from the
 NLI provided in a new GIST message with one associated with an
 existing MA. The message can be either a Query or Response, although
 the former is more likely:

 o If there is a perfect match to an existing association, that
 association SHOULD be re-used, provided it meets the criteria on
 security and transport properties given at the end of
 Section 5.7.1. This is indicated by sending the remaining
 messages in the handshake over that association. This will lead
 to multiplexing on an association to the wrong node if signalling
 nodes have colliding Peer-Identities and one is reachable at the
 same Interface-Address as another. This could be caused by an on-
 path attacker; on-path attacks are discussed further in
 Section 8.7. When multiplexing is done, and the original MA
 authorisation was MRI-dependent, the verification steps of
 Section 4.4.2 MUST be repeated for the new flow.

Schulzrinne & Hancock Experimental [Page 40]

RFC 5971 GIST October 2010

 o In all other cases, the handshake MUST be executed in D-mode as
 usual. There are in fact four possibilities:

 1. Nothing matches: this is clearly a new peer.

 2. Only the Peer-Identity matches: this may be either a new
 interface on an existing peer or a changed address mapping
 behind a NAT. These should be rare events, so the expense of
 a new association setup is acceptable. Another possibility is
 one node using another node’s Peer-Identity, for example, as
 some kind of attack. Because the Peer-Identity is used only
 for this multiplexing process, the only consequence this has
 is to require a new association setup, and this is considered
 in Section 8.4.

 3. Only the Interface-Address matches: this is probably a new
 peer behind the same NAT as an existing one. A new
 association setup is required.

 4. Both elements of the NLI object match: this is a degenerate
 case, where one node recognises an existing peer, but wishes
 to allow the option to set up a new association in any case,
 for example, to create an association with different
 properties.

4.4.4. Routing State Maintenance

 Each item of routing state expires after a lifetime that is
 negotiated during the Query/Response/Confirm handshake. The Network
 Layer Information (NLI) object in the Query contains a proposal for
 the lifetime value, and the NLI in the Response contains the value
 the Responding node requires. A default timer value of 30 seconds is
 RECOMMENDED. Nodes that can exploit alternative, more powerful,
 route change detection methods such as those described in
 Section 7.1.2 MAY choose to use much longer times. Nodes MAY use
 shorter times to provide more rapid change detection. If the number
 of active routing state items corresponds to a rate of Queries that
 will stress the rate limits applied to D-mode traffic
 (Section 5.3.3), nodes MUST increase the timer for new items and on
 the refresh of existing ones. A suitable value is

 2 * (number of routing states) / (rate limit in packets/second)

 which leaves a factor of two headroom for new routing state creation
 and Query retransmissions.

Schulzrinne & Hancock Experimental [Page 41]

RFC 5971 GIST October 2010

 The Querying node MUST ensure that a Query is received before this
 timer expires, if it believes that the signalling session is still
 active; otherwise, the Responding node MAY delete the state. Receipt
 of the message at the Responding node will refresh peer addressing
 state for one direction, and receipt of a Response at the Querying
 node will refresh it for the other. There is no mechanism at the
 GIST level for explicit teardown of routing state. However, GIST
 MUST NOT refresh routing state if a signalling session is known to be
 inactive, either because upstream state has expired or because the
 signalling application has indicated via the GIST API (Appendix B.5)
 that the state is no longer required, because this would prevent
 correct state repair in the case of network rerouting at the IP
 layer.

 This specification defines precisely only the time at which routing
 state expires; it does not define when refresh handshakes should be
 initiated. Implementations MUST select timer settings that take at
 least the following into account:

 o the transmission latency between source and destination;

 o the need for retransmissions of Query messages;

 o the need to avoid network synchronisation of control traffic (cf.
 [42]).

 In most cases, a reasonable policy is to initiate the routing state
 refresh when between 1/2 and 3/4 of the validity time has elapsed
 since the last successful refresh. The actual moment MUST be chosen
 randomly within this interval to avoid synchronisation effects.

4.4.5. Messaging Association Maintenance

 Unneeded MAs are torn down by GIST, using the teardown mechanisms of
 the underlying transport or security protocols if available, for
 example, by simply closing a TCP connection. The teardown can be
 initiated by either end. Whether an MA is needed is a combination of
 two factors:

 o local policy, which could take into account the cost of keeping
 the messaging association open, the level of past activity on the
 association, and the likelihood of future activity, e.g., if there
 is routing state still in place that might generate messages to
 use it.

 o whether the peer still wants the MA to remain in place. During MA
 setup, as part of the Stack-Configuration-Data, each node
 advertises its own MA-Hold-Time, i.e., the time for which it will

Schulzrinne & Hancock Experimental [Page 42]

RFC 5971 GIST October 2010

 retain an MA that is not carrying signalling traffic. A node MUST
 NOT tear down an MA if it has received traffic from its peer over
 that period. A peer that has generated no traffic but still wants
 the MA retained can use a special null message (MA-Hello) to
 indicate the fact. A default value for MA-Hold-Time of 30 seconds
 is RECOMMENDED. Nodes MAY use shorter times to achieve more rapid
 peer failure detection, but need to take into account the load on
 the network created by the MA-Hello messages. Nodes MAY use
 longer times, but need to take into account the cost of retaining
 idle MAs for extended periods. Nodes MAY take signalling
 application behaviour (e.g., NSLP refresh times) into account in
 choosing an appropriate value.

 Because the Responding node can choose not to create state until a
 Confirm, an abbreviated Stack-Configuration-Data object containing
 just this information from the initial Query MUST be repeated by
 the Querying node in the first Confirm sent on a new MA. If the
 object is missing in the Confirm, an "Object Type Error" message
 (Appendix A.4.4.9) with subcode 2 ("Missing Object") MUST be
 returned.

 Messaging associations can always be set up on demand, and messaging
 association status is not made directly visible outside the GIST
 layer. Therefore, even if GIST tears down and later re-establishes a
 messaging association, signalling applications cannot distinguish
 this from the case where the MA is kept permanently open. To
 maintain the transport semantics described in Section 4.1, GIST MUST
 close transport connections carrying reliable messages gracefully or
 report an error condition, and MUST NOT open a new association to be
 used for given session and peer while messages on a previous
 association could still be outstanding. GIST MAY use an MA-Hello
 request/reply exchange on an existing association to verify that
 messages sent on it have reached the peer. GIST MAY use the same
 technique to test the liveness of the underlying MA protocols
 themselves at arbitrary times.

 This specification defines precisely only the time at which messaging
 associations expire; it does not define when keepalives should be
 initiated. Implementations MUST select timer settings that take at
 least the following into account:

 o the transmission latency between source and destination;

 o the need for retransmissions within the messaging association
 protocols;

 o the need to avoid network synchronisation of control traffic (cf.
 [42]).

Schulzrinne & Hancock Experimental [Page 43]

RFC 5971 GIST October 2010

 In most cases, a reasonable policy is to initiate the MA refresh when
 between 1/2 and 3/4 of the validity time has elapsed since the last
 successful refresh. The actual moment MUST be chosen randomly within
 this interval to avoid synchronisation effects.

4.4.6. Routing State Failures

 A GIST node can receive a message from a GIST peer that can only be
 correctly processed in the context of some routing state, but where
 no corresponding routing state exists. Cases where this can arise
 include:

 o Where the message is random traffic from an attacker, or
 backscatter (replies to such traffic).

 o Where routing state has been correctly installed but the peer has
 since lost it, for example, because of aggressive timeout settings
 at the peer or because the node has crashed and restarted.

 o Where the routing state was not correctly installed in the first
 place, but the sending node does not know this. This can happen
 if the Confirm message of the handshake is lost.

 It is important for GIST to recover from such situations promptly
 where they represent genuine errors (node restarts, or lost messages
 that would not otherwise be retransmitted). Note that only Response,
 Confirm, Data, and Error messages ever require routing state to
 exist, and these are considered in turn:

 Response: A Response can be received at a node that never sent (or
 has forgotten) the corresponding Query. If the node wants routing
 state to exist, it will initiate it itself; a diagnostic error
 would not allow the sender of the Response to take any corrective
 action, and the diagnostic could itself be a form of backscatter.
 Therefore, an error message MUST NOT be generated, but the
 condition MAY be logged locally.

 Confirm: For a Responding node that implements delayed state
 installation, this is normal behaviour, and routing state will be
 created provided the Confirm is validated. Otherwise, this is a
 case of a non-existent or forgotten Response, and the node may not
 have sufficient information in the Confirm to create the correct
 state. The requirement is to notify the Querying node so that it
 can recover the routing state.

Schulzrinne & Hancock Experimental [Page 44]

RFC 5971 GIST October 2010

 Data: This arises when a node receives Data where routing state is
 required, but either it does not exist at all or it has not been
 finalised (no Confirm message). To avoid Data being black-holed,
 a notification must be sent to the peer.

 Error: Some error messages can only be interpreted in the context of
 routing state. However, the only error messages that require a
 reply within the protocol are routing state error messages
 themselves. Therefore, this case should be treated the same as a
 Response: an error message MUST NOT be generated, but the
 condition MAY be logged locally.

 For the case of Confirm or Data messages, if the state is required
 but does not exist, the node MUST reject the incoming message with a
 "No Routing State" error message (Appendix A.4.4.5). There are then
 three cases at the receiver of the error message:

 No routing state: The condition MAY be logged but a reply MUST NOT
 be sent (see above).

 Querying node: The node MUST restart the GIST handshake from the
 beginning, with a new Query.

 Responding node: The node MUST delete its own routing state and
 SHOULD report an error condition to the local signalling
 application.

 The rules at the Querying or Responding node make GIST open to
 disruption by randomly injected error messages, similar to blind
 reset attacks on TCP (cf. [46]), although because routing state
 matching includes the SID this is mainly limited to on-path
 attackers. If a GIST node detects a significant rate of such
 attacks, it MAY adopt a policy of using secured messaging
 associations to communicate for the affected MRIs, and only accepting
 "No Routing State" error messages over such associations.

5. Message Formats and Transport

5.1. GIST Messages

 All GIST messages begin with a common header, followed by a sequence
 of type-length-value (TLV) objects. This subsection describes the
 various GIST messages and their contents at a high level in ABNF
 [11]; a more detailed description of the header and each object is
 given in Section 5.2 and bit formats in Appendix A. Note that the
 NAT traversal mechanism for GIST involves the insertion of an
 additional NAT-Traversal-Object in Query, Response, and some Data and
 Error messages; the rules for this are given in Section 7.2.

Schulzrinne & Hancock Experimental [Page 45]

RFC 5971 GIST October 2010

 GIST-Message: The primary messages are either part of the three-way
 handshake or a simple message carrying NSLP data. Additional types
 are defined for errors and keeping messaging associations alive.

 GIST-Message = Query / Response / Confirm /
 Data / Error / MA-Hello

 The common header includes a version number, message type and size,
 and NSLPID. It also carries a hop count to prevent infinite message
 looping and various control flags, including one (the R-flag) to
 indicate if a reply of some sort is requested. The objects following
 the common header MUST be carried in a fixed order, depending on
 message type. Messages with missing, duplicate, or invalid objects
 for the message type MUST be rejected with an "Object Type Error"
 message with the appropriate subcode (Appendix A.4.4.9). Note that
 unknown objects indicate explicitly how they should be treated and
 are not covered by the above statement.

 Query: A Query MUST be sent in D-mode using the special Q-mode
 encapsulation. In addition to the common header, it contains certain
 mandatory control objects, and MAY contain a signalling application
 payload. A stack proposal and configuration data MUST be included if
 the message exchange relates to setup of a messaging association, and
 this is the case even if the Query is intended only for refresh
 (since a routing change might have taken place in the meantime). The
 R-flag MUST always be set (R=1) in a Query, since this message always
 elicits a Response.

 Query = Common-Header
 [NAT-Traversal-Object]
 Message-Routing-Information
 Session-Identifier
 Network-Layer-Information
 Query-Cookie
 [Stack-Proposal Stack-Configuration-Data]
 [NSLP-Data]

 Response: A Response MUST be sent in D-mode if no existing messaging
 association can be re-used. If one is being re-used, the Response
 MUST be sent in C-mode. It MUST echo the MRI, SID, and Query-Cookie
 of the Query, and carries its own Network-Layer-Information. If the
 message exchange relates to setup of a new messaging association,
 which MUST involve a D-mode Response, a Responder-Cookie MUST be
 included, as well as the Responder’s own stack proposal and
 configuration data. The R-flag MUST be set (R=1) if a Responder-
 Cookie is present but otherwise is optional; if the R-flag is set, a
 Confirm MUST be sent as a reply. Therefore, in particular, a Confirm
 will always be required if a new MA is being set up. Note that the

Schulzrinne & Hancock Experimental [Page 46]

RFC 5971 GIST October 2010

 direction of this MRI will be inverted compared to that in the Query,
 that is, an upstream MRI becomes downstream and vice versa (see
 Section 3.3).

 Response = Common-Header
 [NAT-Traversal-Object]
 Message-Routing-Information
 Session-Identifier
 Network-Layer-Information
 Query-Cookie
 [Responder-Cookie
 [Stack-Proposal Stack-Configuration-Data]]
 [NSLP-Data]

 Confirm: A Confirm MUST be sent in C-mode if a messaging association
 is being used for this routing state, and MUST be sent before other
 messages for this routing state if an association is being set up.
 If no messaging association is being used, the Confirm MUST be sent
 in D-mode. The Confirm MUST include the MRI (with inverted
 direction) and SID, and echo the Responder-Cookie if the Response
 carried one. In C-mode, the Confirm MUST also echo the Stack-
 Proposal from the Response (if present) so it can be verified that
 this has not been tampered with. The first Confirm on a new
 association MUST also repeat the Stack-Configuration-Data from the
 original Query in an abbreviated form, just containing the MA-Hold-
 Time.

 Confirm = Common-Header
 Message-Routing-Information
 Session-Identifier
 Network-Layer-Information
 [Responder-Cookie
 [Stack-Proposal
 [Stack-Configuration-Data]]]
 [NSLP-Data]

 Data: The Data message is used to transport NSLP data without
 modifying GIST state. It contains no control objects, but only the
 MRI and SID associated with the NSLP data being transferred.
 Network-Layer-Information (NLI) MUST be carried in the D-mode case,
 but MUST NOT be included otherwise.

 Data = Common-Header
 [NAT-Traversal-Object]
 Message-Routing-Information
 Session-Identifier
 [Network-Layer-Information]
 NSLP-Data

Schulzrinne & Hancock Experimental [Page 47]

RFC 5971 GIST October 2010

 Error: An Error message reports a problem determined at the GIST
 level. (Errors generated by signalling applications are reported in
 NSLP-Data payloads and are not treated specially by GIST.) If the
 message is being sent in D-mode, the originator of the error message
 MUST include its own Network-Layer-Information object. All other
 information related to the error is carried in a GIST-Error-Data
 object.

 Error = Common-Header
 [NAT-Traversal-Object]
 [Network-Layer-Information]
 GIST-Error-Data

 MA-Hello: This message MUST be sent only in C-mode. It contains the
 common header, with a NSLPID of zero, and a message identifier, the
 Hello-ID. It always indicates that a node wishes to keep a messaging
 association open, and if sent with R=0 and zero Hello-ID this is its
 only function. A node MAY also invoke a diagnostic request/reply
 exchange by setting R=1 and providing a non-zero Hello-ID; in this
 case, the peer MUST send another MA-Hello back along the messaging
 association echoing the same Hello-ID and with R=0. Use of this
 diagnostic is entirely at the discretion of the initiating node.

 MA-Hello = Common-Header
 Hello-ID

5.2. Information Elements

 This section describes the content of the various objects that can be
 present in each GIST message, both the common header and the
 individual TLVs. The bit formats are provided in Appendix A.

5.2.1. The Common Header

 Each message begins with a fixed format common header, which contains
 the following information:

 Version: The version number of the GIST protocol. This
 specification defines GIST version 1.

 GIST hop count: A hop count to prevent a message from looping
 indefinitely.

 Length: The number of 32-bit words in the message following the
 common header.

 Upper layer identifier (NSLPID): This gives the specific NSLP for
 which this message is used.

Schulzrinne & Hancock Experimental [Page 48]

RFC 5971 GIST October 2010

 Context-free flag: This flag is set (C=1) if the receiver has to be
 able to process the message without supporting routing state. The
 C-flag MUST be set for Query messages, and also for Data messages
 sent in Q-mode. The C-flag is important for NAT traversal
 processing.

 Message type: The message type (Query, Response, etc.).

 Source addressing mode: If set (S=1), this indicates that the IP
 source address of the message is the same as the IP address of the
 signalling peer, so replies to this message can be sent safely to
 this address. S is always set in C-mode. It is cleared (S=0) if
 the IP source address was derived from the message routing
 information in the payload and this is different from the
 signalling source address.

 Response requested: A flag that if set (R=1) indicates that a GIST
 message should be sent in reply to this message. The appropriate
 message type for the reply depends on the type of the initial
 message.

 Explicit routing: A flag that if set (E=1) indicates that the
 message was explicitly routed (see Section 7.1.5).

 Note that in D-mode, Section 5.3, there is a 32-bit magic number
 before the header. However, this is regarded as part of the
 encapsulation rather than part of the message itself.

5.2.2. TLV Objects

 All data following the common header is encoded as a sequence of
 type-length-value objects. Currently, each object can occur at most
 once; the set of required and permitted objects is determined by the
 message type and encapsulation (D-mode or C-mode).

 Message-Routing-Information (MRI): Information sufficient to define
 how the signalling message should be routed through the network.

 Message-Routing-Information = message-routing-method
 method-specific-information

 The format of the method-specific-information depends on the
 message-routing-method requested by the signalling application. Note
 that it always includes a flag defining the direction as either
 ’upstream’ or ’downstream’ (see Section 3.3). It is provided by the
 NSLP in the message sender and used by GIST to select the message
 routing.

Schulzrinne & Hancock Experimental [Page 49]

RFC 5971 GIST October 2010

 Session-Identifier (SID): The GIST session identifier is a 128-bit,
 cryptographically random identifier chosen by the node that
 originates the signalling exchange. See Section 3.7.

 Network-Layer-Information (NLI): This object carries information
 about the network layer attributes of the node sending the
 message, including data related to the management of routing
 state. This includes a peer identity and IP address for the
 sending node. It also includes IP-TTL information to allow the IP
 hop count between GIST peers to be measured and reported, and a
 validity time (RS-validity-time) for the routing state.

 Network-Layer-Information = peer-identity
 interface-address
 RS-validity-time
 IP-TTL

 The use of the RS-validity-time field is described in Section 4.4.4.
 The peer-identity and interface-address are used for matching
 existing associations, as discussed in Section 4.4.3.

 The interface-address must be routable, i.e., it MUST be usable as a
 destination IP address for packets to be sent back to the node
 generating the signalling message, whether in D-mode or C-mode. If
 this object is carried in a message with the source addressing mode
 flag S=1, the interface-address MUST match the source address used in
 the IP encapsulation, to assist in legacy NAT detection
 (Section 7.2.1). If this object is carried in a Query or Confirm,
 the interface-address MUST specifically be set to an address bound to
 an interface associated with the MRI, to allow its use in route
 change handling as discussed in Section 7.1. A suitable choice is
 the interface that is carrying the outbound flow. A node may have
 several choices for which of its addresses to use as the
 interface-address. For example, there may be a choice of IP
 versions, or addresses of limited scope (e.g., link-local), or
 addresses bound to different interfaces in the case of a router or
 multihomed host. However, some of these interface addresses may not
 be usable by the peer. A node MUST follow a policy of using a global
 address of the same IP version as in the MRI, unless it can establish
 that an alternative address would also be usable.

 The setting and interpretation of the IP-TTL field depends on the
 message direction (upstream/downstream as determined from the MRI as
 described above) and encapsulation.

 * If the message is sent downstream, if the TTL that will be set
 in the IP header for the message can be determined, the IP-TTL
 value MUST be set to this value, or else set to 0.

Schulzrinne & Hancock Experimental [Page 50]

RFC 5971 GIST October 2010

 * On receiving a downstream message in D-mode, a non-zero IP-TTL
 is compared to the TTL in the IP header, and the difference is
 stored as the IP-hop-count-to-peer for the upstream peer in the
 routing state table for that flow. Otherwise, the field is
 ignored.

 * If the message is sent upstream, the IP-TTL MUST be set to the
 value of the IP-hop-count-to-peer stored in the routing state
 table, or 0 if there is no value yet stored.

 * On receiving an upstream message, the IP-TTL is stored as the
 IP-hop-count-to-peer for the downstream peer.

 In all cases, the IP-TTL value reported to signalling applications
 is the one stored with the routing state for that flow, after it
 has been updated if necessary from processing the message in
 question.

 Stack-Proposal: This field contains information about which
 combinations of transport and security protocols are available for
 use in messaging associations, and is also discussed further in
 Section 5.7.

 Stack-Proposal = 1*stack-profile

 stack-profile = protocol-count 1*protocol-layer
 ;; padded on the right with 0 to 32-bit boundary

 protocol-count = %x01-FF
 ;; number of the following <protocol-layer>,
 ;; represented as one byte. This doesn’t include
 ;; padding.

 protocol-layer = %x01-FF

 Each protocol-layer field identifies a protocol with a unique tag;
 any additional data, such as higher-layer addressing or other options
 data associated with the protocol, will be carried in an
 MA-protocol-options field in the Stack-Configuration-Data TLV (see
 below).

 Stack-Configuration-Data (SCD): This object carries information
 about the overall configuration of a messaging association.

 Stack-Configuration-Data = MA-Hold-Time
 0*MA-protocol-options

Schulzrinne & Hancock Experimental [Page 51]

RFC 5971 GIST October 2010

 The MA-Hold-Time field indicates how long a node will hold open an
 inactive association; see Section 4.4.5 for more discussion. The
 MA-protocol-options fields give the configuration of the protocols
 (e.g., TCP, TLS) to be used for new messaging associations, and they
 are described in more detail in Section 5.7.

 Query-Cookie/Responder-Cookie: A Query-Cookie is contained in a
 Query and MUST be echoed in a Response; a Responder-Cookie MAY be
 sent in a Response, and if present MUST be echoed in the following
 Confirm. Cookies are variable-length bit strings, chosen by the
 cookie generator. See Section 8.5 for further details on
 requirements and mechanisms for cookie generation.

 Hello-ID: The Hello-ID is a 32-bit quantity that is used to
 correlate messages in an MA-Hello request/reply exchange. A non-
 zero value MUST be used in a request (messages sent with R=1) and
 the same value must be returned in the reply (which has R=0). The
 value zero MUST be used for all other messages; if a message is
 received with R=1 and Hello-ID=0, an "Object Value Error" message
 (Appendix A.4.4.10) with subcode 1 ("Value Not Supported") MUST be
 returned and the message dropped. Nodes MAY use any algorithm to
 generate the Hello-ID; a suitable approach is a local sequence
 number with a random starting point.

 NSLP-Data: The NSLP payload to be delivered to the signalling
 application. GIST does not interpret the payload content.

 GIST-Error-Data: This contains the information to report the cause
 and context of an error.

 GIST-Error-Data = error-class error-code error-subcode
 common-error-header
 [Message-Routing-Information-content]
 [Session-Identification-content]
 0*additional-information
 [comment]

 The error-class indicates the severity level, and the error-code and
 error-subcode identify the specific error itself. A full list of
 GIST errors and their severity levels is given in Appendix A.4. The
 common-error-header carries the Common-Header from the original
 message, and contents of the Message-Routing-Information (MRI) and
 Session-Identifier (SID) objects are also included if they were
 successfully decoded. For some errors, additional information fields
 can be included, and these fields themselves have a simple TLV
 format. Finally, an optional free-text comment may be added.

Schulzrinne & Hancock Experimental [Page 52]

RFC 5971 GIST October 2010

5.3. D-mode Transport

 This section describes the various encapsulation options for D-mode
 messages. Although there are several possibilities, depending on
 message type, MRM, and local policy, the general design principle is
 that the sole purpose of the encapsulation is to ensure that the
 message is delivered to or intercepted at the correct peer. Beyond
 that, minimal significance is attached to the type of encapsulation
 or the values of addresses or ports used for it. This allows new
 options to be developed in the future to handle particular deployment
 requirements without modifying the overall protocol specification.

5.3.1. Normal Encapsulation

 Normal encapsulation MUST be used for all D-mode messages where the
 signalling peer is already known from previous signalling. This
 includes Response and Confirm messages, and Data messages except if
 these are being sent without using local routing state. Normal
 encapsulation is simple: the message is carried in a single UDP
 datagram. UDP checksums MUST be enabled. The UDP payload MUST
 always begin with a 32-bit magic number with value 0x4e04 bda5 in
 network byte order; this is followed by the GIST common header and
 the complete set of payloads. If the magic number is not present,
 the message MUST be silently dropped. The normal encapsulation is
 shown in outline in Figure 6.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 // IP Header //
 +-+
 // UDP Header //
 +-+
 | GIST Magic Number (0x4e04bda5) |
 +-+
 // GIST Common Header //
 +-+
 // GIST Payloads //
 +-+

 Figure 6: Normal Encapsulation Packet Format

 The message is IP addressed directly to the adjacent peer as given by
 the routing state table. Where the message is a direct reply to a
 Query and no routing state exists, the destination address is derived
 from the input message using the same rules as in Section 4.4.1. The
 UDP port numbering MUST be compatible with that used on Query
 messages (see below), that is, the same for messages in the same

Schulzrinne & Hancock Experimental [Page 53]

RFC 5971 GIST October 2010

 direction and with source and destination port numbers swapped for
 messages in the opposite direction. Messages with the normal
 encapsulation MUST be sent with source addressing mode flag S=1
 unless the message is a reply to a message that is known to have
 passed through a NAT, and the receiver MUST check the IP source
 address with the interface-address given in the NLI as part of legacy
 NAT detection. Both these aspects of message processing are
 discussed further in Section 7.2.1.

5.3.2. Q-mode Encapsulation

 Q-mode encapsulation MUST be used for messages where no routing state
 is available or where the routing state is being refreshed, in
 particular, for Query messages. Q-mode can also be used when
 requested by local policy. Q-mode encapsulation is similar to normal
 encapsulation, with changes in IP address selection, rules about IP
 options, and a defined method for selecting UDP ports.

 It is an essential property of the Q-mode encapsulation that it is
 possible for a GIST node to intercept these messages efficiently even
 when they are not directly addressed to it and, conversely, that it
 is possible for a non-GIST node to ignore these messages without
 overloading the slow path packet processing. This document specifies
 that interception is done based on RAOs.

5.3.2.1. Encapsulation and Interception in IPv4

 In general, the IP addresses are derived from information in the MRI;
 the exact rules depend on the MRM. For the case of messages with
 source addressing mode flag S=1, the receiver MUST check the IP
 source address against the interface-address given in the NLI as part
 of legacy NAT detection; see Section 7.2.1.

 Current MRMs define the use of a Router Alert Option [13] to assist
 the peer in intercepting the message depending on the NSLPID. If the
 MRM defines the use of RAO, the sender MUST include it unless it has
 been specifically configured not to (see below). A node MAY make the
 initial interception decision based purely on IP-Protocol number
 transport header analysis. Implementations MAY provide an option to
 disable the setting of RAO on Q-mode packets on a per-destination
 prefix basis; however, the option MUST be disabled by default and
 MUST only be enabled when it has been separately verified that the
 next GIST node along the path to the destination is capable of
 intercepting packets without RAO. The purpose of this option is to
 allow operation across networks that do not properly support RAO;
 further details are discussed in Appendix C.

Schulzrinne & Hancock Experimental [Page 54]

RFC 5971 GIST October 2010

 It is likely that fragmented datagrams will not be correctly
 intercepted in the network, since the checks that a datagram is a
 Q-mode packet depend on data beyond the IP header. Therefore, the
 sender MUST set the Don’t Fragment (DF) bit in the IPv4 header. Note
 that ICMP "packet too large" messages will be sent to the source
 address of the original IP datagram, and since all MRM definitions
 recommend S=1 for at least some retransmissions, ICMP errors related
 to fragmentation will be seen at the Querying node.

 The upper layer protocol, identified by the IP-Protocol field in the
 IP header, MUST be UDP.

5.3.2.2. Encapsulation and Interception in IPv6

 As for IPv4, the IP addresses are derived from information in the
 MRI; the exact rules depend on the MRM. For the case of messages
 with source addressing mode flag S=1, the receiver MUST check the IP
 source address with the interface-address given in the NLI as part of
 legacy NAT detection; see Section 7.2.1.

 For all current MRMs, the IP header is given a Router Alert Option
 [8] to assist the peer in intercepting the message depending on the
 NSLPID. If the MRM defines the use of RAO, the sender MUST include
 it without exception. It is RECOMMENDED that a node bases its
 initial interception decision purely on the presence of a hop-by-hop
 option header containing the RAO, which will be at the start of the
 header chain.

 The upper layer protocol MUST be UDP without intervening
 encapsulation layers. Following any hop-by-hop option header, the IP
 header MUST NOT include any extension headers other than routing or
 destination options [5], and for the last extension header MUST have
 a next-header field of UDP.

5.3.2.3. Upper Layer Encapsulation and Overall Interception
 Requirements

 For both IP versions, the above rules require that the upper layer
 protocol identified by the IP header MUST be UDP. Other packets MUST
 NOT be identified as GIST Q-mode packets; this includes IP-in-IP
 tunnelled packets, other tunnelled packets (tunnel mode AH/ESP), or
 packets that have undergone some additional transport layer
 processing (transport mode AH/ESP). If IP output processing at the
 originating node or an intermediate router causes such additional
 encapsulations to be added to a GIST Q-mode packet, this packet will
 not be identified as GIST until the encapsulation is terminated. If
 the node wishes to signal for data over the network region where the

Schulzrinne & Hancock Experimental [Page 55]

RFC 5971 GIST October 2010

 encapsulation applies, it MUST generate additional signalling with an
 MRI matching the encapsulated traffic, and the outbound GIST Q-mode
 messages for it MUST bypass the encapsulation processing.

 Therefore, the final stage of the interception process and the final
 part of encapsulation is at the UDP level. The source UDP port is
 selected by the message sender as the port at which it is prepared to
 receive UDP messages in reply, and the sender MUST use the
 destination UDP port allocated for GIST by IANA (see Section 9).
 Note that for some MRMs, GIST nodes anywhere along the path can
 generate GIST packets with source addresses that spoof the source
 address of the data flow. Therefore, destinations cannot distinguish
 these packets from genuine end-to-end data purely on address
 analysis. Instead, it must be possible to distinguish such GIST
 packets by port analysis; furthermore, the mechanism to do so must
 remain valid even if the destination is GIST-unaware. GIST solves
 this problem by using a fixed destination UDP port from the "well
 known" space for the Q-mode encapsulation. This port should never be
 allocated on a GIST-unaware host, and therefore Q-mode encapsulated
 messages should always be rejected with an ICMP error. The usage of
 this destination port by other applications will result in reduced
 performance due to increased delay and packet drop rates due to their
 interception by GIST nodes.

 A GIST node will need to be capable to filter out all IP/UDP packets
 that have a UDP destination port number equal to the one registered
 for GIST Q-mode encapsulation. These packets SHOULD then be further
 verified to be GIST packets by checking the magic number (see
 Section 5.3.1). The packets that meet both port and magic number
 requirements are further processed as GIST Q-mode packets. Any
 filtered packets that fail this GIST magic number check SHOULD be
 forwarded towards the IP packet’s destination as a normal IP
 datagram. To protect against denial-of-service attacks, a GIST node
 SHOULD have a rate limiter preventing more packets (filtered as
 potential Q-mode packets) from being processed than the system can
 safely handle. Any excess packets SHOULD be discarded.

5.3.2.4. IP Option Processing

 For both IPv4 and IPv6, for Q-mode packets with IP options allowed by
 the above requirements, IP options processing is intended to be
 carried out independently of GIST processing. Note that for the
 options allowed by the above rules, the option semantics are
 independent of the payload: UDP payload modifications are not
 prevented by the options and do not affect the option content, and
 conversely the presence of the options does not affect the UDP
 payload.

Schulzrinne & Hancock Experimental [Page 56]

RFC 5971 GIST October 2010

 On packets originated by GIST, IP options MAY be added according to
 node-local policies on outgoing IP data. On packets forwarded by
 GIST without NSLP processing, IP options MUST be processed as for a
 normally forwarded IP packet. On packets locally delivered to the
 NSLP, the IP options MAY be passed to the NSLP and equivalent options
 used on subsequently generated outgoing Q-mode packets. In this
 case, routing related options SHOULD be processed identically as they
 would be for a normally forwarded IP packet.

5.3.3. Retransmission and Rate Control

 D-mode uses UDP, and hence has no automatic reliability or congestion
 control capabilities. Signalling applications requiring reliability
 should be serviced using C-mode, which should also carry the bulk of
 signalling traffic. However, some form of messaging reliability is
 required for the GIST control messages themselves, as is rate control
 to handle retransmissions and also bursts of unreliable signalling or
 state setup requests from the signalling applications.

 Query messages that do not receive Responses MAY be retransmitted;
 retransmissions MUST use a binary exponential backoff. The initial
 timer value is T1, which the backoff process can increase up to a
 maximum value of T2 seconds. The default value for T1 is 500 ms. T1
 is an estimate of the round-trip time between the Querying and
 Responding nodes. Nodes MAY use smaller values of T1 if it is known
 that the Query should be answered within the local network. T1 MAY
 be chosen larger, and this is RECOMMENDED if it is known in advance
 (such as on high-latency access links) that the round-trip time is
 larger. The default value of T2 is 64*T1. Note that Queries may go
 unanswered either because of message loss (in either direction) or
 because there is no reachable GIST peer. Therefore, implementations
 MAY trade off reliability (large T2) against promptness of error
 feedback to applications (small T2). If the NSLP has indicated a
 timeout on the validity of this payload (see Appendix B.1), T2 MUST
 be chosen so that the process terminates within this timeout.
 Retransmitted Queries MUST use different Query-Cookie values. If the
 Query carries NSLP data, it may be delivered multiple times to the
 signalling application. These rules apply equally to the message
 that first creates routing state, and those that refresh it. In all
 cases, Responses MUST be sent promptly to avoid spurious
 retransmissions. Nodes generating any type of retransmission MUST be
 prepared to receive and match a reply to any of them, not just the
 one most recently sent. Although a node SHOULD terminate its
 retransmission process when any reply is received, it MUST continue
 to process further replies as normal.

Schulzrinne & Hancock Experimental [Page 57]

RFC 5971 GIST October 2010

 This algorithm is sufficient to handle lost Queries and Responses.
 The case of a lost Confirm is more subtle. The Responding node MAY
 run a retransmission timer to resend the Response until a Confirm is
 received; the timer MUST use the same backoff mechanism and
 parameters as for Responses. The problem of an amplification attack
 stimulated by a malicious Query is handled by requiring the cookie
 mechanism to enable the node receiving the Response to discard it
 efficiently if it does not match a previously sent Query. This
 approach is only appropriate if the Responding node is prepared to
 store per-flow state after receiving a single (Query) message, which
 includes the case where the node has queued NSLP data. If the
 Responding node has delayed state installation, the error condition
 will only be detected when a Data message arrives. This is handled
 as a routing state error (see Section 4.4.6) that causes the Querying
 node to restart the handshake.

 The basic rate-control requirements for D-mode traffic are
 deliberately minimal. A single rate limiter applies to all traffic,
 for all interfaces and message types. It applies to retransmissions
 as well as new messages, although an implementation MAY choose to
 prioritise one over the other. Rate-control applies only to locally
 generated D-mode messages, not to messages that are being forwarded.
 When the rate limiter is in effect, D-mode messages MUST be queued
 until transmission is re-enabled, or they MAY be dropped with an
 error condition indicated back to local signalling applications. In
 either case, the effect of this will be to reduce the rate at which
 new transactions can be initiated by signalling applications, thereby
 reducing the load on the network.

 The rate-limiting mechanism is implementation-defined, but it is
 RECOMMENDED that a token bucket limiter as described in [33] be used.
 The token bucket MUST be sized to ensure that a node cannot saturate
 the network with D-mode traffic, for example, when re-probing the
 network for multiple flows after a route change. A suitable approach
 is to restrict the token bucket parameters so that the mean output
 rate is a small fraction of the node’s lowest-speed interface. It is
 RECOMMENDED that this fraction is no more than 5%. Note that
 according to the rules of Section 4.3.3, in general, D-mode SHOULD
 only be used for Queries and Responses rather than normal signalling
 traffic unless capacity for normal signalling traffic can be
 engineered.

5.4. C-mode Transport

 It is a requirement of the NTLP defined in [29] that it should be
 able to support bundling of small messages, fragmentation of large
 messages, and message boundary delineation. TCP provides both
 bundling and fragmentation, but not message boundaries. However, the

Schulzrinne & Hancock Experimental [Page 58]

RFC 5971 GIST October 2010

 length information in the GIST common header allows the message
 boundary to be discovered during parsing. The bundling together of
 small messages either can be done within the transport protocol or
 can be carried out by GIST during message construction. Either way,
 two approaches can be distinguished:

 1. As messages arrive for transmission, they are gathered into a
 bundle until a size limit is reached or a timeout expires (cf.
 the Nagle algorithm of TCP). This provides maximal efficiency at
 the cost of some latency.

 2. Messages awaiting transmission are gathered together while the
 node is not allowed to send them, for example, because it is
 congestion controlled.

 The second type of bundling is always appropriate. For GIST, the
 first type MUST NOT be used for trigger messages (i.e., messages that
 update GIST or signalling application state), but may be appropriate
 for refresh messages (i.e., messages that just extend timers). These
 distinctions are known only to the signalling applications, but MAY
 be indicated (as an implementation issue) by setting the priority
 transfer attribute (Section 4.1.2).

 It can be seen that all of these transport protocol options can be
 supported by the basic GIST message format already presented. The
 GIST message, consisting of common header and TLVs, is carried
 directly in the transport protocol, possibly incorporating transport
 layer security protection. Further messages can be carried in a
 continuous stream. This specification defines only the use of TCP,
 but other possibilities could be included without additional work on
 message formatting.

5.5. Message Type/Encapsulation Relationships

 GIST has four primary message types (Query, Response, Confirm, and
 Data) and three possible encapsulation methods (normal D-mode,
 Q-mode, and C-mode). The combinations of message type and
 encapsulation that are allowed for message transmission are given in
 the table below. In some cases, there are several possible choices,
 depending on the existence of routing state or messaging
 associations. The rules governing GIST policy, including whether or
 not to create such state to handle a message, are described
 normatively in the other sections of this specification. If a
 message that can only be sent in Q-mode or D-mode arrives in C-mode
 or vice versa, this MUST be rejected with an "Incorrect
 Encapsulation" error message (Appendix A.4.4.3). However, it should
 be noted that the processing of the message at the receiver is not
 otherwise affected by the encapsulation method used, except that the

Schulzrinne & Hancock Experimental [Page 59]

RFC 5971 GIST October 2010

 decapsulation process may provide additional information, such as
 translated addresses or IP hop count to be used in the subsequent
 message processing.

 +----------+--------------+---------------------------+-------------+
 | Message | Normal | Query D-mode (Q-mode) | C-mode |
 | | D-mode | | |
 +----------+--------------+---------------------------+-------------+
Query	Never	Always, with C-flag=1	Never
Response	Unless a	Never	If a
	messaging		messaging
	association		association
	is being		is being
	re-used		re-used
Confirm	Only if no	Never	If a
	messaging		messaging
	association		association
	has been set		has been
	up or is		set up or
	being		is being
	re-used		re-used
Data	If routing	If the MRI can be used to	If a
	state exists	derive the Q-mode	messaging
	for the flow	encapsulation, and either	association
	but no	no routing state exists	exists
	messaging	or local policy requires	
	association	Q-mode; MUST have	
		C-flag=1	
 +----------+--------------+---------------------------+-------------+

5.6. Error Message Processing

 Special rules apply to the encapsulation and transmission of Error
 messages.

 GIST only generates Error messages in reaction to incoming messages.
 Error messages MUST NOT be generated in reaction to incoming Error
 messages. The routing and encapsulation of the Error message are
 derived from that of the message that caused the error; in
 particular, local routing state is not consulted. Routing state and
 messaging association state MUST NOT be created to handle the error,
 and Error messages MUST NOT be retransmitted explicitly by GIST,
 although they are subject to the same rate control as other messages.

Schulzrinne & Hancock Experimental [Page 60]

RFC 5971 GIST October 2010

 o If the incoming message was received in D-mode, the error MUST be
 sent in D-mode using the normal encapsulation, using the
 addressing information from the NLI object in the incoming
 message. If the NLI could not be determined, the error MUST be
 sent to the IP source of the incoming message if the S-flag was
 set in it. The NLI object in the Error message reports
 information about the originator of the error.

 o If the incoming message was received over a messaging association,
 the error MUST be sent back over the same messaging association.

 The NSLPID in the common header of the Error message has the value
 zero. If for any reason the message cannot be sent (for example,
 because it is too large to send in D-mode, or because the MA over
 which the original message arrived has since been closed), an error
 SHOULD be logged locally. The receiver of the Error message can
 infer the NSLPID for the message that caused the error from the
 Common Header that is embedded in the Error Object.

5.7. Messaging Association Setup

5.7.1. Overview

 A key attribute of GIST is that it is flexible in its ability to use
 existing transport and security protocols. Different transport
 protocols may have performance attributes appropriate to different
 environments; different security protocols may fit appropriately with
 different authentication infrastructures. Even given an initial
 default mandatory protocol set for GIST, the need to support new
 protocols in the future cannot be ruled out, and secure feature
 negotiation cannot be added to an existing protocol in a backwards-
 compatible way. Therefore, some sort of capability discovery is
 required.

 Capability discovery is carried out in Query and Response messages,
 using Stack-Proposal and Stack-Configuration-Data (SCD) objects. If
 a new messaging association is required, it is then set up, followed
 by a Confirm. Messaging association multiplexing is achieved by
 short-circuiting this exchange by sending the Response or Confirm
 messages on an existing association (Section 4.4.3); whether to do
 this is a matter of local policy. The end result of this process is
 a messaging association that is a stack of protocols. If multiple
 associations exist, it is a matter of local policy how to distribute
 messages over them, subject to respecting the transfer attributes
 requested for each message.

Schulzrinne & Hancock Experimental [Page 61]

RFC 5971 GIST October 2010

 Every possible protocol for a messaging association has the following
 attributes:

 o MA-Protocol-ID, a 1-byte IANA-assigned value (see Section 9).

 o A specification of the (non-negotiable) policies about how the
 protocol should be used, for example, in which direction a
 connection should be opened.

 o (Depending on the specific protocol:) Formats for an MA-protocol-
 options field to carry the protocol addressing and other
 configuration information in the SCD object. The format may
 differ depending on whether the field is present in the Query or
 Response. Some protocols do not require the definition of such
 additional data, in which case no corresponding MA-protocol-
 options field will occur in the SCD object.

 A Stack-Proposal object is simply a list of profiles; each profile is
 a sequence of MA-Protocol-IDs. A profile lists the protocols in ’top
 to bottom’ order (e.g., TLS over TCP). A Stack-Proposal is generally
 accompanied by an SCD object that carries an MA-protocol-options
 field for any protocol listed in the Stack-Proposal that needs it.
 An MA-protocol-options field may apply globally, to all instances of
 the protocol in the Stack-Proposal, or it can be tagged as applying
 to a specific instance. The latter approach can for example be used
 to carry different port numbers for TCP depending on whether it is to
 be used with or without TLS. An message flow that shows several of
 the features of Stack-Proposal and Stack-Configuration-Data formats
 can be found in Appendix D.

 An MA-protocol-options field may also be flagged as not usable; for
 example, a NAT that could not handle SCTP would set this in an MA-
 protocol-options field about SCTP. A protocol flagged this way MUST
 NOT be used for a messaging association. If the Stack-Proposal and
 SCD are both present but not consistent, for example, if they refer
 to different protocols, or an MA-protocol-options field refers to a
 non-existent profile, an "Object Value Error" message
 (Appendix A.4.4.10) with subcode 5 ("Stack-Proposal - Stack-
 Configuration-Data Mismatch") MUST be returned and the message
 dropped.

 A node generating an SCD object MUST honour the implied protocol
 configurations for the period during which a messaging association
 might be set up; in particular, it MUST be immediately prepared to
 accept incoming datagrams or connections at the protocol/port
 combinations advertised. This MAY require the creation of listening
 endpoints for the transport and security protocols in question, or a
 node MAY keep a pool of such endpoints open for extended periods.

Schulzrinne & Hancock Experimental [Page 62]

RFC 5971 GIST October 2010

 However, the received object contents MUST be retained only for the
 duration of the Query/Response exchange and to allow any necessary
 association setup to complete. They may become invalid because of
 expired bindings at intermediate NATs, or because the advertising
 node is using agile ports. Once the setup is complete, or if it is
 not necessary or fails for some reason, the object contents MUST be
 discarded. A default time of 30 seconds to keep the contents is
 RECOMMENDED.

 A Query requesting messaging association setup always contains a
 Stack-Proposal and SCD object. The Stack-Proposal MUST only include
 protocol configurations that are suitable for the transfer attributes
 of the messages for which the Querying node wishes to use the
 messaging association. For example, it should not simply include all
 configurations that the Querying node is capable of supporting.

 The Response always contains a Stack-Proposal and SCD object, unless
 multiplexing (where the Responder decides to use an existing
 association) occurs. For such a Response, the security protocols
 listed in the Stack-Proposal MUST NOT depend on the Query. A node
 MAY make different proposals depending on the combination of
 interface and NSLPID. If multiplexing does occur, which is indicated
 by sending the Response over an existing messaging association, the
 following rules apply:

 o The re-used messaging association MUST NOT have weaker security
 properties than all of the options that would have been offered in
 the full Response that would have been sent without re-use.

 o The re-used messaging association MUST have equivalent or better
 transport and security characteristics as at least one of the
 protocol configurations that was offered in the Query.

 Once the messaging association is set up, the Querying node repeats
 the responder’s Stack-Proposal over it in the Confirm. The
 Responding node MUST verify that this has not been changed as part of
 bidding-down attack prevention, as well as verifying the Responder-
 Cookie (Section 8.5). If either check fails, the Responding node
 MUST NOT create the message routing state (or MUST delete it if it
 already exists) and SHOULD log an error condition locally. If this
 is the first message on a new MA, the MA MUST be torn down. See
 Section 8.6 for further discussion.

Schulzrinne & Hancock Experimental [Page 63]

RFC 5971 GIST October 2010

5.7.2. Protocol Definition: Forwards-TCP

 This MA-Protocol-ID denotes a basic use of TCP between peers.
 Support for this protocol is REQUIRED. If this protocol is offered,
 MA-protocol-options data MUST also be carried in the SCD object. The
 MA-protocol-options field formats are:

 o in a Query: no additional options data (the MA-protocol-options
 Length field is zero).

 o in a Response: 2-byte port number at which the connection will be
 accepted, followed by 2 pad bytes.

 The connection is opened in the forwards direction, from the Querying
 node towards the responder. The Querying node MAY use any source
 address and source port. The destination information MUST be derived
 from information in the Response: the address from the interface-
 address from the Network-Layer-Information object and the port from
 the SCD object as described above.

 Associations using Forwards-TCP can carry messages with the transfer
 attribute Reliable=True. If an error occurs on the TCP connection
 such as a reset, as can be detected for example by a socket exception
 condition, GIST MUST report this to NSLPs as discussed in
 Section 4.1.2.

5.7.3. Protocol Definition: Transport Layer Security

 This MA-Protocol-ID denotes a basic use of transport layer channel
 security, initially in conjunction with TCP. Support for this
 protocol in conjunction with TCP is REQUIRED; associations using it
 can carry messages with transfer attributes requesting
 confidentiality or integrity protection. The specific TLS version
 will be negotiated within the TLS layer itself, but implementations
 MUST NOT negotiate to protocol versions prior to TLS1.0 [15] and MUST
 use the highest protocol version supported by both peers.
 Implementation of TLS1.2 [10] is RECOMMENDED. GIST nodes supporting
 TLS1.0 or TLS1.1 MUST be able to negotiate the TLS ciphersuite
 TLS_RSA_WITH_3DES_EDE_CBC_SHA and SHOULD be able to negotiate the TLS
 ciphersuite TLS_RSA_WITH_AES_128_CBC_SHA. They MAY negotiate any
 mutually acceptable ciphersuite that provides authentication,
 integrity, and confidentiality.

 The default mode of TLS authentication, which applies in particular
 to the above ciphersuites, uses a client/server X.509 certificate
 exchange. The Querying node acts as a TLS client, and the Responding
 node acts as a TLS server. Where one of the above ciphersuites is
 negotiated, the GIST node acting as a server MUST provide a

Schulzrinne & Hancock Experimental [Page 64]

RFC 5971 GIST October 2010

 certificate, and MUST request one from the GIST node acting as a TLS
 client. This allows either server-only or mutual authentication,
 depending on the certificates available to the client and the policy
 applied at the server.

 GIST nodes MAY negotiate other TLS ciphersuites. In some cases, the
 negotiation of alternative ciphersuites is used to trigger
 alternative authentication procedures, such as the use of pre-shared
 keys [32]. The use of other authentication procedures may require
 additional specification work to define how they can be used as part
 of TLS within the GIST framework, and may or may not require the
 definition of additional MA-Protocol-IDs.

 No MA-protocol-options field is required for this TLS protocol
 definition. The configuration information for the transport protocol
 over which TLS is running (e.g., TCP port number) is provided by the
 MA-protocol-options for that protocol.

5.7.3.1. Identity Checking in TLS

 After TLS authentication, a node MUST check the identity presented by
 the peer in order to avoid man-in-the-middle attacks, and verify that
 the peer is authorised to take part in signalling at the GIST layer.
 The authorisation check is carried out by comparing the presented
 identity with each Authorised Peer Database (APD) entry in turn, as
 discussed in Section 4.4.2. This section defines the identity
 comparison algorithm for a single APD entry.

 For TLS authentication with X.509 certificates, an identity from the
 DNS namespace MUST be checked against each subjectAltName extension
 of type dNSName present in the certificate. If no such extension is
 present, then the identity MUST be compared to the (most specific)
 Common Name in the Subject field of the certificate. When matching
 DNS names against dNSName or Common Name fields, matching is case-
 insensitive. Also, a "*" wildcard character MAY be used as the left-
 most name component in the certificate or identity in the APD. For
 example, *.example.com in the APD would match certificates for
 a.example.com, foo.example.com, *.example.com, etc., but would not
 match example.com. Similarly, a certificate for *.example.com would
 be valid for APD identities of a.example.com, foo.example.com,
 *.example.com, etc., but not example.com.

 Additionally, a node MUST verify the binding between the identity of
 the peer to which it connects and the public key presented by that
 peer. Nodes SHOULD implement the algorithm in Section 6 of [8] for
 general certificate validation, but MAY supplement that algorithm

Schulzrinne & Hancock Experimental [Page 65]

RFC 5971 GIST October 2010

 with other validation methods that achieve equivalent levels of
 verification (such as comparing the server certificate against a
 local store of already-verified certificates and identity bindings).

 For TLS authentication with pre-shared keys, the identity in the
 psk_identity_hint (for the server identity, i.e., the Responding
 node) or psk_identity (for the client identity, i.e., the Querying
 node) MUST be compared to the identities in the APD.

5.8. Specific Message Routing Methods

 Each message routing method (see Section 3.3) requires the definition
 of the format of the message routing information (MRI) and Q-mode
 encapsulation rules. These are given in the following subsections
 for the MRMs currently defined. A GIST implementation on a node MUST
 support whatever MRMs are required by the NSLPs on that node; GIST
 implementations SHOULD provide support for both the MRMs defined
 here, in order to minimise deployment barriers for new signalling
 applications that need them.

5.8.1. The Path-Coupled MRM

5.8.1.1. Message Routing Information

 For the path-coupled MRM, the message routing information (MRI) is
 conceptually the Flow Identifier as in the NSIS framework [29].
 Minimally, this could just be the flow destination address; however,
 to account for policy-based forwarding and other issues a more
 complete set of header fields SHOULD be specified if possible (see
 Section 4.3.4 and Section 7.2 for further discussion).

 MRI = network-layer-version
 source-address prefix-length
 destination-address prefix-length
 IP-protocol
 diffserv-codepoint
 [flow-label]
 [ipsec-SPI / L4-ports]

 Additional control information defines whether the flow-label, IPsec
 Security Parameters Index (SPI), and port information are present,
 and whether the IP-protocol and diffserv-codepoint fields should be
 interpreted as significant. The source and destination addresses
 MUST be real node addresses, but prefix lengths other than 32 or 128
 (for IPv4 and IPv6, respectively) MAY be used to implement address
 wildcarding, allowing the MRI to refer to traffic to or from a wider
 address range. An additional flag defines the message direction
 relative to the MRI (upstream vs. downstream).

Schulzrinne & Hancock Experimental [Page 66]

RFC 5971 GIST October 2010

 The MRI format allows a potentially very large number of different
 flag and field combinations. A GIST implementation that cannot
 interpret the MRI in a message MUST return an "Object Value Error"
 message (Appendix A.4.4.10) with subcodes 1 ("Value Not Supported")
 or 2 ("Invalid Flag-Field Combination") and drop the message.

5.8.1.2. Downstream Q-mode Encapsulation

 Where the signalling message is travelling in the same (’downstream’)
 direction as the flow defined by the MRI, the IP addressing for
 Q-mode encapsulated messages is as follows. Support for this
 encapsulation is REQUIRED.

 o The destination IP address MUST be the flow destination address as
 given in the MRI of the message payload.

 o By default, the source address is the flow source address, again
 from the MRI; therefore, the source addressing mode flag in the
 common header S=0. This provides the best likelihood that the
 message will be correctly routed through any region performing
 per-packet policy-based forwarding or load balancing that takes
 the source address into account. However, there may be
 circumstances where the use of the signalling source address (S=1)
 is preferable, such as:

 * In order to receive ICMP error messages about the signalling
 message, such as unreachable port or address. If these are
 delivered to the flow source rather than the signalling source,
 it will be very difficult for the querying node to detect that
 it is the last GIST node on the path. Another case is where
 there is an abnormally low MTU along the path, in which case
 the querying node needs to see the ICMP error (recall that
 Q-mode packets are sent with DF set).

 * In order to receive GIST Error messages where the error message
 sender could not interpret the NLI in the original message.

 * In order to attempt to run GIST through an unmodified NAT,
 which will only process and translate IP addresses in the IP
 header (see Section 7.2.1).

 Because of these considerations, use of the signalling source
 address is allowed as an option, with use based on local policy.
 A node SHOULD use the flow source address for initial Query
 messages, but SHOULD transition to the signalling source address
 for some retransmissions or as a matter of static configuration,

Schulzrinne & Hancock Experimental [Page 67]

RFC 5971 GIST October 2010

 for example, if a NAT is known to be in the path out of a certain
 interface. The S-flag in the common header tells the message
 receiver which option was used.

 A Router Alert Option is also included in the IP header. The option
 value depends on the NSLP being signalled for. In addition, it is
 essential that the Query mimics the actual data flow as closely as
 possible, since this is the basis of how the signalling message is
 attached to the data path. To this end, GIST SHOULD set the Diffserv
 codepoint and (for IPv6) flow label to match the values in the MRI.

 A GIST implementation SHOULD apply validation checks to the MRI, to
 reject Query messages that are being injected by nodes with no
 legitimate interest in the flow being signalled for. In general, if
 the GIST node can detect that no flow could arrive over the same
 interface as the Query, it MUST be rejected with an appropriate error
 message. Such checks apply only to messages with the Q-mode
 encapsulation, since only those messages are required to track the
 flow path. The main checks are that the IP version used in the
 encapsulation should match that of the MRI and the version(s) used on
 that interface, and that the full range of source addresses (the
 source-address masked with its prefix-length) would pass ingress
 filtering checks. For these cases, the error message is "MRI
 Validation Failure" (Appendix A.4.4.12) with subcodes 1 or 2 ("IP
 Version Mismatch" or "Ingress Filter Failure"), respectively.

5.8.1.3. Upstream Q-mode Encapsulation

 In some deployment scenarios, it is desirable to set up routing state
 in the upstream direction (i.e., from flow receiver towards the
 sender). This could be used to support firewall signalling to
 control traffic from an uncooperative sender, or signalling in
 general where the flow sender was not NSIS-capable. This capability
 is incorporated into GIST by defining an encapsulation and processing
 rules for sending Query messages upstream.

 In general, it is not possible to determine the hop-by-hop route
 upstream because of asymmetric IP routing. However, in particular
 cases, the upstream peer can be discovered with a high degree of
 confidence, for example:

 o The upstream GIST peer is one IP hop away, and can be reached by
 tracing back through the interface on which the flow arrives.

 o The upstream peer is a border router of a single-homed (stub)
 network.

Schulzrinne & Hancock Experimental [Page 68]

RFC 5971 GIST October 2010

 This section defines an upstream Q-mode encapsulation and validation
 checks for when it can be used. The functionality to generate
 upstream Queries is OPTIONAL, but if received they MUST be processed
 in the normal way with some additional IP TTL checks. No special
 functionality is needed for this.

 It is possible for routing state at a given node, for a specific MRI
 and NSLPID, to be created by both an upstream Query exchange
 (initiated by the node itself) and a downstream Query exchange (where
 the node is the responder). If the SIDs are different, these items
 of routing state MUST be considered as independent; if the SIDs
 match, the routing state installed by the downstream exchange MUST
 take precedence, provided that the downstream Query passed ingress
 filtering checks. The rationale for this is that the downstream
 Query is in general a more reliable way to install state, since it
 directly probes the IP routing infrastructure along the flow path,
 whereas use of the upstream Query depends on the correctness of the
 Querying node’s understanding of the topology.

 The details of the encapsulation are as follows:

 o The destination address SHOULD be the flow source address as given
 in the MRI of the message payload. An implementation with more
 detailed knowledge of local IP routing MAY use an alternative
 destination address (e.g., the address of its default router).

 o The source address SHOULD be the signalling node address, so in
 the common header S=1.

 o A Router Alert Option is included as in the downstream case.

 o The Diffserv codepoint and (for IPv6) flow label MAY be set to
 match the values from the MRI as in the downstream case, and the
 UDP port selection is also the same.

 o The IP layer TTL of the message MUST be set to 255.

 The sending GIST implementation SHOULD attempt to send the Query via
 the same interface and to the same link layer neighbour from which
 the data packets of the flow are arriving.

 The receiving GIST node MAY apply validation checks to the message
 and MRI, to reject Query messages that have reached a node at which
 they can no longer be trusted. In particular, a node SHOULD reject a
 message that has been propagated more than one IP hop, with an
 "Invalid IP layer TTL" error message (Appendix A.4.4.11). This can
 be determined by examining the received IP layer TTL, similar to the
 generalised IP TTL security mechanism described in [41].

Schulzrinne & Hancock Experimental [Page 69]

RFC 5971 GIST October 2010

 Alternatively, receipt of an upstream Query at the flow source MAY be
 used to trigger setup of GIST state in the downstream direction.
 These restrictions may be relaxed in a future version.

5.8.2. The Loose-End MRM

 The Loose-End MRM is used to discover GIST nodes with particular
 properties in the direction of a given address, for example, to
 discover a NAT along the upstream data path as in [34].

5.8.2.1. Message Routing Information

 For the loose-end MRM, only a simplified version of the Flow
 Identifier is needed.

 MRI = network-layer-version
 source-address
 destination-address

 The source address is the address of the node initiating the
 discovery process, for example, the node that will be the data
 receiver in the NAT discovery case. The destination address is the
 address of a node that is expected to be the other side of the node
 to be discovered. Additional control information defines the
 direction of the message relative to this flow as in the path-coupled
 case.

5.8.2.2. Downstream Q-mode Encapsulation

 Only one encapsulation is defined for the loose-end MRM; by
 convention, this is referred to as the downstream encapsulation, and
 is defined as follows:

 o The IP destination address MUST be the destination address as
 given in the MRI of the message payload.

 o By default, the IP source address is the source address from the
 MRI (S=0). However, the use of the signalling source address
 (S=1) is allowed as in the case of the path-coupled MRM.

 A Router Alert Option is included in the IP header. The option value
 depends on the NSLP being signalled for. There are no special
 requirements on the setting of the Diffserv codepoint, IP layer TTL,
 or (for IPv6) the flow label. Nor are any special validation checks
 applied.

Schulzrinne & Hancock Experimental [Page 70]

RFC 5971 GIST October 2010

6. Formal Protocol Specification

 This section provides a more formal specification of the operation of
 GIST processing, in terms of rules for transitions between states of
 a set of communicating state machines within a node. The following
 description captures only the basic protocol specification;
 additional mechanisms can be used by an implementation to accelerate
 route change processing, and these are captured in Section 7.1. A
 more detailed description of the GIST protocol operation in state
 machine syntax can be found in [45].

 Conceptually, GIST processing at a node may be seen in terms of four
 types of cooperating state machine:

 1. There is a top-level state machine that represents the node
 itself (Node-SM). It is responsible for the processing of events
 that cannot be directed towards a more specific state machine,
 for example, inbound messages for which no routing state
 currently exists. This machine exists permanently, and is
 responsible for creating per-MRI state machines to manage the
 GIST handshake and routing state maintenance procedures.

 2. For each flow and signalling direction where the node is
 responsible for the creation of routing state, there is an
 instance of a Query-Node state machine (Querying-SM). This
 machine sends Query and Confirm messages and waits for Responses,
 according to the requirements from local API commands or timer
 processing, such as message repetition or routing state refresh.

 3. For each flow and signalling direction where the node has
 accepted the creation of routing state by a peer, there is an
 instance of a Responding-Node state machine (Responding-SM).
 This machine is responsible for managing the status of the
 routing state for that flow. Depending on policy, it MAY be
 responsible for transmission or retransmission of Response
 messages, or this MAY be handled by the Node-SM, and a
 Responding-SM is not even created for a flow until a properly
 formatted Confirm has been accepted.

 4. Messaging associations have their own lifecycle, represented by
 an MA-SM, from when they are first created (in an incomplete
 state, listening for an inbound connection or waiting for
 outbound connections to complete), to when they are active and
 available for use.

 Apart from the fact that the various machines can be created and
 destroyed by each other, there is almost no interaction between them.
 The machines for different flows do not interact; the Querying-SM and

Schulzrinne & Hancock Experimental [Page 71]

RFC 5971 GIST October 2010

 Responding-SM for a single flow and signalling direction do not
 interact. That is, the Responding-SM that accepts the creation of
 routing state for a flow on one interface has no direct interaction
 with the Querying-SM that sets up routing state on the next interface
 along the path. This interaction is mediated instead through the
 NSLP.

 The state machine descriptions use the terminology rx_MMMM, tg_TTTT,
 and er_EEEE for incoming messages, API/lower layer triggers, and
 error conditions, respectively. The possible events of these types
 are given in the table below. In addition, timeout events denoted
 to_TTTT may also occur; the various timers are listed independently
 for each type of state machine in the following subsections.

Schulzrinne & Hancock Experimental [Page 72]

RFC 5971 GIST October 2010

 +---------------------+---+
 | Name | Meaning |
 +---------------------+---+
rx_Query	A Query has been received.						
rx_Response	A Response has been received.						
rx_Confirm	A Confirm has been received.						
rx_Data	A Data message has been received.						
rx_Message	rx_Query		rx_Response		rx_Confirm		rx_Data.
rx_MA-Hello	An MA-Hello message has been received.						
tg_NSLPData	A signalling application has requested data						
	transfer (via API SendMessage).						
tg_Connected	The protocol stack for a messaging						
	association has completed connecting.						
tg_RawData	GIST wishes to transfer data over a						
	particular messaging association.						
tg_MAIdle	GIST decides that it is no longer necessary						
	to keep an MA open for itself.						
er_NoRSM	A "No Routing State" error was received.						
er_MAConnect	A messaging association protocol failed to						
	complete a connection.						
er_MAFailure	A messaging association failed.						
 +---------------------+---+

 Incoming Events

6.1. Node Processing

 The Node-level state machine is responsible for processing events for
 which no more appropriate messaging association state or routing
 state exists. Its structure is trivial: there is a single state
 (’Idle’); all events cause a transition back to Idle. Some events
 cause the creation of other state machines. The only events that are
 processed by this state machine are incoming GIST messages (Query/
 Response/Confirm/Data) and API requests to send data; no other events
 are possible. In addition to this event processing, the Node-level
 machine is responsible for managing listening endpoints for messaging

Schulzrinne & Hancock Experimental [Page 73]

RFC 5971 GIST October 2010

 associations. Although these relate to Responding node operation,
 they cannot be handled by the Responder state machine since they are
 not created per flow. The processing rules for each event are as
 follows:

 Rule 1 (rx_Query):
 use the GIST service interface to determine the signalling
 application policy relating to this peer
 // note that this interaction delivers any NSLP-Data to
 // the NSLP as a side effect
 if (the signalling application indicates that routing state should
 be created) then
 if (routing state can be created without a 3-way handshake) then
 create Responding-SM and transfer control to it
 else
 send Response with R=1
 else
 propagate the Query with any updated NSLP payload provided

 Rule 2 (rx_Response):
 // a routing state error
 discard message

 Rule 3 (rx_Confirm):
 if (routing state can be created before receiving a Confirm) then
 // we should already have Responding-SM for it,
 // which would handle this message
 discard message
 send "No Routing State" error message
 else
 create Responding-SM and pass message to it

 Rule 4 (rx_Data):
 if (node policy will only process Data messages with matching
 routing state) then
 send "No Routing State" error message
 else
 pass directly to NSLP

 Rule 4 (er_NoRSM):
 discard the message

Schulzrinne & Hancock Experimental [Page 74]

RFC 5971 GIST October 2010

 Rule 5 (tg_NSLPData):
 if Q-mode encapsulation is not possible for this MRI
 reject message with an error
 else
 if (local policy & transfer attributes say routing
 state is not needed) then
 send message statelessly
 else
 create Querying-SM and pass message to it

6.2. Query Node Processing

 The Querying-Node state machine (Querying-SM) has three states:

 o Awaiting Response

 o Established

 o Awaiting Refresh

 The Querying-SM is created by the Node-SM machine as a result of a
 request to send a message for a flow in a signalling direction where
 the appropriate state does not exist. The Query is generated
 immediately and the No_Response timer is started. The NSLP data MAY
 be carried in the Query if local policy and the transfer attributes
 allow it; otherwise, it MUST be queued locally pending MA
 establishment. Then the machine transitions to the Awaiting Response
 state, in which timeout-based retransmissions are handled. Data
 messages (rx_Data events) should not occur in this state; if they do,
 this may indicate a lost Response and a node MAY retransmit a Query
 for this reason.

 Once a Response has been successfully received and routing state
 created, the machine transitions to Established, during which NSLP
 data can be sent and received normally. Further Responses received
 in this state (which may be the result of a lost Confirm) MUST be
 treated the same way. The Awaiting Refresh state can be considered
 as a substate of Established, where a new Query has been generated to
 refresh the routing state (as in Awaiting Response) but NSLP data can
 be handled normally.

Schulzrinne & Hancock Experimental [Page 75]

RFC 5971 GIST October 2010

 The timers relevant to this state machine are as follows:

 Refresh_QNode: Indicates when the routing state stored by this state
 machine must be refreshed. It is reset whenever a Response is
 received indicating that the routing state is still valid.
 Implementations MUST set the period of this timer based on the
 value in the RS-validity-time field of a Response to ensure that a
 Query is generated before the peer’s routing state expires (see
 Section 4.4.4).

 No_Response: Indicates that a Response has not been received in
 answer to a Query. This is started whenever a Query is sent and
 stopped when a Response is received.

 Inactive_QNode: Indicates that no NSLP traffic is currently being
 handled by this state machine. This is reset whenever the state
 machine handles NSLP data, in either direction. When it expires,
 the state machine MAY be deleted. The period of the timer can be
 set at any time via the API (SetStateLifetime), and if the period
 is reset in this way the timer itself MUST be restarted.

 The main events (including all those that cause state transitions)
 are shown in the figure below, tagged with the number of the
 processing rule that is used to handle the event. These rules are
 listed after the diagram. All events not shown or described in the
 text above are assumed to be impossible in a correct implementation
 and MUST be ignored.

Schulzrinne & Hancock Experimental [Page 76]

RFC 5971 GIST October 2010

 [Initialisation] +-----+
 -------------------------|Birth|
 | +-----+
 | er_NoRSM[3](from all states) rx_Response[4]
 | || tg_NSLPData[5]
 | tg_NSLPData[1] || rx_Data[7]
 | -------- -------
 | | V | V
 | | V | V
 | +----------+ +-----------+
 ---->>| Awaiting | |Established|
 ------| Response |---------------------------->> | |
 | +----------+ rx_Response[4] +-----------+
 | ^ | ^ | | |
 | ^ | ^ |
 | -------- | |
 | to_No_Response[2] | |
 | [!nResp_reached] tg_NSLPData[5] | |
 | || rx_Data[7] | |
 | -------- | |
 | | V | |
 | to_No_Response[2] | V | |
 | [nResp_reached] +-----------+ rx_Response[4] | |
 ---------- -----------| Awaiting |----------------- |
 | | | Refresh |<<-------------------
 | | +-----------+ to_Refresh_QNode[8]
 | | ^ |
 V V ^ | to_No_Response[2]
 V V -------- [!nResp_reached]
 +-----+
 |Death|<<---------------
 +-----+ to_Inactive_QNode[6]
 (from all states)

 Figure 7: Query Node State Machine

Schulzrinne & Hancock Experimental [Page 77]

RFC 5971 GIST October 2010

 The processing rules are as follows:

 Rule 1:
 Store the message for later transmission

 Rule 2:
 if number of Queries sent has reached the threshold
 // nQuery_isMax is true
 indicate No Response error to NSLP
 destroy self
 else
 send Query
 start No_Response timer with new value

 Rule 3:
 // Assume the Confirm was lost in transit or the peer has reset;
 // restart the handshake
 send Query
 (re)start No_Response timer

 Rule 4:
 if a new MA-SM is needed create one
 if the R-flag was set send a Confirm
 send any stored Data messages
 stop No_Response timer
 start Refresh_QNode timer
 start Inactive_QNode timer if it was not running
 if there was piggybacked NSLP-Data
 pass it to the NSLP
 restart Inactive_QNode timer

 Rule 5:
 send Data message
 restart Inactive_QNode timer

 Rule 6:
 Terminate

 Rule 7:
 pass any data to the NSLP
 restart Inactive_QNode timer

 Rule 8:
 send Query
 start No_Response timer
 stop Refresh_QNode timer

Schulzrinne & Hancock Experimental [Page 78]

RFC 5971 GIST October 2010

6.3. Responder Node Processing

 The Responding-Node state machine (Responding-SM) has three states:

 o Awaiting Confirm

 o Established

 o Awaiting Refresh

 The policy governing the handling of Query messages and the creation
 of the Responding-SM has three cases:

 1. No Confirm is required for a Query, and the state machine can be
 created immediately.

 2. A Confirm is required for a Query, but the state machine can
 still be created immediately. A timer is used to retransmit
 Response messages and the Responding-SM is destroyed if no valid
 Confirm is received.

 3. A Confirm is required for a Query, and the state machine can only
 be created when it is received; the initial Query will have been
 handled by the Node-level machine.

 In case 2, the Responding-SM is created in the Awaiting Confirm
 state, and remains there until a Confirm is received, at which point
 it transitions to Established. In cases 1 and 3, the Responding-SM
 is created directly in the Established state. Note that if the
 machine is created on receiving a Query, some of the message
 processing will already have been performed in the node state
 machine. In principle, an implementation MAY change its policy on
 handling a Query message at any time; however, the state machine
 descriptions here cover only the case where the policy is fixed while
 waiting for a Confirm message.

 In the Established state, the NSLP can send and receive data
 normally, and any additional rx_Confirm events MUST be silently
 ignored. The Awaiting Refresh state can be considered a substate of
 Established, where a Query has been received to begin the routing
 state refresh. In the Awaiting Refresh state, the Responding-SM
 behaves as in the Awaiting Confirm state, except that the NSLP can
 still send and receive data. In particular, in both states there is
 timer-based retransmission of Response messages until a Confirm is
 received; additional rx_Query events in these states MUST also
 generate a reply and restart the no_Confirm timer.

Schulzrinne & Hancock Experimental [Page 79]

RFC 5971 GIST October 2010

 The timers relevant to the operation of this state machine are as
 follows:

 Expire_RNode: Indicates when the routing state stored by this state
 machine needs to be expired. It is reset whenever a Query or
 Confirm (depending on local policy) is received indicating that
 the routing state is still valid. Note that state cannot be
 refreshed from the R-Node. If this timer fires, the routing state
 machine is deleted, regardless of whether a No_Confirm timer is
 running.

 No_Confirm: Indicates that a Confirm has not been received in answer
 to a Response. This is started/reset whenever a Response is sent
 and stopped when a Confirm is received.

 The detailed state transitions and processing rules are described
 below as in the Query node case.

Schulzrinne & Hancock Experimental [Page 80]

RFC 5971 GIST October 2010

 rx_Query[1] rx_Query[5]
 [confirmRequired] +-----+ [!confirmRequired]
 -------------------------|Birth|----------------------------
 | +-----+ |
 | | rx_Confirm[2] | | | | |
|---|---|---|---|---|---|
 | | |
 | rx_Query[5] | |
 | tg_NSLPData[7] || rx_Confirm[10] | |
 | || rx_Query[1] || rx_Data[4] | |
 | || rx_Data[6] || tg_NSLPData[3] | |
 | -------- -------------- | |
 | | V | V V V
 | | V | V V V
 | +----------+ | +-----------+
 ---->>| Awaiting | rx_Confirm[8] -----------|Established|
 ------| Confirm |------------------------------>> | |
 | +----------+ +-----------+
 | ^ | ^ | | |
 | ^ | tg_NSLPData[3] ^ |
 | -------- || rx_Query[1] | |
 | to_No_Confirm[9] || rx_Data[4] | |
 | [!nConf_reached] -------- | |
 | | V | |
 | to_No_Confirm[9] | V | |
 | [nConf_reached] +-----------+ rx_Confirm[8] | |
 ---------- ------------| Awaiting |----------------- |
 | | | Refresh |<<-------------------
 | | +-----------+ rx_Query[1]
 | | ^ | [confirmRequired]
 | | ^ |
 | | --------
 V V to_No_Confirm[9]
 V V [!nConf_reached]
 +-----+
 |Death|<<---------------------
 +-----+ er_NoRSM[11]
 to_Expire_RNode[11]
 (from Established/Awaiting Refresh)

 Figure 8: Responder Node State Machine

Schulzrinne & Hancock Experimental [Page 81]

RFC 5971 GIST October 2010

 The processing rules are as follows:

 Rule 1:
 // a Confirm is required
 send Response with R=1
 (re)start No_Confirm timer with the initial timer value

 Rule 2:
 pass any NSLP-Data object to the NSLP
 start Expire_RNode timer

 Rule 3: send the Data message

 Rule 4: pass data to NSLP

 Rule 5:
 // no Confirm is required
 send Response with R=0
 start Expire_RNode timer

 Rule 6:
 drop incoming data
 send "No Routing State" error message

 Rule 7: store Data message

 Rule 8:
 pass any NSLP-Data object to the NSLP
 send any stored Data messages
 stop No_Confirm timer
 start Expire_RNode timer

 Rule 9:
 if number of Responses sent has reached threshold
 // nResp_isMax is true
 destroy self
 else
 send Response
 start No_Response timer

 Rule 10:
 // can happen e.g., a retransmitted Response causes a duplicate Confirm
 silently ignore

 Rule 11: destroy self

Schulzrinne & Hancock Experimental [Page 82]

RFC 5971 GIST October 2010

6.4. Messaging Association Processing

 Messaging associations (MAs) are modelled for use within GIST with a
 simple three-state process. The Awaiting Connection state indicates
 that the MA is waiting for the connection process(es) for every
 protocol in the messaging association to complete; this might involve
 creating listening endpoints or attempting active connects. Timers
 may also be necessary to detect connection failure (e.g., no incoming
 connection within a certain period), but these are not modelled
 explicitly.

 The Connected state indicates that the MA is open and ready to use
 and that the node wishes it to remain open. In this state, the node
 operates a timer (SendHello) to ensure that messages are regularly
 sent to the peer, to ensure that the peer does not tear down the MA.
 The node transitions from Connected to Idle (indicating that it no
 longer needs the association) as a matter of local policy; one way to
 manage the policy is to use an activity timer but this is not
 specified explicitly by the state machine (see also Section 4.4.5).

 In the Idle state, the node no longer requires the messaging
 association but the peer still requires it and is indicating this by
 sending periodic MA-Hello messages. A different timer (NoHello)
 operates to purge the MA when these messages stop arriving. If real
 data is transferred over the MA, the state machine transitions back
 to Connected.

 At any time in the Connected or Idle states, a node MAY test the
 connectivity to its peer and the liveness of the GIST instance at
 that peer by sending an MA-Hello request with R=1. Failure to
 receive a reply with a matching Hello-ID within a timeout MAY be
 taken as a reason to trigger er_MAFailure. Initiation of such a test
 and the timeout setting are left to the discretion of the
 implementation. Note that er_MAFailure may also be signalled by
 indications from the underlying messaging association protocols. If
 a messaging association fails, this MUST be indicated back to the
 routing state machines that use it, and these MAY generate
 indications to signalling applications. In particular, if the
 messaging association was being used to deliver messages reliably,
 this MUST be reported as a NetworkNotification error (Appendix B.4).

 Clearly, many internal details of the messaging association protocols
 are hidden in this model, especially where the messaging association
 uses multiple protocol layers. Note also that although the existence
 of messaging associations is not directly visible to signalling
 applications, there is some interaction between the two because

Schulzrinne & Hancock Experimental [Page 83]

RFC 5971 GIST October 2010

 security-related information becomes available during the open
 process, and this may be indicated to signalling applications if they
 have requested it.

 The timers relevant to the operation of this state machine are as
 follows:

 SendHello: Indicates that an MA-Hello message should be sent to the
 remote node. The period of this timer is determined by the MA-
 Hold-Time sent by the remote node during the Query/Response/
 Confirm exchange.

 NoHello: Indicates that no MA-Hello has been received from the
 remote node for a period of time. The period of this timer is
 sent to the remote node as the MA-Hold-Time during the Query/
 Response exchange.

 The detailed state transitions and processing rules are described
 below as in the Query node case.

 [Initialisation] +-----+
 ----------------------------|Birth|
 | +-----+ tg_RawData[1]
 | || rx_Message[2]
 | || rx_MA-Hello[3]
 | tg_RawData[5] || to_SendHello[4]
 | -------- --------
 | | V | V
 | | V | V
 | +----------+ +-----------+
 ---->>| Awaiting | tg_Connected[6] | Connected |
 ------|Connection|----------------------->>| |
 | +----------+ +-----------+
 | ^ |
 | tg_RawData[1] ^ |
 | || rx_Message[2] | | tg_MAIdle[7]
 | | V
 | | V
 | er_MAConnect[8] +-----+ to_NoHello[8] +-----------+
 ---------------->>|Death|<<----------------| Idle |
 +-----+ +-----------+
 ^ ^ |
 ^ ^ |
 --------------- --------
 er_MAFailure[8] rx_MA-Hello[9]
 (from Connected/Idle)

 Figure 9: Messaging Association State Machine

Schulzrinne & Hancock Experimental [Page 84]

RFC 5971 GIST October 2010

 The processing rules are as follows:

 Rule 1:
 pass message to transport layer
 if the NoHello timer was running, stop it
 (re)start SendHello

 Rule 2:
 pass message to Node-SM, or R-SM (for a Confirm),
 or Q-SM (for a Response)
 if the NoHello timer was running, stop it

 Rule 3:
 if reply requested
 send MA-Hello
 restart SendHello timer

 Rule 4:
 send MA-Hello message
 restart SendHello timer

 Rule 5:
 queue message for later transmission

 Rule 6:
 pass outstanding queued messages to transport layer
 stop any timers controlling connection establishment
 start SendHello timer

 Rule 7:
 stop SendHello timer
 start NoHello timer

 Rule 8:
 report failure to routing state machines and signalling applications
 destroy self

 Rule 9:
 if reply requested
 send MA-Hello
 restart NoHello timer

Schulzrinne & Hancock Experimental [Page 85]

RFC 5971 GIST October 2010

7. Additional Protocol Features

7.1. Route Changes and Local Repair

7.1.1. Introduction

 When IP layer rerouting takes place in the network, GIST and
 signalling application state need to be updated for all flows whose
 paths have changed. The updates to signalling application state
 depend mainly on the signalling application: for example, if the path
 characteristics have changed, simply moving state from the old to the
 new path is not sufficient. Therefore, GIST cannot complete the path
 update processing by itself. Its responsibilities are to detect the
 route change, update its local routing state consistently, and inform
 interested signalling applications at affected nodes.

 xxxxxxxxxxxxxxxxxxxxxxxxxxxx
 x +--+ +--+ +--+ x Initial
 x .|C1|_.....|D1|_.....|E1| x Configuration
 x . +--+. .+--+. .+--+\. x
 >>xxxxxxxxxxxxx xxxxxx>>
 +-+ +-+ +-+
 ...|A|_......|B|/ |F|_....
 +-+ +-+ +-+

 . +--+ +--+ +--+ .
 .|C2|_.....|D2|_.....|E2|/
 +--+ +--+ +--+

 +--+ +--+ +--+ Configuration
 .|C1|......|D1|......|E1| after failure
 . +--+ .+--+ +--+ of E1-F link
 . \. . \. ./
 +-+ +-+ +-+
 ...|A|_......|B|. |F|_....
 +-+ +-+\ +-+
 >>xxxxxxxxxxxxx xxxxxx>>
 x . +--+ +--+ +--+ . x
 x .|C2|_.....|D2|_.....|E2|/ x
 x +--+ +--+ +--+ x
 xxxxxxxxxxxxxxxxxxxxxxxxxxxx

 = physical link topology
 >>xxxxxxx>> = flow direction
 _.......... = outgoing link for flow xxxxxx given
 by local forwarding table

 Figure 10: A Rerouting Event

Schulzrinne & Hancock Experimental [Page 86]

RFC 5971 GIST October 2010

 Route change management is complicated by the distributed nature of
 the problem. Consider the rerouting event shown in Figure 10. An
 external observer can tell that the main responsibility for
 controlling the updates will probably lie with nodes B and F;
 however, E1 is best placed to detect the event quickly at the GIST
 level, and C1 and D1 could also attempt to initiate the repair.

 The NSIS framework [29] makes the assumption that signalling
 applications are soft-state based and operate end to end. In this
 case, because GIST also periodically updates its picture of routing
 state, route changes will eventually be repaired automatically. The
 specification as already given includes this functionality. However,
 especially if upper layer refresh times are extended to reduce
 signalling load, the duration of inconsistent state may be very long
 indeed. Therefore, GIST includes logic to exchange prompt
 notifications with signalling applications, to allow local repair if
 possible. The additional mechanisms to achieve this are described in
 the following subsections. To a large extent, these additions can be
 seen as implementation issues; the protocol messages and their
 significance are not changed, but there are extra interactions
 through the API between GIST and signalling applications, and
 additional triggers for transitions between the various GIST states.

7.1.2. Route Change Detection Mechanisms

 There are two aspects to detecting a route change at a single node:

 o Detecting that the outgoing path, in the direction of the Query,
 has or may have changed.

 o Detecting that the incoming path, in the direction of the
 Response, has (or may have) changed, in which case the node may no
 longer be on the path at all.

 At a single node, these processes are largely independent, although
 clearly a change in one direction at a node corresponds to a change
 in the opposite direction at its peer. Note that there are two
 possible forms for a route change: the interface through which a flow
 leaves or enters a node may change, and the adjacent peer may change.
 In general, a route change can include one or the other or both (or
 indeed neither, although such changes are very hard to detect).

 The route change detection mechanisms available to a node depend on
 the MRM in use and the role the node played in setting up the routing
 state in the first place (i.e., as Querying or Responding node). The
 following discussion is specific to the case of the path-coupled MRM

Schulzrinne & Hancock Experimental [Page 87]

RFC 5971 GIST October 2010

 using downstream Queries only; other scenarios may require other
 methods. However, the repair logic described in the subsequent
 subsections is intended to be universal.

 There are five mechanisms for a node to detect that a route change
 has occurred, which are listed below. They apply differently
 depending on whether the change is in the Query or Response
 direction, and these differences are summarised in the following
 table.

 Local Trigger: In local trigger mode, GIST finds out from the local
 forwarding table that the next hop has changed. This only works
 if the routing change is local, not if it happens a few IP routing
 hops away, including the case that it happens at a GIST-unaware
 node.

 Extended Trigger: Here, GIST checks a link-state topology database
 to discover that the path has changed. This makes certain
 assumptions on consistency of IP route computation and only works
 within a single area for OSPF [16] and similar link-state
 protocols. Where available, this offers the most accurate and
 rapid indication of route changes, but requires more access to the
 routing internals than a typical operating system may provide.

 GIST C-mode Monitoring: GIST may find that C-mode packets are
 arriving (from either peer) with a different IP layer TTL or on a
 different interface. This provides no direct information about
 the new flow path, but indicates that routing has changed and that
 rediscovery may be required.

 Data Plane Monitoring: The signalling application on a node may
 detect a change in behaviour of the flow, such as IP layer TTL
 change, arrival on a different interface, or loss of the flow
 altogether. The signalling application on the node is allowed to
 convey this information to the local GIST instance (Appendix B.6).

 GIST Probing: According to the specification, each GIST node MUST
 periodically repeat the discovery (Query/Response) operation.
 Values for the probe frequency are discussed in Section 4.4.4.
 The period can be negotiated independently for each GIST hop, so
 nodes that have access to the other techniques listed above MAY
 use long periods between probes. The Querying node will discover
 the route change by a modification in the Network-Layer-
 Information in the Response. The Responding node can detect a
 change in the upstream peer similarly; further, if the Responding
 node can store the interface on which Queries arrive, it can
 detect if this interface changes even when the peer does not.

Schulzrinne & Hancock Experimental [Page 88]

RFC 5971 GIST October 2010

 +-------------+--------------------------+--------------------------+
 | Method | Query direction | Response direction |
 +-------------+--------------------------+--------------------------+
Local	Discovers new interface	Not applicable
Trigger	(and peer if local)	
Extended	Discovers new interface	May determine that route
Trigger	and may determine new	from peer will have
	peer	changed
C-mode	Provides hint that	Provides hint that
Monitoring	change has occurred	change has occurred
Data Plane	Not applicable	NSLP informs GIST that a
Monitoring		change may have occurred
Probing	Discovers changed NLI in	Discovers changed NLI in
	Response	Query
 +-------------+--------------------------+--------------------------+

7.1.3. GIST Behaviour Supporting Rerouting

 The basic GIST behaviour necessary to support rerouting can be
 modelled using a three-level classification of the validity of each
 item of current routing state. (In addition to current routing
 state, NSIS can maintain past routing state, described in
 Section 7.1.4 below.) This classification applies separately to the
 Querying and Responding nodes for each pair of GIST peers. The
 levels are:

 Bad: The routing state is either missing altogether or not safe to
 use to send data.

 Tentative: The routing state may have changed, but it is still
 usable for sending NSLP data pending verification.

 Good: The routing state has been established and no events affecting
 it have since been detected.

 These classifications are not identical to the states described in
 Section 6, but there are dependencies between them. Specifically,
 routing state is considered Bad until the state machine first enters
 the Established state, at which point it becomes Good. Thereafter,
 the status may be invalidated for any of the reasons discussed above;
 it is an implementation issue to decide which techniques to implement
 in any given node, and how to reclassify routing state (as Bad or
 Tentative) for each. The status returns to Good, either when the
 state machine re-enters the Established state or if GIST can

Schulzrinne & Hancock Experimental [Page 89]

RFC 5971 GIST October 2010

 determine from direct examination of the IP routing or forwarding
 tables that the peer has not changed. When the status returns to
 Good, GIST MUST if necessary update its routing state table so that
 the relationships between MRI/SID/NSLPID tuples and messaging
 associations are up to date.

 When classification of the routing state for the downstream direction
 changes to Bad/Tentative because of local IP routing indications,
 GIST MAY automatically change the classification in the upstream
 direction to Tentative unless local routing indicates that this is
 not necessary. This SHOULD NOT be done in the case where the initial
 change was indicated by the signalling application. This mechanism
 accounts for the fact that a routing change may affect several nodes,
 and so can be an indication that upstream routing may also have
 changed. In any case, whenever GIST updates the routing status, it
 informs the signalling application with the NetworkNotification API
 (Appendix B.4), unless the change was caused via the API in the first
 place.

 The GIST behaviour for state repair is different for the Querying and
 Responding nodes. At the Responding node, there is no additional
 behaviour, since the Responding node cannot initiate protocol
 transitions autonomously. (It can only react to the Querying node.)
 The Querying node has three options, depending on how the transition
 from Good was initially caused:

 1. To inspect the IP routing/forwarding table and verifying that the
 next peer has not changed. This technique MUST NOT be used if
 the transition was caused by a signalling application, but SHOULD
 be used otherwise if available.

 2. To move to the Awaiting Refresh state. This technique MUST NOT
 be used if the current status is Bad, since data is being
 incorrectly delivered.

 3. To move to the Awaiting Response state. This technique may be
 used at any time, but has the effect of freezing NSLP
 communication while GIST state is being repaired.

 The second and third techniques trigger the execution of a GIST
 handshake to carry out the repair. It may be desirable to delay the
 start of the handshake process, either to wait for the network to
 stabilise, to avoid flooding the network with Query traffic for a
 large number of affected flows, or to wait for confirmation that the
 node is still on the path from the upstream peer. One approach is to
 delay the handshake until there is NSLP data to be transmitted.
 Implementation of such delays is a matter of local policy; however,
 GIST MUST begin the handshake immediately if the status change was

Schulzrinne & Hancock Experimental [Page 90]

RFC 5971 GIST October 2010

 caused by an InvalidateRoutingState API call marked as ’Urgent’, and
 SHOULD begin it if the upstream routing state is still known to be
 Good.

7.1.4. Load Splitting and Route Flapping

 The Q-mode encapsulation rules of Section 5.8 try to ensure that the
 Query messages discovering the path mimic the flow as accurately as
 possible. However, in environments where there is load balancing
 over multiple routes, and this is based on header fields differing
 between flow and Q-mode packets or done on a round-robin basis, the
 path discovered by the Query may vary from one handshake to the next
 even though the underlying network is stable. This will appear to
 GIST as a route flap; route flapping can also be caused by problems
 in the basic network connectivity or routing protocol operation. For
 example, a mobile node might be switching back and forth between two
 links, or might appear to have disappeared even though it is still
 attached to the network via a different route.

 This specification does not define mechanisms for GIST to manage
 multiple parallel routes or an unstable route; instead, GIST MAY
 expose this to the NSLP, which can then manage it according to
 signalling application requirements. The algorithms already
 described always maintain the concept of the current route, i.e., the
 latest peer discovered for a particular flow. Instead, GIST allows
 the use of prior signalling paths for some period while the
 signalling applications still need them. Since NSLP peers are a
 single GIST hop apart, the necessary information to represent a path
 can be just an entry in the node’s routing state table for that flow
 (more generally, anything that uniquely identifies the peer, such as
 the NLI, could be used). Rather than requiring GIST to maintain
 multiple generations of this information, it is provided to the
 signalling application in the same node in an opaque form for each
 message that is received from the peer. The signalling application
 can store it if necessary and provide it back to the GIST layer in
 case it needs to be used. Because this is a reference to information
 about the source of a prior signalling message, it is denoted ’SII-
 Handle’ (for Source Identification Information) in the abstract API
 of Appendix B.

 Note that GIST if possible SHOULD use the same SII-Handle for
 multiple sessions to the same peer, since this then allows signalling
 applications to aggregate some signalling, such as summary refreshes
 or bulk teardowns. Messages sent using the SII-Handle MUST bypass
 the routing state tables at the sender, and this MUST be indicated by
 setting the E-flag in the common header (Appendix A.1). Messages
 other than Data messages MUST NOT be sent in this way. At the
 receiver, GIST MUST NOT validate the MRI/SID/NSLPID against local

Schulzrinne & Hancock Experimental [Page 91]

RFC 5971 GIST October 2010

 routing state and instead indicates the mode of reception to
 signalling applications through the API (Appendix B.2). Signalling
 applications should validate the source and effect of the message
 themselves, and if appropriate should in particular indicate to GIST
 (see Appendix B.5) that routing state is no longer required for this
 flow. This is necessary to prevent GIST in nodes on the old path
 initiating routing state refresh and thus causing state conflicts at
 the crossover router.

 GIST notifies signalling applications about route modifications as
 two types of event, additions and deletions. An addition is notified
 as a change of the current routing state according to the Bad/
 Tentative/Good classification above, while deletion is expressed as a
 statement that an SII-Handle no longer lies on the path. Both can be
 reported through the NetworkNotification API call (Appendix B.4). A
 minimal implementation MAY notify a route change as a single (add,
 delete) operation; however, a more sophisticated implementation MAY
 delay the delete notification, for example, if it knows that the old
 route continues to be used in parallel or that the true route is
 flapping between the two. It is then a matter of signalling
 application design whether to tear down state on the old path, leave
 it unchanged, or modify it in some signalling application specific
 way to reflect the fact that multiple paths are operating in
 parallel.

7.1.5. Signalling Application Operation

 Signalling applications can use these functions as provided by GIST
 to carry out rapid local repair following rerouting events. The
 signalling application instances carry out the multi-hop aspects of
 the procedure, including crossover node detection, and tear-down/
 reinstallation of signalling application state; they also trigger
 GIST to carry out the local routing state maintenance operations over
 each individual hop. The local repair procedures depend heavily on
 the fact that stateful NSLP nodes are a single GIST hop apart; this
 is enforced by the details of the GIST peer discovery process.

 The following outline description of a possible set of NSLP actions
 takes the scenario of Figure 10 as an example.

 1. The signalling application at node E1 is notified by GIST of
 route changes affecting the downstream and upstream directions.
 The downstream status was updated to Bad because of a trigger
 from the local forwarding tables, and the upstream status changed
 automatically to Tentative as a consequence. The signalling
 application at E1 MAY begin local repair immediately, or MAY
 propagate a notification upstream to D1 that rerouting has
 occurred.

Schulzrinne & Hancock Experimental [Page 92]

RFC 5971 GIST October 2010

 2. The signalling application at node D1 is notified of the route
 change, either by signalling application notifications or from
 the GIST level (e.g., by a trigger from a link-state topology
 database). If the information propagates faster within the IP
 routing protocol, GIST will change the upstream/downstream
 routing state to Tentative/Bad automatically, and this will cause
 the signalling application to propagate the notification further
 upstream.

 3. This process continues until the notification reaches node A.
 Here, there is no downstream routing change, so GIST only learns
 of the update via the signalling application trigger. Since the
 upstream status is still Good, it therefore begins the repair
 handshake immediately.

 4. The handshake initiated by node A causes its downstream routing
 state to be confirmed as Good and unchanged there; it also
 confirms the (Tentative) upstream routing state at B as Good.
 This is enough to identify B as the crossover router, and the
 signalling application and GIST can begin the local repair
 process.

 An alternative way to reach step (4) is that node B is able to
 determine autonomously that there is no likelihood of an upstream
 route change. For example, it could be an area border router and the
 route change is only intra-area. In this case, the signalling
 application and GIST will see that the upstream state is Good and can
 begin the local repair directly.

 After a route deletion, a signalling application may wish to remove
 state at another node that is no longer on the path. However, since
 it is no longer on the path, in principle GIST can no longer send
 messages to it. In general, provided this state is soft, it will
 time out anyway; however, the timeouts involved may have been set to
 be very long to reduce signalling load. Instead, signalling
 applications MAY use the SII-Handle described above to route explicit
 teardown messages.

7.2. NAT Traversal

 GIST messages, for example, for the path-coupled MRM, must carry
 addressing and higher layer information as payload data in order to
 define the flow signalled for. (This applies to all GIST messages,
 regardless of how they are encapsulated or which direction they are
 travelling in.) At an addressing boundary, the data flow packets
 will have their headers translated; if the signalling payloads are
 not translated consistently, the signalling messages will refer to
 incorrect (and probably meaningless) flows after passing through the

Schulzrinne & Hancock Experimental [Page 93]

RFC 5971 GIST October 2010

 boundary. In addition, GIST handshake messages carry additional
 addressing information about the GIST nodes themselves, and this must
 also be processed appropriately when traversing a NAT.

 There is a dual problem of whether the GIST peers on either side of
 the boundary can work out how to address each other, and whether they
 can work out what translation to apply to the signalling packet
 payloads. Existing generic NAT traversal techniques such as Session
 Traversal Utilities for NAT (STUN) [26] or Traversal Using Relays
 around NAT (TURN) [27] can operate only on the two addresses visible
 in the IP header. It is therefore intrinsically difficult to use
 these techniques to discover a consistent translation of the three or
 four interdependent addresses for the flow and signalling source and
 destination.

 For legacy NATs and MRMs that carry addressing information, the base
 GIST specification is therefore limited to detecting the situation
 and triggering the appropriate error conditions to terminate the
 signalling path. (MRMs that do not contain addressing information
 could traverse such NATs safely, with some modifications to the GIST
 processing rules. Such modifications could be described in the
 documents defining such MRMs.) Legacy NAT handling is covered in
 Section 7.2.1 below. A more general solution can be constructed
 using GIST-awareness in the NATs themselves; this solution is
 outlined in Section 7.2.2 with processing rules in Section 7.2.3.

 In all cases, GIST interaction with the NAT is determined by the way
 the NAT handles the Query/Response messages in the initial GIST
 handshake; these messages are UDP datagrams. Best current practice
 for NAT treatment of UDP traffic is defined in [38], and the legacy
 NAT handling defined in this specification is fully consistent with
 that document. The GIST-aware NAT traversal technique is equivalent
 to requiring an Application Layer Gateway in the NAT for a specific
 class of UDP transactions -- namely, those where the destination UDP
 port for the initial message is the GIST port (see Section 9).

7.2.1. Legacy NAT Handling

 Legacy NAT detection during the GIST handshake depends on analysis of
 the IP header and S-flag in the GIST common header, and the NLI
 object included in the handshake messages. The message sequence
 proceeds differently depending on whether the Querying node is on the
 internal or external side of the NAT.

 For the case of the Querying node on the internal side of the NAT, if
 the S-flag is not set in the Query (S=0), a legacy NAT cannot be
 detected. The receiver will generate a normal Response to the
 interface-address given in the NLI in the Query, but the interface-

Schulzrinne & Hancock Experimental [Page 94]

RFC 5971 GIST October 2010

 address will not be routable and the Response will not be delivered.
 If retransmitted Queries keep S=0, this behaviour will persist until
 the Querying node times out. The signalling path will thus terminate
 at this point, not traversing the NAT.

 The situation changes once S=1 in a Query; note the Q-mode
 encapsulation rules recommend that S=1 is used at least for some
 retransmissions (see Section 5.8). If S=1, the receiver MUST check
 the source address in the IP header against the interface-address in
 the NLI. A legacy NAT has been found if these addresses do not
 match. For MRMs that contain addressing information that needs
 translation, legacy NAT traversal is not possible. The receiver MUST
 return an "Object Type Error" message (Appendix A.4.4.9) with subcode
 4 ("Untranslated Object") indicating the MRI as the object in
 question. The error message MUST be addressed to the source address
 from the IP header of the incoming message. The Responding node
 SHOULD use the destination IP address of the original datagram as the
 source address for IP header of the Response; this makes it more
 likely that the NAT will accept the incoming message, since it looks
 like a normal UDP/IP request/reply exchange. If this message is able
 to traverse back through the NAT, the Querying node will terminate
 the handshake immediately; otherwise, this reduces to the previous
 case of a lost Response and the Querying node will give up on
 reaching its retransmission limit.

 When the Querying node is on the external side of the NAT, the Query
 will only traverse the NAT if some static configuration has been
 carried out on the NAT to forward GIST Q-mode traffic to a node on
 the internal network. Regardless of the S-flag in the Query, the
 Responding node cannot directly detect the presence of the NAT. It
 MUST send a normal Response with S=1 to an address derived from the
 Querying node’s NLI that will traverse the NAT as normal UDP traffic.
 The Querying node MUST check the source address in the IP header with
 the NLI in the Response, and when it finds a mismatch it MUST
 terminate the handshake.

 Note that in either of the error cases (internal or external Querying
 node), an alternative to terminating the handshake could be to invoke
 some legacy NAT traversal procedure. This specification does not
 define any such procedure, although one possible approach is
 described in [43]. Any such traversal procedure MUST be incorporated
 into GIST using the existing GIST extensibility capabilities. Note
 also that this detection process only functions with the handshake
 exchange; it cannot operate on simple Data messages, whether they are
 Q-mode or normally encapsulated. Nodes SHOULD NOT send Data messages
 outside a messaging association if they cannot ensure that they are
 operating in an environment free of legacy NATs.

Schulzrinne & Hancock Experimental [Page 95]

RFC 5971 GIST October 2010

7.2.2. GIST-Aware NAT Traversal

 The most robust solution to the NAT traversal problem is to require
 that a NAT is GIST-aware, and to allow it to modify messages based on
 the contents of the MRI. This makes the assumption that NATs only
 rewrite the header fields included in the MRI, and not other higher
 layer identifiers. Provided this is done consistently with the data
 flow header translation, signalling messages can be valid each side
 of the boundary, without requiring the NAT to be signalling
 application aware. Note, however, that if the NAT does not
 understand the MRI, and the N-flag in the MRI is clear (see
 Appendix A.3.1), it should reject the message with an "Object Type
 Error" message (Appendix A.4.4.9) with subcode 4 ("Untranslated
 Object").

 The basic concept is that GIST-aware NATs modify any signalling
 messages that have to be able to be interpreted without routing state
 being available; these messages are identified by the context-free
 flag C=1 in the common header, and include the Query in the GIST
 handshake. In addition, NATs have to modify the remaining handshake
 messages that set up routing state. When routing state is set up,
 GIST records how subsequent messages related to that routing state
 should be translated; if no routing state is being used for a
 message, GIST directly uses the modifications made by the NAT to
 translate it.

 This specification defines an additional NAT traversal object that a
 NAT inserts into all Q-mode encapsulated messages with the context-
 free flag C=1, and which GIST echoes back in any replies, i.e.,
 Response or Error messages. NATs apply GIST-specific processing only
 to Q-mode encapsulated messages with C=1, or D-mode messages carrying
 the NAT traversal object. All other GIST messages, either those in
 C-mode or those in D-mode with no NAT-Traversal object, should be
 treated as normal data traffic by the NAT, i.e., with IP and
 transport layer header translation but no GIST-specific processing.
 Note that the distinction between Q-mode and D-mode encapsulation may
 not be observable to the NAT, which is why the setting of the C-flag
 or presence of the NAT traversal object is used as interception
 criteria. The NAT decisions are based purely on the value of the
 C-flag and the presence of the NAT traversal object, not on the
 message type.

 The NAT-Traversal object (Appendix A.3.9), carries the translation
 between the MRIs that are appropriate for the internal and external
 sides of the NAT. It also carries a list of which other objects in
 the message have been translated. This should always include the
 NLI, and the Stack-Configuration-Data if present; if GIST is extended
 with further objects that carry addressing data, this list allows a

Schulzrinne & Hancock Experimental [Page 96]

RFC 5971 GIST October 2010

 message receiver to know if the new objects were supported by the
 NAT. Finally, the NAT-Traversal object MAY be used to carry data to
 assist the NAT in back-translating D-mode responses; this could be
 the original NLI or SCD, or opaque equivalents in the case of
 topology hiding.

 A consequence of this approach is that the routing state tables at
 the signalling application peers on each side of the NAT are no
 longer directly compatible. In particular, they use different MRI
 values to refer to the same flow. However, messages after the Query/
 Response (the initial Confirm and subsequent Data messages) need to
 use a common MRI, since the NAT does not rewrite these, and this is
 chosen to be the MRI of the Querying node. It is the responsibility
 of the Responding node to translate between the two MRIs on inbound
 and outbound messages, which is why the unmodified MRI is propagated
 in the NAT-Traversal object.

7.2.3. Message Processing Rules

 This specification normatively defines the behaviour of a GIST node
 receiving a message containing a NAT-Traversal object. However, it
 does not define normative behaviour for a NAT translating GIST
 messages, since much of this will depend on NAT implementation and
 policy about allocating bindings. In addition, it is not necessary
 for a GIST implementation itself. Therefore, those aspects of the
 following description are informative; full details of NAT behaviour
 for handling GIST messages can be found in [44].

 A possible set of operations for a NAT to process a message with C=1
 is as follows. Note that for a Data message, only a subset of the
 operations is applicable.

 1. Verify that bindings for any data flow are actually in place.

 2. Create a new Message-Routing-Information object with fields
 modified according to the data flow bindings.

 3. Create bindings for subsequent C-mode signalling based on the
 information in the Network-Layer-Information and Stack-
 Configuration-Data objects.

 4. Create new Network-Layer-Information and if necessary Stack-
 Configuration-Data objects with fields to force D-mode response
 messages through the NAT, and to allow C-mode exchanges using the
 C-mode signalling bindings.

Schulzrinne & Hancock Experimental [Page 97]

RFC 5971 GIST October 2010

 5. Add a NAT-Traversal object, listing the objects that have been
 modified and including the unmodified MRI and any other data
 needed to interpret the response. If a NAT-Traversal object is
 already present, in the case of a sequence of NATs, the list of
 modified objects may be updated and further opaque data added,
 but the MRI contained in it is left unchanged.

 6. Encapsulate the message according to the normal rules of this
 specification for the Q-mode encapsulation. If the S-flag was
 set in the original message, the same IP source address selection
 policy should be applied to the forwarded message.

 7. Forward the message with these new payloads.

 A GIST node receiving such a message MUST verify that all mandatory
 objects containing addressing have been translated correctly, or else
 reject the message with an "Object Type Error" message
 (Appendix A.4.4.9) with subcode 4 ("Untranslated Object"). The error
 message MUST include the NAT-Traversal object as the first TLV after
 the common header, and this is also true for any other error message
 generated as a reply. Otherwise, the message is processed
 essentially as normal. If no state needs to be updated for the
 message, the NAT-Traversal object can be effectively ignored. The
 other possibility is that a Response must be returned, because the
 message is either the beginning of a handshake for a new flow or a
 refresh for existing state. In both cases, the GIST node MUST create
 the Response in the normal way using the local form of the MRI, and
 its own NLI and (if necessary) SCD. It MUST also include the NAT-
 Traversal object as the first object in the Response after the common
 header.

 A NAT will intercept D-mode messages containing such echoed NAT-
 Traversal objects. The NAT processing is a subset of the processing
 for the C=1 case:

 1. Verify the existence of bindings for the data flow.

 2. Leave the Message-Routing-Information object unchanged.

 3. Modify the NLI and SCD objects for the Responding node if
 necessary, and create or update any bindings for C-mode
 signalling traffic.

 4. Forward the message.

Schulzrinne & Hancock Experimental [Page 98]

RFC 5971 GIST October 2010

 A GIST node receiving such a message (Response or Error) MUST use the
 MRI from the NAT-Traversal object as the key to index its internal
 routing state; it MAY also store the translated MRI for additional
 (e.g., diagnostic) information, but this is not used in the GIST
 processing. The remainder of GIST processing is unchanged.

 Note that Confirm messages are not given GIST-specific processing by
 the NAT. Thus, a Responding node that has delayed state installation
 until receiving the Confirm only has available the untranslated MRI
 describing the flow, and the untranslated NLI as peer routing state.
 This would prevent the correct interpretation of the signalling
 messages; also, subsequent Query (refresh) messages would always be
 seen as route changes because of the NLI change. Therefore, a
 Responding node that wishes to delay state installation until
 receiving a Confirm must somehow reconstruct the translations when
 the Confirm arrives. How to do this is an implementation issue; one
 approach is to carry the translated objects as part of the Responder-
 Cookie that is echoed in the Confirm. Indeed, for one of the cookie
 constructions in Section 8.5 this is automatic.

7.3. Interaction with IP Tunnelling

 The interaction between GIST and IP tunnelling is very simple. An IP
 packet carrying a GIST message is treated exactly the same as any
 other packet with the same source and destination addresses: in other
 words, it is given the tunnel encapsulation and forwarded with the
 other data packets.

 Tunnelled packets will not be identifiable as GIST messages until
 they leave the tunnel, since any Router Alert Option and the standard
 GIST protocol encapsulation (e.g., port numbers) will be hidden
 within the standard tunnel encapsulation. If signalling is needed
 for the tunnel itself, this has to be initiated as a separate
 signalling session by one of the tunnel endpoints -- that is, the
 tunnel counts as a new flow. Because the relationship between
 signalling for the microflow and signalling for the tunnel as a whole
 will depend on the signalling application in question, it is a
 signalling application responsibility to be aware of the fact that
 tunnelling is taking place and to carry out additional signalling if
 necessary; in other words, at least one tunnel endpoint must be
 signalling application aware.

 In some cases, it is the tunnel exit point (i.e., the node where
 tunnelled data and downstream signalling packets leave the tunnel)
 that will wish to carry out the tunnel signalling, but this node will
 not have knowledge or control of how the tunnel entry point is
 carrying out the data flow encapsulation. The information about how
 the inner MRI/SID relate to the tunnel MRI/SID needs to be carried in

Schulzrinne & Hancock Experimental [Page 99]

RFC 5971 GIST October 2010

 the signalling data from the tunnel entry point; this functionality
 is the equivalent to the RSVP SESSION_ASSOC object of [18]. In the
 NSIS protocol suite, these bindings are managed by the signalling
 applications, either implicitly (e.g., by SID re-use) or explicitly
 by carrying objects that bind the inner and outer SIDs as part of the
 NSLP payload.

7.4. IPv4-IPv6 Transition and Interworking

 GIST itself is essentially IP version neutral: version dependencies
 are isolated in the formats of the Message-Routing-Information,
 Network-Layer-Information, and Stack-Configuration-Data objects, and
 GIST also depends on the version independence of the protocols that
 support messaging associations. In mixed environments, GIST
 operation will be influenced by the IP transition mechanisms in use.
 This section provides a high level overview of how GIST is affected,
 considering only the currently predominant mechanisms.

 Dual Stack: (As described in [35].) In mixed environments, GIST
 MUST use the same IP version for Q-mode encapsulated messages as
 given by the MRI of the flow for which it is signalling, and
 SHOULD do so for other signalling also (see Section 5.2.2).
 Messages with mismatching versions MUST be rejected with an "MRI
 Validation Failure" error message (Appendix A.4.4.12) with subcode
 1 ("IP Version Mismatch"). The IP version used in D-mode is
 closely tied to the IP version used by the data flow, so it is
 intrinsically impossible for an IPv4-only or IPv6-only GIST node
 to support signalling for flows using the other IP version. Hosts
 that are dual stack for applications and routers that are dual
 stack for forwarding need GIST implementations that can support
 both IP versions. Applications with a choice of IP versions might
 select a version based on which could be supported in the network
 by GIST, which could be established by invoking parallel discovery
 procedures.

 Packet Translation: (Applicable to SIIT [7].) Some transition
 mechanisms allow IPv4 and IPv6 nodes to communicate by placing
 packet translators between them. From the GIST perspective, this
 should be treated essentially the same way as any other NAT
 operation (e.g., between internal and external addresses) as
 described in Section 7.2. The translating node needs to be GIST-
 aware; it will have to translate the addressing payloads between
 IPv4 and IPv6 formats for flows that cross between the two. The
 translation rules for the fields in the MRI payload (including,
 e.g., diffserv-codepoint and flow-label) are as defined in [7].
 The same analysis applies to NAT-PT, although this technique is no
 longer proposed as a general purpose transition mechanism [40].

Schulzrinne & Hancock Experimental [Page 100]

RFC 5971 GIST October 2010

 Tunnelling: (Applicable to 6to4 [19].) Many transition mechanisms
 handle the problem of how an end-to-end IPv6 (or IPv4) flow can be
 carried over intermediate IPv4 (or IPv6) regions by tunnelling;
 the methods tend to focus on minimising the tunnel administration
 overhead. For GIST, the treatment should be similar to any other
 IP tunnelling mechanism, as described in Section 7.3. In
 particular, the end-to-end flow signalling will pass transparently
 through the tunnel, and signalling for the tunnel itself will have
 to be managed by the tunnel endpoints. However, additional
 considerations may arise because of special features of the tunnel
 management procedures. In particular, [20] is based on using an
 anycast address as the destination tunnel endpoint. GIST MAY use
 anycast destination addresses in the Q-mode encapsulation of
 D-mode messages if necessary, but MUST NOT use them in the
 Network-Layer-Information addressing field; unicast addresses MUST
 be used instead. Note that the addresses from the IP header are
 not used by GIST in matching requests and replies, so there is no
 requirement to use anycast source addresses.

8. Security Considerations

 The security requirement for GIST is to protect the signalling plane
 against identified security threats. For the signalling problem as a
 whole, these threats have been outlined in [30]; the NSIS framework
 [29] assigns a subset of the responsibilities to the NTLP. The main
 issues to be handled can be summarised as:

 Message Protection: Signalling message content can be protected
 against eavesdropping, modification, injection, and replay while
 in transit. This applies to GIST payloads, and GIST should also
 provide such protection as a service to signalling applications
 between adjacent peers.

 Routing State Integrity Protection: It is important that signalling
 messages are delivered to the correct nodes, and nowhere else.
 Here, ’correct’ is defined as ’the appropriate nodes for the
 signalling given the Message-Routing-Information’. In the case
 where the MRI is based on the flow identification for path-coupled
 signalling, ’appropriate’ means ’the same nodes that the
 infrastructure will route data flow packets through’. GIST has no
 role in deciding whether the data flow itself is being routed
 correctly; all it can do is to ensure that signalling and data
 routing are consistent with each other. GIST uses internal state
 to decide how to route signalling messages, and this state needs
 to be protected against corruption.

Schulzrinne & Hancock Experimental [Page 101]

RFC 5971 GIST October 2010

 Prevention of Denial-of-Service Attacks: GIST nodes and the network
 have finite resources (state storage, processing power,
 bandwidth). The protocol tries to minimise exhaustion attacks
 against these resources and not allow GIST nodes to be used to
 launch attacks on other network elements.

 The main additional issue is handling authorisation for executing
 signalling operations (e.g., allocating resources). This is assumed
 to be done in each signalling application.

 In many cases, GIST relies on the security mechanisms available in
 messaging associations to handle these issues, rather than
 introducing new security measures. Obviously, this requires the
 interaction of these mechanisms with the rest of the GIST protocol to
 be understood and verified, and some aspects of this are discussed in
 Section 5.7.

8.1. Message Confidentiality and Integrity

 GIST can use messaging association functionality, specifically in
 this version TLS (Section 5.7.3), to ensure message confidentiality
 and integrity. Implementation of this functionality is REQUIRED but
 its use for any given flow or signalling application is OPTIONAL. In
 some cases, confidentiality of GIST information itself is not likely
 to be a prime concern, in particular, since messages are often sent
 to parties that are unknown ahead of time, although the content
 visible even at the GIST level gives significant opportunities for
 traffic analysis. Signalling applications may have their own
 mechanism for securing content as necessary; however, they may find
 it convenient to rely on protection provided by messaging
 associations, since it runs unbroken between signalling application
 peers.

8.2. Peer Node Authentication

 Cryptographic protection (of confidentiality or integrity) requires a
 security association with session keys. These can be established by
 an authentication and key exchange protocol based on shared secrets,
 public key techniques, or a combination of both. Authentication and
 key agreement are possible using the protocols associated with the
 messaging association being secured. TLS incorporates this
 functionality directly. GIST nodes rely on the messaging association
 protocol to authenticate the identity of the next hop, and GIST has
 no authentication capability of its own.

 With routing state discovery, there are few effective ways to know
 what is the legitimate next or previous hop as opposed to an
 impostor. In other words, cryptographic authentication here only

Schulzrinne & Hancock Experimental [Page 102]

RFC 5971 GIST October 2010

 provides assurance that a node is ’who’ it is (i.e., the legitimate
 owner of identity in some namespace), not ’what’ it is (i.e., a node
 which is genuinely on the flow path and therefore can carry out
 signalling for a particular flow). Authentication provides only
 limited protection, in that a known peer is unlikely to lie about its
 role. Additional methods of protection against this type of attack
 are considered in Section 8.3 below.

 It is an implementation issue whether peer node authentication should
 be made signalling application dependent, for example, whether
 successful authentication could be made dependent on presenting
 credentials related to a particular signalling role (e.g., signalling
 for QoS). The abstract API of Appendix B leaves open such policy and
 authentication interactions between GIST and the NSLP it is serving.
 However, it does allow applications to inspect the authenticated
 identity of the peer to which a message will be sent before
 transmission.

8.3. Routing State Integrity

 Internal state in a node (see Section 4.2) is used to route messages.
 If this state is corrupted, signalling messages may be misdirected.

 In the case where the MRM is path-coupled, the messages need to be
 routed identically to the data flow described by the MRI, and the
 routing state table is the GIST view of how these flows are being
 routed through the network in the immediate neighbourhood of the
 node. Routes are only weakly secured (e.g., there is no
 cryptographic binding of a flow to a route), and there is no
 authoritative information about flow routes other than the current
 state of the network itself. Therefore, consistency between GIST and
 network routing state has to be ensured by directly interacting with
 the IP routing mechanisms to ensure that the signalling peers are the
 appropriate ones for any given flow. An overview of security issues
 and techniques in this context is provided in [37].

 In one direction, peer identification is installed and refreshed only
 on receiving a Response (compare Figure 5). This MUST echo the
 cookie from a previous Query, which will have been sent along the
 flow path with the Q-mode encapsulation, i.e., end-to-end addressed.
 Hence, only the true next peer or an on-path attacker will be able to
 generate such a message, provided freshness of the cookie can be
 checked at the Querying node.

 In the other direction, peer identification MAY be installed directly
 on receiving a Query containing addressing information for the
 signalling source. However, any node in the network could generate

Schulzrinne & Hancock Experimental [Page 103]

RFC 5971 GIST October 2010

 such a message; indeed, many nodes in the network could be the
 genuine upstream peer for a given flow. To protect against this,
 four strategies are used:

 Filtering: The receiving node MAY reject signalling messages that
 claim to be for flows with flow source addresses that could be
 ruled out by ingress filtering. An extension of this technique
 would be for the receiving node to monitor the data plane and to
 check explicitly that the flow packets are arriving over the same
 interface and if possible from the same link layer neighbour as
 the D-mode signalling packets. If they are not, it is likely that
 at least one of the signalling or flow packets is being spoofed.

 Return routability checking: The receiving node MAY refuse to
 install upstream state until it has completed a Confirm handshake
 with the peer. This echoes the Responder-Cookie of the Response,
 and discourages nodes from using forged source addresses. This
 also plays a role in denial-of-service prevention; see below.

 Authorisation: A stronger approach is to carry out a peer
 authorisation check (see Section 4.4.2) as part of messaging
 association setup. The ideal situation is that the receiving node
 can determine the correct upstream node address from routing table
 analysis or knowledge of local topology constraints, and then
 verify from the authorised peer database (APD) that the peer has
 this IP address. This is only technically feasible in a limited
 set of deployment environments. The APD can also be used to list
 the subsets of nodes that are feasible peers for particular source
 or destination subnets, or to blacklist nodes that have previously
 originated attacks or exist in untrustworthy networks, which
 provide weaker levels of authorisation checking.

 SID segregation: The routing state lookup for a given MRI and NSLPID
 MUST also take the SID into account. A malicious node can only
 overwrite existing GIST routing state if it can guess the
 corresponding SID; it can insert state with random SID values, but
 generally this will not be used to route signalling messages for
 which state has already been legitimately established.

8.4. Denial-of-Service Prevention and Overload Protection

 GIST is designed so that in general each Query only generates at most
 one Response that is at most only slightly larger than the Query, so
 that a GIST node cannot become the source of a denial-of-service
 amplification attack. (There is a special case of retransmitted
 Response messages; see Section 5.3.3.)

Schulzrinne & Hancock Experimental [Page 104]

RFC 5971 GIST October 2010

 However, GIST can still be subjected to denial-of-service attacks
 where an attacker using forged source addresses forces a node to
 establish state without return routability, causing a problem similar
 to TCP SYN flood attacks. Furthermore, an adversary might use
 modified or replayed unprotected signalling messages as part of such
 an attack. There are two types of state attacks and one
 computational resource attack. In the first state attack, an
 attacker floods a node with messages that the node has to store until
 it can determine the next hop. If the destination address is chosen
 so that there is no GIST-capable next hop, the node would accumulate
 messages for several seconds until the discovery retransmission
 attempt times out. The second type of state-based attack causes GIST
 state to be established by bogus messages. A related computational/
 network-resource attack uses unverified messages to cause a node
 query an authentication or authorisation infrastructure, or attempt
 to cryptographically verify a digital signature.

 We use a combination of two defences against these attacks:

 1. The Responding node need not establish a session or discover its
 next hop on receiving the Query, but MAY wait for a Confirm,
 possibly on a secure channel. If the channel exists, the
 additional delay is one one-way delay and the total is no more
 than the minimal theoretically possible delay of a three-way
 handshake, i.e., 1.5 node-to-node round-trip times. The delay
 gets significantly larger if a new connection needs to be
 established first.

 2. The Response to the Query contains a cookie, which is repeated in
 the Confirm. State is only established for messages that contain
 a valid cookie. The setup delay is also 1.5 round-trip times.
 This mechanism is similar to that in SCTP [39] and other modern
 protocols.

 There is a potential overload condition if a node is flooded with
 Query or Confirm messages. One option is for the node to bypass
 these messages altogether as described in Section 4.3.2, effectively
 falling back to being a non-NSIS node. If this is not possible, a
 node MAY still choose to limit the rate at which it processes Query
 messages and discard the excess, although it SHOULD first adapt its
 policy to one of sending Responses statelessly if it is not already
 doing so. A conformant GIST node will automatically decrease the
 load by retransmitting Queries with an exponential backoff. A non-
 conformant node (launching a DoS attack) can generate uncorrelated
 Queries at an arbitrary rate, which makes it hard to apply rate-
 limiting without also affecting genuine handshake attempts. However,

Schulzrinne & Hancock Experimental [Page 105]

RFC 5971 GIST October 2010

 if Confirm messages are requested, the cookie binds the message to a
 Querying node address that has been validated by a return routability
 check and rate-limits can be applied per source.

 Once a node has decided to establish routing state, there may still
 be transport and security state to be established between peers.
 This state setup is also vulnerable to denial-of-service attacks.
 GIST relies on the implementations of the lower layer protocols that
 make up messaging associations to mitigate such attacks. In the
 current specification, the Querying node is always the one wishing to
 establish a messaging association, so it is the Responding node that
 needs to be protected. It is possible for an attacking node to
 execute these protocols legally to set up large numbers of
 associations that were never used, and Responding node
 implementations MAY use rate-limiting or other techniques to control
 the load in such cases.

 Signalling applications can use the services provided by GIST to
 defend against certain (e.g., flooding) denial-of-service attacks.
 In particular, they can elect to process only messages from peers
 that have passed a return routability check or been authenticated at
 the messaging association level (see Appendix B.2). Signalling
 applications that accept messages under other circumstances (in
 particular, before routing state has been fully established at the
 GIST level) need to take this into account when designing their
 denial-of-service prevention mechanisms, for example, by not creating
 local state as a result of processing such messages. Signalling
 applications can also manage overload by invoking flow control, as
 described in Section 4.1.1.

8.5. Requirements on Cookie Mechanisms

 The requirements on the Query-Cookie can be summarised as follows:

 Liveness: The cookie must be live; that is, it must change from one
 handshake to the next. This prevents replay attacks.

 Unpredictability: The cookie must not be guessable, e.g., from a
 sequence or timestamp. This prevents direct forgery after
 capturing a set of earlier messages.

 Easily validated: It must be efficient for the Q-Node to validate
 that a particular cookie matches an in-progress handshake, for a
 routing state machine that already exists. This allows to discard
 responses that have been randomly generated by an adversary, or to
 discard responses to queries that were generated with forged
 source addresses or an incorrect address in the included NLI
 object.

Schulzrinne & Hancock Experimental [Page 106]

RFC 5971 GIST October 2010

 Uniqueness: Each handshake must have a unique cookie since the
 cookie is used to match responses within a handshake, e.g., when
 multiple messaging associations are multiplexed over the same
 transport connection.

 Likewise, the requirements on the Responder-Cookie can be summarised
 as follows:

 Liveness: The cookie must be live as above, to prevent replay
 attacks.

 Creation simplicity: The cookie must be lightweight to generate in
 order to avoid resource exhaustion at the responding node.

 Validation simplicity: It must be simple for the R-node to validate
 that an R-Cookie was generated by itself and no one else, without
 storing state about the handshake for which it was generated.

 Binding: The cookie must be bound to the routing state that will be
 installed, to prevent use with different routing state, e.g., in a
 modified Confirm. The routing state here includes the Peer-
 Identity and Interface-Address given in the NLI of the Query, and
 the MRI/NSLPID for the messaging.

 It can also include the interface on which the Query was received
 for use later in route change detection (Section 7.1.2). Since a
 Q-mode encapsulated message is the one that will best follow the
 data path, subsequent changes in this arrival interface indicate
 route changes between the peers.

 A suitable implementation for the Q-Cookie is a cryptographically
 strong random number that is unique for this routing state machine
 handshake. A node MUST implement this or an equivalently strong
 mechanism. Guidance on random number generation can be found in
 [31].

 A suitable basic implementation for the R-Cookie is as follows:

 R-Cookie = liveness data + reception interface
 + hash (locally known secret,
 Q-Node NLI identity and address, MRI, NSLPID,
 liveness data)

 A node MUST implement this or an equivalently strong mechanism.
 There are several alternatives for the liveness data. One is to use
 a timestamp like SCTP. Another is to give the local secret a (rapid)
 rollover, with the liveness data as the generation number of the
 secret, like IKEv2. In both cases, the liveness data has to be

Schulzrinne & Hancock Experimental [Page 107]

RFC 5971 GIST October 2010

 carried outside the hash, to allow the hash to be verified at the
 Responder. Another approach is to replace the hash with encryption
 under a locally known secret, in which case the liveness data does
 not need to be carried in the clear. Any symmetric cipher immune to
 known plaintext attacks can be used. In the case of GIST-aware NAT
 traversal with delayed state installation, it is necessary to carry
 additional data in the cookie; appropriate constructions are
 described in [44].

 To support the validation simplicity requirement, the Responder can
 check the liveness data to filter out some blind (flooding) attacks
 before beginning any cryptographic cookie verification. To support
 this usage, the liveness data must be carried in the clear and not be
 easily guessable; this rules out the timestamp approach and suggests
 the use of sequence of secrets with the liveness data identifying the
 position in the sequence. The secret strength and rollover frequency
 must be high enough that the secret cannot be brute-forced during its
 lifetime. Note that any node can use a Query to discover the current
 liveness data, so it remains hard to defend against sophisticated
 attacks that disguise such probes within a flood of Queries from
 forged source addresses. Therefore, it remains important to use an
 efficient hashing mechanism or equivalent.

 If a node receives a message for which cookie validation fails, it
 MAY return an "Object Value Error" message (Appendix A.4.4.10) with
 subcode 4 ("Invalid Cookie") to the sender and SHOULD log an error
 condition locally, as well as dropping the message. However, sending
 the error in general makes a node a source of backscatter.
 Therefore, this MUST only be enabled selectively, e.g., during
 initial deployment or debugging.

8.6. Security Protocol Selection Policy

 This specification defines a single mandatory-to-implement security
 protocol (TLS; Section 5.7.3). However, it is possible to define
 additional security protocols in the future, for example, to allow
 re-use with other types of credentials, or migrate towards protocols
 with stronger security properties. In addition, use of any security
 protocol for a messaging association is optional. Security protocol
 selection is carried out as part of the GIST handshake mechanism
 (Section 4.4.1).

 The selection process may be vulnerable to downgrade attacks, where a
 man in the middle modifies the capabilities offered in the Query or
 Response to mislead the peers into accepting a lower level of
 protection than is achievable. There is a two-part defence against
 such attacks (the following is based the same concepts as [25]):

Schulzrinne & Hancock Experimental [Page 108]

RFC 5971 GIST October 2010

 1. The Response does not depend on the Stack-Proposal in the Query
 (see Section 5.7.1). Therefore, tampering with the Query has no
 effect on the resulting messaging association configuration.

 2. The Responding node’s Stack-Proposal is echoed in the Confirm.
 The Responding node checks this to validate that the proposal it
 made in the Response is the same as the one received by the
 Querying node. Note that as a consequence of the previous point,
 the Responding node does not have to remember the proposal
 explicitly, since it is a static function of local policy.

 The validity of the second part depends on the strength of the
 security protection provided for the Confirm. If the Querying node
 is prepared to create messaging associations with null security
 properties (e.g., TCP only), the defence is ineffective, since the
 man in the middle can re-insert the original Responder’s Stack-
 Proposal, and the Responding node will assume that the minimal
 protection is a consequence of Querying node limitations. However,
 if the messaging association provides at least integrity protection
 that cannot be broken in real-time, the Confirm cannot be modified in
 this way. Therefore, if the Querying node does not apply a security
 policy to the messaging association protocols to be created that
 ensures at least this minimal level of protection is met, it remains
 open to the threat that a downgrade has occurred. Applying such a
 policy ensures capability discovery process will result in the setup
 of a messaging association with the correct security properties for
 the two peers involved.

8.7. Residual Threats

 Taking the above security mechanisms into account, the main residual
 threats against NSIS are three types of on-path attack,
 vulnerabilities from particular limited modes of TLS usage, and
 implementation-related weaknesses.

 An on-path attacker who can intercept the initial Query can do most
 things it wants to the subsequent signalling. It is very hard to
 protect against this at the GIST level; the only defence is to use
 strong messaging association security to see whether the Responding
 node is authorised to take part in NSLP signalling exchanges. To
 some extent, this behaviour is logically indistinguishable from
 correct operation, so it is easy to see why defence is difficult.
 Note that an on-path attacker of this sort can do anything to the
 traffic as well as the signalling. Therefore, the additional threat
 induced by the signalling weakness seems tolerable.

Schulzrinne & Hancock Experimental [Page 109]

RFC 5971 GIST October 2010

 At the NSLP level, there is a concern about transitivity of trust of
 correctness of routing along the signalling chain. The NSLP at the
 querying node can have good assurance that it is communicating with
 an on-path peer or a node delegated by the on-path node by depending
 on the security protection provided by GIST. However, it has no
 assurance that the node beyond the responder is also on-path, or that
 the MRI (in particular) is not being modified by the responder to
 refer to a different flow. Therefore, if it sends signalling
 messages with payloads (e.g., authorisation tokens) that are valuable
 to nodes beyond the adjacent hop, it is up to the NSLP to ensure that
 the appropriate chain of trust exists. This could be achieved using
 higher layer security protection such as Cryptographic Message Syntax
 (CMS) [28].

 There is a further residual attack by a node that is not on the path
 of the Query, but is on the path of the Response, or is able to use a
 Response from one handshake to interfere with another. The attacker
 modifies the Response to cause the Querying node to form an adjacency
 with it rather than the true peer. In principle, this attack could
 be prevented by including an additional cryptographic object in the
 Response that ties the Response to the initial Query and the routing
 state and can be verified by the Querying node.

 GIST depends on TLS for peer node authentication, and subsequent
 channel security. The analysis in [30] indicates the threats that
 arise when the peer node authentication is incomplete --
 specifically, when unilateral authentication is performed (one node
 authenticates the other, but not vice versa). In this specification,
 mutual authentication can be supported either by certificate exchange
 or the use of pre-shared keys (see Section 5.7.3); if some other TLS
 authentication mechanism is negotiated, its properties would have to
 be analysed to determine acceptability for use with GIST. If mutual
 authentication is performed, the requirements for NTLP security are
 met.

 However, in the case of certificate exchange, this specification
 allows the possibility that only a server certificate is provided,
 which means that the Querying node authenticates the Responding node
 but not vice versa. Accepting such unilateral authentication allows
 for partial security in environments where client certificates are
 not widespread, and is better than no security at all; however, it
 does expose the Responding node to certain threats described in
 Section 3.1 of [30]. For example, the Responding node cannot verify
 whether there is a man-in-the-middle between it and the Querying
 node, which could be manipulating the signalling messages, and it
 cannot verify the identity of the Querying node if it requests
 authorisation of resources. Note that in the case of host-network
 signalling, the Responding node could be either the host or the first

Schulzrinne & Hancock Experimental [Page 110]

RFC 5971 GIST October 2010

 hop router, depending on the signalling direction. Because of these
 vulnerabilities, modes or deployments of TLS which do not provide
 mutual authentication can be considered as at best transitional
 stages rather than providing a robust security solution.

 Certain security aspects of GIST operation depend on signalling
 application behaviour: a poorly implemented or compromised NSLP could
 degrade GIST security. However, the degradation would only affect
 GIST handling of the NSLP’s own signalling traffic or overall
 resource usage at the node where the weakness occurred, and
 implementation weakness or compromise could have just as great an
 effect within the NSLP itself. GIST depends on NSLPs to choose SIDs
 appropriately (Section 4.1.3). If NSLPs choose non-random SIDs, this
 makes off-path attacks based on SID guessing easier to carry out.
 NSLPs can also leak information in structured SIDs, but they could
 leak similar information in the NSLP payload data anyway.

9. IANA Considerations

 This section defines the registries and initial codepoint assignments
 for GIST. It also defines the procedural requirements to be followed
 by IANA in allocating new codepoints. Note that the guidelines on
 the technical criteria to be followed in evaluating requests for new
 codepoint assignments are covered normatively in a separate document
 that considers the NSIS protocol suite in a unified way. That
 document discusses the general issue of NSIS extensibility, as well
 as the technical criteria for particular registries; see [12] for
 further details.

 The registry definitions that follow leave large blocks of codes
 marked "Reserved". This is to allow a future revision of this
 specification or another Experimental document to modify the relative
 space given to different allocation policies, without having to
 change the initial rules retrospectively if they turn out to have
 been inappropriate, e.g., if the space for one particular policy is
 exhausted too quickly.

 The allocation policies used in this section follow the guidance
 given in [4]. In addition, for a number of the GIST registries, this
 specification also defines private/experimental ranges as discussed
 in [9]. Note that the only environment in which these codepoints can
 validly be used is a closed one in which the experimenter knows all
 the experiments in progress.

Schulzrinne & Hancock Experimental [Page 111]

RFC 5971 GIST October 2010

 This specification allocates the following codepoints in existing
 registries:

 Well-known UDP port 270 as the destination port for Q-mode
 encapsulated GIST messages (Section 5.3).

 This specification creates the following registries with the
 structures as defined below:

 NSLP Identifiers: Each signalling application requires the
 assignment of one or more NSLPIDs. The following NSLPID is
 allocated by this specification:

 +---------+---+
 | NSLPID | Application |
 +---------+---+
 | 0 | Used for GIST messages not related to any signalling |
 | | application. |
 +---------+---+

 Every other NSLPID that uses an MRM that requires RAO usage MUST
 be associated with a specific RAO value; multiple NSLPIDs MAY be
 associated with the same RAO value. RAO value assignments require
 a specification of the processing associated with messages that
 carry the value. NSLP specifications MUST normatively depend on
 this document for the processing, specifically Sections 4.3.1,
 4.3.4 and 5.3.2. The NSLPID is a 16-bit integer, and the
 registration procedure is IESG Aproval. Further values are as
 follows:

 1-32703: Unassigned

 32704-32767: Private/Experimental Use

 32768-65536: Reserved

Schulzrinne & Hancock Experimental [Page 112]

RFC 5971 GIST October 2010

 GIST Message Type: The GIST common header (Appendix A.1) contains a
 7-bit message type field. The following values are allocated by
 this specification:

 +---------+----------+
 | MType | Message |
 +---------+----------+
 | 0 | Query |
 | | |
 | 1 | Response |
 | | |
 | 2 | Confirm |
 | | |
 | 3 | Data |
 | | |
 | 4 | Error |
 | | |
 | 5 | MA-Hello |
 +---------+----------+

 Registration procedures are as follows:

 0-31: IETF Review

 32-55: Expert Review

 Further values are as follows:

 6-55: Unassigned

 56-63: Private/Experimental Use

 64-127: Reserved

Schulzrinne & Hancock Experimental [Page 113]

RFC 5971 GIST October 2010

 Object Types: There is a 12-bit field in the object header
 (Appendix A.2). The following values for object type are defined
 by this specification:

 +---------+-----------------------------+
 | OType | Object Type |
 +---------+-----------------------------+
 | 0 | Message Routing Information |
 | | |
 | 1 | Session ID |
 | | |
 | 2 | Network Layer Information |
 | | |
 | 3 | Stack Proposal |
 | | |
 | 4 | Stack Configuration Data |
 | | |
 | 5 | Query-Cookie |
 | | |
 | 6 | Responder-Cookie |
 | | |
 | 7 | NAT Traversal |
 | | |
 | 8 | NSLP Data |
 | | |
 | 9 | Error |
 | | |
 | 10 | Hello ID |
 +---------+-----------------------------+

 Registration procedures are as follows:

 0-1023: IETF Review

 1024-1999: Specification Required

 Further values are as follows:

 11-1999: Unassigned

 2000-2047: Private/Experimental Use

 2048-4095: Reserved

 When a new object type is allocated according to one of the
 procedures, the specification MUST provide the object format and
 define the setting of the extensibility bits (A/B; see
 Appendix A.2.1).

Schulzrinne & Hancock Experimental [Page 114]

RFC 5971 GIST October 2010

 Message Routing Methods: GIST allows multiple message routing
 methods (see Section 3.3). The MRM is indicated in the leading
 byte of the MRI object (Appendix A.3.1). This specification
 defines the following values:

 +------------+------------------------+
 | MRM-ID | Message Routing Method |
 +------------+------------------------+
 | 0 | Path-Coupled MRM |
 | | |
 | 1 | Loose-End MRM |
 +------------+------------------------+

 Registration procedures are as follows:

 0-63: IETF Review

 64-119: Specification Required

 Further values are as follows:

 2-119: Unassigned

 120-127: Private/Experimental Use

 128-255: Reserved

 When a new MRM is allocated according to one of the registration
 procedures, the specification MUST provide the information
 described in Section 3.3.

 MA-Protocol-IDs: Each protocol that can be used in a messaging
 association is identified by a 1-byte MA-Protocol-ID
 (Section 5.7). Note that the MA-Protocol-ID is not an IP protocol
 number; indeed, some of the messaging association protocols --
 such as TLS -- do not have an IP protocol number. This is used as
 a tag in the Stack-Proposal and Stack-Configuration-Data objects
 (Appendix A.3.4 and Appendix A.3.5). The following values are
 defined by this specification:

Schulzrinne & Hancock Experimental [Page 115]

RFC 5971 GIST October 2010

 +---------------------+---+
 | MA-Protocol-ID | Protocol |
 +---------------------+---+
 | 0 | Reserved |
 | | |
 | 1 | TCP opened in the forwards direction |
 | | |
 | 2 | TLS initiated in the forwards direction |
 +---------------------+---+

 Registration procedures are as follows:

 0-63: IETF Review

 64-119: Expert Review

 Further values are as follows:

 3-119: Unassigned

 120-127: Private/Experimental Use

 128-255: Reserved

 When a new MA-Protocol-ID is allocated according to one of the
 registration procedures, a specification document will be
 required. This MUST define the format for the MA-protocol-options
 field (if any) in the Stack-Configuration-Data object that is
 needed to define its configuration. If a protocol is to be used
 for reliable message transfer, it MUST be described how delivery
 errors are to be detected by GIST. Extensions to include new
 channel security protocols MUST include a description of how to
 integrate the functionality described in Section 3.9 with the rest
 of GIST operation. If the new MA-Protocol-ID can be used in
 conjunction with existing ones (for example, a new transport
 protocol that could be used with Transport Layer Security), the
 specification MUST define the interaction between the two.

 Error Codes/Subcodes: There is a 2-byte error code and 1-byte
 subcode in the Value field of the Error Object (Appendix A.4.1).
 Error codes 1-12 are defined in Appendix A.4.4 together with
 subcodes 0-5 (code 1), 0-5 (code 9), 0-5 (code 10), and 0-2 (code
 12). Additional codes and subcodes are allocated on a first-come,
 first-served basis. When a new code/subcode combination is
 allocated, the following information MUST be provided:

Schulzrinne & Hancock Experimental [Page 116]

RFC 5971 GIST October 2010

 Error case: textual name of error

 Error class: from the categories given in Appendix A.4.3

 Error code: allocated by IANA, if a new code is required

 Error subcode: subcode point, also allocated by IANA

 Additional information: what Additional Information fields are
 mandatory to include in the error message, from Appendix A.4.2

 Additional Information Types: An Error Object (Appendix A.4.1) may
 contain Additional Information fields. Each possible field type
 is identified by a 16-bit AI-Type. AI-Types 1-4 are defined in
 Appendix A.4.2; additional AI-Types are allocated on a first-come,
 first-served basis.

10. Acknowledgements

 This document is based on the discussions within the IETF NSIS
 working group. It has been informed by prior work and formal and
 informal inputs from: Cedric Aoun, Attila Bader, Vitor Bernado,
 Roland Bless, Bob Braden, Marcus Brunner, Benoit Campedel, Yoshiko
 Chong, Luis Cordeiro, Elwyn Davies, Michel Diaz, Christian Dickmann,
 Pasi Eronen, Alan Ford, Xiaoming Fu, Bo Gao, Ruediger Geib, Eleanor
 Hepworth, Thomas Herzog, Cheng Hong, Teemu Huovila, Jia Jia, Cornelia
 Kappler, Georgios Karagiannis, Ruud Klaver, Max Laier, Chris Lang,
 Lauri Liuhto, John Loughney, Allison Mankin, Jukka Manner, Pete
 McCann, Andrew McDonald, Mac McTiffin, Glenn Morrow, Dave Oran,
 Andreas Pashalidis, Henning Peters, Tom Phelan, Akbar Rahman, Takako
 Sanda, Charles Shen, Melinda Shore, Martin Stiemerling, Martijn
 Swanink, Mike Thomas, Hannes Tschofenig, Sven van den Bosch, Nuutti
 Varis, Michael Welzl, Lars Westberg, and Mayi Zoumaro-djayoon. Parts
 of the TLS usage description (Section 5.7.3) were derived from the
 Diameter base protocol specification, RFC 3588. In addition, Hannes
 Tschofenig provided a detailed set of review comments on the security
 section, and Andrew McDonald provided the formal description for the
 initial packet formats and the name matching algorithm for TLS.
 Chris Lang’s implementation work provided objective feedback on the
 clarity and feasibility of the specification, and he also provided
 the state machine description and the initial error catalogue and
 formats. Magnus Westerlund carried out a detailed AD review that
 identified a number of issues and led to significant clarifications,
 which was followed by an even more detailed IESG review, with
 comments from Jari Arkko, Ross Callon, Brian Carpenter, Lisa
 Dusseault, Lars Eggert, Ted Hardie, Sam Hartman, Russ Housley, Cullen

Schulzrinne & Hancock Experimental [Page 117]

RFC 5971 GIST October 2010

 Jennings, and Tim Polk, and a very detailed analysis by Adrian Farrel
 from the Routing Area directorate; Suresh Krishnan carried out a
 detailed review for the Gen-ART.

11. References

11.1. Normative References

 [1] Braden, R., "Requirements for Internet Hosts - Communication
 Layers", STD 3, RFC 1122, October 1989.

 [2] Baker, F., "Requirements for IP Version 4 Routers", RFC 1812,
 June 1995.

 [3] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [4] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.

 [5] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
 Specification", RFC 2460, December 1998.

 [6] Nichols, K., Blake, S., Baker, F., and D. Black, "Definition of
 the Differentiated Services Field (DS Field) in the IPv4 and
 IPv6 Headers", RFC 2474, December 1998.

 [7] Nordmark, E., "Stateless IP/ICMP Translation Algorithm (SIIT)",
 RFC 2765, February 2000.

 [8] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley,
 R., and W. Polk, "Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL) Profile",
 RFC 5280, May 2008.

 [9] Narten, T., "Assigning Experimental and Testing Numbers
 Considered Useful", BCP 82, RFC 3692, January 2004.

 [10] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
 Protocol Version 1.2", RFC 5246, August 2008.

 [11] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [12] Manner, J., Bless, R., Loughney, J., and E. Davies, "Using and
 Extending the NSIS Protocol Family", RFC 5978, October 2010.

Schulzrinne & Hancock Experimental [Page 118]

RFC 5971 GIST October 2010

11.2. Informative References

 [13] Katz, D., "IP Router Alert Option", RFC 2113, February 1997.

 [14] Braden, B., Zhang, L., Berson, S., Herzog, S., and S. Jamin,
 "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional
 Specification", RFC 2205, September 1997.

 [15] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, January 1999.

 [16] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

 [17] Partridge, C. and A. Jackson, "IPv6 Router Alert Option",
 RFC 2711, October 1999.

 [18] Terzis, A., Krawczyk, J., Wroclawski, J., and L. Zhang, "RSVP
 Operation Over IP Tunnels", RFC 2746, January 2000.

 [19] Carpenter, B. and K. Moore, "Connection of IPv6 Domains via
 IPv4 Clouds", RFC 3056, February 2001.

 [20] Huitema, C., "An Anycast Prefix for 6to4 Relay Routers",
 RFC 3068, June 2001.

 [21] Baker, F., Iturralde, C., Le Faucheur, F., and B. Davie,
 "Aggregation of RSVP for IPv4 and IPv6 Reservations", RFC 3175,
 September 2001.

 [22] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and
 G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels",
 RFC 3209, December 2001.

 [23] Jamoussi, B., Andersson, L., Callon, R., Dantu, R., Wu, L.,
 Doolan, P., Worster, T., Feldman, N., Fredette, A., Girish, M.,
 Gray, E., Heinanen, J., Kilty, T., and A. Malis, "Constraint-
 Based LSP Setup using LDP", RFC 3212, January 2002.

 [24] Grossman, D., "New Terminology and Clarifications for
 Diffserv", RFC 3260, April 2002.

 [25] Arkko, J., Torvinen, V., Camarillo, G., Niemi, A., and T.
 Haukka, "Security Mechanism Agreement for the Session
 Initiation Protocol (SIP)", RFC 3329, January 2003.

 [26] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, "Session
 Traversal Utilities for NAT (STUN)", RFC 5389, October 2008.

Schulzrinne & Hancock Experimental [Page 119]

RFC 5971 GIST October 2010

 [27] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session Traversal
 Utilities for NAT (STUN)", RFC 5766, April 2010.

 [28] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC
 5652, September 2009.

 [29] Hancock, R., Karagiannis, G., Loughney, J., and S. Van den
 Bosch, "Next Steps in Signaling (NSIS): Framework", RFC 4080,
 June 2005.

 [30] Tschofenig, H. and D. Kroeselberg, "Security Threats for Next
 Steps in Signaling (NSIS)", RFC 4081, June 2005.

 [31] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [32] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites for
 Transport Layer Security (TLS)", RFC 4279, December 2005.

 [33] Conta, A., Deering, S., and M. Gupta, "Internet Control Message
 Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
 Specification", RFC 4443, March 2006.

 [34] Stiemerling, M., Tschofenig, H., Aoun, C., and E. Davies, "NAT/
 Firewall NSIS Signaling Layer Protocol (NSLP)", Work
 in Progress, April 2010.

 [35] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms for
 IPv6 Hosts and Routers", RFC 4213, October 2005.

 [36] Kent, S. and K. Seo, "Security Architecture for the Internet
 Protocol", RFC 4301, December 2005.

 [37] Nikander, P., Arkko, J., Aura, T., Montenegro, G., and E.
 Nordmark, "Mobile IP Version 6 Route Optimization Security
 Design Background", RFC 4225, December 2005.

 [38] Audet, F. and C. Jennings, "Network Address Translation (NAT)
 Behavioral Requirements for Unicast UDP", BCP 127, RFC 4787,
 January 2007.

 [39] Stewart, R., "Stream Control Transmission Protocol", RFC 4960,
 September 2007.

 [40] Aoun, C. and E. Davies, "Reasons to Move the Network Address
 Translator - Protocol Translator (NAT-PT) to Historic Status",
 RFC 4966, July 2007.

Schulzrinne & Hancock Experimental [Page 120]

RFC 5971 GIST October 2010

 [41] Gill, V., Heasley, J., Meyer, D., Savola, P., and C. Pignataro,
 "The Generalized TTL Security Mechanism (GTSM)", RFC 5082,
 October 2007.

 [42] Floyd, S. and V. Jacobson, "The Synchronisation of Periodic
 Routing Messages", SIGCOMM Symposium on Communications
 Architectures and Protocols pp. 33--44, September 1993.

 [43] Pashalidis, A. and H. Tschofenig, "GIST Legacy NAT Traversal",
 Work in Progress, July 2007.

 [44] Pashalidis, A. and H. Tschofenig, "GIST NAT Traversal", Work
 in Progress, July 2007.

 [45] Tsenov, T., Tschofenig, H., Fu, X., Aoun, C., and E. Davies,
 "GIST State Machine", Work in Progress, April 2010.

 [46] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP’s
 Robustness to Blind In-Window Attacks", Work in Progress,
 May 2010.

Schulzrinne & Hancock Experimental [Page 121]

RFC 5971 GIST October 2010

Appendix A. Bit-Level Formats and Error Messages

 This appendix provides formats for the various component parts of the
 GIST messages defined abstractly in Section 5.2. The whole of this
 appendix is normative.

 Each GIST message consists of a header and a sequence of objects.
 The GIST header has a specific format, described in more detail in
 Appendix A.1 below. An NSLP message is one object within a GIST
 message. Note that GIST itself provides the NSLP message length
 information and signalling application identification. General
 object formatting guidelines are provided in Appendix A.2 below,
 followed in Appendix A.3 by the format for each object. Finally,
 Appendix A.4 provides the formats used for error reporting.

 In the following object diagrams, ’//’ is used to indicate a
 variable-sized field and ’:’ is used to indicate a field that is
 optionally present. Any part of the object used for padding or
 defined as reserved (marked ’Reserved’ or ’Rsv’ or, in the case of
 individual bits, ’r’ in the diagrams below) MUST be set to 0 on
 transmission and MUST be ignored on reception.

 The objects are encoded using big endian (network byte order).

A.1. The GIST Common Header

 This header begins all GIST messages. It has a fixed format, as
 shown below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version | GIST hops | Message Length |
 +-+
 | NSLPID |C| Type |S|R|E| Reserved|
 +-+

 Version (8 bits): The GIST protocol version number. This
 specification defines version number 1.

 GIST hops (8 bits): A hop count for the number of GIST-aware nodes
 this message can still be processed by (including the
 destination).

 Message Length (16 bits): The total number of 32-bit words in the
 message after the common header itself.

Schulzrinne & Hancock Experimental [Page 122]

RFC 5971 GIST October 2010

 NSLPID (16 bits): IANA-assigned identifier of the signalling
 application to which the message refers.

 C-flag: C=1 if the message has to be able to be interpreted in the
 absence of routing state (Section 5.2.1).

 Type (7 bits): The GIST message type (Query, Response, etc.).

 S-flag: S=1 if the IP source address is the same as the signalling
 source address, S=0 if it is different.

 R-flag: R=1 if a reply to this message is explicitly requested.

 E-flag: E=1 if the message was explicitly routed (Section 7.1.5).

 The rules governing the use of the R-flag depend on the GIST message
 type. It MUST always be set (R=1) in Query messages, since these
 always elicit a Response, and never in Confirm, Data, or Error
 messages. It MAY be set in an MA-Hello; if set, another MA-Hello
 MUST be sent in reply. It MAY be set in a Response, but MUST be set
 if the Response contains a Responder-Cookie; if set, a Confirm MUST
 be sent in reply. The E-flag MUST NOT be set unless the message type
 is a Data message.

 Parsing failures may be caused by unknown Version or Type values;
 inconsistent setting of the C-flag, R-flag, or E-flag; or a Message
 Length inconsistent with the set of objects carried. In all cases,
 the receiver MUST if possible return a "Common Header Parse Error"
 message (Appendix A.4.4.1) with the appropriate subcode, and not
 process the message further.

A.2. General Object Format

 Each object begins with a fixed header giving the object Type and
 object Length. This is followed by the object Value, which is a
 whole number of 32-bit words long.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |A|B|r|r| Type |r|r|r|r| Length |
 +-+
 // Value //
 +-+

 A/B flags: The bits marked ’A’ and ’B’ are extensibility flags,
 which are defined in Appendix A.2.1 below; the remaining bits
 marked ’r’ are reserved.

Schulzrinne & Hancock Experimental [Page 123]

RFC 5971 GIST October 2010

 Type (12 bits): An IANA-assigned identifier for the type of object.

 Length (12 bits): Length has the units of 32-bit words, and measures
 the length of Value. If there is no Value, Length=0. If the
 Length is not consistent with the contents of the object, an
 "Object Value Error" message (Appendix A.4.4.10) with subcode 0
 "Incorrect Length" MUST be returned and the message dropped.

 Value (variable): Value is (therefore) a whole number of 32-bit
 words. If there is any padding required, the length and location
 are be defined by the object-specific format information; objects
 that contain variable-length (e.g., string) types may need to
 include additional length subfields to do so.

A.2.1. Object Extensibility

 The leading 2 bits of the TLV header are used to signal the desired
 treatment for objects whose Type field is unknown at the receiver.
 The following three categories of objects have been identified and
 are described here.

 AB=00 ("Mandatory"): If the object is not understood, the entire
 message containing it MUST be rejected with an "Object Type Error"
 message (Appendix A.4.4.9) with subcode 1 ("Unrecognised Object").

 AB=01 ("Ignore"): If the object is not understood, it MUST be
 deleted and the rest of the message processed as usual.

 AB=10 ("Forward"): If the object is not understood, it MUST be
 retained unchanged in any message forwarded as a result of message
 processing, but not stored locally.

 The combination AB=11 is reserved. If a message is received
 containing an object with AB=11, it MUST be rejected with an "Object
 Type Error" message (Appendix A.4.4.9) with subcode 5 ("Invalid
 Extensibility Flags").

 These extensibility rules define only the processing within the GIST
 layer. There is no requirement on GIST implementations to support an
 extensible service interface to signalling applications, so
 unrecognised objects with AB=01 or AB=10 do not need to be indicated
 to NSLPs.

Schulzrinne & Hancock Experimental [Page 124]

RFC 5971 GIST October 2010

A.3. GIST TLV Objects

A.3.1. Message-Routing-Information (MRI)

 Type: Message-Routing-Information

 Length: Variable (depends on MRM)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MRM-ID |N| Reserved | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 // Method-specific addressing information (variable) //
 +-+

 MRM-ID (8 bits): An IANA-assigned identifier for the message routing
 method.

 N-flag: If set (N=1), this means that NATs do not need to translate
 this MRM; if clear (N=0), it means that the method-specific
 information contains network or transport layer information that a
 NAT must process.

 The remainder of the object contains method-specific addressing
 information, which is described below.

A.3.1.1. Path-Coupled MRM

 In the case of basic path-coupled routing, the addressing information
 takes the following format. The N-flag has a value of 0 for this
 MRM.

Schulzrinne & Hancock Experimental [Page 125]

RFC 5971 GIST October 2010

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |IP-Ver |P|T|F|S|A|B|D|Reserved |
 +-+
 // Source Address //
 +-+
 // Destination Address //
 +-+
 | Source Prefix | Dest Prefix | Protocol | DS-field |Rsv|
 +-+
 : Reserved | Flow Label :
 +-+
 : SPI :
 +-+
 : Source Port : Destination Port :
 +-+

 IP-Ver (4 bits): The IP version number, 4 or 6.

 Source/Destination address (variable): The source and destination
 addresses are always present and of the same type; their length
 depends on the value in the IP-Ver field.

 Source/Dest Prefix (each 8 bits): The length of the mask to be
 applied to the source and destination addresses for address
 wildcarding. In the normal case where the MRI refers only to
 traffic between specific host addresses, the Source/Dest Prefix
 values would both be 32 or 128 for IPv4 and IPv6, respectively.

 P-flag: P=1 means that the Protocol field is significant.

 Protocol (8 bits): The IP protocol number. This MUST be ignored if
 P=0. In the case of IPv6, the Protocol field refers to the true
 upper layer protocol carried by the packets, i.e., excluding any
 IP option headers. This is therefore not necessarily the same as
 the Next Header value from the base IPv6 header.

 T-flag: T=1 means that the Diffserv field (DS-field) is significant.

 DS-field (6 bits): The Diffserv field. See [6] and [24].

 F-flag: F=1 means that flow label is present and is significant. F
 MUST NOT be set if IP-Ver is not 6.

 Flow Label (20 bits): The flow label; only present if F=1. If F=0,
 the entire 32-bit word containing the Flow Label is absent.

Schulzrinne & Hancock Experimental [Page 126]

RFC 5971 GIST October 2010

 S-flag: S=1 means that the SPI field is present and is significant.
 The S-flag MUST be 0 if the P-flag is 0.

 SPI field (32 bits): The SPI field; see [36]. If S=0, the entire
 32-bit word containing the SPI is absent.

 A/B flags: These can only be set if P=1. If either is set, the port
 fields are also present. The A flag indicates the presence of a
 source port, the B flag that of a destination port. If P=0, the
 A/B flags MUST both be zero and the word containing the port
 numbers is absent.

 Source/Destination Port (each 16 bits): If either of A (source), B
 (destination) is set, the word containing the port numbers is
 included in the object. However, the contents of each field is
 only significant if the corresponding flag is set; otherwise, the
 contents of the field is regarded as padding, and the MRI refers
 to all ports (i.e., acts as a wildcard). If the flag is set and
 Port=0x0000, the MRI will apply to a specific port, whose value is
 not yet known. If neither of A or B is set, the word is absent.

 D-flag: The Direction flag has the following meaning: the value 0
 means ’in the same direction as the flow’ (i.e., downstream), and
 the value 1 means ’in the opposite direction to the flow’ (i.e.,
 upstream).

 The MRI format defines a number of constraints on the allowed
 combinations of flags and fields in the object. If these constraints
 are violated, this constitutes a parse error, and an "Object Value
 Error" message (Appendix A.4.4.10) with subcode 2 ("Invalid Flag-
 Field Combination") MUST be returned.

A.3.1.2. Loose-End MRM

 In the case of the loose-end MRM, the addressing information takes
 the following format. The N-flag has a value of 0 for this MRM.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |IP-Ver |D| Reserved |
 +-+
 // Source Address //
 +-+
 // Destination Address //
 +-+

Schulzrinne & Hancock Experimental [Page 127]

RFC 5971 GIST October 2010

 IP-Ver (4 bits): The IP version number, 4 or 6.

 Source/Destination address (variable): The source and destination
 addresses are always present and of the same type; their length
 depends on the value in the IP-Ver field.

 D-flag: The Direction flag has the following meaning: the value 0
 means ’towards the edge of the network’, and the value 1 means
 ’from the edge of the network’. Note that for Q-mode messages,
 the only valid value is D=0 (see Section 5.8.2).

A.3.2. Session Identifier

 Type: Session-Identifier

 Length: Fixed (4 32-bit words)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + +
 | |
 + Session ID +
 | |
 + +
 | |
 +-+

A.3.3. Network-Layer-Information (NLI)

 Type: Network-Layer-Information

 Length: Variable (depends on length of Peer-Identity and IP version)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PI-Length | IP-TTL |IP-Ver | Reserved |
 +-+
 | Routing State Validity Time |
 +-+
 // Peer Identity //
 +-+
 // Interface Address //
 +-+

Schulzrinne & Hancock Experimental [Page 128]

RFC 5971 GIST October 2010

 PI-Length (8 bits): The byte length of the Peer Identity field.

 Peer Identity (variable): The Peer Identity field. Note that the
 Peer-Identity field itself is padded to a whole number of words.

 IP-TTL (8 bits): Initial or reported IP layer TTL.

 IP-Ver (4 bits): The IP version for the Interface Address field.

 Interface Address (variable): The IP address allocated to the
 interface, matching the IP-Ver field.

 Routing State Validity Time (32 bits): The time for which the
 routing state for this flow can be considered correct without a
 refresh. Given in milliseconds. The value 0 (zero) is reserved
 and MUST NOT be used.

A.3.4. Stack-Proposal

 Type: Stack-Proposal

 Length: Variable (depends on number of profiles and size of each
 profile)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Prof-Count | Reserved |
 +-+
 // Profile 1 //
 +-+
 : :
 +-+
 // Profile N //
 +-+

 Prof-Count (8 bits): The number of profiles listed. MUST be > 0.

 Each profile is itself a sequence of protocol layers, and the profile
 is formatted as a list as follows:

 o The first byte is a count of the number of layers in the profile.
 MUST be > 0.

 o This is followed by a sequence of 1-byte MA-Protocol-IDs as
 described in Section 5.7.

Schulzrinne & Hancock Experimental [Page 129]

RFC 5971 GIST October 2010

 o The profile is padded to a word boundary with 0, 1, 2, or 3 zero
 bytes. These bytes MUST be ignored at the receiver.

 If there are no profiles (Prof-Count=0), then an "Object Value Error"
 message (Appendix A.4.4.10) with subcode 1 ("Value Not Supported")
 MUST be returned; if a particular profile is empty (the leading byte
 of the profile is zero), then subcode 3 ("Empty List") MUST be used.
 In both cases, the message MUST be dropped.

A.3.5. Stack-Configuration-Data

 Type: Stack-Configuration-Data

 Length: Variable (depends on number of protocols and size of each
 MA-protocol-options field)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MPO-Count | Reserved |
 +-+
 | MA-Hold-Time |
 +-+
 // MA-protocol-options 1 //
 +-+
 : :
 +-+
 // MA-protocol-options N //
 +-+

 MPO-Count (8 bits): The number of MA-protocol-options fields present
 (these contain their own length information). The MPO-Count MAY
 be zero, but this will only be the case if none of the MA-
 protocols referred to in the Stack-Proposal require option data.

 MA-Hold-Time (32 bits): The time for which the messaging association
 will be held open without traffic or a hello message. Note that
 this value is given in milliseconds, so the default time of 30
 seconds (Section 4.4.5) corresponds to a value of 30000. The
 value 0 (zero) is reserved and MUST NOT be used.

Schulzrinne & Hancock Experimental [Page 130]

RFC 5971 GIST October 2010

 The MA-protocol-options fields are formatted as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |MA-Protocol-ID | Profile | Length |D| Reserved |
 +-+
 // Options Data //
 +-+

 MA-Protocol-ID (8 bits): Protocol identifier as described in
 Section 5.7.

 Profile (8 bits): Tag indicating which profile from the accompanying
 Stack-Proposal object this applies to. Profiles are numbered from
 1 upwards; the special value 0 indicates ’applies to all
 profiles’.

 Length (8 bits): The byte length of MA-protocol-options field that
 follows. This will be zero-padded up to the next word boundary.

 D-flag: If set (D=1), this protocol MUST NOT be used for a messaging
 association.

 Options Data (variable): Any options data for this protocol. Note
 that the format of the options data might differ depending on
 whether the field is in a Query or Response.

A.3.6. Query-Cookie

 Type: Query-Cookie

 Length: Variable (selected by Querying node)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 // Query-Cookie //
 +-+

 The content is defined by the implementation. See Section 8.5 for
 further discussion.

Schulzrinne & Hancock Experimental [Page 131]

RFC 5971 GIST October 2010

A.3.7. Responder-Cookie

 Type: Responder-Cookie

 Length: Variable (selected by Responding node)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 // Responder-Cookie //
 +-+

 The content is defined by the implementation. See Section 8.5 for
 further discussion.

A.3.8. Hello-ID

 Type: Hello-ID

 Length: Fixed (1 32-bit word)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Hello-ID |
 +-+

 The content is defined by the implementation. See Section 5.2.2 for
 further discussion.

A.3.9. NAT-Traversal

 Type: NAT-Traversal

 Length: Variable (depends on length of contained fields)

 This object is used to support the NAT traversal mechanisms described
 in Section 7.2.2.

Schulzrinne & Hancock Experimental [Page 132]

RFC 5971 GIST October 2010

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MRI-Length | Type-Count | NAT-Count | Reserved |
 +-+
 // Original Message-Routing-Information //
 +-+
 // List of translated objects //
 +-+
 | Length of opaque information | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ //
 // Information replaced by NAT #1 |
 +-+
 : :
 +-+
 | Length of opaque information | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ //
 // Information replaced by NAT #N |
 +-+

 MRI-Length (8 bits): The length of the included MRI payload in
 32-bit words.

 Original Message-Routing-Information (variable): The MRI data from
 when the message was first sent, not including the object header.

 Type-Count (8 bits): The number of objects in the ’List of
 translated objects’ field.

 List of translated objects (variable): This field lists the types of
 objects that were translated by every NAT through which the
 message has passed. Each element in the list is a 16-bit field
 containing the first 16 bits of the object TLV header, including
 the AB extensibility flags, 2 reserved bits, and 12-bit object
 type. The list is initialised by the first NAT on the path;
 subsequent NATs may delete elements in the list. Padded with 2
 null bytes if necessary.

 NAT-Count (8 bits): The number of NATs traversed by the message, and
 the number of opaque payloads at the end of the object. The
 length fields for each opaque payload are byte counts, not
 including the 2 bytes of the length field itself. Note that each
 opaque information field is zero-padded to the next 32-bit word
 boundary if necessary.

Schulzrinne & Hancock Experimental [Page 133]

RFC 5971 GIST October 2010

A.3.10. NSLP-Data

 Type: NSLP-Data

 Length: Variable (depends on NSLP)

 This object is used to deliver data between NSLPs. GIST regards the
 data as a number of complete 32-bit words, as given by the length
 field in the TLV; any padding to a word boundary must be carried out
 within the NSLP itself.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 // NSLP Data //
 +-+

A.4. Errors

A.4.1. Error Object

 Type: Error

 Length: Variable (depends on error)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Error Class | Error Code | Error Subcode |
 +-+
 |S|M|C|D|Q| Reserved | MRI Length | Info Count |
 +-+
 | |
 + Common Header +
 | (of original message) |
 +-+
 : Session ID :
 +-+
 : Message Routing Information :
 +-+
 : Additional Information Fields :
 +-+
 : Debugging Comment :
 +-+

Schulzrinne & Hancock Experimental [Page 134]

RFC 5971 GIST October 2010

 The flags are:
 S - S=1 means the Session ID object is present.
 M - M=1 means MRI object is present.
 C - C=1 means a debug Comment is present after header.
 D - D=1 means the original message was received in D-mode.
 Q - Q=1 means the original message was received Q-mode encapsulated
 (can’t be set if D=0).

 A GIST Error Object contains an 8-bit error-class (see
 Appendix A.4.3), a 16-bit error-code, an 8-bit error-subcode, and as
 much information about the message that triggered the error as is
 available. This information MUST include the common header of the
 original message and MUST also include the Session ID and MRI objects
 if these could be decoded correctly. These objects are included in
 their entirety, except for their TLV Headers. The MRI Length field
 gives the length of the MRI object in 32-bit words.

 The Info Count field contains the number of Additional Information
 fields in the object, and the possible formats for these fields are
 given in Appendix A.4.2. The precise set of fields to include
 depends on the error code/subcode. For every error description in
 the error catalogue Appendix A.4.4, the line "Additional Info:"
 states what fields MUST be included; further fields beyond these MAY
 be included by the sender, and the fields may be included in any
 order. The Debugging Comment is a null-terminated UTF-8 string,
 padded if necessary to a whole number of 32-bit words with more null
 characters.

A.4.2. Additional Information Fields (AI)

 The Common Error Header may be followed by some Additional
 Information fields. Each Additional Information field has a simple
 TLV format as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | AI-Type | AI-Length |
 +-+
 // AI-Value //
 +-+

 The AI-Type is a 16-bit IANA-assigned value. The AI-Length gives the
 number of 32-bit words in AI-Value; if an AI-Value is not present,
 AI-Length=0. The AI-Types and AI-Lengths and AI-Value formats of the
 currently defined Additional Information fields are shown below.

Schulzrinne & Hancock Experimental [Page 135]

RFC 5971 GIST October 2010

 Message Length Info:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Calculated Length | Reserved |
 +-+
 AI-Type: 1
 AI-Length: 1
 Calculated Length (16 bits): the length of the original message
 calculated by adding up all the objects in the message. Measured in
 32-bit words.

 MTU Info:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Link MTU | Reserved |
 +-+
 AI-Type: 2
 AI-Length: 1
 Link MTU (16 bits): the IP MTU for a link along which a message
 could not be sent. Measured in bytes.

 Object Type Info:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Object Type | Reserved |
 +-+
 AI-Type: 3
 AI-Length: 1
 Object type (16 bits): This provides information about the type
 of object that caused the error.

 Object Value Info:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Rsv | Real Object Length | Offset |
 +-+
 // Object //
 +-+
 AI-Type: 4
 AI-Length: variable (depends on object length)

Schulzrinne & Hancock Experimental [Page 136]

RFC 5971 GIST October 2010

 This object carries information about a TLV object that was found
 to be invalid in the original message. An error message MAY contain
 more than one Object Value Info object.

 Real Object Length (12 bits): Since the length in the original TLV
 header may be inaccurate, this field provides the actual length of
 the object (including the TLV header) included in the error
 message. Measured in 32-bit words.

 Offset (16 bits): The byte in the object at which the GIST node
 found the error. The first byte in the object has offset=0.

 Object (variable): The invalid TLV object (including the TLV
 header).

A.4.3. Error Classes

 The first byte of the Error Object, "Error Class", indicates the
 severity level. The currently defined severity levels are:

 0 (Informational): reply data that should not be thought of as
 changing the condition of the protocol state machine.

 1 (Success): reply data that indicates that the message being
 responded to has been processed successfully in some sense.

 2 (Protocol-Error): the message has been rejected because of a
 protocol error (e.g., an error in message format).

 3 (Transient-Failure): the message has been rejected because of a
 particular local node status that may be transient (i.e., it may
 be worthwhile to retry after some delay).

 4 (Permanent-Failure): the message has been rejected because of
 local node status that will not change without additional out-of-
 band (e.g., management) operations.

 Additional error class values are reserved.

 The allocation of error classes to particular errors is not precise;
 the above descriptions are deliberately informal. Actual error
 processing SHOULD take into account the specific error in question;
 the error class may be useful supporting information (e.g., in
 network debugging).

Schulzrinne & Hancock Experimental [Page 137]

RFC 5971 GIST October 2010

A.4.4. Error Catalogue

 This section lists all the possible GIST errors, including when they
 are raised and what Additional Information fields MUST be carried in
 the Error Object.

A.4.4.1. Common Header Parse Error

 Class: Protocol-Error
 Code: 1
 Additional Info: For subcode 3 only, Message Length Info carries
 the calculated message length.

 This message is sent if a GIST node receives a message where the
 common header cannot be parsed correctly, or where an error in the
 overall message format is detected. Note that in this case the
 original MRI and Session ID MUST NOT be included in the Error Object.
 This error code is split into subcodes as follows:

 0: Unknown Version: The GIST version is unknown. The (highest)
 supported version supported by the node can be inferred from the
 common header of the Error message itself.

 1: Unknown Type: The GIST message type is unknown.

 2: Invalid R-flag: The R-flag in the header is inconsistent with the
 message type.

 3: Incorrect Message Length: The overall message length is not
 consistent with the set of objects carried.

 4: Invalid E-flag: The E-flag is set in the header, but this is not
 a Data message.

 5: Invalid C-flag: The C-flag was set on something other than a
 Query message or Q-mode Data message, or was clear on a Query
 message.

Schulzrinne & Hancock Experimental [Page 138]

RFC 5971 GIST October 2010

A.4.4.2. Hop Limit Exceeded

 Class: Permanent-Failure
 Code: 2
 Additional Info: None

 This message is sent if a GIST node receives a message with a GIST
 hop count of zero, or a GIST node tries to forward a message after
 its GIST hop count has been decremented to zero on reception. This
 message indicates either a routing loop or too small an initial hop
 count value.

A.4.4.3. Incorrect Encapsulation

 Class: Protocol-Error
 Code: 3
 Additional Info: None

 This message is sent if a GIST node receives a message that uses an
 incorrect encapsulation method (e.g., a Query arrives over an MA, or
 the Confirm for a handshake that sets up a messaging association
 arrives in D-mode).

A.4.4.4. Incorrectly Delivered Message

 Class: Protocol-Error
 Code: 4
 Additional Info: None

 This message is sent if a GIST node receives a message over an MA
 that is not associated with the MRI/NSLPID/SID combination in the
 message.

A.4.4.5. No Routing State

 Class: Protocol-Error
 Code: 5
 Additional Info: None

 This message is sent if a node receives a message for which routing
 state should exist, but has not yet been created and thus there is no
 appropriate Querying-SM or Responding-SM. This can occur on
 receiving a Data or Confirm message at a node whose policy requires
 routing state to exist before such messages can be accepted. See
 also Section 6.1 and Section 6.3.

Schulzrinne & Hancock Experimental [Page 139]

RFC 5971 GIST October 2010

A.4.4.6. Unknown NSLPID

 Class: Permanent-Failure
 Code: 6
 Additional Info: None

 This message is sent if a router receives a directly addressed
 message for an NSLP that it does not support.

A.4.4.7. Endpoint Found

 Class: Permanent-Failure
 Code: 7
 Additional Info: None

 This message is sent if a GIST node at a flow endpoint receives a
 Query message for an NSLP that it does not support.

A.4.4.8. Message Too Large

 Class: Permanent-Failure
 Code: 8
 Additional Info: MTU Info

 This message is sent if a router receives a message that it can’t
 forward because it exceeds the IP MTU on the next or subsequent hops.

A.4.4.9. Object Type Error

 Class: Protocol-Error
 Code: 9
 Additional Info: Object Type Info

 This message is sent if a GIST node receives a message containing a
 TLV object with an invalid type. The message indicates the object
 type at fault in the additional info field. This error code is split
 into subcodes as follows:

 0: Duplicate Object: This subcode is used if a GIST node receives a
 message containing multiple instances of an object that may only
 appear once in a message. In the current specification, this
 applies to all objects.

 1: Unrecognised Object: This subcode is used if a GIST node receives
 a message containing an object that it does not support, and the
 extensibility flags AB=00.

Schulzrinne & Hancock Experimental [Page 140]

RFC 5971 GIST October 2010

 2: Missing Object: This subcode is used if a GIST node receives a
 message that is missing one or more mandatory objects. This
 message is also sent if a Stack-Proposal is sent without a
 matching Stack-Configuration-Data object when one was necessary,
 or vice versa.

 3: Invalid Object Type: This subcode is used if the object type is
 known, but it is not valid for this particular GIST message type.

 4: Untranslated Object: This subcode is used if the object type is
 known and is mandatory to interpret, but it contains addressing
 data that has not been translated by an intervening NAT.

 5: Invalid Extensibility Flags: This subcode is used if an object is
 received with the extensibility flags AB=11.

A.4.4.10. Object Value Error

 Class: Protocol-Error
 Code: 10
 Additional Info: 1 or 2 Object Value Info fields as given below

 This message is sent if a node receives a message containing an
 object that cannot be properly parsed. The error message contains a
 single Object Value Info object, except for subcode 5 as stated
 below. This error code is split into subcodes as follows:

 0: Incorrect Length: The overall length does not match the object
 length calculated from the object contents.

 1: Value Not Supported: The value of a field is not supported by the
 GIST node.

 2: Invalid Flag-Field Combination: An object contains an invalid
 combination of flags and/or fields. At the moment, this only
 relates to the Path-Coupled MRI (Appendix A.3.1.1), but in future
 there may be more.

 3: Empty List: At the moment, this only relates to Stack-Proposals.
 The error message is sent if a stack proposal with a length > 0
 contains only null bytes (a length of 0 is handled as "Value Not
 Supported").

 4: Invalid Cookie: The message contains a cookie that could not be
 verified by the node.

Schulzrinne & Hancock Experimental [Page 141]

RFC 5971 GIST October 2010

 5: Stack-Proposal - Stack-Configuration-Data Mismatch: This subcode
 is used if a GIST node receives a message in which the data in the
 Stack-Proposal object is inconsistent with the information in the
 Stack Configuration Data object. In this case, both the Stack-
 Proposal object and Stack-Configuration-Data object MUST be
 included in separate Object Value Info fields in that order.

A.4.4.11. Invalid IP-Layer TTL

 Class: Permanent-Failure
 Code: 11
 Additional Info: None

 This error indicates that a message was received with an IP-layer TTL
 outside an acceptable range, for example, that an upstream Query was
 received with an IP layer TTL of less than 254 (i.e., more than one
 IP hop from the sender). The actual IP distance can be derived from
 the IP-TTL information in the NLI object carried in the same message.

A.4.4.12. MRI Validation Failure

 Class: Permanent-Failure
 Code: 12
 Additional Info: Object Value Info

 This error indicates that a message was received with an MRI that
 could not be accepted, e.g., because of too much wildcarding or
 failing some validation check (cf. Section 5.8.1.2). The Object
 Value Info includes the MRI so the error originator can indicate the
 part of the MRI that caused the problem. The error code is divided
 into subcodes as follows:

 0: MRI Too Wild: The MRI contained too much wildcarding (e.g., too
 short a destination address prefix) to be forwarded correctly down
 a single path.

 1: IP Version Mismatch: The MRI in a path-coupled Query message
 refers to an IP version that is not implemented on the interface
 used, or is different from the IP version of the Query
 encapsulation (see Section 7.4).

 2: Ingress Filter Failure: The MRI in a path-coupled Query message
 describes a flow that would not pass ingress filtering on the
 interface used.

Schulzrinne & Hancock Experimental [Page 142]

RFC 5971 GIST October 2010

Appendix B. API between GIST and Signalling Applications

 This appendix provides an abstract API between GIST and signalling
 applications. It should not constrain implementers, but rather help
 clarify the interface between the different layers of the NSIS
 protocol suite. In addition, although some of the data types carry
 the information from GIST information elements, this does not imply
 that the format of that data as sent over the API has to be the same.

 Conceptually, the API has similarities to the sockets API,
 particularly that for unconnected UDP sockets. An extension for an
 API like that for UDP connected sockets could be considered. In this
 case, for example, the only information needed in a SendMessage
 primitive would be NSLP-Data, NSLP-Data-Size, and NSLP-Message-Handle
 (which can be null). Other information that was persistent for a
 group of messages could be configured once for the socket. Such
 extensions may make a concrete implementation more efficient but do
 not change the API semantics, and so are not considered further here.

B.1. SendMessage

 This primitive is passed from a signalling application to GIST. It
 is used whenever the signalling application wants to initiate sending
 a message.

 SendMessage (NSLP-Data, NSLP-Data-Size, NSLP-Message-Handle,
 NSLPID, Session-ID, MRI, SII-Handle,
 Transfer-Attributes, Timeout, IP-TTL, GIST-Hop-Count)

 The following arguments are mandatory:

 NSLP-Data: The NSLP message itself.

 NSLP-Data-Size: The length of NSLP-Data.

 NSLP-Message-Handle: A handle for this message that can be used by
 GIST as a reference in subsequent MessageStatus notifications
 (Appendix B.3). Notifications could be about error conditions or
 about the security attributes that will be used for the message.
 A NULL handle may be supplied if the NSLP is not interested in
 such notifications.

 NSLPID: An identifier indicating which NSLP this is.

 Session-ID: The NSIS session identifier. Note that it is assumed
 that the signalling application provides this to GIST rather than
 GIST providing a value itself.

Schulzrinne & Hancock Experimental [Page 143]

RFC 5971 GIST October 2010

 MRI: Message routing information for use by GIST in determining the
 correct next GIST hop for this message. The MRI implies the
 message routing method to be used and the message direction.

 The following arguments are optional:

 SII-Handle: A handle, previously supplied by GIST, to a data
 structure that should be used to route the message explicitly to a
 particular GIST next hop.

 Transfer-Attributes: Attributes defining how the message should be
 handled (see Section 4.1.2). The following attributes can be
 considered:

 Reliability: Values ’unreliable’ or ’reliable’.

 Security: This attribute allows the NSLP to specify what level of
 security protection is requested for the message (such as
 ’integrity’ or ’confidentiality’) and can also be used to
 specify what authenticated signalling source and destination
 identities should be used to send the message. The
 possibilities can be learned by the signalling application from
 prior MessageStatus or RecvMessage notifications. If an NSLP-
 Message-Handle is provided, GIST will inform the signalling
 application of what values it has actually chosen for this
 attribute via a MessageStatus callback. This might take place
 either synchronously (where GIST is selecting from available
 messaging associations) or asynchronously (when a new messaging
 association needs to be created).

 Local Processing: This attribute contains hints from the
 signalling application about what local policy should be
 applied to the message -- in particular, its transmission
 priority relative to other messages, or whether GIST should
 attempt to set up or maintain forward routing state.

 Timeout: Length of time GIST should attempt to send this message
 before indicating an error.

 IP-TTL: The value of the IP layer TTL that should be used when
 sending this message (may be overridden by GIST for particular
 messages).

 GIST-Hop-Count: The value for the hop count when sending the
 message.

Schulzrinne & Hancock Experimental [Page 144]

RFC 5971 GIST October 2010

B.2. RecvMessage

 This primitive is passed from GIST to a signalling application. It
 is used whenever GIST receives a message from the network, including
 the case of null messages (zero-length NSLP payload), typically
 initial Query messages. For Queries, the results of invoking this
 primitive are used by GIST to check whether message routing state
 should be created (see the discussion of the ’Routing-State-Check’
 argument below).

 RecvMessage (NSLP-Data, NSLP-Data-Size, NSLPID, Session-ID, MRI,
 Routing-State-Check, SII-Handle, Transfer-Attributes,
 IP-TTL, IP-Distance, GIST-Hop-Count,
 Inbound-Interface)

 NSLP-Data: The NSLP message itself (may be empty).

 NSLP-Data-Size: The length of NSLP-Data (may be zero).

 NSLPID: An identifier indicating which NSLP this message is for.

 Session-ID: The NSIS session identifier.

 MRI: Message routing information that was used by GIST in forwarding
 this message. Implicitly defines the message routing method that
 was used and the direction of the message relative to the MRI.

 Routing-State-Check: This boolean is True if GIST is checking with
 the signalling application to see if routing state should be
 created with the peer or the message should be forwarded further
 (see Section 4.3.2). If True, the signalling application should
 return the following values via the RecvMessage call:

 A boolean indicating whether to set up the state.

 Optionally, an NSLP-Payload to carry in the generated Response
 or forwarded Query respectively.

 This mechanism could be extended to enable the signalling
 application to indicate to GIST whether state installation should
 be immediate or deferred (see Section 5.3.3 and Section 6.3 for
 further discussion).

 SII-Handle: A handle to a data structure, identifying a peer address
 and interface. Can be used to identify route changes and for
 explicit routing to a particular GIST next hop.

Schulzrinne & Hancock Experimental [Page 145]

RFC 5971 GIST October 2010

 Transfer-Attributes: The reliability and security attributes that
 were associated with the reception of this particular message. As
 well as the attributes associated with SendMessage, GIST may
 indicate the level of verification of the addresses in the MRI.
 Three attributes can be indicated:

 * Whether the signalling source address is one of the flow
 endpoints (i.e., whether this is the first or last GIST hop).

 * Whether the signalling source address has been validated by a
 return routability check.

 * Whether the message was explicitly routed (and so has not been
 validated by GIST as delivered consistently with local routing
 state).

 IP-TTL: The value of the IP layer TTL this message was received with
 (if available).

 IP-Distance: The number of IP hops from the peer signalling node
 that sent this message along the path, or 0 if this information is
 not available.

 GIST-Hop-Count: The value of the hop count the message was received
 with, after being decremented in the GIST receive-side processing.

 Inbound-Interface: Attributes of the interface on which the message
 was received, such as whether it lies on the internal or external
 side of a NAT. These attributes have only local significance and
 are defined by the implementation.

B.3. MessageStatus

 This primitive is passed from GIST to a signalling application. It
 is used to notify the signalling application that a message that it
 requested to be sent could not be dispatched, or to inform the
 signalling application about the transfer attributes that have been
 selected for the message (specifically, security attributes). The
 signalling application can respond to this message with a return code
 to abort the sending of the message if the attributes are not
 acceptable.

 MessageStatus (NSLP-Message-Handle, Transfer-Attributes, Error-Type)

 NSLP-Message-Handle: A handle for the message provided by the
 signalling application in SendMessage.

Schulzrinne & Hancock Experimental [Page 146]

RFC 5971 GIST October 2010

 Transfer-Attributes: The reliability and security attributes that
 will be used to transmit this particular message.

 Error-Type: Indicates the type of error that occurred, for example,
 ’no next node found’.

B.4. NetworkNotification

 This primitive is passed from GIST to a signalling application. It
 indicates that a network event of possible interest to the signalling
 application occurred.

 NetworkNotification (NSLPID, MRI, Network-Notification-Type)

 NSLPID: An identifier indicating which NSLP this is message is for.

 MRI: Provides the message routing information to which the network
 notification applies.

 Network-Notification-Type: Indicates the type of event that caused
 the notification and associated additional data. Five events have
 been identified:

 Last Node: GIST has detected that this is the last NSLP-aware
 node in the path. See Section 4.3.4.

 Routing Status Change: GIST has installed new routing state, has
 detected that existing routing state may no longer be valid, or
 has re-established existing routing state. See Section 7.1.3.
 The new status is reported; if the status is Good, the SII-
 Handle of the peer is also reported, as for RecvMessage.

 Route Deletion: GIST has determined that an old route is now
 definitely invalid, e.g., that flows are definitely not using
 it (see Section 7.1.4). The SII-Handle of the peer is also
 reported.

 Node Authorisation Change: The authorisation status of a peer has
 changed, meaning that routing state is no longer valid or that
 a signalling peer is no longer reachable; see Section 4.4.2.

 Communication Failure: Communication with the peer has failed;
 messages may have been lost.

Schulzrinne & Hancock Experimental [Page 147]

RFC 5971 GIST October 2010

B.5. SetStateLifetime

 This primitive is passed from a signalling application to GIST. It
 indicates the duration for which the signalling application would
 like GIST to retain its routing state. It can also give a hint that
 the signalling application is no longer interested in the state.

 SetStateLifetime (NSLPID, MRI, SID, State-Lifetime)

 NSLPID: Provides the NSLPID to which the routing state lifetime
 applies.

 MRI: Provides the message routing information to which the routing
 state lifetime applies; includes the direction (in the D-flag).

 SID: The session ID that the signalling application will be using
 with this routing state. Can be wildcarded.

 State-Lifetime: Indicates the lifetime for which the signalling
 application wishes GIST to retain its routing state (may be zero,
 indicating that the signalling application has no further interest
 in the GIST state).

B.6. InvalidateRoutingState

 This primitive is passed from a signalling application to GIST. It
 indicates that the signalling application has knowledge that the next
 signalling hop known to GIST may no longer be valid, either because
 of changes in the network routing or the processing capabilities of
 signalling application nodes. See Section 7.1.

 InvalidateRoutingState (NSLPID, MRI, Status, NSLP-Data,
 NSLP-Data-Size, Urgent)

 NSLPID: The NSLP originating the message. May be null (in which
 case, the invalidation applies to all signalling applications).

 MRI: The flow for which routing state should be invalidated;
 includes the direction of the change (in the D-flag).

 Status: The new status that should be assumed for the routing state,
 one of Bad or Tentative (see Section 7.1.3).

 NSLP-Data, NSLP-Data-Size: (optional) A payload provided by the NSLP
 to be used the next GIST handshake. This can be used as part of a
 conditional peering process (see Section 4.3.2). The payload will
 be transmitted without security protection.

Schulzrinne & Hancock Experimental [Page 148]

RFC 5971 GIST October 2010

 Urgent: A hint as to whether rediscovery should take place
 immediately or only with the next signalling message.

Appendix C. Deployment Issues with Router Alert Options

 The GIST peer discovery handshake (Section 4.4.1) depends on the
 interception of Q-mode encapsulated IP packets (Section 4.3.1 and
 Section 5.3.2) by routers. There are two fundamental requirements on
 the process:

 1. Packets relevant to GIST must be intercepted.

 2. Packets not relevant to GIST must be forwarded transparently.

 This specification defines the GIST behaviour to ensure that both
 requirements are met for a GIST-capable node. However, GIST packets
 will also encounter non-GIST nodes, for which requirement (2) still
 applies. If non-GIST nodes block Q-mode packets, GIST will not
 function. It is always possible for middleboxes to block specific
 traffic types; by using a normal UDP encapsulation for Q-mode
 traffic, GIST allows NATs at least to pass these messages
 (Section 7.2.1), and firewalls can be configured with standard
 policies. However, where the Q-mode encapsulation uses a Router
 Alert Option (RAO) at the IP level this can lead to additional
 problems. The situation is different for IPv4 and IPv6.

 The IPv4 RAO is defined by [13], which defines the RAO format with a
 2-byte value field; however, only one value (zero) is defined and
 there is no IANA registry for further allocations. It states that
 unknown values should be ignored (i.e., the packets forwarded as
 normal IP traffic); however, it has also been reported that some
 existing implementations simply ignore the RAO value completely (i.e.
 process any packet with an RAO as though the option value was zero).
 Therefore, the use of non-zero RAO values cannot be relied on to make
 GIST traffic transparent to existing implementations. (Note that it
 may still be valuable to be able to allocate non-zero RAO values for
 IPv4: this makes the interception process more efficient for nodes
 that do examine the value field, and makes no difference to nodes
 that *incorrectly* ignore it. Whether or not non-zero RAO values are
 used does not change the GIST protocol operation, but needs to be
 decided when new NSLPs are registered.)

 The second stage of the analysis is therefore what happens when a
 non-GIST node that implements RAO handling sees a Q-mode packet. The
 RAO specification simply states "Routers that recognize this option
 shall examine packets carrying it more closely (check the IP Protocol

Schulzrinne & Hancock Experimental [Page 149]

RFC 5971 GIST October 2010

 field, for example) to determine whether or not further processing is
 necessary". There are two possible basic behaviours for GIST
 traffic:

 1. The "closer examination" of the packet is sufficiently
 intelligent to realise that the node does not need to process it
 and should forward it. This could either be by virtue of the
 fact that the node has not been configured to match IP-
 Protocol=UDP for RAO packets at all or that even if UDP traffic
 is intercepted the port numbers do not match anything locally
 configured.

 2. The "closer examination" of the packet identifies it as UDP, and
 delivers it to the UDP stack on the node. In this case, it can
 no longer be guaranteed to be processed appropriately. Most
 likely, it will simply be dropped or rejected with an ICMP error
 (because there is no GIST process on the destination port to
 which to deliver it).

 Analysis of open-source operating system source code shows the first
 type of behaviour, and this has also been seen in direct GIST
 experiments with commercial routers, including the case when they
 process other uses of the RAO (i.e., RSVP). However, it has also
 been reported that other RAO implementations will exhibit the second
 type of behaviour. The consequence of this would be that Q-mode
 packets are blocked in the network and GIST could not be used. Note
 that although this is caused by some subtle details in the RAO
 processing rules, the end result is the same as if the packet was
 simply blocked for other reasons (for example, many IPv4 firewalls
 drop packets with options by default).

 The GIST specification allows two main options for circumventing
 nodes that block Q-mode traffic in IPv4. Whether to use these
 options is a matter of implementation and configuration choice.

 o A GIST node can be configured to send Q-mode packets without the
 RAO at all. This should avoid the above problems, but should only
 be done if it is known that nodes on the path to the receiver are
 able to intercept such packets. (See Section 5.3.2.1.)

 o If a GIST node can identify exactly where the packets are being
 blocked (e.g., from ICMP messages), or can discover some point on
 the path beyond the blockage (e.g., by use of traceroute or by
 routing table analysis), it can send the Q-mode messages to that
 point using IP-in-IP tunelling without any RAO. This bypasses the
 input side processing on the blocking node, but picks up normal
 GIST behaviour beyond it.

Schulzrinne & Hancock Experimental [Page 150]

RFC 5971 GIST October 2010

 If in the light of deployment experience the problem of blocked
 Q-mode traffic turns out to be widespread and these techniques turn
 out to be insufficient, a further possibility is to define an
 alternative Q-mode encapsulation that does not use UDP. This would
 require a specification change. Such an option would be restricted
 to network-internal use, since operation through NATs and firewalls
 would be much harder with it.

 The situation with IPv6 is rather different, since in that case the
 use of non-zero RAO values is well established in the specification
 ([17]) and an IANA registry exists. The main problem is that several
 implementations are still immature: for example, some treat any RAO-
 marked packet as though it was for local processing without further
 analysis. Since this prevents any RAO usage at all (including the
 existing standardised ones) in such a network, it seems reasonable to
 assume that such implementations will be fixed as part of the general
 deployment of IPv6.

Appendix D. Example Routing State Table and Handshake

 Figure 11 shows a signalling scenario for a single flow being managed
 by two signalling applications using the path-coupled message routing
 method. The flow sender and receiver and one router support both;
 two other routers support one each. The figure also shows the
 routing state table at node B.

Schulzrinne & Hancock Experimental [Page 151]

RFC 5971 GIST October 2010

 A B C D E
 +------+ +-----+ +-----+ +-----+ +--------+
Flow	+-+ +-+	NSLP1		NSLP1				Flow				
Sender	====	R	====	R	====	NSLP2	====		====	NSLP2	====	Receiver
	+-+ +-+	GIST		GIST		GIST						
 +------+ +-----+ +-----+ +-----+ +--------+
 Flow Direction ------------------------------>>

 +------------------------------------+---------+--------+-----------+
 | Message Routing Information | Session | NSLPID | Routing |
 | | ID | | State |
 +------------------------------------+---------+--------+-----------+
MRM = Path-Coupled; Flow ID =	0xABCD	NSLP1	IP-A
{IP-A, IP-E, proto/ports}; D=up			
MRM = Path-Coupled; Flow ID =	0xABCD	NSLP1	(null)
{IP-A, IP-E, proto/ports}; D=down			
MRM = Path-Coupled; Flow ID =	0x1234	NSLP2	IP-A
{IP-A, IP-E, proto/ports}; D=up			
MRM = Path-Coupled; Flow ID =	0x1234	NSLP2	Points to
{IP-A, IP-E, proto/ports}; D=down			B-D MA
 +------------------------------------+---------+--------+-----------+

 Figure 11: A Signalling Scenario

 The upstream state is just the same address for each application.
 For the downstream direction, NSLP1 only requires D-mode messages and
 so no explicit routing state towards C is needed. NSLP2 requires a
 messaging association for its messages towards node D, and node C
 does not process NSLP2 at all, so the peer state for NSLP2 is a
 pointer to a messaging association that runs directly from B to D.
 Note that E is not visible in the state table (except implicitly in
 the address in the message routing information); routing state is
 stored only for adjacent peers. (In addition to the peer
 identification, IP hop counts are stored for each peer where the
 state itself if not null; this is not shown in the table.)

 Figure 12 shows a GIST handshake setting up a messaging association
 for B-D signalling, with the exchange of Stack Proposals and MA-
 protocol-options in each direction. The Querying node selects TLS/
 TCP as the stack configuration and sets up the messaging association
 over which it sends the Confirm.

Schulzrinne & Hancock Experimental [Page 152]

RFC 5971 GIST October 2010

 -------------------------- Query ---------------------------->
 IP(Src=IP#A; Dst=IP#E; RAO for NSLP2); UDP(Src=6789; Dst=GIST)
 D-mode magic number (0x4e04 bda5)
 GIST(Header(Type=Query; NSLPID=NSLP2; C=1; R=1; S=0)
 MRI(MRM=Path-Coupled; Flow=F; Direction=down)
 SessionID(0x1234) NLI(Peer=’string1’; IA=IP#B)
 QueryCookie(0x139471239471923526)
 StackProposal(#Proposals=3;1=TLS/TCP; 2=TLS/SCTP; 3=TCP)
 StackConfigurationData(HoldTime=300; #MPO=2;
 TCP(Applicable: all; Data: null)
 SCTP(Applicable: all; Data: null)))

 <---------------------- Response ----------------------------
 IP(Src=IP#D; Dst=IP#B); UDP(Src=GIST; Dst=6789)
 D-mode magic number (0x4e04 bda5)
 GIST(Header(Type=Response; NSLPID=NSLP2; C=0; R=1; S=1)
 MRI(MRM=Path-Coupled; Flow=F; Direction=up)
 SessionID(0x1234) NLI(Peer=’stringr2’, IA=IP#D)
 QueryCookie(0x139471239471923526)
 ResponderCookie(0xacdefedcdfaeeeded)
 StackProposal(#Proposals=3; 1=TCP; 2=SCTP; 3=TLS/TCP)
 StackConfigurationData(HoldTime=200; #MPO=3;
 TCP(Applicable: 3; Data: port=6123)
 TCP(Applicable: 1; Data: port=5438)
 SCTP(Applicable: all; Data: port=3333)))

 -------------------------TCP SYN----------------------->
 <----------------------TCP SYN/ACK----------------------
 -------------------------TCP ACK----------------------->
 TCP connect(IP Src=IP#B; IP Dst=IP#D; Src Port=9166; Dst Port=6123)
 <-----------------------TLS INIT----------------------->

 ------------------------ Confirm ---------------------------->
 [Sent within messaging association]
 GIST(Header(Type=Confirm; NSLPID=NSLP2; C=0; R=0; S=1)
 MRI(MRM=Path-Coupled; Flow=F; Direction=down)
 SessionID(0x1234) NLI(Peer=’string1’; IA=IP#B)
 ResponderCookie(0xacdefedcdfaeeeded)
 StackProposal(#Proposals=3; 1=TCP; 2=SCTP; 3=TLS/TCP)
 StackConfigurationData(HoldTime=300))

 Figure 12: GIST Handshake Message Sequence

Schulzrinne & Hancock Experimental [Page 153]

RFC 5971 GIST October 2010

Authors’ Addresses

 Henning Schulzrinne
 Columbia University
 Department of Computer Science
 450 Computer Science Building
 New York, NY 10027
 US

 Phone: +1 212 939 7042
 EMail: hgs+nsis@cs.columbia.edu
 URI: http://www.cs.columbia.edu

 Robert Hancock
 Roke Manor Research
 Old Salisbury Lane
 Romsey, Hampshire SO51 0ZN
 UK

 EMail: robert.hancock@roke.co.uk
 URI: http://www.roke.co.uk

Schulzrinne & Hancock Experimental [Page 154]

