Net wor k Wor ki ng Group R Kalin
Request for Comments: 60 MT
13 July 1970

A Sinplified NCP Protocol
Abstract

This RFC defines a new NCP protocol that is sinple enough to be

i mpl enented on a very snall conputer, yet can be extended for
efficient operation on large tinesharing machi nes. Because worst case
storage requirenments can be predicted, a conservative inplenentation
can be freed of conplicated resource allocation and storage contro
procedures. A general error recovery procedure is al so defined.

Overvi ew and Rati ona

The central premise of this proposal is an insistence that all user-
to-user connections be bi-directional. For those famliar wth
communi cati on theory, this appears nost reasonable. Al comrunication
requires a cyclical flow of information. To deny a sinple association
bet ween a nessage and its reply nakes protocol unnecessarily
conplicated and turns sinple nechanisms of flow control into

ni ght mar es.

It is proposed that a bi-directional connection, or duplex link, be
identified by a pair of socket nunbers, one for each end. This is
hal f the nunber presently required. Associated with the connection
are sone nunmber of "crates" or nmessage containers. These crates
travel back and forth over the link carrying network nessages from
one side to the other. Buffers are allocated at each end of the Iink
to hold crates and the nessages that they carry. Wrst case buffer
requirenents are equal to the nunber of crates in circulation, or the
"capacity" of the link

Details

A nmessage buffer has four states which foll ow one another cyclically.
They are:

1) enpty,
2) filled with a nessage-|laden crate to be unl oaded,
3) filled with an enpty crate, and

4) filled with a nessage-laden crate to be sent.

Kal i n [Page 1]

RFC 60 A Sinmplified NCP Protocol 13 July 1970

Nornal |y state transitions correspond to nessage arrival, nessage
removal , message insertion and nessage transni ssion

For a process to be an NCP it nust:

1) be able to make initial contact with foreign hosts via the contro
link and, if necessary, delete user-to-user links left over fromthe
previous systemincarnation

2) be able to create user-to-user |inks.
3) be able to interface users with these |inks.
4) be able to del ete user-to-user |inks.

The first of the four functions shall not be discussed here except to
point out that it contains critical races that can not be resol ved

wi t hout naki ng assunpti ons about maxi nrum nmessage propagati on del ays.
Since within the ARPA network, bounds on nessage turnaround tine do
not exist, the approach chosen nust necessarily be tender. The other
three functions are discussed first fromthe viewpoint of one
interested in inplenmenting a mninmal NCP. Then extensions and

i nprovenents are proposed that are suitable for |arger machi nes

Any NCP nust be capable of creating a duplex |ink between a |oca
user process and a renote one. The current protocol acconplishes this
by queuing a potentially unbounded nunmber of RFC s and waiting for
the user to examine the queue to determ ne with whom he w shes to
talk. There is no guarantee that the user will ever |ook at the
queue and there is no way to limt the size of the queue. The
overfl ow error nmessage suggested fails in the respect because it
admits that the RFC will only be sent again. The picture need not be
this bl eak. The foll owi ng network conversati on denonstrates how
connections can be made without using queues or relying on user
process attention.

Suppose that a | ocal user process and a renote user process wish to
establish a new connection. The renote process asks its NCP to listen
for a connection request and gives it the socket identifier for its
end. Optionally it can give both socket identifiers. The user process
at the local end asks its NCP to send a request for a duplex link
(RFDL). It specifies both socket identifiers of the proposed |link

The | ocal NCP sends a RFDL over the control link with the follow ng
format:

RFDL <my socket > <your socket> <max nunber buffers> <spare>

Kal i n [Page 2]

RFC 60 A Sinmplified NCP Protocol 13 July 1970

The third argunent is normally supplied by the local NCP and

i ndi cates the maxi mum nunber of buffers the NCP will consider
allocating to this duplex link. If buffers are in user storage the
count may be given by the user in a call nmade to the NCP

The RFDL is received at the renpte host and the renpte NCP conpares
<ny socket> and <your socket> agai nst the socket identifiers supplied
by unmatched listens issued to it. For listens in which just a single
identifier was given only <your socket> nmust match. |If both socket
identifiers were given, they both nmust match. If a match is found an
acknow edgenent nmessage with the following format is sent back by the
NCP:

ACDL <your socket> <ny socket> <nunber buffers> <spare>

The <nunber buffers> parameter is equal to the smaller of <max nunber
buffers> as specified in the RFDL and the nunber of nessage buffers
agreeable to the renote NCP. If no match is found the error nessage
returned is an ACDL in which <nunber buffers> equals zero. Note that
the RFDL nechanismis similar to a RFC mechani smin which the bound
on queue size is one and connection acceptance is done entirely by

t he NCP.

The two varieties of a listen correspond to two nodes of channel
operation. The single paraneter variety, as typified by a LOG@ N
process, is to be used by prograns that will "talk with anyone who
happens to dial their nunmber". Screening of contacts for
appropriateness is left to the user process. The doubl e paraneter
listen is used by user progranms who know wi th whom they will

conmmuni cate and do not wish to be bothered by random RFDL’ s from
other sources. Gven the way in which socket nane space is
partitioned, it is inpossible to get a matching RFDL from any process
but the one intended.

Message buffers for the connection are allocated in the renpote host
before it sends the ACDL and in the |local host at the tine the ACDL
is received. The nunber of buffers at each end is equal to the
<nunber buffers> paranmeter in the ACDL. The state of all renote
buffers is "enpty" and of all local buffers "filled with enpty
crate". After buffers are allocated the |ocal user process is
notified that it is able to start sendi ng nessages.

The type of interface presented by the NCP between the user process
and the newy created duplex link is a decision local to that host. A
sinpl e but conplete interface would provide two calls to be nmade to
the NCP. GETMESSAGE woul d return the next nessage fromthe |ink
complete with marking, text and paddi ng. PUTMESSAGE woul d take a

Kal i n [Page 3]

RFC 60 A Sinmplified NCP Protocol 13 July 1970

message, marking and text only, and buffer it for transni ssion. The
obvi ous | ogical errors would be reported.

We suggest that nessage alignnent be left to the user. On nost
machines it is a sinple but tinme consum ng operation. If done in the
NCP there is no guarantee that the user will not have to readjust it
hinself. It is usually not possible to know a priori whether the text
portion should be right adjusted to a word boundary, left adjusted to
a word boundary, aligned to the end of the | ast nessage, or
fragmented in sone exotic way.

Wthin this protocol nessage boundaries are used to provide storage
allocation information. If not required by the user this information
can be forgotten and the user interface can be nade to appear as a
bit stream Though wel conmed by purists, such a strategy may produce
conplications when attenpting to synchronize both ends of a link

Li nks are deleted by renoving enpty crates fromthem and recl ai ning
the buffers allocated to the crates renoved. Only buffers with crates
in can be reclainmed; enpty buffers nmust renain available to receive
nmessages that may arrive. When no crates are left, no buffers remain,
and the socket identifiers can be forgotten. \When enpty crates are
renoved, a decrement size nmessage is sent to the foreign NCP to all ow
it to reduce its buffer allocation

DEC <ny socket> <your socket> <nunber of buffers dropped>

Areply is solicited fromthe foreign NCP to affirmthe del etions or
to conplain of an error. Possible errors include "no such |ink" and
"i npossi bl e nunber of buffers dropped”

The option to close a link can be given to a user process by
providing either of two system calls. NOMOREQUTPUT decl ares that no
nmore nmessages will be sent by the | ocal user process. Al loca
buffers for the link that contain enpty crates are reclainmed by the
NCP. DEC nessages are sent to the foreign NCP. As crates are enptied
via CETMESSACE calls, their buffers are reclained too. As an
alternative, the call KILLMESSAGE can be inplenented. This call can
be used in place of a PUTMESSAGE. Instead of filling an enpty crate
with a message to be sent, KILLMESSAGE will cause the crate to be
recl ai med and a DEC control nessage sent.

In situations where the user process has died, or for sone other
reason can not close the link, nore drastic neasures nmust be taken
For these situations, the ABEND control nessage is defined:

ABEND <my socket > <your socket>

Kal i n [Page 4]

RFC 60 A Sinmplified NCP Protocol 13 July 1970

After sending an ABEND the issuing NCP starts to close the link. Al
buffers containing input are destroyed. A DEC is issued for these and
the previously enpty buffers. If nmessages arrive on the link, they
are destroyed and a DEC is issued. Any ABEND received for the link is
i gnor ed.

When the renpte NCP receives the ABEND, it stops sending nessages
over the link and refuses new nessages fromthe user process at its
end. Enpty buffers are reclai ned. Pending output nessages are
destroyed and their buffers reclainmed. |Input messages are fed to the
user process as long as it will accept them Buffers are reclainmed as
input is accepted. DEC s are issued to cover all buffers recl ai ned.
When the user process will take no nore input, input nessages are
destroyed and their buffers reclained. Eventually all buffers will be
reclaimed at both ends of the link. At such time the connection can
be consi dered cl osed and the socket nunbers used can be reassigned

wi t hout anbi guity.

Under this proposed protocol the above four functions constitute al
that nust be part of a network NCP. If buffers are allocated only
when free ones exist there can be no "overflow' errors nor is there
any need to place further constraints on nessage flow For any user
message that arrives buffer roomis guaranteed. Al control nessages
can be processed without requiring additional storage to be

all ocated. Attenpts by a user process to issue too nmany |listens can
be thwarted by | ocal control procedures.

Inefficiencies in storage will result when the nunmber of outstanding
connections gets large. One price of coding sinplicity is a fifty
percent utilization of buffer space. On large hosts it may prove
advant ageous to inplenent sonme of the foll owi ng NCP extensions. Wth
nmore conplicated flow control procedures, it becones possible for an
NCP to allocate nore buffer space than actually exists and still not
to get into trouble. O her extensions provide nmessage conpression

i nproved throughput and user transparent error recovery.

Because sone extensions require the cooperation of foreign hosts and
assune that they have inplenented nore than the minimal NCP it is
proposed that an inquiry control nessage be used to find out what
ext ensions the foreign host has inplenmented. The response to an | NQ
will be a control nessage defining a host profile. If an "undefined
error"” message is returned, the foreign host is assuned to have only
a mnimal NCP

A sinmple extension is to define a control nessage that will replace
user RFNM's. A user RFNMis a null text nessage sent, for exanple, as
areply when a file is transferred via a duplex link. They are
inefficient since they tie up an entry in the M s |ink assignnent

Kal i n [Page 5]

RFC 60 A Sinmplified NCP Protocol 13 July 1970

tabl e and degrade network throughput. A nore efficient solutionis to
send a speci al nmessage over the control link. In this way one short
nessage can replace several user nessages.

URFNM <ny socket > <your socket> <nunber of user RFNM s>

Because the control link is concurrent with the return side of the
user link, URFNM s can not be substituted for user RFNM s when there
are other nessages to be sent on the return link. G herw se ordering
will be lost and with it user transparency.

Thr oughput can al so be increased with a nechanismto add additiona
crates on a duplex link. This night be at user instigation or be a
deci sion of the NCP

I NC <ny socket> <your socket> <number buffers desired>

The foreign host replies to an increase request by returning an I NCR
I NCR <y socket> <your socket> <nunber buffers to be added>

If the foreign NCP is unable to neet the additional buffer demand,
<nunber buffers to be added> will be | ess than <nunber buffers

desired> and possibly zero. The initial state of all |ocal buffers
added is "filled with enpty crate" and of all foreign buffers
"enpty".

The spare argunent in the RFDL and ACDL coul d be used to declare the
maxi mum si zed nessage that will actually be sent in that direction. A
perceptive NCP could observe this information and allocate snall er
buffers. A lesser NCP could ignore it and al ways assune maxi num

| ength nessages. For exanple, if the field were zero then only user
RFNM s woul d be sent. A smart NCP woul d all ocate no storage at all

If the NCP retains a copy of each user nessage sent over the network
until a reply is returned, an automatic error recovery procedure can
be i npl emented. Because the capacity of the link is always known, an
NCP can determ ne whether there are nessages in transit. This is done
by first sending a STOP nessage to the foreign NCP

STOP <ny socket> <your socket >

The STOP nessage tells the foreign NCP to tenporarily stop
transmitting nmessages over the selected Iink. Unlike CEASE-ON LI NK
there is no guarantee as to how nany nessages will be sent before the
STOP takes effect. The local NCP then sends a link inquiry nmessage:

LI NQ <y socket > <your socket >

Kal i n [Page 6]

RFC 60 A Sinmplified NCP Protocol 13 July 1970

The reply gives the nunber of crates at the foreign end of the link
The LINQ nessage is repeated until this nunber plus the nunber of

| ocal crates equals the capacity of the link. At this tinme no
messages are in transit and the two ends of the link have been
synchroni zed. Messages can now be identified relative to the
synchroni zation point. Thus the Iocal NCP can send a control nessage
asking, for exanple, that the third to |ast nessage be retransmtted.
The foreign NCP is able to identify which nessage this is and to
retransmit it. Once all errors have been recovered a START contro
message, similar in format to the STOP, is sent to the foreign NCP
and normal operation continues. The entire recovery procedure can be
transparent to both user processes.

It is expected that the larger hosts will not adhere strictly to the
wor st case storage allocation requirenents. Rather they will allocate
nmore buffers than they have and reply on statistics to keep them out
of trouble nost of the tinme. Such conduct is perfectly permssible as
long as it is transparent to foreign hosts. The protocol allows an
NCP to |lie about storage allocation as long as he is not caught. In
situations where detection appears imrmnent sone of the follow ng
control mechanisnms will need to be applied. They are listed in

i ncreasi ng order of power.

a) Do not send out any user RFNM s or other short nmessages. There is
a good chance that they will be replaced by | onger nessages that wll
strain buffer capacity even nore.

b) Try not to accept any new nmessages fromthe I MP. Block |oca
processes attenpting to i ssue nessages.

c) Issue DEC s to free up buffer space. Do not allocate nore than one
buffer to RFDL’s and refuse I NC s.

d) Fake errors in messages waiting for |l ocal user action. Do this
only if the host that sent it has inplenented error recovery. This
will free buffer space and allow you to recover later. This fina
measure is admttedly a last resort, but it should be powerful enough
to control any emergency.

It is the hope of the author that the above protocol presents an
attractive alternative to that proposed by RFC 54 and its additions.
Al though it appears at a late date, it should not be nore than a
mnor jolt to inplenentation efforts. It is sinple enough to be

i mpl emented quickly. If adopted, a majority of the present sites
could be talking intelligently with one another by the end of the
sunmer .

Kal i n [Page 7]

RFC 60 A Sinmplified NCP Protocol 13 July 1970

Ref er ences

[1] Crocker, S.D., Postel, J., Newkirk, J. and Kraley, M, "Oficia
protocol proffering", RFC 54, June 1970.

Aut hor’ s Addr ess

Ri chard Kalin
M T Lincoln Laboratory

[This RFC was put into nmachine readable formfor entry]
[into the online RFC archives by lan Redfern 4/97]

Kal i n [Page 8]

