
Internet Engineering Task Force (IETF) J. Schoenwaelder, Ed.
Request for Comments: 6021 Jacobs University
Category: Standards Track October 2010
ISSN: 2070-1721

 Common YANG Data Types

Abstract

 This document introduces a collection of common data types to be used
 with the YANG data modeling language.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6021.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Schoenwaelder Standards Track [Page 1]

RFC 6021 YANG-TYPES October 2010

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction ..2
 2. Overview ..3
 3. Core YANG Derived Types ...4
 4. Internet-Specific Derived Types13
 5. IANA Considerations ..22
 6. Security Considerations ..23
 7. Contributors ...23
 8. Acknowledgments ..23
 9. References ...23
 9.1. Normative References23
 9.2. Informative References24

1. Introduction

 YANG [RFC6020] is a data modeling language used to model
 configuration and state data manipulated by the Network Configuration
 Protocol (NETCONF) [RFC4741]. The YANG language supports a small set
 of built-in data types and provides mechanisms to derive other types
 from the built-in types.

 This document introduces a collection of common data types derived
 from the built-in YANG data types. The definitions are organized in
 several YANG modules. The "ietf-yang-types" module contains
 generally useful data types. The "ietf-inet-types" module contains
 definitions that are relevant for the Internet protocol suite.

 The derived types are generally designed to be applicable for
 modeling all areas of management information.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119].

Schoenwaelder Standards Track [Page 2]

RFC 6021 YANG-TYPES October 2010

2. Overview

 This section provides a short overview of the types defined in
 subsequent sections and their equivalent Structure of Management
 Information Version 2 (SMIv2) [RFC2578][RFC2579] data types. A YANG
 data type is equivalent to an SMIv2 data type if the data types have
 the same set of values and the semantics of the values are
 equivalent.

 Table 1 lists the types defined in the ietf-yang-types YANG module
 and the corresponding SMIv2 types (- indicates there is no
 corresponding SMIv2 type).

 ietf-yang-types

 +-----------------------+--------------------------------+
 | YANG type | Equivalent SMIv2 type (module) |
 +-----------------------+--------------------------------+
 | counter32 | Counter32 (SNMPv2-SMI) |
 | zero-based-counter32 | ZeroBasedCounter32 (RMON2-MIB) |
 | counter64 | Counter64 (SNMPv2-SMI) |
 | zero-based-counter64 | ZeroBasedCounter64 (HCNUM-TC) |
 | gauge32 | Gauge32 (SNMPv2-SMI) |
 | gauge64 | CounterBasedGauge64 (HCNUM-TC) |
 | object-identifier | - |
 | object-identifier-128 | OBJECT IDENTIFIER |
 | date-and-time | - |
 | timeticks | TimeTicks (SNMPv2-SMI) |
 | timestamp | TimeStamp (SNMPv2-TC) |
 | phys-address | PhysAddress (SNMPv2-TC) |
 | mac-address | MacAddress (SNMPv2-TC) |
 | xpath1.0 | - |
 +-----------------------+--------------------------------+

 Table 1

Schoenwaelder Standards Track [Page 3]

RFC 6021 YANG-TYPES October 2010

 Table 2 lists the types defined in the ietf-inet-types YANG module
 and the corresponding SMIv2 types (if any).

 ietf-inet-types

 +-----------------+---+
 | YANG type | Equivalent SMIv2 type (module) |
 +-----------------+---+
 | ip-version | InetVersion (INET-ADDRESS-MIB) |
 | dscp | Dscp (DIFFSERV-DSCP-TC) |
 | ipv6-flow-label | IPv6FlowLabel (IPV6-FLOW-LABEL-MIB) |
 | port-number | InetPortNumber (INET-ADDRESS-MIB) |
 | as-number | InetAutonomousSystemNumber (INET-ADDRESS-MIB) |
 | ip-address | - |
 | ipv4-address | - |
 | ipv6-address | - |
 | ip-prefix | - |
 | ipv4-prefix | - |
 | ipv6-prefix | - |
 | domain-name | - |
 | host | - |
 | uri | Uri (URI-TC-MIB) |
 +-----------------+---+

 Table 2

3. Core YANG Derived Types

 The ietf-yang-types YANG module references [IEEE802], [ISO9834-1],
 [RFC2578], [RFC2579], [RFC2856], [RFC3339], [RFC4502], [XPATH], and
 [XSD-TYPES].

 <CODE BEGINS> file "ietf-yang-types@2010-09-24.yang"

 module ietf-yang-types {

 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-types";
 prefix "yang";

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 WG Chair: David Partain
 <mailto:david.partain@ericsson.com>

Schoenwaelder Standards Track [Page 4]

RFC 6021 YANG-TYPES October 2010

 WG Chair: David Kessens
 <mailto:david.kessens@nsn.com>

 Editor: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>";

 description
 "This module contains a collection of generally useful derived
 YANG data types.

 Copyright (c) 2010 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in Section
 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 6021; see
 the RFC itself for full legal notices.";

 revision 2010-09-24 {
 description
 "Initial revision.";
 reference
 "RFC 6021: Common YANG Data Types";
 }

 /*** collection of counter and gauge types ***/

 typedef counter32 {
 type uint32;
 description
 "The counter32 type represents a non-negative integer
 that monotonically increases until it reaches a
 maximum value of 2^32-1 (4294967295 decimal), when it
 wraps around and starts increasing again from zero.

 Counters have no defined ’initial’ value, and thus, a
 single value of a counter has (in general) no information
 content. Discontinuities in the monotonically increasing
 value normally occur at re-initialization of the
 management system, and at other times as specified in the
 description of a schema node using this type. If such
 other times can occur, for example, the creation of
 a schema node of type counter32 at times other than
 re-initialization, then a corresponding schema node

Schoenwaelder Standards Track [Page 5]

RFC 6021 YANG-TYPES October 2010

 should be defined, with an appropriate type, to indicate
 the last discontinuity.

 The counter32 type should not be used for configuration
 schema nodes. A default statement SHOULD NOT be used in
 combination with the type counter32.

 In the value set and its semantics, this type is equivalent
 to the Counter32 type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2 (SMIv2)";
 }

 typedef zero-based-counter32 {
 type yang:counter32;
 default "0";
 description
 "The zero-based-counter32 type represents a counter32
 that has the defined ’initial’ value zero.

 A schema node of this type will be set to zero (0) on creation
 and will thereafter increase monotonically until it reaches
 a maximum value of 2^32-1 (4294967295 decimal), when it
 wraps around and starts increasing again from zero.

 Provided that an application discovers a new schema node
 of this type within the minimum time to wrap, it can use the
 ’initial’ value as a delta. It is important for a management
 station to be aware of this minimum time and the actual time
 between polls, and to discard data if the actual time is too
 long or there is no defined minimum time.

 In the value set and its semantics, this type is equivalent
 to the ZeroBasedCounter32 textual convention of the SMIv2.";
 reference
 "RFC 4502: Remote Network Monitoring Management Information
 Base Version 2";
 }

 typedef counter64 {
 type uint64;
 description
 "The counter64 type represents a non-negative integer
 that monotonically increases until it reaches a
 maximum value of 2^64-1 (18446744073709551615 decimal),
 when it wraps around and starts increasing again from zero.

 Counters have no defined ’initial’ value, and thus, a

Schoenwaelder Standards Track [Page 6]

RFC 6021 YANG-TYPES October 2010

 single value of a counter has (in general) no information
 content. Discontinuities in the monotonically increasing
 value normally occur at re-initialization of the
 management system, and at other times as specified in the
 description of a schema node using this type. If such
 other times can occur, for example, the creation of
 a schema node of type counter64 at times other than
 re-initialization, then a corresponding schema node
 should be defined, with an appropriate type, to indicate
 the last discontinuity.

 The counter64 type should not be used for configuration
 schema nodes. A default statement SHOULD NOT be used in
 combination with the type counter64.

 In the value set and its semantics, this type is equivalent
 to the Counter64 type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2 (SMIv2)";
 }

 typedef zero-based-counter64 {
 type yang:counter64;
 default "0";
 description
 "The zero-based-counter64 type represents a counter64 that
 has the defined ’initial’ value zero.

 A schema node of this type will be set to zero (0) on creation
 and will thereafter increase monotonically until it reaches
 a maximum value of 2^64-1 (18446744073709551615 decimal),
 when it wraps around and starts increasing again from zero.

 Provided that an application discovers a new schema node
 of this type within the minimum time to wrap, it can use the
 ’initial’ value as a delta. It is important for a management
 station to be aware of this minimum time and the actual time
 between polls, and to discard data if the actual time is too
 long or there is no defined minimum time.

 In the value set and its semantics, this type is equivalent
 to the ZeroBasedCounter64 textual convention of the SMIv2.";
 reference
 "RFC 2856: Textual Conventions for Additional High Capacity
 Data Types";
 }

 typedef gauge32 {

Schoenwaelder Standards Track [Page 7]

RFC 6021 YANG-TYPES October 2010

 type uint32;
 description
 "The gauge32 type represents a non-negative integer, which
 may increase or decrease, but shall never exceed a maximum
 value, nor fall below a minimum value. The maximum value
 cannot be greater than 2^32-1 (4294967295 decimal), and
 the minimum value cannot be smaller than 0. The value of
 a gauge32 has its maximum value whenever the information
 being modeled is greater than or equal to its maximum
 value, and has its minimum value whenever the information
 being modeled is smaller than or equal to its minimum value.
 If the information being modeled subsequently decreases
 below (increases above) the maximum (minimum) value, the
 gauge32 also decreases (increases).

 In the value set and its semantics, this type is equivalent
 to the Gauge32 type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2 (SMIv2)";
 }

 typedef gauge64 {
 type uint64;
 description
 "The gauge64 type represents a non-negative integer, which
 may increase or decrease, but shall never exceed a maximum
 value, nor fall below a minimum value. The maximum value
 cannot be greater than 2^64-1 (18446744073709551615), and
 the minimum value cannot be smaller than 0. The value of
 a gauge64 has its maximum value whenever the information
 being modeled is greater than or equal to its maximum
 value, and has its minimum value whenever the information
 being modeled is smaller than or equal to its minimum value.
 If the information being modeled subsequently decreases
 below (increases above) the maximum (minimum) value, the
 gauge64 also decreases (increases).

 In the value set and its semantics, this type is equivalent
 to the CounterBasedGauge64 SMIv2 textual convention defined
 in RFC 2856";
 reference
 "RFC 2856: Textual Conventions for Additional High Capacity
 Data Types";
 }

Schoenwaelder Standards Track [Page 8]

RFC 6021 YANG-TYPES October 2010

 /*** collection of identifier related types ***/

 typedef object-identifier {
 type string {
 pattern ’(([0-1](\.[1-3]?[0-9]))|(2\.(0|([1-9]\d*))))’
 + ’(\.(0|([1-9]\d*)))*’;
 }
 description
 "The object-identifier type represents administratively
 assigned names in a registration-hierarchical-name tree.

 Values of this type are denoted as a sequence of numerical
 non-negative sub-identifier values. Each sub-identifier
 value MUST NOT exceed 2^32-1 (4294967295). Sub-identifiers
 are separated by single dots and without any intermediate
 whitespace.

 The ASN.1 standard restricts the value space of the first
 sub-identifier to 0, 1, or 2. Furthermore, the value space
 of the second sub-identifier is restricted to the range
 0 to 39 if the first sub-identifier is 0 or 1. Finally,
 the ASN.1 standard requires that an object identifier
 has always at least two sub-identifier. The pattern
 captures these restrictions.

 Although the number of sub-identifiers is not limited,
 module designers should realize that there may be
 implementations that stick with the SMIv2 limit of 128
 sub-identifiers.

 This type is a superset of the SMIv2 OBJECT IDENTIFIER type
 since it is not restricted to 128 sub-identifiers. Hence,
 this type SHOULD NOT be used to represent the SMIv2 OBJECT
 IDENTIFIER type, the object-identifier-128 type SHOULD be
 used instead.";
 reference
 "ISO9834-1: Information technology -- Open Systems
 Interconnection -- Procedures for the operation of OSI
 Registration Authorities: General procedures and top
 arcs of the ASN.1 Object Identifier tree";
 }

Schoenwaelder Standards Track [Page 9]

RFC 6021 YANG-TYPES October 2010

 typedef object-identifier-128 {
 type object-identifier {
 pattern ’\d*(\.\d*){1,127}’;
 }
 description
 "This type represents object-identifiers restricted to 128
 sub-identifiers.

 In the value set and its semantics, this type is equivalent
 to the OBJECT IDENTIFIER type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2 (SMIv2)";
 }

 /*** collection of date and time related types ***/

 typedef date-and-time {
 type string {
 pattern ’\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?’
 + ’(Z|[\+\-]\d{2}:\d{2})’;
 }
 description
 "The date-and-time type is a profile of the ISO 8601
 standard for representation of dates and times using the
 Gregorian calendar. The profile is defined by the
 date-time production in Section 5.6 of RFC 3339.

 The date-and-time type is compatible with the dateTime XML
 schema type with the following notable exceptions:

 (a) The date-and-time type does not allow negative years.

 (b) The date-and-time time-offset -00:00 indicates an unknown
 time zone (see RFC 3339) while -00:00 and +00:00 and Z all
 represent the same time zone in dateTime.

 (c) The canonical format (see below) of data-and-time values
 differs from the canonical format used by the dateTime XML
 schema type, which requires all times to be in UTC using the
 time-offset ’Z’.

 This type is not equivalent to the DateAndTime textual
 convention of the SMIv2 since RFC 3339 uses a different
 separator between full-date and full-time and provides
 higher resolution of time-secfrac.

Schoenwaelder Standards Track [Page 10]

RFC 6021 YANG-TYPES October 2010

 The canonical format for date-and-time values with a known time
 zone uses a numeric time zone offset that is calculated using
 the device’s configured known offset to UTC time. A change of
 the device’s offset to UTC time will cause date-and-time values
 to change accordingly. Such changes might happen periodically
 in case a server follows automatically daylight saving time
 (DST) time zone offset changes. The canonical format for
 date-and-time values with an unknown time zone (usually referring
 to the notion of local time) uses the time-offset -00:00.";
 reference
 "RFC 3339: Date and Time on the Internet: Timestamps
 RFC 2579: Textual Conventions for SMIv2
 XSD-TYPES: XML Schema Part 2: Datatypes Second Edition";
 }

 typedef timeticks {
 type uint32;
 description
 "The timeticks type represents a non-negative integer that
 represents the time, modulo 2^32 (4294967296 decimal), in
 hundredths of a second between two epochs. When a schema
 node is defined that uses this type, the description of
 the schema node identifies both of the reference epochs.

 In the value set and its semantics, this type is equivalent
 to the TimeTicks type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2 (SMIv2)";
 }

 typedef timestamp {
 type yang:timeticks;
 description
 "The timestamp type represents the value of an associated
 timeticks schema node at which a specific occurrence happened.
 The specific occurrence must be defined in the description
 of any schema node defined using this type. When the specific
 occurrence occurred prior to the last time the associated
 timeticks attribute was zero, then the timestamp value is
 zero. Note that this requires all timestamp values to be
 reset to zero when the value of the associated timeticks
 attribute reaches 497+ days and wraps around to zero.

 The associated timeticks schema node must be specified
 in the description of any schema node using this type.

 In the value set and its semantics, this type is equivalent
 to the TimeStamp textual convention of the SMIv2.";

Schoenwaelder Standards Track [Page 11]

RFC 6021 YANG-TYPES October 2010

 reference
 "RFC 2579: Textual Conventions for SMIv2";
 }

 /*** collection of generic address types ***/

 typedef phys-address {
 type string {
 pattern ’([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?’;
 }
 description
 "Represents media- or physical-level addresses represented
 as a sequence octets, each octet represented by two hexadecimal
 numbers. Octets are separated by colons. The canonical
 representation uses lowercase characters.

 In the value set and its semantics, this type is equivalent
 to the PhysAddress textual convention of the SMIv2.";
 reference
 "RFC 2579: Textual Conventions for SMIv2";
 }

 typedef mac-address {
 type string {
 pattern ’[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}’;
 }
 description
 "The mac-address type represents an IEEE 802 MAC address.
 The canonical representation uses lowercase characters.

 In the value set and its semantics, this type is equivalent
 to the MacAddress textual convention of the SMIv2.";
 reference
 "IEEE 802: IEEE Standard for Local and Metropolitan Area
 Networks: Overview and Architecture
 RFC 2579: Textual Conventions for SMIv2";
 }

 /*** collection of XML specific types ***/

 typedef xpath1.0 {
 type string;
 description
 "This type represents an XPATH 1.0 expression.

 When a schema node is defined that uses this type, the
 description of the schema node MUST specify the XPath
 context in which the XPath expression is evaluated.";

Schoenwaelder Standards Track [Page 12]

RFC 6021 YANG-TYPES October 2010

 reference
 "XPATH: XML Path Language (XPath) Version 1.0";
 }

 }

 <CODE ENDS>

4. Internet-Specific Derived Types

 The ietf-inet-types YANG module references [RFC0768], [RFC0791],
 [RFC0793], [RFC0952], [RFC1034], [RFC1123], [RFC1930], [RFC2460],
 [RFC2474], [RFC2780], [RFC2782], [RFC3289], [RFC3305], [RFC3492],
 [RFC3595], [RFC3986], [RFC4001], [RFC4007], [RFC4271], [RFC4291],
 [RFC4340], [RFC4893], [RFC4960], [RFC5017], [RFC5891], and [RFC5952].

 <CODE BEGINS> file "ietf-inet-types@2010-09-24.yang"

 module ietf-inet-types {

 namespace "urn:ietf:params:xml:ns:yang:ietf-inet-types";
 prefix "inet";

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 WG Chair: David Partain
 <mailto:david.partain@ericsson.com>

 WG Chair: David Kessens
 <mailto:david.kessens@nsn.com>

 Editor: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>";

 description
 "This module contains a collection of generally useful derived
 YANG data types for Internet addresses and related things.

 Copyright (c) 2010 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

Schoenwaelder Standards Track [Page 13]

RFC 6021 YANG-TYPES October 2010

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in Section
 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 6021; see
 the RFC itself for full legal notices.";

 revision 2010-09-24 {
 description
 "Initial revision.";
 reference
 "RFC 6021: Common YANG Data Types";
 }

 /*** collection of protocol field related types ***/

 typedef ip-version {
 type enumeration {
 enum unknown {
 value "0";
 description
 "An unknown or unspecified version of the Internet protocol.";
 }
 enum ipv4 {
 value "1";
 description
 "The IPv4 protocol as defined in RFC 791.";
 }
 enum ipv6 {
 value "2";
 description
 "The IPv6 protocol as defined in RFC 2460.";
 }
 }
 description
 "This value represents the version of the IP protocol.

 In the value set and its semantics, this type is equivalent
 to the InetVersion textual convention of the SMIv2.";
 reference
 "RFC 791: Internet Protocol
 RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
 RFC 4001: Textual Conventions for Internet Network Addresses";
 }

 typedef dscp {

Schoenwaelder Standards Track [Page 14]

RFC 6021 YANG-TYPES October 2010

 type uint8 {
 range "0..63";
 }
 description
 "The dscp type represents a Differentiated Services Code-Point
 that may be used for marking packets in a traffic stream.

 In the value set and its semantics, this type is equivalent
 to the Dscp textual convention of the SMIv2.";
 reference
 "RFC 3289: Management Information Base for the Differentiated
 Services Architecture
 RFC 2474: Definition of the Differentiated Services Field
 (DS Field) in the IPv4 and IPv6 Headers
 RFC 2780: IANA Allocation Guidelines For Values In
 the Internet Protocol and Related Headers";
 }

 typedef ipv6-flow-label {
 type uint32 {
 range "0..1048575";
 }
 description
 "The flow-label type represents flow identifier or Flow Label
 in an IPv6 packet header that may be used to discriminate
 traffic flows.

 In the value set and its semantics, this type is equivalent
 to the IPv6FlowLabel textual convention of the SMIv2.";
 reference
 "RFC 3595: Textual Conventions for IPv6 Flow Label
 RFC 2460: Internet Protocol, Version 6 (IPv6) Specification";
 }

 typedef port-number {
 type uint16 {
 range "0..65535";
 }
 description
 "The port-number type represents a 16-bit port number of an
 Internet transport layer protocol such as UDP, TCP, DCCP, or
 SCTP. Port numbers are assigned by IANA. A current list of
 all assignments is available from <http://www.iana.org/>.

 Note that the port number value zero is reserved by IANA. In
 situations where the value zero does not make sense, it can
 be excluded by subtyping the port-number type.

Schoenwaelder Standards Track [Page 15]

RFC 6021 YANG-TYPES October 2010

 In the value set and its semantics, this type is equivalent
 to the InetPortNumber textual convention of the SMIv2.";
 reference
 "RFC 768: User Datagram Protocol
 RFC 793: Transmission Control Protocol
 RFC 4960: Stream Control Transmission Protocol
 RFC 4340: Datagram Congestion Control Protocol (DCCP)
 RFC 4001: Textual Conventions for Internet Network Addresses";
 }

 /*** collection of autonomous system related types ***/

 typedef as-number {
 type uint32;
 description
 "The as-number type represents autonomous system numbers
 which identify an Autonomous System (AS). An AS is a set
 of routers under a single technical administration, using
 an interior gateway protocol and common metrics to route
 packets within the AS, and using an exterior gateway
 protocol to route packets to other ASs’. IANA maintains
 the AS number space and has delegated large parts to the
 regional registries.

 Autonomous system numbers were originally limited to 16
 bits. BGP extensions have enlarged the autonomous system
 number space to 32 bits. This type therefore uses an uint32
 base type without a range restriction in order to support
 a larger autonomous system number space.

 In the value set and its semantics, this type is equivalent
 to the InetAutonomousSystemNumber textual convention of
 the SMIv2.";
 reference
 "RFC 1930: Guidelines for creation, selection, and registration
 of an Autonomous System (AS)
 RFC 4271: A Border Gateway Protocol 4 (BGP-4)
 RFC 4893: BGP Support for Four-octet AS Number Space
 RFC 4001: Textual Conventions for Internet Network Addresses";
 }

 /*** collection of IP address and hostname related types ***/

 typedef ip-address {
 type union {
 type inet:ipv4-address;
 type inet:ipv6-address;
 }

Schoenwaelder Standards Track [Page 16]

RFC 6021 YANG-TYPES October 2010

 description
 "The ip-address type represents an IP address and is IP
 version neutral. The format of the textual representations
 implies the IP version.";
 }

 typedef ipv4-address {
 type string {
 pattern
 ’(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}’
 + ’([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])’
 + ’(%[\p{N}\p{L}]+)?’;
 }
 description
 "The ipv4-address type represents an IPv4 address in
 dotted-quad notation. The IPv4 address may include a zone
 index, separated by a % sign.

 The zone index is used to disambiguate identical address
 values. For link-local addresses, the zone index will
 typically be the interface index number or the name of an
 interface. If the zone index is not present, the default
 zone of the device will be used.

 The canonical format for the zone index is the numerical
 format";
 }

 typedef ipv6-address {
 type string {
 pattern ’((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}’
 + ’((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|’
 + ’(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}’
 + ’(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))’
 + ’(%[\p{N}\p{L}]+)?’;
 pattern ’(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|’
 + ’((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)’
 + ’(%.+)?’;
 }
 description
 "The ipv6-address type represents an IPv6 address in full,
 mixed, shortened, and shortened-mixed notation. The IPv6
 address may include a zone index, separated by a % sign.

Schoenwaelder Standards Track [Page 17]

RFC 6021 YANG-TYPES October 2010

 The zone index is used to disambiguate identical address
 values. For link-local addresses, the zone index will
 typically be the interface index number or the name of an
 interface. If the zone index is not present, the default
 zone of the device will be used.

 The canonical format of IPv6 addresses uses the compressed
 format described in RFC 4291, Section 2.2, item 2 with the
 following additional rules: the :: substitution must be
 applied to the longest sequence of all-zero 16-bit chunks
 in an IPv6 address. If there is a tie, the first sequence
 of all-zero 16-bit chunks is replaced by ::. Single
 all-zero 16-bit chunks are not compressed. The canonical
 format uses lowercase characters and leading zeros are
 not allowed. The canonical format for the zone index is
 the numerical format as described in RFC 4007, Section
 11.2.";
 reference
 "RFC 4291: IP Version 6 Addressing Architecture
 RFC 4007: IPv6 Scoped Address Architecture
 RFC 5952: A Recommendation for IPv6 Address Text Representation";
 }

 typedef ip-prefix {
 type union {
 type inet:ipv4-prefix;
 type inet:ipv6-prefix;
 }
 description
 "The ip-prefix type represents an IP prefix and is IP
 version neutral. The format of the textual representations
 implies the IP version.";
 }

 typedef ipv4-prefix {
 type string {
 pattern
 ’(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}’
 + ’([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])’
 + ’/(([0-9])|([1-2][0-9])|(3[0-2]))’;
 }
 description
 "The ipv4-prefix type represents an IPv4 address prefix.
 The prefix length is given by the number following the
 slash character and must be less than or equal to 32.

Schoenwaelder Standards Track [Page 18]

RFC 6021 YANG-TYPES October 2010

 A prefix length value of n corresponds to an IP address
 mask that has n contiguous 1-bits from the most
 significant bit (MSB) and all other bits set to 0.

 The canonical format of an IPv4 prefix has all bits of
 the IPv4 address set to zero that are not part of the
 IPv4 prefix.";
 }

 typedef ipv6-prefix {
 type string {
 pattern ’((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}’
 + ’((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|’
 + ’(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}’
 + ’(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))’
 + ’(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))’;
 pattern ’(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|’
 + ’((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)’
 + ’(/.+)’;
 }
 description
 "The ipv6-prefix type represents an IPv6 address prefix.
 The prefix length is given by the number following the
 slash character and must be less than or equal 128.

 A prefix length value of n corresponds to an IP address
 mask that has n contiguous 1-bits from the most
 significant bit (MSB) and all other bits set to 0.

 The IPv6 address should have all bits that do not belong
 to the prefix set to zero.

 The canonical format of an IPv6 prefix has all bits of
 the IPv6 address set to zero that are not part of the
 IPv6 prefix. Furthermore, IPv6 address is represented
 in the compressed format described in RFC 4291, Section
 2.2, item 2 with the following additional rules: the ::
 substitution must be applied to the longest sequence of
 all-zero 16-bit chunks in an IPv6 address. If there is
 a tie, the first sequence of all-zero 16-bit chunks is
 replaced by ::. Single all-zero 16-bit chunks are not
 compressed. The canonical format uses lowercase
 characters and leading zeros are not allowed.";
 reference
 "RFC 4291: IP Version 6 Addressing Architecture";
 }

Schoenwaelder Standards Track [Page 19]

RFC 6021 YANG-TYPES October 2010

 /*** collection of domain name and URI types ***/

 typedef domain-name {
 type string {
 pattern ’((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*’
 + ’([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)’
 + ’|\.’;
 length "1..253";
 }
 description
 "The domain-name type represents a DNS domain name. The
 name SHOULD be fully qualified whenever possible.

 Internet domain names are only loosely specified. Section
 3.5 of RFC 1034 recommends a syntax (modified in Section
 2.1 of RFC 1123). The pattern above is intended to allow
 for current practice in domain name use, and some possible
 future expansion. It is designed to hold various types of
 domain names, including names used for A or AAAA records
 (host names) and other records, such as SRV records. Note
 that Internet host names have a stricter syntax (described
 in RFC 952) than the DNS recommendations in RFCs 1034 and
 1123, and that systems that want to store host names in
 schema nodes using the domain-name type are recommended to
 adhere to this stricter standard to ensure interoperability.

 The encoding of DNS names in the DNS protocol is limited
 to 255 characters. Since the encoding consists of labels
 prefixed by a length bytes and there is a trailing NULL
 byte, only 253 characters can appear in the textual dotted
 notation.

 The description clause of schema nodes using the domain-name
 type MUST describe when and how these names are resolved to
 IP addresses. Note that the resolution of a domain-name value
 may require to query multiple DNS records (e.g., A for IPv4
 and AAAA for IPv6). The order of the resolution process and
 which DNS record takes precedence can either be defined
 explicitely or it may depend on the configuration of the
 resolver.

 Domain-name values use the US-ASCII encoding. Their canonical
 format uses lowercase US-ASCII characters. Internationalized
 domain names MUST be encoded in punycode as described in RFC
 3492";
 reference
 "RFC 952: DoD Internet Host Table Specification
 RFC 1034: Domain Names - Concepts and Facilities

Schoenwaelder Standards Track [Page 20]

RFC 6021 YANG-TYPES October 2010

 RFC 1123: Requirements for Internet Hosts -- Application
 and Support
 RFC 2782: A DNS RR for specifying the location of services
 (DNS SRV)
 RFC 3492: Punycode: A Bootstring encoding of Unicode for
 Internationalized Domain Names in Applications
 (IDNA)
 RFC 5891: Internationalizing Domain Names in Applications
 (IDNA): Protocol";
 }

 typedef host {
 type union {
 type inet:ip-address;
 type inet:domain-name;
 }
 description
 "The host type represents either an IP address or a DNS
 domain name.";
 }

 typedef uri {
 type string;
 description
 "The uri type represents a Uniform Resource Identifier
 (URI) as defined by STD 66.

 Objects using the uri type MUST be in US-ASCII encoding,
 and MUST be normalized as described by RFC 3986 Sections
 6.2.1, 6.2.2.1, and 6.2.2.2. All unnecessary
 percent-encoding is removed, and all case-insensitive
 characters are set to lowercase except for hexadecimal
 digits, which are normalized to uppercase as described in
 Section 6.2.2.1.

 The purpose of this normalization is to help provide
 unique URIs. Note that this normalization is not
 sufficient to provide uniqueness. Two URIs that are
 textually distinct after this normalization may still be
 equivalent.

 Objects using the uri type may restrict the schemes that
 they permit. For example, ’data:’ and ’urn:’ schemes
 might not be appropriate.

 A zero-length URI is not a valid URI. This can be used to
 express ’URI absent’ where required.

Schoenwaelder Standards Track [Page 21]

RFC 6021 YANG-TYPES October 2010

 In the value set and its semantics, this type is equivalent
 to the Uri SMIv2 textual convention defined in RFC 5017.";
 reference
 "RFC 3986: Uniform Resource Identifier (URI): Generic Syntax
 RFC 3305: Report from the Joint W3C/IETF URI Planning Interest
 Group: Uniform Resource Identifiers (URIs), URLs,
 and Uniform Resource Names (URNs): Clarifications
 and Recommendations
 RFC 5017: MIB Textual Conventions for Uniform Resource
 Identifiers (URIs)";
 }

 }

 <CODE ENDS>

5. IANA Considerations

 This document registers two URIs in the IETF XML registry [RFC3688].
 Following the format in RFC 3688, the following registrations have
 been made.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-types

 Registrant Contact: The NETMOD WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-inet-types

 Registrant Contact: The NETMOD WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020].

 name: ietf-yang-types
 namespace: urn:ietf:params:xml:ns:yang:ietf-yang-types
 prefix: yang
 reference: RFC 6021

 name: ietf-inet-types
 namespace: urn:ietf:params:xml:ns:yang:ietf-inet-types
 prefix: inet
 reference: RFC 6021

Schoenwaelder Standards Track [Page 22]

RFC 6021 YANG-TYPES October 2010

6. Security Considerations

 This document defines common data types using the YANG data modeling
 language. The definitions themselves have no security impact on the
 Internet but the usage of these definitions in concrete YANG modules
 might have. The security considerations spelled out in the YANG
 specification [RFC6020] apply for this document as well.

7. Contributors

 The following people contributed significantly to the initial version
 of this document:

 - Andy Bierman (Brocade)
 - Martin Bjorklund (Tail-f Systems)
 - Balazs Lengyel (Ericsson)
 - David Partain (Ericsson)
 - Phil Shafer (Juniper Networks)

8. Acknowledgments

 The editor wishes to thank the following individuals for providing
 helpful comments on various versions of this document: Ladislav
 Lhotka, Lars-Johan Liman, and Dan Romascanu.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC3492] Costello, A., "Punycode: A Bootstring encoding of
 Unicode for Internationalized Domain Names in
 Applications (IDNA)", RFC 3492, March 2003.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

Schoenwaelder Standards Track [Page 23]

RFC 6021 YANG-TYPES October 2010

 [RFC4007] Deering, S., Haberman, B., Jinmei, T., Nordmark, E., and
 B. Zill, "IPv6 Scoped Address Architecture", RFC 4007,
 March 2005.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [XPATH] Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", World Wide Web Consortium
 Recommendation REC-xpath-19991116, November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

9.2. Informative References

 [IEEE802] IEEE, "IEEE Standard for Local and Metropolitan Area
 Networks: Overview and Architecture", IEEE Std. 802-
 2001.

 [ISO9834-1] ISO/IEC, "Information technology -- Open Systems
 Interconnection -- Procedures for the operation of OSI
 Registration Authorities: General procedures and top
 arcs of the ASN.1 Object Identifier tree", ISO/
 IEC 9834-1:2008, 2008.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC0952] Harrenstien, K., Stahl, M., and E. Feinler, "DoD
 Internet host table specification", RFC 952,
 October 1985.

 [RFC1034] Mockapetris, P., "Domain names - concepts and
 facilities", STD 13, RFC 1034, November 1987.

 [RFC1123] Braden, R., "Requirements for Internet Hosts -
 Application and Support", STD 3, RFC 1123, October 1989.

Schoenwaelder Standards Track [Page 24]

RFC 6021 YANG-TYPES October 2010

 [RFC1930] Hawkinson, J. and T. Bates, "Guidelines for creation,
 selection, and registration of an Autonomous System
 (AS)", BCP 6, RFC 1930, March 1996.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 December 1998.

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Textual Conventions for SMIv2",
 STD 58, RFC 2579, April 1999.

 [RFC2780] Bradner, S. and V. Paxson, "IANA Allocation Guidelines
 For Values In the Internet Protocol and Related
 Headers", BCP 37, RFC 2780, March 2000.

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)",
 RFC 2782, February 2000.

 [RFC2856] Bierman, A., McCloghrie, K., and R. Presuhn, "Textual
 Conventions for Additional High Capacity Data Types",
 RFC 2856, June 2000.

 [RFC3289] Baker, F., Chan, K., and A. Smith, "Management
 Information Base for the Differentiated Services
 Architecture", RFC 3289, May 2002.

 [RFC3305] Mealling, M. and R. Denenberg, "Report from the Joint
 W3C/IETF URI Planning Interest Group: Uniform Resource
 Identifiers (URIs), URLs, and Uniform Resource Names
 (URNs): Clarifications and Recommendations", RFC 3305,
 August 2002.

 [RFC3595] Wijnen, B., "Textual Conventions for IPv6 Flow Label",
 RFC 3595, September 2003.

 [RFC4001] Daniele, M., Haberman, B., Routhier, S., and J.
 Schoenwaelder, "Textual Conventions for Internet Network
 Addresses", RFC 4001, February 2005.

Schoenwaelder Standards Track [Page 25]

RFC 6021 YANG-TYPES October 2010

 [RFC4271] Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
 Protocol 4 (BGP-4)", RFC 4271, January 2006.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340,
 March 2006.

 [RFC4502] Waldbusser, S., "Remote Network Monitoring Management
 Information Base Version 2", RFC 4502, May 2006.

 [RFC4741] Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC4893] Vohra, Q. and E. Chen, "BGP Support for Four-octet AS
 Number Space", RFC 4893, May 2007.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
 RFC 4960, September 2007.

 [RFC5017] McWalter, D., "MIB Textual Conventions for Uniform
 Resource Identifiers (URIs)", RFC 5017, September 2007.

 [RFC5891] Klensin, J., "Internationalizing Domain Names in
 Applications (IDNA): Protocol", RFC 5891, August 2010.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for
 IPv6 Address Text Representation", RFC 5952,
 August 2010.

 [XSD-TYPES] Malhotra, A. and P. Biron, "XML Schema Part 2: Datatypes
 Second Edition", World Wide Web Consortium
 Recommendation REC-xmlschema-2-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

Author’s Address

 Juergen Schoenwaelder (editor)
 Jacobs University

 EMail: j.schoenwaelder@jacobs-university.de

Schoenwaelder Standards Track [Page 26]

