I nt ernet Engi neering Task Force (I ETF) M Larsen

Request for Comments: 6056 Tieto
BCP: 156 F. Gont
Category: Best Current Practice UTN FRH
| SSN: 2070-1721 January 2011

Recommendati ons for Transport-Protocol Port Randomi zation
Abstr act

During the last few years, awareness has been rai sed about a number
of "blind" attacks that can be performed agai nst the Transm ssion
Control Protocol (TCP) and simlar protocols. The consequences of
these attacks range fromthroughput reduction to broken connections
or data corruption. These attacks rely on the attacker’s ability to
guess or know the five-tuple (Protocol, Source Address, Destination
Address, Source Port, Destination Port) that identifies the transport
protocol instance to be attacked. This docunent describes a nunber
of sinple and efficient methods for the selection of the client port
nunber, such that the possibility of an attacker guessing the exact
value is reduced. Wiile this is not a replacenent for cryptographic
met hods for protecting the transport-protocol instance, the

af orenmenti oned port selection algorithns provide inproved security
with very little effort and wi thout any key nmanagenent overhead. The
al gorithnms described in this docunent are |local policies that may be
incremental ly depl oyed and that do not violate the specifications of
any of the transport protocols that nmay benefit fromthem such as
TCP, UDP, UDP-lite, Stream Control Transnission Protocol (SCTP)

Dat agr am Congesti on Control Protocol (DCCP), and RTP (provided that
the RTP application explicitly signals the RTP and RTCP port
nunbers).

Status of This Meno
This meno docunents an | nternet Best Current Practice.

This docunent is a product of the Internet Engi neering Task Force
(ITETF). It represents the consensus of the I ETF comunity. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Group (IESG. Further information on
BCPs is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it may be obtai ned at
http://ww.rfc-editor.org/info/rfc6056

Larsen & Gont Best Current Practice [Page 1]

RFC 6056 Port Random zati on Recomendati ons January 2011

Copyright Notice

Copyright (c) 2011 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Thi s docunent may contain material from|ETF Docunents or |ETF
Contributions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sonme of this
material may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Larsen & CGont Best Current Practice [Page 2]

RFC 6056

Port Random zati on Recomendati ons January 2011

Tabl e of Contents

1. Introduction .
2. Epheneral Ports

NDNN

1
. 2.
. 3.

Tradi ti onal Epheneral Port Range .
Epheneral Port Selection . .
Col I'i sion of instance-ids

3. Obfuscating the Epheneral Port Sei ectl on

3. 1.

3. 2.
3. 3.

3. 4.

3. 5.

Noak

71

7. 2.

Characteristics of a Good Al gorithmfor the
bfuscation of the Ephenmeral Port Sel ection
Epheneral Port Nunber Range . . -
Algorithns for the Obfuscation of the Epherreral Por t
Sel ection

.1 Algorlthrhl Sirrple Port Random'zation Algoriih.m:
.2. Algorithm 2: Another Sinple Port Randomi zation

Al gorithm

.3. Algorithm 3: éi rrpl e. Hash Eased i30.rt . Sel ecii en.

Al gorithm

.4. A gorithm 4: Doubl el Hash .Po.rt . Sel ecii .on. AI geri t hm
.5. Algorithm5: Random I ncrenments Port Sel ection

Algorithm . . .
Secr et - Key Consi deratl ons for Hash- Based Port
Sel ection Algorithms . .

Choosi ng an Ephener al Port Sel ectl on AI gor| t hm

Interaction with Network Address Port Translation (NAPT)
Security Considerations Coe .
Acknowl edgenents .

Ref er ences .

Nor mati ve Ref erences .
Informati ve References .

Appendi x A, Survey of the Al gorlihms |n Use by Sone Popul ar

>>rr>r>
R WN P

| mpl enent ati ons .
Fr eeBSD
Li nux .
Net BSD .
OpenBSD
penSol ari s

oO~NO OO D™

[@Nee]

11

13

14
16

18

19
20

23
24
24
24
25

28
28
28
28

28

Larsen & CGont Best Current Practice [Page 3]

RFC 6056 Port Random zati on Recomendati ons January 2011

1

I ntroduction

Recently, awareness has been rai sed about a nunber of "blind" attacks
(i.e., attacks that can be perforned w thout the need to sniff the
packets that correspond to the transport protocol instance to be
attacked) that can be perfornmed against the Transni ssion Contro
Protocol (TCP) [RFC0793] and similar protocols. The consequences of
these attacks range from throughput reduction to broken connections
or data corruption [RFC5927] [RFC4953] [Watson].

Al'l these attacks rely on the attacker’s ability to guess or know the
five-tuple (Protocol, Source Address, Source port, Destination
Address, Destination Port) that identifies the transport protoco

i nstance to be attacked.

Services are usually located at fixed, "well-known" ports [IANA] at
the host supplying the service (the server). Cdient applications
connecting to any such service will contact the server by specifying
the server | P address and service port nunber. The |P address and
port nunber of the client are normally left unspecified by the client
application and thus are chosen automatically by the client
net wor ki ng stack. Ports chosen automatically by the networking stack
are known as epheneral ports [Stevens].

Wil e the server | P address, the well-known port, and the client IP
address may be known by an attacker, the epheneral port of the client
i s usually unknown and nust be guessed.

Thi s docunent describes a nunmber of algorithnms for the selection of
epheneral port nunbers, such that the possibility of an off-path
attacker guessing the exact value is reduced. They are not a

repl acenent for cryptographic nmethods of protecting a transport-
protocol instance such as |Psec [RFC4301], the TCP MD5 signature
option [RFC2385], or the TCP Authentication Option [RFC5925]. For
exanpl e, they do not provide any nmitigation in those scenarios in
which the attacker is able to sniff the packets that correspond to
the transport protocol instance to be attacked. However, the
proposed al gorithms provide i nproved resistance to off-path attacks
with very little effort and wi thout any key nanagenent overhead.

The mechani sms described in this docunent are | ocal nodifications
that may be increnentally deployed, and that do not violate the
specifications of any of the transport protocols that nay benefit
fromthem such as TCP [RFC0793], UDP [RFCO768], SCTP [RFC4960], DCCP
[RFCA340], UDP-lite [RFC3828], and RTP [RFC3550] (provided the RTP
application explicitly signals the RTP and RTCP port nunbers with,
e.g., [RFC3605]).

Larsen & CGont Best Current Practice [Page 4]

RFC 6056 Port Random zati on Recomendati ons January 2011

2.

2.

Since these nechani sns are obfuscation techni ques, focus has been on
a reasonabl e conproni se between the |evel of obfuscation and the ease
of inmplenmentation. Thus, the algorithns nust be conputationally
efficient and not require substantial state.

We note that while the technique of mitigating "blind" attacks by
obfuscating the epheneral port selection is well-known as "port
random zation", the goal of the algorithnms described in this docunent
is to reduce the chances of an attacker guessing the epheneral ports
sel ected for new transport protocol instances, rather than to
actual ly produce mat hematically random sequences of epheneral ports.

Thr oughout this docunent, we will use the term"transport-protoco

i nstance" as a general termto refer to an instantiation of a
transport protocol (e.g., a "connection" in the case of connection-
oriented transport protocols) and the term"instance-id" as a short-
handle to refer to the group of values that identify a transport-
protocol instance (e.g., in the case of TCP, the five-tuple
{Protocol, IP Source Address, TCP Source Port, |P Destination
Address, TCP Destination Port}).

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].
Epheneral Ports
1. Traditional Epheneral Port Range
The Internet Assigned Nunbers Authority (IANA) assigns the unique
paraneters and val ues used in protocols devel oped by the Internet
Engi neering Task Force (I ETF), including well-known ports [|ANA].
| ANA has reserved the follow ng use of the 16-bit port range of TCP
and UDP
o The Well-Known Ports, O through 1023.
0 The Registered Ports, 1024 through 49151
0 The Dynamic and/or Private Ports, 49152 through 65535

The dynami ¢ port range defined by | ANA consists of the 49152- 65535
range, and is neant for the selection of epheneral ports.

Larsen & CGont Best Current Practice [Page 5]

RFC 6056 Port Random zati on Recomendati ons January 2011

2.2. Epheneral Port Sel ection

As each conmuni cation instance is identified by the five-tuple
{protocol, local IP address, |local port, renmpote |IP address, renote
port}, the selection of epheneral port nunbers nust result in a
uni que five-tuple.

Sel ection of epheneral ports such that they result in unique

i nstance-ids (five-tuples) is handled by some inplenmentations by
havi ng a per-protocol global "next_epheneral" variable that is equa
to the previously chosen epheneral port + 1, i.e., the selection
process is:

/* Initialization at systemboot tinme. Could be random */
next _epheneral = m n_epheneral

/* Epheneral port selection function */

count = nmax_epheneral - mn_epheneral + 1
do {
port = next_ephenmeral
i f (next_epheneral == max_epheneral) {
next _epheneral = m n_epheneral;
} else {

next epheneral ++;

}

if (check_suitable_ port(port))
return port;

count - -;
} while (count > 0);
return ERROR
Tradi tional BSD Port Selection Al gorithm

Not e:
check_suitable _port() is a function that checks whether the
resulting port number is acceptable as an epheneral port. That
is, it checks whether the resulting port nunber is unique and nay,
in addition, check that the port nunmber is not in use for a
connection in the LISTEN or CLOSED states and that the port nunber
is not in the list of port numbers that should not be allocated as
epheneral ports. |n BSD-derived systens, the
check_suitable_port() would correspond to the in_pchl ookup_| ocal ()
function, where all the necessary checks woul d be perforned.

Larsen & CGont Best Current Practice [Page 6]

RFC 6056 Port Random zati on Recomendati ons January 2011

This al gorithmworks adequately provided that the nunber of
transport-protocol instances (for each transport protocol) that have
alifetime longer than it takes to exhaust the total epheneral port
range is small, so that collisions of instance-ids are rare.

However, this nmethod has the drawback that the "next_epheneral "

vari abl e and thus the epheneral port range is shared between all
transport-protocol instances, and the next ports chosen by the client
are easy to predict. |If an attacker operates an "innocent" server to
which the client connects, it is easy to obtain a reference point for
the current value of the "next_epheneral™ variable. Additionally, if
an attacker could force a client to periodically establish, e.g., a
new TCP connection to an attacker-controlled nmachine (or through an
attacker-observabl e path), the attacker could subtract consecutive
source port values to obtain the nunber of outgoing TCP connections
established globally by the target host within that tine period (up
to wap-around issues and instance-id collisions, of course).

2.3. Collision of instance-ids

While it is possible for the epheneral port selection algorithmto
verify that the selected port nunber results in a instance-id that is
not currently in use by that system the resulting five-tuple may
still be in use at a renpte system For exanple, consider a scenario
in which a client establishes a TCP connection with a remote web
server, and the web server perforns the active close on the
connection. Wiile the state information for this connection will

di sappear at the client side (that is, the connection will be noved
to the fictional CLOSED state), the instance-id will remain in the
TIME-VWAIT state at the web server for 2*MsL (Maxi num Segnent
Lifetime). |If the sane client tried to create a new incarnation of

t he previous connection (that is, a connection with the sane
instance-id as the one in the TIME WAIT state at the server), an
instance-id "collision" would occur. The effect of these collisions
range from connection-establishnment failures to TIME-VWAIT state
assassination (wth the potential of data corruption) [RFC1337]. In
scenarios in which a specific client establishes TCP connections with
a specific service at a server, these problens becone evident.
Therefore, an epheneral port selection algorithmshould ideally
mnimze the rate of instance-id colli sions.

A sinple approach to minimze the rate of these collisions would be
to choose port nunbers increnentally, so that a given port nunber
woul d not be reused until the rest of the port nunbers in the
epheneral port range have been used for a transport protoco

i nstance. However, if a single global variable were used to keep
track of the |ast epheneral port selected, epheneral port nunbers
woul d be trivially predictable, thus naking it easier for an off-path

Larsen & CGont Best Current Practice [Page 7]

RFC 6056 Port Random zati on Recomendati ons January 2011

3.

3.

attacker to "guess" the instance-id in use by a target transport-
protocol instance. Sections 3.3.3 and 3.3.4 describe algorithms that
sel ect port nunbers increnmentally, while still making it difficult
for an of f-path attacker to predict the epheneral ports used for
future transport-protocol instances.

A sinmple but inefficient approach to mninize the rate of collisions
of instance-ids would be, e.g., in the case of TCP, for both

endpoi nts of a TCP connection to keep state about recent connections
(e.g., have both endpoints end up in the TIME-VWAIT state).

bfuscating the Epheneral Port Sel ection

1. Characteristics of a Good Algorithmfor the bfuscation of the
Epheneral Port Sel ection

There are several factors to consider when designing an algorithmfor
sel ecting epheneral ports, which include:

0 Mninizing the predictability of the epheneral port nunmbers used
for future transport-protocol instances.

0 Mnimzing collisions of instance-ids.

0 Avoiding conflict with applications that depend on the use of
speci fic port nunbers.

G ven the goal of inproving the transport protocol’s resistance to
attack by obfuscation of the instance-id selection, it is key to
mnimze the predictability of the epheneral ports that will be

sel ected for new transport-protocol instances. While the obvious
approach to address this requirenment would be to select the epheneral
ports by sinply picking a random val ue within the chosen port nunber
range, this straightforward policy may lead to collisions of

i nstance-ids, which could lead to the interoperability problens
(e.g., delays in the establishnent of new connections, failures in
connection establishnent, or data corruption) discussed in

Section 2.3. As discussed in Section 1, it is worth noting that
while the technique of mitigating "blind" attacks by obfuscating the
epheneral port selection is well-known as "port random zation", the
goal of the algorithnms described in this document is to reduce the
chances that an attacker will guess the epheneral ports selected for
new transport-protocol instances, rather than to actually produce
sequences of mat hematically random epheneral port numnbers.

Larsen & CGont Best Current Practice [Page 8]

RFC 6056 Port Random zati on Recomendati ons January 2011

It is also worth noting that, provided adequate algorithns are in
use, the larger the range from which epheneral ports are sel ected,
the smaller the chances of an attacker are to guess the selected port
nurnber .

In scenarios in which a specific client establishes transport-
protocol instances with a specific service at a server, the problens
described in Section 2.3 beconme evident. A good algorithmto
nmninize the collisions of instance-ids would consider the tine a
given five-tuple was |ast used, and would avoid reusing the |ast
recently used five-tuples. A sinple approach to mnimze the rate of
col lisions would be to choose port nunbers increnentally, so that a
gi ven port nunber would not be reused until the rest of the port
nunbers in the epheneral port range have been used for a transport-
protocol instance. However, if a single global variable were used to
keep track of the last epheneral port selected, epheneral port
nunbers would be trivially predictable.

It is inmportant to note that a nunber of applications rely on binding
specific port nunmbers that nmay be within the epheneral port range.

I f such an application were run while the correspondi ng port nunber
were in use, the application would fail. Therefore, epheneral port
selection algorithms avoid using those port nunbers.

Port nunmbers that are currently in use by a TCP in the LI STEN state
shoul d not be allowed for use as epheneral ports. |If this ruleis
not conplied with, an attacker could potentially "steal" an inconing
connection to a local server application in at |least tw different
ways. Firstly, an attacker could issue a connection request to the
victimclient at roughly the sane tine the client tries to connect to
the victimserver application [CPNI-TCP] [TCP-SEC]. |If the SYN
segrment corresponding to the attacker’s connection request and the
SYN segnent corresponding to the victimclient "cross each other in
the networ k", and provided the attacker is able to know or guess the
epheneral port used by the client, a TCP "sinmul taneous open" scenario
woul d take place, and the incom ng connection request sent by the
client would be matched with the attacker’s socket rather than with
the victimserver application’s socket. Secondly, an attacker could
specify a nore specific socket than the "victin socket (e.g.

specify both the local I P address and the local TCP port), and thus

i ncom ng SYN segments matching the attacker’s socket woul d be
delivered to the attacker, rather than to the "victin socket (see
Section 10.1 of [CPNI -TCP]).

It should be noted that nost applications based on popul ar

i npl enent ati ons of the TCP APl (such as the Sockets API) perform
"passive opens” in three steps. Firstly, the application obtains a
file descriptor to be used for inter-process comunication (e.g., by

Larsen & CGont Best Current Practice [Page 9]

RFC 6056 Port Random zati on Recomendati ons January 2011

i ssuing a socket() call). Secondly, the application binds the file
descriptor to a local TCP port nunber (e.g., by issuing a bind()
call), thus creating a TCP in the fictional CLOSED state. Thirdly,
the aforenmentioned TCP is put in the LISTEN state (e.g., by issuing a
listen() call). As aresult, with such an inplenentation of the TCP
APl , even if port nunbers in use for TCPs in the LISTEN state were
not allowed for use as epheneral ports, there is a w ndow of tinme
bet ween the second and the third steps in which an attacker could be
allowed to select a port nunber that would be later used for
listening to incom ng connections. Therefore, these inplenmentations
of the TCP APl should enforce a stricter requirenent for the

al l ocation of port nunbers: port nunbers that are in use by a TCP in
the LI STEN or CLOSED states should not be allowed for allocation as
epheneral ports [CPNI -TCP] [TCP-SEC] .

The af orenenti oned i ssue does not affect SCTP, since nobst SCTP

i npl ement ati ons do not allow a socket to be bound to the sane port
nunber unl ess a specific socket option (SCTP_REUSE PORT) is issued on
the socket (i.e., this behavior needs to be explicitly all owed

bef orehand). An exanple of a typical SCTP socket APl can be found in
[SCTP- SOCKET] .

DCCP is not affected by the exploitation of "sinultaneous opens” to
"steal" inconing connections, as the server and the client state
machi nes are different [RFC4340]. However, it may be affected by the
vector involving binding a nore specific socket. As a result, those
tuples {local |IP address, local port, Service Code} that are in use
by a | ocal socket should not be allowed for allocation as ephenera
ports.

3.2. Ephenmeral Port Nunmber Range

As nentioned in Section 2.1, the dynam c ports consist of the range
49152- 65535. However, epheneral port selection algorithnms should use
t he whol e range 1024- 65535.

This range includes the | ANA Registered Ports; thus, sone of these
port nunbers may be needed for providing a particular service at the
| ocal host, which could result in the problens discussed in

Section 3.1. As a result, port nunbers that may be needed for
providing a particular service at the |ocal host SHOULD NOT be

i ncluded in the pool of port nunbers available for epheneral port
randoni zation. |f the host does not provide a particular service,
the port can be safely allocated to ordinary processes.

A possi bl e workaround for this potential problemwould be to maintain

a local list of the port nunbers that should not be allocated as
epheneral ports. Thus, before allocating a port nunber, the

Larsen & CGont Best Current Practice [Page 10]

RFC 6056 Port Random zati on Recomendati ons January 2011

epheneral port selection function would check this list, avoiding the
al l ocation of ports that may be needed for specific applications.

Rat her than naively excluding all the registered ports,

adm nistrators should identify services that may be offered by the

| ocal host and SHOULD excl ude only the corresponding registered
ports.

Epheneral port selection algorithm SHOULD use the |argest possible
port range, since this reduces the chances of an off-path attacker of
guessing the sel ected port numbers.

3.3. Algorithns for the Obfuscation of the Epheneral Port Sel ection

Epheneral port selection algorithnms SHOULD obfuscate the selection of
their epheneral ports, since this helps to nitigate a nunber of
attacks that depend on the attacker’s ability to guess or know the
five-tuple that identifies the transport-protocol instance to be
attacked.

The foll owi ng subsections describe a nunber of algorithms that could
be inplenented in order to obfuscate the selection of epheneral port
nunbers.

3.3.1. Agorithm1: Sinple Port Randonization Al gorithm
In order to address the security issues discussed in Sections 1 and

2.2, a nunber of systens have inplenented sinple epheneral port
nunber random zation, as foll ows:

Larsen & CGont Best Current Practice [Page 11]

RFC 6056 Port Random zati on Recomendati ons January 2011

/* Epheneral port selection function */

num epheneral = max_epheneral - min_epheneral + 1

next _epheneral = mi n_epheneral + (randon() % num epheneral);
count = num ephermer al

do {
i f(check_suitable port(port))
return next_epheneral;

i f (next_epheneral == max_epheneral) {
next _epheneral = m n_epheneral;

} else {
next epheneral ++;

}

count - -;

} while (count > 0);
return ERROR
Algorithm1

Not e:
randon() is a function that returns a 32-bit pseudo-random
unsi gned integer nunber. Note that the output needs to be
unpredi ctabl e, and typical inplenentations of PGSI X randon()
function do not necessarily neet this requirenent. See [RFC4086]
for randommess requirenents for security.

Al'l the variables (in this and all the algorithns discussed in
this docunent) are unsigned integers

Since the initially chosen port may already be in use with IP
addresses and server port that are identical to the ones being used
for the socket for which the ephenmeral port is to be selected, the
resulting five-tuple m ght not be unique. Therefore, nmultiple ports
may have to be tried and verified against all existing transport-
protocol instances before a port can be chosen

Web proxy servers, Network Address Port Transl ators (NAPTs)

[RFC2663], and ot her m ddl eboxes aggregate nultiple peers into the
same port space and thus increase the popul ation of used epheneral
ports, and hence the chances of collisions of instance-ids. However,
[Al man] has shown that at least in the network scenarios used for
nmeasuring the collision properties of the algorithnms described in
this docunent, the collision rate resulting fromthe use of the

af orementi oned m ddl eboxes i s neverthel ess very | ow.

Larsen & CGont Best Current Practice [Page 12]

RFC 6056 Port Random zati on Recomendati ons January 2011

Since this algorithmperforns port selection without taking into
account the port nunbers previously chosen, it has the potential of
reusi ng port nunbers too quickly, thus possibly leading to collisions
of instance-ids. Even if a given instance-id is verified to be

uni que by the port selection algorithm the instance-id mght stil

be in use at the renpte system |In such a scenario, a connection
request could possibly fail ([Silbersack] describes this problemfor
the TCP case).

However, this algorithmis biased towards the first avail able port
after a sequence of unavailable port nunbers. |If the local list of
regi stered port nunbers that should not be allocated as epheneral
ports (as described in Section 3.2) is significant, an attacker may
actually have a significantly better chance of guessing a port
numrber .

This algorithm sel ects epheneral port nunbers randomy and thus
reduces the chances that an attacker will guess the epheneral port
selected for a target transport-protocol instance. Additionally, it
prevents attackers from obtaining the nunber of outgoing transport-
protocol instances (e.g., TCP connections) established by the client
in sone period of tine.

3.3.2. Agorithm2: Another Sinple Port Randonization Al gorithm

The foll owi ng pseudo-code illustrates another algorithmfor selecting
a random port number, in which in the event a local instance-id
collision is detected, another port nunber is selected randomy

/* Epheneral port selection function */

num epheneral = nmax_epheneral - min_epheneral + 1

next _ephemeral = m n_ephenmeral + (randon() % num epheneral);
count = num epherer al

do {
i f(check_suitable port(port))
return next _epheneral ;
next _epheneral = mi n_epheneral + (randon() % num epheneral);
count - -;
} while (count > 0);
return ERROR

Al gorithm 2

Larsen & CGont Best Current Practice [Page 13]

RFC 6056 Port Random zati on Recomendati ons January 2011

When there are a | arge nunber of port nunbers already in use for the
sane destination endpoint, this algorithmm ght be unable (with a
very snmall remaining probability) to select an epheneral port (i.e.
it would return "ERROR'), even if there are still a few port nunbers
avail abl e that would result in unique five-tuples. However, the
results in [All man] have shown that in conmon scenari os, one port
choice is enough, and in nbst cases where nore than one choice is
needed, two choices suffice. Therefore, in those scenarios this
woul d not be problem

3.3.3. Algorithm3: Sinple Hash-Based Port Selection Al gorithm

W would Iike to achieve the port-reuse properties of the traditiona

BSD port selection algorithm (described in Section 2.2), while at the
sanme tinme achieve the unpredictability properties of Algorithm1 and

Al gorithm 2.

Ideally, we would |like a "next_epheneral" value for each set of
(local I P address, renpote | P addresses, renpte port), so that the
port-reuse frequency is the | owest possible. Each of these

"next _epheneral " variables should be initialized with random val ues
wi thin the epheneral port range and, together, these would thus
separate the epheneral port space of the transport-protocol instances
on a "per-destination endpoint" basis (this "separation of the
epheneral port space" neans that transport-protocol instances wth
different renote endpoints will not have different sequences of port
nunbers, i.e., will not be part of the sane epheneral port sequence
as in the case of the traditional BSD epheneral port selection
algorithm. Since we do not want to maintain in nmenory all these
"next _epheneral " val ues, we propose an offset function F() that can
be conputed fromthe | ocal |IP address, renpte |P address, renote
port, and a secret key. F() will yield (practically) different

val ues for each set of arguments, i.e.

Larsen & CGont Best Current Practice [Page 14]

RFC 6056 Port Random zati on Recomendati ons January 2011

/* Initialization at system boot tinme. Could be random */
next epheneral = O;

/* Ephemeral port selection function */

num epheneral = max_epheneral - mn_epheneral + 1

offset = F(local _IP, renote IP, renote_port, secret_key);
count = num epheneral ;

do {
port = m n_epheneral +
(next _epheneral + offset) % num epheneral;

next epheneral ++;

i f(check_suitable_port(port))
return port;

count - -;
} while (count > 0);
return ERROR
Algorithm 3

In other words, the function F() provides a "per-destination

endpoi nt" fixed offset within the gl obal epheneral port range. Both
the "of fset" and "next_epheneral" variables may take any value within
the storage type range since we are restricting the resulting port in
a simlar way as in Algorithm 1l (described in Section 3.3.1). This
allows us to sinply increnent the "next _epheneral" variable and rely
on the unsigned integer to wap around.

The function F() should be a cryptographic hash function |ike M5

[RFC1321]. The function should use both I P addresses, the renote
port, and a secret key value to conpute the offset. The renote IP
address is the prinmary separator and nust be included in the offset
calculation. The local |IP address and renpte port nay in some cases
be constant and thus not inprove the epheneral port space separation
however, they should also be included in the offset cal cul ation

Cryptographic al gorithns stronger than, e.g., MD5 should not be
necessary, given that Algorithm3 is sinply a technique for the
obfuscation of the selection of epheneral ports. The secret should
be chosen to be as random as possible (see [RFC4086] for
recomendat i ons on choosi ng secrets).

Larsen & CGont Best Current Practice [Page 15]

RFC 6056 Port Random zati on Recomendati ons January 2011

Note that on nultiuser systems, the function F() could include user-
specific information, thereby providing protection not only on a
host-to-host basis, but on a user to service basis. |In fact, any
identifier of the renpte entity could be used, dependi ng on
availability and the granularity requested. Wth SCTP, both

host nanes and alternative | P addresses may be included in the

associ ation negotiation, and either of these could be used in the

of fset function F().

When multiple unique identifiers are avail able, any of these can be
chosen as input to the offset function F() since they all uniquely
identify the renpte entity. However, in cases |ike SCTP where the
epheneral port nust be unique across all |IP address pernutations, we
shoul d ideally always use the same |IP address to get a single
starting offset for each association negotiation with a given renote
entity to minimze the possibility of collisions. A sinple nunerica
sorting of the I P addresses and al ways using the nunerically | owest
could achieve this. However, since nost protocols will generally
report the same | P addresses in the sane order in each association
setup, this sorting is nost likely not necessary and the "first one"
can sinply be used.

The ability of hostnanmes to uniquely define hosts can be di scussed,
and since SCTP always includes at |east one |IP address, we recomend
using this as input to the offset function F() and ignoring hostnane
chunks when searching for epheneral ports.

It should be noted that, as this algorithmuses a gl obal counter
("next _epheneral ") for selecting epheneral ports, if an attacker
could, e.g., force a client to periodically establish a new TCP
connection to an attacker-controlled machine (or through an attacker-
observabl e path), the attacker could subtract consecutive source port
val ues to obtain the nunber of outgoing TCP connections established
globally by the target host within that tinme period (up to wrap-
around issues and five-tuple collisions, of course).

3.3.4. A gorithm4: Doubl e-Hash Port Sel ection Al gorithm

A trade-of f between maintaining a single global "next_epheneral”

vari abl e and mai ntai ning 2**N "next _epheneral " variables (where Nis
the width of the result of F()) could be achieved as follows. The
system woul d keep an array of TABLE LENGTH short integers, which
woul d provide a separation of the increment of the "next_epheneral "
variable. This inprovenent could be incorporated into Algorithm 3 as
fol | ows:

Larsen & CGont Best Current Practice [Page 16]

RFC 6056 Port Random zati on Recomendati ons January 2011

/* Initialization at system boot tinme */
for(i = 0; i < TABLE LENGTH, i++)
table[i] = randon() % 65536;

/* Epheneral port selection function */
num epheneral = nmax_epheneral - mn_epheneral + 1
offset = F(local IP, renote IP, renote _port, secret_keyl);

index = local _IP, renmote | P, renote_port, secret_key2);
count = num epheneral
do {

port = mn_epheneral + (offset + table[index]) % num epheneral;
t abl e[i ndex] ++;

i f(check_suitable_port(port))
return port;

count - -;
} while (count > 0);
return ERROR
Algorithm4

"table[]" could be initialized with mathematically random val ues, as
indicated by the initialization code in pseudo-code above. The
function &) should be a cryptographic hash function |ike M5

[RFC1321]. It should use both IP addresses, the renote port, and a
secret key value to conpute a value between 0 and (TABLE LENGTH 1).
Alternatively, &) could take an "offset" as input, and performthe
excl usi ve-or (XOR) operation between all the bytes in "offset".

The array "table[]" assures that successive transport-protoco
instances with the same renpote endpoint will use increasing ephenera
port nunbers. However, increnentation of the port nunbers is
separated into TABLE LENGTH di fferent spaces, and thus the port-reuse
frequency will be (probabilistically) Iower than that of Al gorithm 3
That is, a new transport-protocol instance with sone renote endpoint
will not necessarily cause the "next_epheneral" variable
correspondi ng to other endpoints to be incremented.

It is interesting to note that the size of "table[]" does not linit
the nunber of different port sequences, but rather separates the
increnents into TABLE LENGTH different spaces. The port sequence
will result fromadding the corresponding entry of "table[]" to the
variable "offset”, which selects the actual port sequence (as in
Algorithm3). J[AInman] has found that a TABLE LENGTH of 10 can

Larsen & CGont Best Current Practice [Page 17]

RFC 6056 Port Random zati on Recomendati ons January 2011

result in an inprovenent over Algorithm 3. Further increasing the
TABLE LENGTH wi Il increase the unpredictability of the resulting port
nunber, and possibly further decrease the collision rate.

An attacker can performtraffic analysis for any "increnent space”

into which the attacker has "visibility" -- nanely, the attacker can
force the client to establish a transport-protocol instance whose
G offset) identifies the target "increnent space". However, the

attacker’s ability to performtraffic analysis is very reduced when
conmpared to the traditional BSD al gorithm (described in Section 2.2)
and Algorithm 3. Additionally, an inplenentation can further limt
the attacker’s ability to performtraffic analysis by further
separating the increnent space (that is, using a |arger value for
TABLE_LENGTH) .

3.3.5. Agorithmb5: Random I ncrenents Port Selection Al gorithm

[Al'l man] introduced anot her port selection algorithm which offers a
m ddl e ground between the algorithns that sel ect epheneral ports
i ndependently at random (such as those described in Sections 3.3.1
and 3.3.2), and those that offer obfuscation with |ess randomni zation
(such as those described in Sections 3.3.3 and 3. 3.4).

/* Initialization code at system boot tinme. */

next epheneral = randonm() % 65536; /* Initialization value */

N = 500; /* Determines the trade-off */

/* Ephemeral port selection function */
num epheneral = max_epheneral - mn_epheneral + 1

count = num epheneral ;
do {
next _ephemeral = next_epheneral + (random() % N) + 1;

port = m n_epheneral + (next_epheneral % num epheneral);

i f(check_suitable port(port))
return port;

count - -;
} while (count > 0);

return ERROR

Al gorithmb5

Larsen & CGont Best Current Practice [Page 18]

RFC 6056 Port Random zati on Recomendati ons January 2011

This algorithmains at producing a nonotonically increasing sequence
to prevent the collision of instance-ids, while avoiding the use of
fixed increnents, which would lead to trivially predictable
sequences. The value "N' allows for direct control of the trade-off
between the | evel of unpredictability and the port-reuse frequency.
The smaller the value of "N', the nore sinmlar this algorithmis to
the traditional BSD port selection algorithm (described in

Section 2.2). The larger the value of "N', the nore sinmilar this
algorithmis to the algorithmdescribed in Section 3.3.1 of this
docunent .

When the port nunbers wap, there is the risk of collisions of
i nstance-ids. Therefore, "N' should be selected according to the
following criteria:

o0 It should maxinize the wapping tinme of the epheneral port space.
o0 It should minimze collisions of instance-ids.
0 It should nmaxinize the unpredictability of selected port nunbers.

Clearly, these are conpeting goals, and the decision of which val ue
of "N'" to use is a trade-off. Therefore, the value of "N' should be
configurable so that system adm nistrators can nake the trade-off for
t hemsel ves

3.4. Secret-Key Considerations for Hash-Based Port Selection Al gorithns

Every conpl ex mani pul ation (like MD5) is no nore secure than the

i nput values, and in the case of epheneral ports, the secret key. |If
an attacker is aware of which cryptographic hash function is being
used by the victim (which we should expect), and the attacker can

obt ai n enough material (e.g., epheneral ports chosen by the victim,
the attacker may sinply search the entire secret-key space to find
mat ches.

To protect against this, the secret key should be of a reasonable
length. Key lengths of 128 bits shoul d be adequate.

Anot her possi bl e mechani smfor protecting the secret key is to change
it after some time. |If the host platformis capabl e of producing
reasonably good random data, the secret key can be changed

aut onati cal ly.

Changi ng the secret will cause abrupt shifts in the chosen ephenera

ports, and consequently collisions may occur. That is, upon changing
the secret, the "offset"” value (see Sections 3.3.3 and 3.3.4) used

Larsen & CGont Best Current Practice [Page 19]

RFC 6056 Port Random zati on Recomendati ons January 2011

for each destination endpoint will be different fromthat conputed
with the previous secret, thus leading to the selection of a port
nunber recently used for connecting to the same endpoint.

Thus, the change in secret key should be done with consideration and
coul d be perfornmed whenever one of the follow ng events occur

0 The systemis being bootstrapped.
o Some predefined/randomtinme has expired.

0 The secret key has been used sufficiently often that it should be
regarded as insecure now.

0 There are few active transport-protocol instances (i.e.
possibility of a collision is |ow).

0o Systemload is low (i.e., the perfornmance overhead of |oca
collisions is tolerated).

o There is enough random data avail abl e to change the secret key
(pseudo-random changes shoul d not be done).

3.5. Choosing an Epheneral Port Selection Al gorithm

[Allman] is an enpirical study of the properties of the algorithns
described in this docunent, which has found that all the algorithms

described in this docunent offer low collision rates -- at nost 0.3%
That is, in those network scenarios assessed by [Allman], all of the
al gorithns described in this docunent performwell in terns of

collisions of instance-ids. However, these results may vary
dependi ng on the characteristics of network traffic and the specific
net wor k set up.

The al gorithm described in Section 2.2 is the traditional epheneral
port selection algorithminplenmented in BSD-derived systens. It
generates a gl obal sequence of epheneral port nunbers, which nakes it
trivial for an attacker to predict the port nunber that will be used
for a future transport protocol instance. However, it is very sinple
and leads to a | ow port-reuse frequency.

Algorithm1 and Al gorithm 2 have the advantage that they provide
actual randonization of the epheneral ports. However, they nay

i ncrease the chances of port nunber collisions, which could lead to
the failure of a connection establishnent attenpt. [Allman] found
that these two al gorithnms show the largest collision rates (anong all
the al gorithnms described in this docunent).

Larsen & CGont Best Current Practice [Page 20]

RFC 6056 Port Random zati on Recomendati ons January 2011

Al gorithm 3 provides conplete separation in local and renote IP
addresses and renote port space, and only limted separation in other
di mensi ons (see Section 3.4). However, inplenentations should

consi der the performance inpact of conputing the cryptographic hash
used for the offset.

Algorithm4 inproves Algorithm3, usually leading to a | ower port-
reuse frequency, at the expense of nore processor cycles used for
conmputing &), and additional kernel nmenory for storing the array
"table[]".

Algorithmb5 offers niddle ground between the sinple randomn zation
algorithnms (Algorithm 1l and Algorithm 2) and the hash-based
algorithms (Algorithm3 and Algorithm4). The upper linit on the
randomincrenents (the value "N' in the pseudo-code included in
Section 3.3.5) controls the trade-of f between randonization and port -
reuse frequency.

Finally, a special case that nay preclude the utilization of
Algorithm 3 and Al gorithm 4 should be analyzed. There exist sone
applications that contain the follow ng code sequence:

s = socket ();
bi nd(s, |P_address, port = *);

In sone BSD-derived systens, the call to bind() will result in the
sel ection of an epheneral port nunber. However, as neither the
renote | P address nor the renpte port will be available to the
epheneral port selection function, the hash function F() used in
Algorithm 3 and Algorithm4 will not have all the required argunents,
and thus the result of the hash function will be inpossible to
compute. Transport protocols inplenenting Algorithm3 or Algorithm4
shoul d consi der using Algorithm 2 when facing the scenario just

descri bed.

An alternative to this behavior would be to inplenent "lazy binding"
in response to the bind() call. That is, selection of an epheneral
port woul d be delayed until, e.g., connect() or send() are called.
Thus, at that point the epheneral port is actually selected, all the
necessary argunments for the hash function F() are avail able, and
therefore Algorithm3 and Algorithm4 could still be used in this
scenario. This algorithmhas been inplenented by Linux [Linux].

Larsen & CGont Best Current Practice [Page 21]

RFC 6056 Port Random zati on Recomendati ons January 2011

4.

Interaction with Network Address Port Transl ation (NAPT)

Net wor k Address Port Transl ation (NAPT) translates both the network
address and transport-protocol port nunber, thus allow ng the
transport identifiers of a nunber of private hosts to be multipl exed
into the transport identifiers of a single external address

[RFC2663] .

In those scenarios in which a NAPT is present between the two

endpoi nts of a transport-protocol instance, the obfuscation of the
epheneral port selection (fromthe point of view of the externa
network) will depend on the epheneral port selection function at the
NAPT. Therefore, NAPTs shoul d consi der obfuscating the selection of
epheneral ports by neans of any of the algorithnms discussed in this
docunent .

A NAPT that does not inplenment port preservation [RFC4787] [RFC5382]
SHOULD obfuscate sel ection of the epheneral port of a packet when it
i s changed during translation of that packet.

A NAPT that does inplenent port preservation SHOULD obfuscate the
epheneral port of a packet only if the port must be changed as a
result of the port being already in use for sone other session

A NAPT that performs parity preservation and that nust change the
epheneral port during translation of a packet SHOULD obfuscate the
epheneral ports. The algorithns described in this docunent could be
easily adapted such that the parity is preserved (i.e., force the

| owest order bit of the resulting port nunber to O or 1 according to
whet her even or odd parity is desired).

Some applications allocate contiguous ports and expect to see
contiguous ports in use at their peers. Cearly, this expectation
m ght be difficult to accommodate at a NAPT, since sonme port nunbers
m ght already be in use by other sessions, and thus an alternative
port might need to be selected, thus resulting in a non-contiguous
port nunber sequence (see Section 4.2.3 of [RFC4787]). A NAPT that
i mpl ements a sinple port randomi zation algorithm (such as Al gorithm
1, Algorithm2, or Algorithmb5) is likely to break this assunption
even if the endpoint selecting an epheneral port does sel ect
epheneral ports that are contiguous. However, since a nunber of

di fferent epheneral port selection algorithns have been i npl enent ed
by depl oyed NAPTs, any application that relies on any specific
epheneral port selection algorithmat the NAPT is likely to suffer
interoperability problens when a NAPT is present between the two
endpoi nts of a transport-protocol instance. Nevertheless, sonme of
the algorithnms described in this docunent (nanely Al gorithm 3 and

Al gorithm 4) select consecutive epheneral ports such that they are

Larsen & CGont Best Current Practice [Page 22]

RFC 6056 Port Random zati on Recomendati ons January 2011

conti guous (except when one of the port nunbers needed to produce a
conti guous sequence is already in use by sone other NAPT session).
Therefore, a NAPT willing to produce sequences of contiguous port
nunbers shoul d consider inplementing Algorithm3 or Algorithm4 of
this docunent. Section 3.5 provides further guidance in choosing a
port sel ection al gorithm

It should be noted that in sone network scenarios, a NAPT nay
natural ly obscure epheneral port selections sinply due to the vast
range of services with which it establishes connections and to the
overall rate of the traffic [Alman].

5. Security Considerations

bfuscating the epheneral port selection is no replacenent for
crypt ographi ¢ nechani sns, such as | Psec [RFC4301], in terms of
protecting transport-protocol instances against blind attacks.

An eavesdropper that can nonitor the packets that correspond to the
transport-protocol instance to be attacked could learn the IP
addresses and port nunbers in use (and al so sequence nunbers, etc.)
and easily performan attack. ofuscation of the epheneral port

sel ection does not provide any additional protection against this
kind of attack. In such situations, proper authentication nechanisns
such as those described in [RFC4301] shoul d be used.

Thi s specification recommends including the whole range 1024- 65535
for the selection of ephemeral ports, and suggests that an

i npl ementation maintains a list of those port nunbers that shoul d not
be nade avail abl e for epheneral port selection. |If the list of port
nunbers that are not available is significant, Algorithm 1l may be

hi ghly bi ased and generate predictable ports, as noted in

Section 3.3.1. In particular, if the list of | ANA Registered Ports
is accepted as the local list of port nunbers that should not be nmade
avail able, certain ports may result with 500 tinmes the probability of
other ports. Systens that support nunmerous applications resulting in
large lists of unavailable ports, or that use the | ANA Regi stered
Ports w thout nodification, MJST NOT use Algorithm 1.

If the local offset function F() (in Algorithm 3 and Al gorithm 4)
results in identical offsets for different inputs at greater
frequency than woul d be expected by chance, the port-offset nechanism
proposed in this docunment woul d have a reduced effect.

I f random nunbers are used as the only source of the secret key, they

shoul d be chosen in accordance with the recomendati ons given in
[RFC4086] .

Larsen & CGont Best Current Practice [Page 23]

RFC 6056 Port Random zati on Recomendati ons January 2011

7.

7.

1

If an attacker uses dynanically assigned | P addresses, the current
epheneral port offset (Algorithm3 and Algorithm4) for a given five-
tupl e can be sanpl ed and subsequently used to attack an innocent peer
reusing this address. However, this is only possible until a re-
keyi ng happens as described above. Also, since epheneral ports are
only used on the client side (e.g., the one initiating the transport-
protocol comunication), both the attacker and the new peer need to
act as servers in the scenario just described. Wile servers using
dynanic | P addresses exist, they are not very comon, and with an
appropriate re-keying nechanismthe effect of this attack is limted.

Acknowl edgenent s

The of fset function used in Algorithm3 and Al gorithm4 was inspired
by the nechani sm proposed by Steven Bellovin in [RFC1948] for
def endi ng agai nst TCP sequence nunber attacks.

The authors would like to thank (in al phabetical order) Mark All nan,
Jari Arkko, Matthias Bethke, Stephane Bortzneyer, Brian Carpenter,

Vi ncent Deffontaines, Ralph Drons, Lars Eggert, Pasi Eronen, Gorry
Fairhurst, Adrian Farrel, GQuillermo Gont, David Harrington, Alfred
Hoenes, Avshal om Houri, Charlie Kaufman, Anmit Klein, Subramani an
Moonesany, Carlos Pignataro, Tim Polk, Kacheong Poon, Pasi Sarol ahti,
Robert Sparks, Randall Stewart, Joe Touch, M chael Tuexen, Magnus
Westerlund, and Dan Wng for their val uabl e feedback on draft

versi ons of this docunent.

The authors would like to thank Al fred Hoenes for his adnmirable
effort in inproving the quality of this document.

The authors would like to thank FreeBSD s M ke Sil bersack for a very
fruitful discussion about ephemeral port sel ection techniques.

Fernando Gont’s attendance to | ETF neeti ngs was supported by 1SOC s
"Fel |l owship to the | ETF" program

Ref er ences
Nor mati ve Ref erences

[RFCO768] Postel, J., "User Datagram Protocol"”, STD 6, RFC 768,
August 1980.

[RFCO793] Postel, J., "Transm ssion Control Protocol", STD 7,
RFC 793, Septenber 1981

[RFC1321] Rivest, R, "The MD5 Message-Di gest Al gorithnt,
RFC 1321, April 1992.

Larsen & CGont Best Current Practice [Page 24]

RFC 6056 Port Random zati on Recomendati ons January 2011

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

[RFC2385] Hef fernan, A, "Protection of BGP Sessions via the TCP
MD5 Signature Option", RFC 2385, August 1998.

[RFC3550] Schul zri nne, H., Casner, S., Frederick, R, and V.
Jacobson, "RTP. A Transport Protocol for Real-Tine
Applications", STD 64, RFC 3550, July 2003.

[RFC3605] Huitema, C., "Real Tine Control Protocol (RTCP)
attribute in Session Description Protocol (SDP)",
RFC 3605, October 2003.

[RFC3828] Larzon, L-A., Degermark, M, Pink, S., Jonsson, L-E.,
and G Fairhurst, "The Lightweight User Datagram
Protocol (UDP-Lite)", RFC 3828, July 2004.

[RFC4086] Eastl ake, D., Schiller, J., and S. Crocker,
"Randomess Requirenents for Security", BCP 106,
RFC 4086, June 2005.

[RFC4301] Kent, S. and K Seo, "Security Architecture for the
Internet Protocol", RFC 4301, Decenber 2005.

[RFCA4340] Kohler, E., Handley, M, and S. Floyd, "Datagram
Congestion Control Protocol (DCCP)", RFC 4340,
Mar ch 2006.

[RFCAT787] Audet, F. and C. Jennings, "Network Address

Transl ati on (NAT) Behavi oral Requirenents for Unicast
UDP", BCP 127, RFC 4787, January 2007.

[RFC4960] Stewart, R, "Stream Control Transmni ssion Protocol",
RFC 4960, Septenber 2007.

[RFC5382] Quha, S., Biswas, K, Ford, B., Sivakumar, S., and P.
Sri suresh, "NAT Behavioral Requirenents for TCP',
BCP 142, RFC 5382, Cctober 2008.
7.2. Informative References

[Al'l man] Allman, M, "Comments On Sel ecting Epheneral Ports",
ACM Conput er Communi cati on Review, 39(2), 2009.

Larsen & CGont Best Current Practice [Page 25]

RFC 6056 Port Random zati on Recomendati ons January 2011

[CPNI - TCP] Gont, F., "CPNI Technical Note 3/2009: Security
Assessnent of the Transm ssion Control Protocol
(TCP)", 2009, <http://ww.cpni.gov. uk/Docs/
tn- 03- 09-security-assessnent - TCP. pdf >.

[Fr eeBSD| The FreeBSD Project, <http://ww.freebsd. org>.
[1 ANA] "I ANA Port Numbers",

<http://ww. i ana. or g/ assi gnnent s/ port - nunber s>.
[Li nux] The Linux Project, <http://ww.kernel.org>.
[Net BSD] The Net BSD Project, <http://ww. netbsd. org>.
[OpenBSD| The QpenBSD Proj ect, <http://ww. openbsd. org>.

[OpenSol aris] OpenSolaris, <http://ww.opensol aris. org>.

[RFC1337] Braden, B., "TIME-WAIT Assassi nation Hazards in TCP',
RFC 1337, May 1992.

[RFC1948] Bel lovin, S., "Defending Agai nst Sequence Nunber
Attacks", RFC 1948, My 1996.

[RFC2663] Srisuresh, P. and M Hol drege, "IP Network Address
Transl at or (NAT) Terni nol ogy and Consi derati ons",
RFC 2663, August 1999.

[RFC4953] Touch, J., "Defending TCP Agai nst Spoofing Attacks",
RFC 4953, July 2007.

[RFC5925] Touch, J., Mankin, A, and R Bonica, "The TCP
Aut henti cation Option", RFC 5925, June 2010.

[RFC5927] Gont, F., "ICMP Attacks agai nst TCP', RFC 5927,
July 2010.

[SCTP- SOCKET] Stewart, R, Poon, K, Tuexen, M, Lei, P., and V.
Yasevi ch, V., "Sockets APl Extensions for Stream
Control Transmi ssion Protocol (SCTP)", Wrk in
Progress, January 2011.

[Si | bersack] Si | bersack, M, "Inproving TCP/IP security through
randoni zati on without sacrificing interoperability",
Eur oBSDCon 2005 Conf erence.

[St evens] Stevens, W, "Unix Network Progranm ng, Volume 1:
Net wor ki ng APls: Socket and XTI", Prentice Hall, 1998.

Larsen & CGont Best Current Practice [Page 26]

RFC 6056

[TCP- SEC]

[WAt son]

Larsen & Gont

Port Random zati on Recomendati ons January 2011

Gont, F., "Security Assessnent of the Transm ssion
Control Protocol (TCP)", Wbrk in Progress,
February 2010.

Watson, P., "Slipping in the Wndow. TCP Reset
Attacks", CanSecWest 2004 Conf erence.

Best Current Practice [Page 27]

RFC 6056 Port Random zati on Recomendati ons January 2011
Appendi x A. Survey of the Algorithns in Use by Sone Popul ar

| mpl ement ati ons
A.1l. FreeBSD

FreeBSD 8.0 inplenents Algorithm1, and in response to this docunent
now uses a "mn_port" of 10000 and a "max_port" of 65535 [FreeBSD) .

A. 2. Linux
Li nux 2.6.15-53-386 inplenents Algorithm3, with MD5 as the hash
algorithm If the algorithmis faced with the corner-case scenario
described in Section 3.5, Algorithm1 is used instead [Linux].

A. 3. NetBSD
Net BSD 5.0.1 does not obfuscate its epheneral port nunbers. It
sel ects epheneral port nunbers fromthe range 49152-65535, starting
fromport 65535, and decreasing the port nunber for each epheneral
port nunber sel ected [NetBSD].

A 4. OpenBSD

penBSD 4.2 inplenents Algorithm1l, with a "nmn_port" of 1024 and a
"max_port" of 49151. [QpenBSD

A.5. OpenSolaris

OpenSol aris 2009. 06 inplenents Algorithm 1, with a "mn_port" of
32768 and a "nmax_port" of 65535 [OpenSol ari s].

Larsen & CGont Best Current Practice [Page 28]

RFC 6056 Port Random zati on Recomendati ons January 2011

Aut hors’ Addr esses

M chael Vittrup Larsen
Tieto

Skander bor gvej 232

Aar hus DK-8260
Denmar k

Phone: +45 8938 5100
EMail : m chael.larsen@i eto. com

Fernando Gont

Uni ver si dad Tecnol ogi ca Naci onal / Facultad Regi onal Haedo
Evaristo Carriego 2644

Haedo, Provincia de Buenos Aires 1706

Argentina

Phone: +54 11 4650 8472
EMai | : fernando@ont.com ar

Larsen & CGont Best Current Practice [Page 29]

