
Internet Engineering Task Force (IETF) G. Camarillo
Request for Comments: 6079 P. Nikander
Category: Experimental J. Hautakorpi
ISSN: 2070-1721 A. Keranen
 Ericsson
 A. Johnston
 Avaya
 January 2011

 HIP BONE: Host Identity Protocol (HIP)
 Based Overlay Networking Environment (BONE)

Abstract

 This document specifies a framework to build HIP-based (Host Identity
 Protocol) overlay networks. This framework uses HIP to perform
 connection management. Other functions, such as data storage and
 retrieval or overlay maintenance, are implemented using protocols
 other than HIP. These protocols are loosely referred to as "peer
 protocols".

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6079.

Camarillo, et al. Experimental [Page 1]

RFC 6079 HIP BONE January 2011

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 2. Terminology ...3
 3. Background on HIP ...4
 3.1. ID/Locator Split ...4
 3.1.1. Identifier Format5
 3.1.2. HIP Base Exchange5
 3.1.3. Locator Management6
 3.2. NAT Traversal ..6
 3.3. Security ...7
 3.3.1. DoS Protection7
 3.3.2. Identifier Assignment and Authentication7
 3.3.3. Connection Security9
 3.4. HIP Deployability and Legacy Applications9
 4. Framework Overview ...10
 5. The HIP BONE Framework ...13
 5.1. Node ID Assignment and Bootstrap13
 5.2. Overlay Network Identification14
 5.3. Connection Establishment15
 5.4. Lightweight Message Exchanges15
 5.5. HIP BONE Instantiation16
 6. Overlay HIP Parameters ...17
 6.1. Overlay Identifier ..17
 6.2. Overlay TTL ...17
 7. Security Considerations ..18
 8. Acknowledgements ...19
 9. IANA Considerations ..19
 10. References ..19
 10.1. Normative References19
 10.2. Informative References20

Camarillo, et al. Experimental [Page 2]

RFC 6079 HIP BONE January 2011

1. Introduction

 The Host Identity Protocol (HIP) [RFC5201] defines a new name space
 between the network and transport layers. HIP provides upper layers
 with mobility, multihoming, NAT (Network Address Translation)
 traversal, and security functionality. HIP implements the so-called
 identifier/locator (ID/locator) split, which implies that IP
 addresses are only used as locators, not as host identifiers. This
 split makes HIP a suitable protocol to build overlay networks that
 implement identifier-based overlay routing over IP networks, which in
 turn implement locator-based routing.

 Using HIP-Based Overlay Networking Environment (HIP BONE), as opposed
 to a peer protocol, to perform connection management in an overlay
 has a set of advantages. HIP BONE can be used by any peer protocol.
 This keeps each peer protocol from defining primitives needed for
 connection management (e.g., primitives to establish connections and
 to tunnel messages through the overlay) and NAT traversal. Having
 this functionality at a lower layer allows multiple upper-layer
 protocols to take advantage of it.

 Additionally, having a solution that integrates mobility and
 multihoming is useful in many scenarios. Peer protocols do not
 typically specify mobility and multihoming solutions. Combining a
 peer protocol including NAT traversal with a separate mobility
 mechanism and a separate multihoming mechanism can easily lead to
 unexpected (and unpleasant) interactions.

 The remainder of this document is organized as follows. Section 3
 provides background information on HIP. Section 4 gives an overview
 of the HIP BONE (HIP-Based Overlay Networking Environment) framework
 and architecture and Section 5 describes the framework in more
 detail. Finally, Section 6 introduces new HIP parameters for overlay
 usage.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The following terms are used in context of HIP BONEs:

 Overlay network: A network built on top of another network. In case
 of HIP BONEs, the underlying network is an IP network and the
 overlay can be, e.g., a peer-to-peer (P2P) network.

Camarillo, et al. Experimental [Page 3]

RFC 6079 HIP BONE January 2011

 Peer protocol: A protocol used by nodes in an overlay network for
 performing, e.g., data storage and retrieval or overlay
 maintenance.

 HIP BONE instance: A HIP-based overlay network that uses a
 particular peer protocol and is based on the framework presented
 in this document.

 Node ID: A value that uniquely identifies a node in an overlay
 network. The value is not usually human-friendly. As an example,
 it may be a hash of a public key.

 HIP association: An IP-layer communications context created using
 the Host Identity Protocol.

 Valid locator: A locator (as defined in [RFC5206]; usually an IP
 address or an address and a port number) at which a host is known
 to be reachable, for example, because there is an active HIP
 association with the host.

 Final recipient: A node is the final recipient of a HIP signaling
 packet if one of its Host Identity Tags (HITs) matches to the
 receiver’s HIT in the HIP packet header.

3. Background on HIP

 This section provides background on HIP. Given the tutorial nature
 of this section, readers that are familiar with what HIP provides and
 how HIP works may want to skip it. All descriptions contain
 references to the relevant HIP specifications where readers can find
 detailed explanations on the different topics discussed in this
 section.

3.1. ID/Locator Split

 In an IP network, IP addresses typically serve two roles: they are
 used as host identifiers and as host locators. IP addresses are
 locators because a given host’s IP address indicates where in the
 network that host is located. IP networks route based on these
 locators. Additionally, IP addresses are used to identify remote
 hosts. The simultaneous use of IP addresses as host identifiers and
 locators makes mobility and multihoming complicated. For example,
 when a host opens a TCP connection, the host identifies the remote
 end of the connection by the remote IP address (plus port). If the
 remote host changes its IP address, the TCP connection will not
 survive, since the transport layer identifier of the remote end of
 the connection has changed.

Camarillo, et al. Experimental [Page 4]

RFC 6079 HIP BONE January 2011

 Mobility solutions such as Mobile IP keep the remote IP address from
 changing so that it can still be used as an identifier. HIP, on the
 other hand, uses IP addresses only as locators and defines a new
 identifier space. This approach is referred to as the ID/locator
 split and makes the implementation of mobility and multihoming more
 natural. In the previous example, the TCP connection would be bound
 to the remote host’s identifier, which would not change when the
 remote hosts moves to a new IP address (i.e., to a new locator). The
 TCP connection is able to survive locator changes because the remote
 host’s identifier does not change.

3.1.1. Identifier Format

 HIP uses 128-bit ORCHIDs (Overlay Routable Cryptographic Hash
 Identifiers) [RFC4843] as identifiers. ORCHIDs look like IPv6
 addresses but cannot collide with regular IPv6 addresses because
 ORCHID spaces are registered with the IANA. That is, a portion of
 the IPv6 address space is reserved for ORCHIDs. The ORCHID
 specification allows the creation of multiple disjoint identifier
 spaces. Each such space is identified by a separate Context
 Identifier. The Context Identifier can be either drawn implicitly
 from the context the ORCHID is used in or carried explicitly in a
 protocol.

 HIP defines a native socket API [HIP-NATIVE-API] that applications
 can use to establish and manage connections. Additionally, HIP can
 also be used through the traditional IPv4 and IPv6 TCP/IP socket
 APIs. Section 3.4 describes how an application using these
 traditional APIs can make use of HIP. Figure 1 shows all these APIs
 between the application and the transport layers.

 +---+
 | Application |
 +----------------+------------------------+
 | HIP Native API | Traditional Socket API |
 +----------------+------------------------+
 | Transport Layer |
 +---+

 Figure 1: HIP API

3.1.2. HIP Base Exchange

 Typically, before two HIP hosts exchange upper-layer traffic, they
 perform a four-way handshake that is referred to as the HIP base
 exchange. Figure 2 illustrates the HIP base exchange. The initiator

Camarillo, et al. Experimental [Page 5]

RFC 6079 HIP BONE January 2011

 sends an I1 packet and receives an R1 packet from the responder.
 After that, the initiator sends an I2 packet and receives an R2
 packet from the responder.

 Initiator Responder

 | I1 |
 |-------------------------->|
 | R1 |
 |<--------------------------|
 | I2 |
 |-------------------------->|
 | R2 |
 |<--------------------------|

 Figure 2: HIP Base Exchange

 Of course, the initiator needs the responder’s locator (or locators)
 in order to send its I1 packet. The initiator can obtain locators
 for the responder in multiple ways. For example, according to the
 current HIP specifications the initiator can get the locators
 directly from the DNS [RFC5205] or indirectly by sending packets
 through a HIP rendezvous server [RFC5204]. However, HIP is an open-
 ended architecture. The HIP architecture allows the locators to be
 obtained by any means (e.g., from packets traversing an overlay
 network or as part of the candidate address collection process in a
 NAT traversal scenario).

3.1.3. Locator Management

 Once a HIP connection between two hosts has been established with a
 HIP base exchange, the hosts can start exchanging higher-layer
 traffic. If any of the hosts changes its set of locators, it runs an
 update exchange [RFC5206], which consists of three messages. If a
 host is multihomed, it simply provides more than one locator in its
 exchanges. However, if both of the endpoints move at the same time,
 or through some other reason both lose track of the peers’ currently
 active locators, they need to resort to using a rendezvous server or
 getting new peer locators by some other means.

3.2. NAT Traversal

 HIP’s NAT traversal mechanism [RFC5770] is based on ICE (Interactive
 Connectivity Establishment) [RFC5245]. Hosts gather address
 candidates and, as part of the HIP base exchange, hosts perform an
 ICE offer/answer exchange where they exchange their respective

Camarillo, et al. Experimental [Page 6]

RFC 6079 HIP BONE January 2011

 address candidates. Hosts perform end-to-end STUN-based [RFC5389]
 connectivity checks in order to discover which address candidate
 pairs yield connectivity.

 Even though, architecturally, HIP lies below the transport layer
 (i.e., HIP packets are carried directly in IP packets), in the
 presence of NATs, HIP sometimes needs to be tunneled in a transport
 protocol (i.e., HIP packets are carried by a transport protocol such
 as UDP).

3.3. Security

 Security is an essential part of HIP. The following sections
 describe the security-related functionality provided by HIP.

3.3.1. DoS Protection

 HIP provides protection against DoS (denial-of-service) attacks by
 having initiators resolve a cryptographic puzzle before the responder
 stores any state. On receiving an I1 packet, a responder sends a
 pre-generated R1 packet that contains a cryptographic puzzle and
 deletes all the state associated with the processing of this I1
 packet. The initiator needs to resolve the puzzle in the R1 packet
 in order to generate an I2 packet. The difficulty of the puzzle can
 be adjusted so that, if a receiver is under a DoS attack, it can
 increase the difficulty of its puzzles.

 On receiving an I2 packet, a receiver checks that the solution in the
 packet corresponds to a puzzle generated by the receiver and that the
 solution is correct. If it is, the receiver processes the I2 packet.
 Otherwise, it silently discards it.

 In an overlay scenario, there are multiple ways in which this
 mechanism can be utilized within the overlay. One possibility is to
 cache the pre-generated R1 packets within the overlay and let the
 overlay directly respond with R1s to I1s. In that way, the responder
 is not bothered at all until the initiator sends an I2 packet, with
 the puzzle solution. Furthermore, a more sophisticated overlay could
 verify that an I2 packet has a correctly solved puzzle before
 forwarding the packet to the responder.

3.3.2. Identifier Assignment and Authentication

 As discussed earlier, HIP uses ORCHIDs [RFC4843] as the main
 representation for identifiers. Potentially, HIP can use different
 types of ORCHIDs as long as the probability of finding collisions
 (i.e., two nodes with the same ORCHID) is low enough. One way to
 completely avoid this type of collision is to have a central

Camarillo, et al. Experimental [Page 7]

RFC 6079 HIP BONE January 2011

 authority generate and assign ORCHIDs to nodes. To secure the
 binding between ORCHIDs and any higher-layer identifiers, every time
 the central authority assigns an ORCHID to a node, it also generates
 and signs a certificate stating who is the owner of the ORCHID. The
 owner of the ORCHID then includes the corresponding certificate in
 its R1 (when acting as responder) and I2 packets (when acting
 initiator) to prove that it is actually allowed to use the ORCHID
 and, implicitly, the associated public key.

 Having a central authority works well to completely avoid collisions.
 However, having a central authority is impractical in some scenarios.
 As defined today, HIP systems generally use a self-certifying ORCHID
 type called HIT (Host Identity Tag) that does not require a central
 authority (but still allows one to be used).

 A HIT is the hash of a node’s public key. A node proves that it has
 the right to use a HIT by showing its ability to sign data with its
 associated private key. This scheme is secure due to the so-called
 second-preimage resistance property of hash functions. That is,
 given a fixed public key K1, finding a different public key K2 such
 that hash(K1) = hash(K2) is computationally very hard. Optimally, a
 preimage attack on the 100-bit hash function used in ORCHIDs will
 take an order of 2^100 operations to be successful, and can be
 expected to take in the average 2^99 operations. Given that each
 operation requires the attacker to generate a new key pair, the
 attack is fully impractical with current technology and techniques
 (see [RFC4843]).

 HIP nodes using HITs as ORCHIDs do not typically use certificates
 during their base exchanges. Instead, they use a leap-of-faith
 mechanism, similar to the Secure Shell (SSH) protocol [RFC4251],
 whereby a node somehow authenticates remote nodes the first time they
 connect to it and, then, remembers their public keys. While user-
 assisted leap-of-faith mechanism (such as in SSH) can be used to
 facilitate a human-operated offline path (such as a telephone call),
 automated leap-of-faith mechanisms can be combined with a reputation
 management system to create an incentive to behave. However, such
 considerations go well beyond the current HIP architecture and even
 beyond this proposal. For the purposes of the present document, we
 merely want to point out that, architecturally, HIP supports both
 self-generated opportunistic identifiers and administratively
 assigned ones.

Camarillo, et al. Experimental [Page 8]

RFC 6079 HIP BONE January 2011

3.3.3. Connection Security

 Once two nodes complete a base exchange between them, the traffic
 they exchange is encrypted and integrity protected. The security
 mechanism used to protect the traffic is IPsec Encapsulating Security
 Payload (ESP) [RFC5202]. However, there is ongoing work to specify
 how to use other protection mechanisms.

3.4. HIP Deployability and Legacy Applications

 As discussed earlier, HIP defines a native socket API [HIP-NATIVE-
 API] that applications can use to establish and manage connections.
 New applications can implement this API to get full advantage of HIP.
 However, in most cases, legacy (i.e., non-HIP-aware) applications
 [RFC5338] can use HIP through the traditional IPv4 and IPv6 socket
 APIs.

 The idea is that when a legacy IPv6 application tries to obtain a
 remote host’s IP address (e.g., by querying the DNS), the DNS
 resolver passes the remote host’s ORCHID (which was also stored in
 the DNS) to the legacy application. At the same time, the DNS
 resolver stores the remote host’s IP address internally at the HIP
 module. Since the ORCHID looks like an IPv6 address, the legacy
 application treats it as such. It opens a connection (e.g., TCP)
 using the traditional IPv6 socket API. The HIP module running in the
 same host as the legacy application intercepts this call somehow
 (e.g., using an interception library or setting up the host’s routing
 tables so that the HIP module receives the traffic) and runs HIP (on
 behalf of the legacy application) towards the IP address
 corresponding to the ORCHID. This mechanism works well in almost all
 cases. However, applications involving referrals (i.e., passing of
 IPv6 addresses between applications) present issues, which are
 discussed in Section 5 below. Additionally, management applications
 that care about the exact IP address format may not work well with
 such a straightforward approach.

 In order to make HIP work through the traditional IPv4 socket API,
 the HIP module passes an LSI (Local Scope Identifier), instead of a
 regular IPv4 address, to the legacy IPv4 application. The LSI looks
 like an IPv4 address, but is locally bound to an ORCHID. That is,
 when the legacy application uses the LSI in a socket call, the HIP
 module intercepts it and replaces the LSI with its corresponding
 ORCHID. Therefore, LSIs always have local scope. They do not have
 any meaning outside the host running the application. The ORCHID is
 used on the wire; not the LSI. In the referral case, if it is not
 possible to rewrite the application level packets to use ORCHIDs

Camarillo, et al. Experimental [Page 9]

RFC 6079 HIP BONE January 2011

 instead of LSIs, it may be hard to make IPv4 referrals work in
 Internet-wide settings. IPv4 LSIs have been successfully used in
 existing HIP deployments within a single corporate network.

4. Framework Overview

 The HIP BONE framework combines HIP with different peer protocols to
 provide robust and secure overlay network solutions.

 Many overlays typically require three types of operations:

 o overlay maintenance,
 o data storage and retrieval, and
 o connection management.

 Overlay maintenance operations deal with nodes joining and leaving
 the overlay and with the maintenance of the overlay’s routing tables.
 Data storage and retrieval operations deal with nodes storing,
 retrieving, and removing information in or from the overlay.
 Connection management operations deal with the establishment of
 connections and the exchange of lightweight messages among the nodes
 of the overlay, potentially in the presence of NATs.

 The HIP BONE framework uses HIP to perform connection management.
 Data storage and retrieval and overlay maintenance are to be
 implemented using protocols other than HIP. For lack of a better
 name, these protocols are referred to as peer protocols.

 One way to depict the relationship between the peer protocol and HIP
 modules is shown in Figure 3. The peer protocol module implements
 the overlay construction and maintenance features, and possibly
 storage (if the particular protocol supports such a feature). The
 HIP module consults the peer protocol’s overlay topology part to make
 routing decisions, and the peer protocol uses HIP for connection
 management and sending peer protocol messages to other hosts. The
 HIP BONE API that applications use is a combination of the HIP Native
 API and traditional socket API (as shown in Figure 1) with any
 additional API a particular instance implementation provides.

Camarillo, et al. Experimental [Page 10]

RFC 6079 HIP BONE January 2011

 Application
 -------------------------------- HIP BONE API
 +---+ +--------------------+
 | | | Peer Protocol |
 | | +--------+ +---------+
 | |<->|Topology| |(Storage)|
 | | +---------+----------+
 | | ^
 | | v
 | +------------------------+
 | HIP |
 +----------------------------+

 Figure 3: HIP with Peer Protocol

 Architecturally, HIP can be considered to create a new thin "waist"
 layer on top of the IPv4 and IPv6 networks; see Figure 4. The HIP
 layer itself consists of the HIP signaling protocol and one or more
 data transport protocols; see Figure 5. The HIP signaling packets
 and the data transport packets can take different routes. In the HIP
 BONE scenarios, the HIP signaling packets are typically first routed
 through the overlay and then directly (if possible), while the data
 transport packets are typically routed only directly between the
 endpoints.

 +--------------------------------------+
 | Transport (using HITs or LSIs) |
 +--------------------------------------+
 | HIP |
 +------------------+-------------------+
 | IPv4 | IPv6 |
 +------------------+-------------------+

 Figure 4: HIP as a Thin Waist

 +------------------+-------------------+
 | HIP signaling | data transports |
 +------------------+-------------------+

 Figure 5: HIP Layer Structure

 In HIP BONE, the peer protocol creates a new signaling layer on top
 of HIP. It is used to set up forwarding paths for HIP signaling
 messages. This is a similar relationship that an IP routing
 protocol, such as OSPF, has to the IP protocol itself. In the HIP
 BONE case, the peer protocol plays a role similar to OSPF, and HIP
 plays a role similar to IP. The ORCHIDs (or, in general, Node IDs if
 the ORCHID prefix is not used) are used for forwarding HIP packets

Camarillo, et al. Experimental [Page 11]

RFC 6079 HIP BONE January 2011

 according to the information in the routing tables. The peer
 protocols are used to exchange routing information based on Node IDs
 and to construct the routing tables.

 Architecturally, routing tables are located between the peer protocol
 and HIP, as shown in Figure 6. The peer protocol constructs the
 routing table and keeps it updated. The HIP layer accesses the
 routing table in order to make routing decisions. The bootstrap of a
 HIP BONE overlay does not create circular dependencies between the
 peer protocol (which needs to use HIP to establish connections with
 other nodes) and HIP (which needs the peer protocol to know how to
 route messages to other nodes) for the same reasons as the bootstrap
 of an IP network does not create circular dependencies between OSPF
 and IP. The first connections established by the peer protocol are
 with nodes whose locators are known. HIP establishes those
 connections as any connection between two HIP nodes where no overlays
 are present. That is, there is no need for the overlay to provide a
 rendezvous service for those connections.

 +--------------------------------------+
 | Peer protocol |
 +--------------------------------------+
 | Routing table |
 +--------------------------------------+
 | HIP |
 +--------------------------------------+

 Figure 6: Routing Tables

 It is possible that different overlays use different routing table
 formats. For example, the structure of the routing tables of two
 overlays based on different DHTs (Distributed Hash Tables) may be
 very different. In order to make routing decisions, the HIP layer
 needs to convert the routing table generated by the peer protocol
 into a forwarding table that allows the HIP layer select a next hop
 for any packet being routed.

 In HIP BONE, the HIP usage of public keys and deriving ORCHIDs
 through a hash function can be utilized at the peer protocol side to
 better secure routing table maintenance and to protect against
 chosen-peer-ID attacks.

 HIP BONE provides quite a lot of flexibility with regards to how to
 arrange the different protocols in detail. Figure 7 shows one
 potential stack structure.

Camarillo, et al. Experimental [Page 12]

RFC 6079 HIP BONE January 2011

 +-----------------------+--------------+
 | peer protocols | media |
 +------------------+----+--------------+
 | HIP signaling | data transport |
 | |
 +------------------+-------------------+
 | NAT | non-NAT | |
 | | |
 | IPv4 | IPv6 |
 +------------------+-------------------+

 Figure 7: Example HIP BONE Stack Structure

5. The HIP BONE Framework

 HIP BONE is a generic framework that allows the use of different peer
 protocols. A particular HIP BONE instance uses a particular peer
 protocol. The details on how to implement HIP BONE using a given
 peer protocol need to be specified in a, so-called, HIP BONE instance
 specification. Section 5.5 discusses what details need to be
 specified by HIP BONE instance specifications. For example, the HIP
 BONE instance specification for RELOAD [P2PSIP-BASE] is specified in
 [HIP-RELOAD-INSTANCE].

5.1. Node ID Assignment and Bootstrap

 Nodes in an overlay are primarily identified by their Node IDs.
 Overlays typically have an enrollment server that can generate Node
 IDs, or at least some part of the Node ID, and sign certificates. A
 certificate generated by an enrollment server authorizes a particular
 user to use a particular Node ID in a particular overlay. The way
 users are identified is defined by the peer protocol and HIP BONE
 instance specification.

 The enrollment server of an overlay using HITs derived from public
 keys as Node IDs could just authorize users to use the public keys
 and HITs associated to their nodes. Such a Node ID has the same
 self-certifying property as HITs and the Node ID can also be used in
 the HIP and legacy APIs as an ORCHID. This works well as long as the
 enrollment server is the one generating the public/private key pairs
 for all those nodes. If the enrollment server authorizes users to
 use HITs that are generated directly by the nodes themselves, the
 system is open to a type of chosen-peer-ID attack.

 If the overlay network or peer protocol has more specific
 requirements for the Node ID value that prevent using HITs derived
 from public keys, each host will need a certificate (e.g., in their
 HIP base exchanges) provided by the enrollment server to prove that

Camarillo, et al. Experimental [Page 13]

RFC 6079 HIP BONE January 2011

 they are authorized to use a particular identifier in the overlay.
 Depending on how the certificates are constructed, they typically
 also need to contain the host’s self-generated public key. Depending
 on how the Node IDs and public keys are attributed, different
 scenarios become possible. For example, the Node IDs may be
 attributed to users, there may be user public key identifiers, and
 there may be separate host public key identifiers. Authorization
 certificates can be used to bind the different types of identifiers
 together.

 HITs, as defined in [RFC5201], always start with the ORCHID prefix.
 Therefore, there are 100 bits left in the HIT for different Node ID
 values. If an overlay network requires a larger address space, it is
 also possible to use all the 128 bits of a HIT for addressing peer
 layer identifiers. The benefit of using ORCHID prefix for Node IDs
 is that it makes possible to use them with legacy socket APIs, but in
 this context, most of the applications are assumed to be HIP aware
 and able to use a more advanced API supporting full 128-bit
 identifiers. Even larger address spaces could be supported with an
 additional HIP parameter giving the source and destination Node IDs,
 but defining such a parameter, if needed, is left for future
 documents.

 Bootstrap issues, such as how to locate an enrollment or a bootstrap
 server, belong to the peer protocol.

5.2. Overlay Network Identification

 It is possible for a HIP host to participate simultaneously in
 multiple different overlay networks. It is also possible that some
 HIP traffic is not intended to be forwarded over an overlay.
 Therefore, a host needs to know to which overlay an incoming HIP
 message belongs and the outgoing HIP messages need to be labeled as
 belonging to a certain overlay. This document specifies a new
 generic HIP parameter (in Section 6.1) for the purpose of directing
 HIP messages to the right overlay.

 In addition, an application using HIP BONE needs to define, either
 implicitly or explicitly, the overlay to use for communication.
 Explicit configuration can happen, e.g., by configuring certain local
 HITs to be bound to certain overlays or by defining the overlay
 identifier using advanced HIP socket options or other suitable APIs.
 On the other hand, if no explicit configuration for a HIP association
 is used, a host may have a configured default overlay where all HIP
 messages without a valid locator are sent. The specification for how
 to implement this coordination for locally originated messages is out
 of scope for this document.

Camarillo, et al. Experimental [Page 14]

RFC 6079 HIP BONE January 2011

5.3. Connection Establishment

 Nodes in an overlay need to establish connections with other nodes in
 different cases. For example, a node typically has connections to
 the nodes in its forwarding table. Nodes also need to establish
 connections with other nodes in order to exchange application-layer
 messages.

 As discussed earlier, HIP uses the base exchange to establish
 connections. A HIP endpoint (the initiator) initiates a HIP base
 exchange with a remote endpoint by sending an I1 packet. The
 initiator sends the I1 packet to the remote endpoint’s locator.
 Initiators that do not have any locator for the remote endpoint need
 to use a rendezvous service. Traditionally, a HIP rendezvous server
 [RFC5204] has provided such a rendezvous service. In HIP BONE, the
 overlay itself provides the rendezvous service.

 Therefore, in HIP BONE, a node uses an I1 packet (as usual) to
 establish a connection with another node in the overlay. Nodes in
 the overlay forward I1 packets in a hop-by-hop fashion according to
 the overlay’s routing table towards its destination. This way, the
 overlay provides a rendezvous service between the nodes establishing
 the connection. If the overlay nodes have active connections with
 other nodes in their forwarding tables and if those connections are
 protected (typically with IPsec ESP), I1 packets may be sent over
 protected connections between nodes. Alternatively, if there is no
 such an active connection but the node forwarding the I1 packet has a
 valid locator for the next hop, the I1 packets may be forwarded
 directly, in a similar fashion to how I1 packets are today forwarded
 by a HIP rendezvous server.

 Since HIP supports NAT traversal, a HIP base exchange over the
 overlay will perform an ICE [RFC5245] offer/answer exchange between
 the nodes that are establishing the connection. In order to perform
 this exchange, the nodes need to first gather candidate addresses.
 Which nodes can be used to obtain reflexive address candidates and
 which ones can be used to obtain relayed candidates is defined by the
 peer protocol.

5.4. Lightweight Message Exchanges

 In some cases, nodes need to perform a lightweight query to another
 node (e.g., a request followed by a single response). In this
 situation, establishing a connection using the mechanisms in Section
 5.3 for a simple query would be an overkill. A better solution is to
 forward a HIP message through the overlay with the query and another
 one with the response to the query. The payload of such HIP packets
 is integrity protected [RFC6078].

Camarillo, et al. Experimental [Page 15]

RFC 6079 HIP BONE January 2011

 Nodes in the overlay forward this HIP packet in a hop-by-hop fashion
 according to the overlay’s routing table towards its destination,
 typically through the protected connections established between them.
 Again, the overlay acts as a rendezvous server between the nodes
 exchanging the messages.

5.5. HIP BONE Instantiation

 As discussed in Section 5, HIP BONE is a generic framework that
 allows using different peer protocols. A particular HIP BONE
 instance uses a particular peer protocol. The details on how to
 implement a HIP BONE using a given peer protocol need to be specified
 in a, so-called, HIP BONE instance specification. A HIP BONE
 instance specification needs to define, minimally:

 o the peer protocol to be used,
 o what kind of Node IDs are used and how they are derived,
 o which peer protocol primitives trigger HIP messages, and
 o how the overlay identifier is generated.

 Additionally, a HIP BONE instance specification may need to specify
 other details that are specific to the peer protocol used.

 As an example, the HIP BONE instance specification for RELOAD
 [P2PSIP-BASE] is specified in [HIP-RELOAD-INSTANCE].

 The areas not covered by a particular HIP BONE instance specification
 are specified by the peer protocol or elsewhere. These areas
 include:

 o the algorithm to create the overlay (e.g., a DHT),
 o overlay maintenance functions,
 o data storage and retrieval functions,
 o the process for obtaining a Node ID,
 o bootstrap function, and
 o how to select STUN and TURN servers for the candidate address
 collection process in NAT traversal scenarios.

 Note that the border between a HIP BONE instance specification and a
 peer protocol specifications is fuzzy. Depending on how generic the
 specification of a given peer protocol is, its associated HIP BONE
 instance specification may need to specify more or less details.
 Also, a HIP BONE instance specification may leave certain areas
 unspecified in order to leave their configuration up to each
 particular overlay.

Camarillo, et al. Experimental [Page 16]

RFC 6079 HIP BONE January 2011

6. Overlay HIP Parameters

 This section defines the generic format and protocol behavior for the
 Overlay Identifier and Overlay Time-to-Live (TTL) HIP parameters that
 can be used in HIP based overlay networks. HIP BONE instance
 specifications define the exact format and content of the Overlay
 Identifier parameter, the cases when the Overlay TTL parameter should
 be used, and any additional behavior for each packet.

6.1. Overlay Identifier

 To identify to which overlay network a HIP message belongs, all HIP
 messages that are sent via an overlay, or as a part of operations
 specific to a certain overlay, MUST contain an OVERLAY_ID parameter
 with the identifier of the corresponding overlay network. Instance
 specifications define how the identifier is generated for different
 types of overlay networks. The generation mechanism MUST be such
 that it is unlikely to generate the same identifier for two different
 overlay instances and any other means possible for preventing
 collisions SHOULD be used.

 The generic format of the OVERLAY_ID parameter is shown in Figure 8.
 Instance specifications define valid length for the parameter and how
 the identifier values are generated.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Identifier /
 +-+
 / | Padding |
 +-+

 Type 4592
 Length Length of the Identifier, in octets
 Identifier The identifier value
 Padding 0-7 bytes of padding if needed

 Figure 8: Format of the OVERLAY_ID Parameter

6.2. Overlay TTL

 HIP packets sent in an overlay network MAY contain an Overlay Time-
 to-live (OVERLAY_TTL) parameter whose TTL value is decremented on
 each overlay network hop. When a HIP host receives a HIP packet with

Camarillo, et al. Experimental [Page 17]

RFC 6079 HIP BONE January 2011

 an OVERLAY_TTL parameter, and the host is not the final recipient of
 the packet, it MUST decrement the TTL value in the parameter by one
 before forwarding the packet.

 If the TTL value in a received HIP packet is zero, and the receiving
 host is not the final recipient, the packet MUST be dropped and the
 host SHOULD send HIP Notify packet with NOTIFICATION error type
 OVERLAY_TTL_EXCEEDED (value 70) to the sender of the original HIP
 packet.

 The Notification Data field for the OVERLAY_TTL_EXCEEDED
 notifications SHOULD contain the HIP header and the TRANSACTION_ID
 [RFC6078] parameter (if one exists) of the packet whose TTL was
 exceeded.

 Figure 9 shows the format of the OVERLAY_TTL parameter. The TTL
 value is given as the number of overlay hops this packet has left and
 it is encoded as an unsigned integer using network byte order.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | TTL | Reserved |
 +-+

 Type 64011
 Length 4
 TTL The Time-to-Live value
 Reserved Reserved for future use

 Figure 9: Format of the OVERLAY_TTL Parameter

 The type of the OVERLAY_TTL parameter is critical (as defined in
 Section 5.2.1 of [RFC5201]) and therefore all the HIP nodes
 forwarding a packet with this parameter MUST support it. If the
 parameter is used in a scenario where the final recipient does not
 support the parameter, the parameter SHOULD be removed before
 forwarding the packet to the final recipient.

7. Security Considerations

 This document provides a high-level framework to build HIP-based
 overlays. The security properties of HIP and its extensions used in
 this framework are discussed in their respective specifications.
 Those security properties can be affected by the way HIP is used in a
 particular overlay. However, those properties are mostly affected by

Camarillo, et al. Experimental [Page 18]

RFC 6079 HIP BONE January 2011

 the design decisions made to build a particular overlay; not so much
 by the high-level framework specified in this document. Such design
 decisions are typically documented in a HIP BONE instance
 specification, which describes the security properties of the
 resulting overlay.

8. Acknowledgements

 HIP BONE is based on ideas coming from conversations and discussions
 with a number of people in the HIP and P2PSIP communities. In
 particular, Philip Matthews, Eric Cooper, Joakim Koskela, Thomas
 Henderson, Bruce Lowekamp, and Miika Komu provided useful input on
 HIP BONE.

9. IANA Considerations

 This section is to be interpreted according to [RFC5226].

 This document updates the IANA Registry for HIP Parameter Types
 [RFC5201] by assigning HIP Parameter Type values for the new HIP
 Parameters OVERLAY_ID (defined in Section 6.1) and OVERLAY_TTL
 (defined in Section 6.2). This document also defines a new HIP
 Notify Message Type [RFC5201], OVERLAY_TTL_EXCEEDED in Section 6.2.
 This value is allocated in the error range.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4843] Nikander, P., Laganier, J., and F. Dupont, "An IPv6 Prefix
 for Overlay Routable Cryptographic Hash Identifiers
 (ORCHID)", RFC 4843, April 2007.

 [RFC5201] Moskowitz, R., Nikander, P., Jokela, P., Ed., and T.
 Henderson, "Host Identity Protocol", RFC 5201, April 2008.

 [RFC5202] Jokela, P., Moskowitz, R., and P. Nikander, "Using the
 Encapsulating Security Payload (ESP) Transport Format with
 the Host Identity Protocol (HIP)", RFC 5202, April 2008.

 [RFC5770] Komu, M., Henderson, T., Tschofenig, H., Melen, J., and A.
 Keranen, Ed., "Basic Host Identity Protocol (HIP)
 Extensions for Traversal of Network Address Translators",
 RFC 5770, April 2010.

Camarillo, et al. Experimental [Page 19]

RFC 6079 HIP BONE January 2011

 [RFC6078] Camarillo, G. and J. Melen, "Host Identity Protocol (HIP)
 Immediate Carriage and Conveyance of Upper-Layer Protocol
 Signaling (HICCUPS)", RFC 6078, January 2011.

10.2. Informative References

 [RFC4251] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [RFC5204] Laganier, J. and L. Eggert, "Host Identity Protocol (HIP)
 Rendezvous Extension", RFC 5204, April 2008.

 [RFC5205] Nikander, P. and J. Laganier, "Host Identity Protocol
 (HIP) Domain Name System (DNS) Extensions", RFC 5205,
 April 2008.

 [RFC5206] Nikander, P., Henderson, T., Ed., Vogt, C., and J. Arkko,
 "End-Host Mobility and Multihoming with the Host Identity
 Protocol", RFC 5206, April 2008.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5338] Henderson, T., Nikander, P., and M. Komu, "Using the Host
 Identity Protocol with Legacy Applications", RFC 5338,
 September 2008.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [HIP-NATIVE-API]
 Komu, M. and T. Henderson, "Basic Socket Interface
 Extensions for Host Identity Protocol (HIP)", Work in
 Progress, January 2010.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, April
 2010.

 [P2PSIP-BASE]
 Jennings, C., Lowekamp, B., Ed., Rescorla, E., Baset, S.,
 and H. Schulzrinne, "REsource LOcation And Discovery
 (RELOAD) Base Protocol", Work in Progress, November 2010.

Camarillo, et al. Experimental [Page 20]

RFC 6079 HIP BONE January 2011

 [HIP-RELOAD-INSTANCE]
 Keranen, A., Camarillo, G., and J. Maenpaa, "Host Identity
 Protocol-Based Overlay Networking Environment (HIP BONE)
 Instance Specification for REsource LOcation And Discovery
 (RELOAD)", Work in Progress, January 2011.

Authors’ Addresses

 Gonzalo Camarillo
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Gonzalo.Camarillo@ericsson.com

 Pekka Nikander
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Pekka.Nikander@ericsson.com

 Jani Hautakorpi
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Jani.Hautakorpi@ericsson.com

 Ari Keranen
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Ari.Keranen@ericsson.com

 Alan Johnston
 Avaya
 St. Louis, MO 63124

 EMail: alan.b.johnston@gmail.com

Camarillo, et al. Experimental [Page 21]

