Net wor k Wor ki ng Group Richard Wnter, Jeffrey HIl, Warren Geiff
RFC # 610 CCA
NI C # 21352 Decenber 15, 1973

Furt her Datal anguage Desi gn Concepts

Ri chard Wnter
Jeffrey Hill
Warren Geiff

Conmput er Corporation of Anerica
Decenber 15, 1973

Wnter, HIl & Geiff [Page 1]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

Acknow edgnent

During the course of the Dataconputer Project, nany peopl e have
contributed to the devel opnent of datal anguage.

The suggestions and criticisns of Dr. Gordon Everest (University of

M nnesota), Dr. Robert Taylor (University of Massachusetts), Professor
Thomas Cheat ham (Harvard University) and Professor George Mealy (Harvard
Uni versity) have been particularly useful.

Wthin CCA several people in addition to the authors have partici pated

in the | anguage design at various stages of the project. Hal Mirray,
Bil | Bush, David Shipnan and Dal e Stern have been especially hel pful.

Wnter, HIl & Geiff [Page 2]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

1. Introduction

1.1 The Dat aconputer System

The dataconputer is a large-scale data utility system offering data
storage and data nanagenent services to other conputers

The dataconputer differs fromtraditional data managenent systens in
several ways.

First, it is inplenented on dedicated hardware, and conprises a separate
conputing system specialized for data nanagenent.

Second, the systemis inplenented on a large scale. Data is intended to
be stored on mass storage devices, with capacities in the range of a
trillion bits. Files on the order of one hundred billion bits are to be
kept onli ne.

Third, it is intended to support sharing of data anbng processes
operating in diverse environments. That is, the prograns which share a
gi ven data base may be witten in different |anguages, execute on

di fferent hardware under different operating systems, and support end
users with radically different requirenents. To enable such shared use
of a data base, transformati ons between various hardware representations
and data structuring concepts nust be achi eved.

Finally, the dataconmputer is designed to function snoothly as a
component of a much larger system a conmputer network. In a conputer
networ k, the dataconputer is a node specialized for data nanagenent, and
acting as a data utility for the other nodes. The Arpanet, for which

t he dataconputer is being devel oped, is an international network which
has over 60 nodes. O these, some are presently specialized for

term nal handling, others are specialized for conputation (e.g., the
ILLIAC I V), some are general purpose service nodes (e.g., MILTICS) and
one (CCA) is specialized for data nanagenent.

1. 2 Dat al anguage

Dat al anguage is the | anguage in which all requests to the dataconputer

are stated. It includes facilities for data description and creation,
for retrieval of or changes to stored data, and for access to a variety
of auxiliary facilities and services. |n datalanguage it is possible to

specify any operation the dataconputer is capable of perforning
Dat al anguage is the only | anguage accepted by the dataconputer and is
t he exclusive neans of access to data and services.

Wnter, HIl & Geiff [Page 3]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

1.3 Present Design Effort

We are now engaged in devel opi ng conpl ete specifications for
dat al anguage; this is the second iteration in the |anguage design
process.

A smaller, initial design effort devel oped sone concepts and principles
whi ch are described in the third working paper in this series. These
have been used as the basis of software inplenmentations resulting in an
initial network service capability. A user nmanual for this system was
publ i shed as worki ng paper numnber 7.

As a result of experience gained in inplenentation and service, through
further study of user requirenents and work with potential users, and

t hrough investigation of other work in the data managenent field, quite
a few i deas have been devel oped for the inprovenent of datal anguage
These are being assimlated into the | anguage design in the iteration
now i n progress.

Wien the | anguage design is conplete, it will be incorporated into the
exi sting software (requiring changes to the | anguage conpiler, but
having little inpact on the rest of the system

Dat aconputer users will first have access to the new | anguage during
1975.

1.4 Purpose of this Paper

Thi s paper presents concepts and prelinmnary results, rather than a
conpl eted design. There are two reasons for publishing now.

The first is to provide information to those planning to use the

dat aconputer. They may benefit from know edge of our intentions for
devel opnent .

The second is to enable system and | anguage designers to comment on our
wor k before the design is frozen

1.5 Organi zati on of the Paper

The renai nder of the paper is divided into four sections.

Section 2 discusses the nost gl obal considerations for |anguage design
This conprises our view of the problem it has influenced our work to

date and will determ ne nost of our actions in conpletion of the design
This section provides background for section 3, and revi ews sone

Wnter, HIl & Geiff [Page 4]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

material that will be fanmiliar to those who have been followi ng our work
cl osel y.

Section 3 discusses sone of the specific issues we have worked on. The
enphasis is on solutions and options for solution.

In sections 2 and 3 we are presenting our "top-down" work: this is the
t hi nki ng we have done based on known requirenments and our conception of
the desirable properties of datal anguage.

We have al so been working fromthe opposite end, devel oping the
primtives fromwhich to construct the | anguage. Section 4 presents our
work in this area: a nodel dataconputer which will ultimtely provide a
preci se senantic definition of datal anguage. Section 4 explains that
part of the nodel which is conplete, and relates this to our other work

Section 5 di scusses work that remains, both on the nodel and in our
t op-down anal ysi s.

Wnter, HIl & Geiff [Page 5]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973
2. Considerations for Language Design

2.1 Introduction

Dat a managenent is the task of nmanaging data as a resource, independent
of hardware and applications prograns. It can be divided it into five
maj or sub-t asks:

(1) _creating_ databases in storage,

(2) making the data _available_ (e.g., satisfying queries),

(3) _maintaining the data as information is added, del eted and
nodi fi ed,

(4) assuring the _integrity of the data (e.g., through backup and
recovery systens, through internal consistency checks),

(5) _regulating_access , to protect the databases, the system and
the privacy of users.

These are the najor data-related functions of the dataconputer; while
the systemwi |l ultinmately provide other services (such as accounting
for use, nonitoring performance) these are really auxiliary and conmon
to all service facilities.

This section presents global considerations for the design of

dat al anguage, based on our observations about the problemand the
environnent in which it is to be solved. The central problemis data
managenent, and the dataconputer shares the sanme goals as many currently
avai | abl e data managenent systens. Several aspects of the dataconputer
create a uni que set of problens to be sol ved

2.2 Hardware Consi derations

2.2.1 Separate Box

The dataconputer is a conplete data managenent utility in a separate,
closed box. That is, the hardware, the data and the data nanagenent
software are segregated from any general - purpose processing facilities.
There is a separate installation dedicated to data managenent.

Dat al anguage is the only neans users have for comunicating with the
dat aconputer and the sole activity of the dataconputer is to process
dat al anguage requests.

Dedi cati ng hardware provi des an obvi ous advantage: one can specialize it
for data managenent. The processor(s) can be nodified to have data
managenent "instructions”; comon | ow | evel software functions can be
built into the hardware.

Wnter, HIl & Geiff [Page 6]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

A |l ess obvious, but possibly nore significant, advantage is gained from
the separateness itself. The systemcan be nore easily protected. A
ful ly-devel oped dat aconputer on which there is only maintenance activity
can provide a very carefully controlled environment. First, it can be
made as physically secure as required. Second, it needs to execute only
system sof tware devel oped at CCA; all user prograns are in a high-leve

| anguage (datal anguage) which is effectively interpreted by the system
Hence, only dataconputer system software processes the data, and the
systemis not very vulnerable to capture by a hostile program Thus,
since there is the potential to develop data privacy and integrity
services that are not avail able on general - purpose systens, one can
expect less difficulty in developing privacy controls (including

physi cal ones) for the dataconputer than for the systens it serves.

2.2.2 Mass Storage Hardware

The dataconputer will store nost of its data on nass storage devices
whi ch have distinctive access characteristics. Two exanples of such
hardware are Precision Instrunments’ Unicon 690 and Anpex Corporation’s
TBM system They are quite different fromdisks, and differ
significantly from one another.

However, alnost all users will be ignorant of the characteristics of

t hese devices; many will not even know that the data they use is at the
dat aconputer. Finally, as the devel opnent of the system progresses

data may be invisibly shunted from one dataconputer to another, and as a
result be stored in a physical format quite different fromthat
originally used.

In such an environnent, it is clear that requests for data should be
stated in |ogical, not physical terns.

2.3 Networ k Environnent

The network environnent provides additional requirenments for
dat aconput er desi gn.

2.3.1 Renote Use

Since the dataconputer is to be accessed renotely, the requirenent for
ef fective data selection techniques and good nechanisns for the
expression of selection criteriais anplified. This is because of the
narrow path through which network users comunicate with the

dat aconputer. Presently, a typical process-to-process transfer rate
over the Arpanet is 30 kilobits per second. VWhile this can be increased
t hrough optim zati on of software and protocols, and through additiona

Wnter, HIl & Geiff [Page 7]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

expenditure for hardware and conmunications lines, it seens safe to
assune that it will not soon approach local transfer rates (nmeasured in
t he nmegabits per second).

A typical request calls for either transfer of part of a file to a
renote site, or for selective update to a file already stored at the
dat aconputer. In both of these situations, good nechani sns for
specifying the parts of the data to be transnitted or changed wl|l
reduce the anmount of data ordinarily transferred. This is extrenely

i mportant because with the low per bit cost of storing data at the

dat aconputer, transm ssion costs will be a significant part of the tota
cost of dataconputer usage.

2.3.2 Interprocess Use of the Dataconputer System

Ef fective use of the network requires that groups of processes, renote
from one another, be capable of cooperating to acconplish a given task
or provide a given service. For exanple, to solve a given probl em which
i nvol ves array mani pul ation, data retrieval, interaction with a user at
a termnal, and the generalized services of a |language like PL/I, it may
be nost economical to have four cooperating processes. One of these
could execute at the ILLIAC IV, one at the dataconputer, one at MILTICS
and one at a TIP. \While there is overhead in setting up these four
processes and in having them conmuni cate, each is doing its job on a
system speci alized for that job. |In many cases, the result of using the
specialized systemis a gain of several orders of magnitude in econony
or efficiency (for exanple, online storage at the dataconputer has a
capital cost two orders of magnitude | ower than online costs on
conventional systens). As a result, there is considerable incentive to
consi der sol utions involving cooperating processes on specialized

syst emns.

To summari ze: the dataconputer nust be prepared to function as a
component of small networks of specialized processes, in order that it
can be used effectively in a network in which there are many specialized
nodes.

2.3.3 Common Network Data Handling

A large network can support enough data nanagenent hardware to construct
nore than one dataconputer. Wile this hardware can be conbined into
one even | arger dataconputer, there are advantages to configuring it as
two (or possibly nore) systems. Each system should be |arge enough to
obt ai n econoni es of scale in data storage and to support the data
managenent software. |Inportant data bases can be duplicated, with a
copy at each dataconputer; if one dataconputer fails, or is cut off by

Wnter, HIl & Geiff [Page 8]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

network failure, the data is still available. Even if duplicating the
file is not warranted, the description can be kept at the different

dat aconputers so that applications which need to store data constantly
can be guaranteed that at |east one dataconputer is available to receive
i nput .

These kinds of failure protection involve cooperation between a pair of
dat aconputers; in sone sense, they require that the two dataconputers
function as a single system Gven a system of dataconputers (which one
can think of as a small network of dataconputers), it is obviously

possi ble to experinment with providing additional services on the

dat aconput er-network level. For exanple, all requests could be
addressed sinply to the dataconputer-network; the dataconputer-network
coul d then determ ne where each referenced file was stored (i.e., which
dat aconputer), and how best to satisfy the request.

Here, two kinds of cooperation in the network environment have been
ment i oned: cooperation anong processes to solve a given problem and
cooperation anong dataconputers to provide gl obal optimzations in the
net wor k-1 evel data handling problem These are only two exanpl es,
especially interesting because they can be inplenented in the near term
In the network, much nore general kinds of cooperation are possible, if
alittle farther in the future. For exanple, eventually, one mght want
t he dataconputer(s) to be part of a network-w de data nanagenent system
in which data, directories, services, and hardware were generally

di stributed about the network. The entire systemcould function as a
whol e under the right circunmstances. Most requests would use the data
and services of only a few nodes. Wthin this network-w de system
there woul d be nore than one data managenent system but all systens
woul d be interfaced through a common | anguage. Because the

dat aconputers represent the | argest data nanagenent resource in the
network, they would certainly play an inportant role in any network-w de
system The | anguage of the dataconputer (datal anguage) is certainly a
conveni ent choice for the common | anguage of such a system

Thus a final, albeit futuristic, requirenent inposed by the network on
the design of the dataconputer system is that it be a suitable ngjor
conmponent for network-wi de data managenent systens. |f feasible, one
woul d |'i ke datal anguage to be a suitable candidate for the comon

| anguage of a network-wi de group of cooperating data managenent systens.

2.4 Different Modes of Dataconputer Usage
Wthin this network environnent, the dataconputer will play severa
roles. In this section four such roles are described. Each of them

i nposes constraints on the design of datal anguage. W can anal yze them
in terns of four overl appi ng advant ages whi ch the dat aconputer provides:

Wnter, HIl & Geiff [Page 9]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

Ceneral i zed data nanagenent services
Large file handling

Shar ed access

Econom ¢ vol une storage

PoNE

O course, the primary reason for using the dataconputer will be the
dat a nmanagenent services which it provides. However, for sone
applications size will be the dominating factor in that the dataconputer
will provide for online access to files which are so |arge that
previously only offline storage and processing were possible. The
ability to share data between different network sites with w dely
different hardware is another feature provided only by the dataconputer
Econom es of scal e nmake the dataconputer a viable substitute for tapes
in such applications as operating system backup

Natural ly, a conmbination of the above factors will be at work in nost
dat aconputer applications. The follow ng subsections describe some
possi bl e nodes of interaction with the dataconputer

2.4.1 Support of Large Shared Dat abases

This is the nost significant application of the dataconputer, in nearly
every sense

Projects are already underway which will put databases of over one
hundred billion bits online on the Arpanet dataconputer. Anobng these
are a database which will ultimately include 10 years of weather
observations from 5000 weat her stations |located all over the world. As
onl i ne dat abases, these are unprecedented in size. They will be of
international interest and be shared by users operating on a w de
variety of hardware and in a wi de variety of |anguages

Because t hese databases are online in an international network, and
because they are expected to be of considerable interest to researchers
inthe related fields, it seens obvious that there will be extrenely
broad patterns of use. A strong requirenent, then, is a flexible and
general approach to handling them This requirenent of providing
different users of a database with different views of the data is an
overriding concern of the datal anguage design effort. It is discussed
separately in Section 2.5.

2.4.2 Extensions of Local Data managenment Systens
We i magi ne | ocal data handling systens (data nanagenment systens,

applications-oriented packages, text-handling systens, etc.) wanting to
t ake advantage of the dataconputer. They may do so because of the

Wnter, HIl & Geiff [Page 10]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

econoni cs of storage, because of the data managenent services, or
because they want to take advantage of data already stored at the

dat aconputer. In any case, such systens have sone distinctive
properties as dataconputer users: (1) nost would use |ocal data as wel
as dataconputer data, (2) nmany woul d be concerned with the transl ation
of local requests into datal anguage.

For exanple, a system which does sinple data retrieval and statistica
anal ysis for non-progranm ng social scientists nmight want to use a
census dat abase stored at the datacomputer. Such a system may perform a
range of data retrieval functions, and may need sophisticated
interaction with the dataconputer. |Its usage patterns would nake quite
a contrast with those of a single application program whose sol e use of
t he dat aconputer involves printing a specific report based on a single
known file.

Thi s soci al -science system woul d al so use sone | ocal databases, which it
keeps at its own site because they are snall and nore efficiently
accessed locally. One would like it to be convenient to think of data
the sane way, whether it is stored locally or at the dataconputer
Certainly at the lower levels of the |ocal software, there will have to
be differences in interfacing; it would be nice, however, if |ocal
concepts and operations could easily be translated into datal anguage.

2.4.3 File Level Use of the Dataconputer

In this node of use, other conputer systens take advantage of the online
storage capacity of the dataconputer. To these systens, dataconputer
storage represents a new class of storage: cheaper and safer than tape,
nearly as accessible as |ocal disk. Perhaps they even automatically
nove files between |ocal online storage and the dataconputer, giving
users the inpression that everything is stored locally online.

The distinctive feature of this node of use is that the operations are
on whole files.

A systemoperating in this node uses only the ability to store,
retrieve, append, renanme, do directory listings and the like. An
obvi ous way to make such file level handling easily available to the
network conmunity is to nmake use of the File Transfer Protocol (see
Net work | nformation Center docunent #17759 -- File Transfer Protocol)
already in use for host to host file transfer

Al t hough such "whole file" usage of the dataconmputer would be notivated
primarily by econonic advantages of scale, data sharing at the file
| evel could also be a concern. For exanple, the source files of common
network software might reside at the dataconputer. These files have

Wnter, HIl & Geiff [Page 11]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

little or no structure, but their common use dictates that they be
available in a conmon, always accessible place. It is taking advantage
of the economnmics of the dataconputer, nore than anything el se, since
nost of these services are available on any file system

This node of use is nentioned here because it may account for a large
percentage of datal anguage requests. It requires only capabilities
whi ch woul d be present in datal anguage in any case; the only special
requirenent is to nmake sure it is easy and sinple to acconplish these
t asks.

2.4.4 Use of Dataconputer for File Archiving

This is another econom cs-oriented application. The basic idea is to
store on the dataconputer everything that you intend to read rarely, if
ever. This could include backup files, audit trails, and the I|ike.

An interesting idea related to archiving is increnental archiving. A
typical practice, with regard to backing up data stored online in a

ti me-sharing system is to wite out all the pages which are different
than they were in the last dunp. It is then possible to recover by
restoring the last full dunp, and then restoring all incremental dunps
up to the version desired. This systemoffers a |ower cost for dunping
and storage, and a higher cost for recovery; it is appropriate when the
probability of needing a recovery is |low Datal anguage, then, should be
designed to pernit convenient increnental archiving.

As in the case of the previous application (file system), archiving is
i nportant as a design consideration because of its expected frequency
and econom cs, not because it necessarily requires any extra generality
at the language level. It may dictate that specialized nmechani sns for
archiving be built into the system

2.5 Data Sharing

Controlled sharing of data is a central concern of the project. Three
maj or sub-problenms in data sharing are: (1) concurrent use, (2)

i ndependent concepts of the same database, and (3) varying
representations of the sane database.

Concurrent use of a resource by multiple independent processes is
commonly inplenented for data on the file level in systens in which
files are regarded as disjoint, unrelated objects. It is sonetines
i npl enented on the page | evel

Consi derabl e work on this problem has already been done within the

Wnter, HIl & Geiff [Page 12]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

dat aconputer project. Wen this work is conplete, it will have sone
i mpact on the | anguage design; by and | arge however, we do not consider
this aspect of concurrent use to be a | anguage probl em

O her aspects of the concurrent use problem however, may require nore
consci ous participation by the user. They relate to the senmantics of

col l ections of data objects, when such collections span the boundaries
of files known to the internal operating system Here the question of
what constitutes an update conflict is nore conplex. Related questions
arise in backup and recovery. If two files are related, then perhaps it

i s meaningless to recover an earlier state of one w thout recovering the
corresponding state of the other. These problens are yet to be

i nvesti gated.

Anot her problemin data sharing is that not all users of a database
shoul d have the same concept of that database. Exanples: (1) for
privacy reasons, sonme users should be aware of only part of the database
(e.g., scientists doing statistical studies on nedical files do not need
access to nane and address), (2) for program data i ndependence, payrol
progranms shoul d access only data of concern in witing paychecks, even
though skill inventories may be stored in the sane database, (3) for

gl obal control of efficiency, sinplicity in application progranm ng, and
program dat a i ndependence each application program should "see" a data
organi zation that is best for its job.

To further analyze exanple (3), consider a database which contains

i nformati on about students, teachers, subjects and also indicates which

students have which teachers for which subjects. Depending on the

problemto be solved, an application program nmay have a strong

requi renent for one of the follow ng organi zati ons:

(1) entries of the form (student,teacher, subject) with no concern about
redundancy. |In this organization an object of any of the three
types may occur many tines.

(2) entries of the form

(student, (teacher, subj ect),
(teacher, subj ect),

tteacher,subject))
(3) entries of the form

(teacher, subj ect, (student...student),
subj ect, (student...student),
subj ect, (student.. .student))

and ot her organi zations are certainly possible.

One approach to this problemis to choose an organi zation for stored
data, and then have application prograns wite requests which organize

Wnter, HIl & Geiff [Page 13]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

output in the formthey want. The application programer applies his
ingenuity in stating the request so that the process of reorganization
is combined with the process of retrieval, and the result is relatively
efficient. There are inportant, practical situations in which this
approach is adequate; in fact there are situations in which it is
desirable. In particular, if efficiency or cost is an overriding
consideration, it nmay be necessary for every application programer to
be aware of all the data access and organi zation factors. This may be
the case for a massive file, in which each retrieval nust be tuned to
the access strategy and organi zati on; any ot her node of operation would
result in unacceptable costs or response tines.

However, dependence between application prograns and data organi zation
or access strategy is not a good policy in general. In a w dely-shared
dat abase, it can mean enornous cost in the event of database
reorgani zati on, changes to access software, or even changes in the
storage nmedium Such a change may require reprogranm ng in hundreds of
application prograns distributed throughout the network.

As a result, we see a need for a | anguage whi ch supports a spectrum of
operating nodes, including: (1) application programis conpletely

i ndependent of storage structure, access technique, and reorgani zation
strategy, (2) application program paranetrically controls these, (3)
application programentirely controls them For a wi dely-shared

dat abase, node (1) would be the preferred policy, except when (a) the
application programmer could do a better job than the systemin naking
deci sions, and (b) the need for this increnent of efficiency outweighed
the benefits of program data independence.

In evaluating this question for a particular application, it is
important to realize the role of global efficiency analysis. Wen there
are nany users of a database, in sone sense the best node of operation
is that which mininizes the total cost of processing all requests and
the total cost of storing the data. Wen applications cone and go, as
real -worl d needs change, then the advantages of centralized control are
nore likely to outweigh the advantages of optim zation for a particul ar
application program

The third maj or sub-problemarises in connection with itemleve
representations. Because of the environment in which it executes, each
application programhas a preferred set of formatting concepts, |ength
i ndi cators, paddi ng and ali gnnent conventions, word sizes, character
representations, and so on. Once again it is better policy for the
application programto be concerned only with the representations it
wants and not with the stored data representation. However, there will
be cases in which efficiency for a given request overrides all other
factors.

Wnter, HIl & Geiff [Page 14]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

At this level of representation, there is at |east one additiona

consi deration: potential |oss of information when conversion takes

pl ace. Whoever initiates a type conversion (and this will sonetines be
t he dat aconputer and sonetines the application progran) nust also be
responsible for seeing that the intent of the request is preserved.
Since the dataconputer nust always be responsi ble for the consistency
and the neani ng of a shared database, there are sone conflicts to be
resol ved here.

To summari ze, it seens that the result of wi de sharing of databases is
that a larger system nust be considered in choosing a data nmanagenent
policy for a particular database. This larger system in the case of

t he dat aconputer, consists of a network of geographically distributed
applications prograns, a centralized database, and a centralized data
managenment system The requirenent for datal anguage is to provide
flexibility in the managenment of this larger system |In particular, it
must be possible to control when and where conversions, data re-

organi zations, and access strategies are nade.

2.6 Need for High Level Conmunication

Al'l of the above considerations point to the need for high |evel

conmuni cati on between the dataconputer and its users. The conpl ex and
di stinct nature of dataconputer hardware nake it inperative that
requests be put to the dataconputer so that it can nake nmaj or deci sions
regardi ng the access strategies to be used. At the sane tine, the large
anounts of data stored and the demand of sone users for extrenely high
transm ssi on bandwi dths nake it necessary to provide for user control of
sone storage and transm ssion schenes. The fact that databases will be
used by applications which desire different views of the sane data and
with different constraints neans that the dataconputer nust be capable
of mappi ng one users request onto another users data. |Interprocess use
of the dataconputer neans that datasharing nust be conpletely
controllable to avoid the need for human intervention. Extensive
facilities for ensuring data integrity and controlling access nust be
provi ded.

2.6.1 Data Description

Basic to all these needs is the requirenent that the data stored at the
dat aconput er be conpletely described in both functional and physica
paraneters. A high |level description of the data is especially

i mportant to provide the sharing and control of data. The dataconputer
nmust be able to map between different hardware and different
applications. In its nost trivial formthis nmeans being able to convert
bet ween fl oating point nunber representations on different machines. On

Wnter, HIl & Geiff [Page 15]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

the other extrene it neans being able to provide nmatrix data for the
ILLIAC IV as well as being able to provide answers to queries froma
natural |anguage program both addressed to the sanme weat her data base.
Dat a descriptions nust provide the ability to specify the bit |eve
representations and the |ogical properties and rel ationships of data.

2.6.2 Data integrity and Access Contro

In the environment we have been describing, the problens of maintaining
data integrity and controlling use of data assunme extrene inportance.
Shared use of dataconputer files depends on the ability of the

dat aconputer to guarantee that the restrictions on data-access are
strictly enforced. Since different users will have different
descriptions, the access control nechani sm nust be associated with the
descriptions thensel ves. One can control access to data by controlling
access to its various descriptors. A user can be constrained to access
a given data base only through one specific description which linits the
data he can access. |In a systemwhere the updaters of a database nmay be
unknown to each other, and possibly have different views of the data,
only the dataconputer can assure data integrity. For this reason, all
restrictions on possible values of data objects, and on possible or
necessary rel ati onshi ps between objects nust be stated in the data
descri ption.

2.6.3 Optimization

The decisions regardi ng data access strategy nust ordinarily be made at
t he dat aconputer, where know edge of the physical considerations is
avai |l abl e. These decisions cannot be nade intelligently unless the
requests for data access are made at a high I evel

For exanple, conpare the following two situations: (1) a request calls
for output of _all_ weather observations nmade in California exhibiting
certain wind and pressure conditions, (2) a series of requests is sent,
each one retrieving California weat her observations; when a request
finds an observation with the required wind and pressure conditions, it
transmits this observation to a renote system Both sessions achieve
the sane result: the transm ssion of a certain set of observations to a
renote site for processing. In the first session, however, the

dat aconputer receives, at the outset, a description of the data that is
needed; in the second, it processes a series of requests, each one of
which is a surprise

In the first case, a smart dataconputer has the option of retrieving al

of the needed data in one access to the nass storage device. It can
then buffer this data on disk until the user is ready to accept it. In

Wnter, HIl & Geiff [Page 16]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

the second case, the dataconputer |acks the information it needs to nake
such an optimn zation

The | anguage should permit and encourage users to provide the

i nformati on needed to do optim zation. The cost of not doing it is nuch
hi gher with mass storage devices and large files than it is in
conventional systens.

2.7 Application Oriented Concerns

In the above sections we have described a nunber of features which the
dat aconput er system nust provide. In this section we focus on what is
necessary to nake these features readily available to users of the

dat aconput er .

2.7.1 Dataconputer-user Interaction

An application interacts with the dataconputer in a _session_. A
session consists of a series of requests. Each session involves
connecting to the dataconmputer via the network, establishing identities,
and setting up transm ssion paths for both data and dat al anguage.

Dat al anguage is transnmitted in character node (using network standard
ASCI 1) over the datal anguage connection. Error and status nessages are
sent over this connection to the application program

The data connection (called a PORT) is viewed as a bit streamand is
given its own description. These descriptions are simlar to those given
for stored data. At a mininumthis description nust contain enough
informati on for the dataconputer to parse the incomng bit stream It

al so may contain data validation information as well. To store data at
t he dataconputer, the stored data nust al so have a description. The
user supplies the mappi ng between the descriptions of the stored and
transmtted data.

Wnter, HIl & Geiff [Page 17]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

| | Il
| | A\
|| | --- | -
| | | | DATA | VA
|] | | DESCRIPTION | DATALANGUAGE @ _
|| I | A >
| | STORED| [| USER | | PATH | APPLI CATI ON
| | DATA | | REQUEST| | | PROGRAM |
|| | I SR > |
| | lf | ! DATA PATH
|| | | [Il
[] | PORT [----- ! VA
[] | | DESCRI PTI ON| | I
I I l_ (I VA
| | /1
NETWORK
Figure 2-1

A Model of Dataconputer/User Interaction

2.7.2 Application Features for Data Sharing

In using data stored at the dataconputer, users nmay supply a description
of the data which is custonized to the application. This descriptionis
mapped onto the description of the stored data. These descriptions may
be at different levels. That is, one may nerely rearrange the order of
certain itenms, while another could call for a total restructuring of the
stored representation. So that each user may be able to build upon the
descriptions of another, data entities should be given named types.
These type definitions are of course to be stored along with the data
they describe. In addition, certain functions are so closely tied to
the data (in fact may be the data in the virtual description case -- see
section 3), that they nust also reside in the dataconputer and their tie
with the data itens should be maintai ned by the dataconputer. For
exanpl e, one user can describe a data base as nade up of structures
containing data of the types _latitude_and _longitude_. He could also
describe functions for conparing data of this type. Oher users, not
concerned with the structure of the _latitude_ component itself, but
interested in using this information sinply to extract other fields of

i nterest can then use the comonly provided definitions and functions.
Furt hernmore, by adopting this strategy as nany users as possi ble can be
made insensitive to changes in the file which are tangential to their
main interests. For exanple, _latitudes_ could be changed from binary
representation to a character formand if use of that field were
restricted to its definitions and associ ated functions, existing

Wnter, HIl & Geiff [Page 18]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

application systens woul d be unaffected. Conversion functions could be
defined to elimnate the inpact on currently operating programs. The
ability of such definitional facilities neans that groups of users can
devel op common functions and descriptions for dealing with shared data
and that conventions for use of shared data can be enforced by the

dat aconputer. These facilities are discussed under _extensibility in
Section 3.

| |
| | APPLI CATI ON | | | | APPLI CATI ON|
| | DATA | | |_] PROGRAM | |
I I IDESCRIPTICNSI I I ([|
| | N | HOST 1
		I P			
				DATA	
[]			FUNCTIONS		
		O O —			
	R R [
]		STORED	__		
		__	DATA	___	
	STORED		DESCRIPTION __] I
	DATA		___ O		
		n R	R		
		[
			DATA		_]
			FUNCTIONS	l	
I | [| I HOST 2

DATACOVPUTER

Fi gure 2-2

Multiple User Interaction with the Dataconputer

2.7.3 Comruni cati on Mde

W intend that datal anguage, while at a high | evel conceptually, will be
at a low level syntactically. Datal anguage provides a set of prinitive
functions, and a set of comonly used higher |evel functions (see
section 4 on the datal anguage nodel). In addition, users can define
their own functions so that they can comunicate with the dataconputer
at a level as conceptually close to the application as possible.

Wnter, HIl & Geiff [Page 19]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

There are two reasons for datal anguage being at a | ow | evel
syntactically. First, it is undesirable to have progranms conposing
requests into an elaborate format only to be deconposed by the

dat aconputer. Second, by choosing a specific high | evel syntax, the
dat aconput er woul d be inposing a set of conventions and termn nol ogy
whi ch woul d not necessarily correspond to those of nobst users.

DATACOVPUTER ENVI RONIVENT | QUTSI DE ENVI RONIVENT
r
| __| GENERAL| ____
| | DVvB |____
| I |l |
| | HGER| | I
|PRRMTIVE| ___ | LEVEL |__ |LOWLEVEL|___ | COBOL | | CcoBOL
LANGUAGE		LANGUAGE]	SYNTAX		SERVER		PROGRAM
l I	l““T““l I	l					
	ON LI NE						
	QUERY	____					

I							
TERM NAL							
	USERS						

|
APPLI CATI ON APPLI CATI ONS
| SERVERS

Fi gure 2-3
Dat acomput er / User Wor ki ng Envi r onnment

2.8 Summary

In this section we have presented the major considerations which have

i nfluenced the current datal anguage design effort. The dataconputer has
much in conmon with nost | arge-scal e shared data nanagenent systens, but
al so has a nunber of overriding concerns unique to the dataconputer
concept. The nost inportant of these are the existence of a separate
box containing both hardware and software, the control of an extrenely

| arge storage device, and enbedding in a conmputer network environnent.
Data sharing in such an environnent is a central concern of the design
Bot h extensive data description facilities and high | evel conmunication

Wnter, HIl & Geiff [Page 20]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

bet ween user and dataconputer are necessary for data integrity and for
dat aconputer optinmi zation of user requests. |In addition, the expected
use of the dataconputer involves satisfying several conflicting
constraints for different nodes of operation. One way of satisfying
vari ous user needs is to provide datal anguage features so that users may
devel op their own application packages w thin datal anguage.

Wnter, HIl & Geiff [Page 21]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

3. Principal Language Concepts

This section discusses the principal facilities of datal anguage.
Specific details of the |anguage are not presented, however, the

di scussion includes the notivation behind the inclusion of the various
| anguage features and also defines, in an informal way, the terns we
use.

3.1 Basic Data |Itens

Basic data are the atonmic |evel of all data constructions; they cannot
be deconposed. Al higher level data structures are fundanentally
conposed of basic data itens. Many types of basic data itens will be
provided. The type of an item deterni nes what operations can be
performed on the item and the meani ng of those operations. Datal anguage
will provide those primtive types of data items which are commonly used
in conputing systens to nodel the real world.

The followi ng basic types of data will be avail able in datal anguage:
_fixed_point_nunmbers_, _floating_point_nunmbers_, _characters_,
booleans, and _bits_. These types of itens are "understood" by the
dat aconputer systemto the extent that operations are based on the type
of an item Datal anguage will also include an _uninterpreted_ type of
item for data which will only be noved (including transmitted) from one
pl ace to another. This type of data will only be understood in the
trivial sense that the dataconputer can determine if two items of the
uninterpreted type are identical. Standard operations on the basic
types of items will be available. Operations will be included so that
t he dat aconputer user can describe a wi de range of data nanagenent
functions. They are not included with the intent of encouragi ng use of
t he dataconputer for the solving of highly conputational problemns.

3.2 Data Aggregates

Dat a aggregates are conpositions of basic data itens and possibly other
data aggregates. The types of data aggregates which are provided all ow
for the construction of hierarchical relationships of data. The
aggregates which will definitely be available are classified as
structs, _arrays_, _strings_, _lists_, and _directories_.

A struct is a static aggregate of data itens (called _conponents). A
struct is static in the sense that the conponents of a struct cannot be
added or deleted fromthe struct, they are inextricably bound to the
struct. Associated with each conponent of the struct is a nane by which
that conponent nmay be referenced relative to the struct. The struct
aggregate nmay be used to nodel what is often thought of as a record,

Wnter, HIl & Geiff [Page 22]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

with each conponent being a field of that record. A struct can al so be
used to group conponents of a record which are nore strongly rel ated,
conceptual ly, than ot her conponents and may be operated on together

Arrays allow for repetition in data structures. An array, like a
struct, is a static aggregate of data itens (called nenbers). Each
menber of an array is of the sanme type. Associated with each nenber is
an i ndex by which that nenber can be referenced relative to the array.
Arrays can he used to nodel repeating data in a record (repeating

groups) .

The concept of string is actually a hybrid of basic data and data
aggregates. Strings are aggregates in that they are conpositions
(simlar to arrays) of nore printive data (e.g., characters). They are,
however, generally conceived of as basic in that they are nostly vi ewed
as a unit rather than as a collection of itenms, where each item has

i ndi vi dual inportance. Also the nmeaning of a string is highly dependent

on the order of the individual conponents. |n nore concrete terns,
there are operations which are defined on specific types of strings.
For exanple, the logical operators (_and , or , etc.) are defined to

operate on strings of bits. However, there are no operations which are
defined on arrays of bits, although there are operations defined on both
arrays, in general, and on bits. Strings of characters, bits, and
uninterpreted data will be available in datal anguage.

Lists are like arrays in that they are collection of simlar nenbers.
However, lists are dynamic rather than static. Menbers of a list can be
added and deleted fromthe list. Al though, the nenbers of a list are
ordered (in fact nore than one ordering can be defined on a list), the
list is not intended to be referenced via an index, as is the case with
an array. Menbers of a list can be referenced via sone nethod of
sequenci ng through the list. A list nenber, or set (see discussion
under virtual data) of nenbers, can also be referenced, by sone nethod
of identification by content. The list structure can be used to node
the conmon notion of a file. Also restrictive use of lists as
conponents of structs provides power with respect to the construction of
dynani ¢ hierarchical data relationships belowthe file level. For
exanpl e, the nmenbers of a list may thenselves be, in part, conposed of
lists, asin alist of famlies, where each fanmly contains a list of
children as well as other information

Directories are dynam c data aggregates which nay contain any type of
data item Data itens contained in a directory are called _nodes_.
Associ ated with each node of a directory is a nane by which that data
itemcan be referenced relative to the directory. As with lists, itens
may be dynamically added to and deleted froma directory. The prinmary
nmotivation behind providing the directory capability is to allow the
user to group conceptually related data together. Since directories

Wnter, HIl & Geiff [Page 23]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

need not contain only file type information, "auxiliary" data can be
kept as part of the directory. For exanple, "constant" information,
like salary range tables for a corporation data base; or user defined
operations and data types (see below) can be maintained in a directory
along with the data which may use this information. Al so directories
may thensel ves be part of a directory, allowing for a hierarchy of data

gr oupi ng.

Directories will also be defined so that systemcontrolled i nformation
can be maintained with sone of the subordinate itens (e.g. tinme of
creation, tinme of update, privacy locks, etc.). It may also be possible
to allow the data user to define and control his own information which
woul d be nmaintained with the data. At the | east, the design of

dat al anguage will allow for paranetric control over the infornation
managed by the system

Directories are the nost general and dynamic type of aggregate data.
Both the nanme and description (see below) of directory nodes exist with
t he nodes thensel ves, rather than as part of the description of the
directory. Also the level of nesting of a directory is dynam c since
directories can be dynamically added to directories. Directories are
the only aggregate for which this is true.

Dat al anguage wil|l al so provi de sone specific and useful variations of
the above data aggregates. Structs will be available which allow for
optional conponents. In this case the existence of a conponent would be
based on the contents of other conponents. It may also he possible to
all ow for the existence to be based on information found at a higher

| evel of data hierarchy. Simlarly, conponents with _unresolved_ type
will be provided. That is the conponent may be one of a fixed nunber of
types. The type of the conponent woul d be based on the contents of

ot her conponents of the struct. It is also desirable to allow the type
or existence of a conponent to be based on infornmation other than the
contents of other conponents. For instance, the type of one conponent
m ght be based on the type of another conponent. 1In general, we would
like for datal anguage to allow for the attributes (see below of one
itemto be a function of the attributes of other itens.

W would also like to provide mixed lists. Mxed lists are lists which
contain nore than one type of nenber. |In this case the nenbers woul d
have to be self defining. That is, the type of all nenber would have to
be "alike" to the degree that information which defines the type of that
menber coul d be found.

Simlar to conponents whose type is unresolved are Arrays with
unresolved length. In this case, information defining the length of the
array nust be carried with the array or perhaps with other conponents of
an aggregate whi ch enconpasses the array.

Wnter, HIl & Geiff [Page 24]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

In all of the above cases the type of an itemis unresolved to sone
degree and information which totally resolves the type is carried with
the item It is possible that in some or perhaps all of these cases the
dat aconput er system coul d be responsible for the maintenance of this
information, making it invisible to the data user

3.3 General Relational Capabilities

The data aggregates descri bed above all ow for the nodeling of various
rel ati onshi ps anong data. All relationships which can be constructed
are hierarchical

Two approaches can he taken to provide the capability of nodeling non-

hi erarchi cal relationships. New types of data aggregates can be

i ntroduced which will broaden the range of data rel ationships

expressi ble in datal anguage. O, a basic data type of "pointer" can be
i ntroduced which will serve as a prinmtive out of which relations can be
represented. Pointer would be a data type which establishes sonme kind
of correspondence fromone itemto another. That is, it would be a

nmet hod of finding one item given another . Providing the ability to
have items of type pointer does not necessitate the introduction of the
concept of address which we deemto be a dangerous step. For exanple,
an itemdefined to point to a record in a personnel file could contain a
soci al security nunber which is contained in each record of the file and
uniquely identifies that record. In general a pointer is an item of

i nformati on which can be used to uniquely identify another item

Wil e the pointer approach provides the greater degree of flexibility,
it does this at the price of relegating much of the work to the user as
well as severely liniting the amount of control the dataconputer system
has over the data. A hybrid solution is possible, where sone new
aggregate data types are provided as well as a restricted form of

poi nter data type. While the approach to be taken is still being

studi ed, the datal anguage design will include sone nethod of expressing
non- hi erarchi cal data structures

3.4 Odering of Data

Lists are generally viewed as ordered. It is possible, however, that a
list can be used to nodel a dynanmic collection of sinmlar itens which
are not seen as ordered. The unordered case is inportant, in that,
given this information the dataconputer can be nore efficient since new
nmenbers can be added wherever it is convenient.

There are a nunber of ways a list can be ordered. For instance, the
ordering of a list can be based on the contents of its nenbers. |In the

Wnter, HIl & Geiff [Page 25]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

sinmpl est case this involves the contents of a basic data item For
exanple, a list of structs containing information on enpl oyees of a
conpany rmay be ordered on the conponent which contains the enpl oyee’s
soci al security number. Mre conplex ordering criteria are possible.

For exanple, the same list could be ordered al phabetically with respect
to the enployee’'s last nane. 1In this case the ordering relationis a
function of two itens, the last and first nanes. The user mght al so
want to define his own ordering schene, even for orderings based on
basic data items. An ordering could be based on an enployee's job title
whi ch mght even utilize auxiliary data (i.e. data external to the
list). It is also possible to maintain a list in order of insertion

In the nost general case, the user could dynam cally define his ordering
by specification of where an itemis to be placed as part of his
insertion requests. In all of the above cases, data could be maintained
in ascendi ng or descending order

In addition to maintenance of a list in sone order, it is possible to
define one or nore orderings "inposed" on a list. These orderings nust
be based on the contents of a list’s nmenbers. This situation is sinlar
to the concept of virtual data (see below) in that the list is not
physically maintained in a given order, but retrieved as if it were.
Orderings of this type can be dynanmically formed (see di scussion of set
under virtual data). |Inposed orderings can be acconplished via the

mai nt enance of auxiliary structures (see discussion under interna
representation) or by utilization of a sorting strategy on retrievals.
Much work has been done with regard to effective inplementation of the
mai nt enance and i nposition of orderings on lists. This work is

descri bed i n working paper number 2.

3.5 Data Integrity

An inmportant feature of any data management systemis the ability to
have the systeminsure the integrity of the data. Data needs to be
prot ect ed agai nst erroneous nani pul ati on by peopl e and agai nst system
failure.

Dat al anguage will provide automatic validity checks. Many flavors need
to be provided so that appropriate trade-offs can be nade between the
degree of insurance and the cost of validation. The datal anguage user
will be able to request constant validation: where validity checks are
made whenever the data is updated; validation on access: where validity
checks are perforned when data is referenced but before it is retrieved;
regul arly schedul ed validation: where the data is checked at regul ar

i nterval s; background validation: where the systemw Il run checks in
its spare tine; and validation on demand. Constant validation and
val i dati on on access are actually special cases of the nore genera
concept of event triggered validation. |In this case the user specifies

Wnter, HIl & Geiff [Page 26]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

an event which will cause data validation procedures to be invoked. This
feature can be used to acconplish such things as validation follow ng a
"bat ch" of updates. Al so, sonme nechani sm for specifying conbinations of
these types woul d be usef ul

In order for sone of the data validation techniques to be effective, it

may be necessary to keep sone data validation "bookkeepi ng" infornation

with the data. For exanple, information which can be used to determ ne

whet her an item has been checked since it was |ast updated mi ght be used
to cause validation on access if there has not been a recent background

validation. The dataconputer may provide for optional automatic

mai nt enance of such special kinds of information

In order for the dataconputer systemto insure data validity, the user
nmust define what valid is. Two types of validation can be requested. In
the first case the user can tell the dataconputer that a specific data
itemmy only assune one of a specific set of values. For exanple, the
col or conponent of a struct may only assune the values 'red’, ’'green’

or 'blue’. The other case is where sone relation nust hold between
menbers of an aggregate. For exanple, if the sex conponent of a struct
is "male’” then the number of pregnanci es conponent nust be O.

Data validation is only half of the data integrity picture. Data
integrity involves nethods of restoring damaged data. This requires
mai nt enance of redundant information. Features will be provided which
wi Il make the dataconputer systemresponsible for the naintenance of
redundant data and possibly even automatic restoration of danaged data.
In section 2 we di scussed possible uses of the datacomputer for file
backup. Al features which are provided for this purpose will also be
avai | abl e as net hods of maintaining backup information for restoration
of files residing at the dataconputer.

3.6 Privacy

Dat al anguage wi |l have to provide extensive privacy and protection
capabilities. In its sinplest forma privacy lock is provided at the
file level. The lock is opened with a password key. Associated with
this key is a set of privileges (reading, updating, etc.). Two degrees
of generality are sought. Privacy should be available at all |evels of

data. Therefore, groups of related data, including groups of files
could be nade private by creating private directories. Al so, specific
fields of records could be nade private by having private conponents of
a struct where other conponents of the struct are visible to a wider (or
different) class of users. W would also |like the user to be able to
define his own nmechanism In this way, very personalized, conplex, and
hence secure nmechani sns can be defined. Al so features such as ’everyone
can see his own salary’ mght be possible.

Wnter, HIl & Geiff [Page 27]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

3.7 Conversion

Many types of data are related in that sone or all of the possible

val ues of one type of data have an "obvious" translation to the val ues
of another. For exanple, the character '6° has a natural translation to
the integer 6, or the six character string 'abc " (three trailing
bl anks) has a natural translation to the four character string 'abc
(one trailing blank). Datal anguage will provide conversion capabilities
for the standard, commonly called for, translations. These conversions
can be explicitly invoked by the user or inplicitly invoked when data of
one type is needed for an operation but data of another type is
provided. In the case of inplicit invocation of conversion of data the
user will have control over whet her conversion takes place for a given
data item Mre generally we would like to provide a facility whereby
the user could specify conditions which deternmine when an itemis to be
converted. Also, the user should be able to define his own conversion
operations, either for a conversion between types which is not provided
by the dataconputer systemor to override the standard conversion
operation for sone or all itens of a given type

3.8 Virtual and Derived Data

Oten, information inportant to users of data is enbedded in that data
rather than explicitly naintained. For exanple, the dollar value of an
individual's interest in a conpany in a file of stock holders. Since
the val ue of the conpany changes frequently, it is not feasible to
maintain this information with each record. It is useful to be able to
use the file as if information of this type was part of each record.
When referencing the dollar value field of a record, the dataconputer
system woul d autonmatically use information in the record, such as
percentage of ownership in the conpany, possibly in conjunction with
information which is not part of the record but is naintained el sewhere,
such as company assets, to conmpute the dollar value. 1In this way the
data user need not be concerned with the fact that this information is
not actually nmaintained in the record.

The set , which is a specific type of virtual container in

dat al anguage, deserves special mention. A set is a virtual list. For
exanpl e, suppose there is a real list of people representing some
popul ation sanple. By real (or actual) data we nmean data which is
physically stored at the dataconputer. A set could be defined to
contain all menbers of this list who are autonobile owners. The set
concept provides a powerful feature for viewing data as belonging to
nore than one collection w thout physical duplication. Sets are also
useful, in that, they can be dynamically forned. G ven an actual I|ist,
sets based on that |ist can be created w thout having been previously
descri bed.

Wnter, HIl & Geiff [Page 28]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

As nentioned above, virtual data can be very econonical. These
economni es nmay becone nost inportant with respect to the use of sets.
Savings are found not only in regard to storage requirenments, but also
in regard to processing efficiency. Processing tine can be reduced as a
result of calcul ations being perfornmed only when the data is accessed.
The ability to obtain efficient operation by optinization becones
greater when virtual data is defined in terns of other virtual data.

For sets, large savings nmay be realized by straight forward
"optimzation" of the nested cal cul ations.

The above ideas are nmade nore clear by exanple. Having created a set of
aut onobi | e owners, A, a set of honme owners, HA, can be defined based on
A. The nenbers of HA can be produced very efficiently, in one step, by
retrieving people who are both autonobile owners and hone owners. This
is nmore efficient than actually producing the set, A and then using it
to create HA. This is true when one or both pieces of information

(aut onobi | e ownershi p and hone ownership) are indexed (see discussion
under internal representation) as well as when neither is indexed.

The sane gains are achi eved when operations on virtual data are
requested. For exanple, if a set, H, had been defined as the set of

honeowners based on the original |ist of people, the set, HA could have
been defined as the intersection (see discussion on operators) of A and
H In this case too, HA can be calculated in one step. Use of sets

all ows the user to request data manipulations in a formclose to his
conceptual view, |eaving the problem of effective processing of his
request to the dataconputer

Anot her use of virtual data is to acconplish data sharing. An item
could be defined, virtually, as the contents of another item [If no
restriction is placed on what this itemcan be, we have the ability to
define two paths of access to the sanme data. Hence, data can be nade
subordinate to two or nobre aggregate structures. Stated another way,
there are two or nore paths of access to the data. This capability can
be used to nodel data which is part of nore than one data relationship.
For exanple, two files could have the sanme records w t hout nmintaining
dupl i cate copi es.

It will also be possible, via data sharing to look at data in different
ways. Shared data m ght behave differently dependi ng on how (and
ultimately by whom it is accessed. Although, the ability to have
nmultiple paths to the sane data and the ability to have data which is
cal cul ated on access are both part of the general virtual data
capability, datal anguage will probably provide these as separate
features, since they have different usage characteristics.

Derived data is simlar to virtual data in that it is redundant data
whi ch can be calculated fromother information. Unlike virtual data it

Wnter, HIl & Geiff [Page 29]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

is physically maintained. The user can choose between virtual and
derived data as a result of considering trade-offs based on: estinated
cost of calculation; frequency of update; estinated cost of storage; and
frequency of access. For exanple, suppose a file contains a |list of
budgets for various projects in a departnment. The departnental budget
can be calculated as a function of the individual project budgets. This
i nformati on m ght be defined as derived data since it is expected to be
updated infrequently (e.g., once a year), while it is expected to be
accessed relatively often

Options will be provided which give the user control with regard to when
the calculation of derived data is to be done. These options will be
simlar to those provided for control of data validity operations. The
data validation and derived data concepts are simlar in that sone
operation must be perfornmed on related data. 1In the case of data
validation, the information derived is the condition of data.

3.9 Internal Representation

To this point, we have discussed only the high level, l|ogical, aspects
of data. Since data, at any given time, nust reside on some physica
device a representation of the data nust be chosen. |In sone cases it is

appropriate to |l eave this choice to the dataconputer system For
exanpl e, the representation of information which is used in the process
of transmitting other data, but which itself resides solely at the

dat aconputer nmay not be of any concern to the user

However, it is inportant that the user be capable of controlling the
choice of representation. In any application which requires nostly
transm ssion of data rather than interpretation of the data by the

dat aconputer, the data should be naintained in a formconsistent with
the system whi ch conmuni cates with the dataconputer. Wth respect to
basi c types of data, datal anguage will provide npbst representations
commonly used in systens with which it interacts. For some types (e.g.
fixed point) this will be acconplished by providing for paranetric
(e.g., sign convention, size) description of the representation. In
other cases (e.g., floating point) specific representations wll be
offered (e.g., system 360 short floating point, system 360 |ong floating
point, pdp-10 floating point, etc.).

Anot her aspect of the internal representation problemregards aggregate
structures. The nethod chosen to represent aggregate structures nay
largely affect the cost of nanipulating the data. The user nust have
control over this representation since only he has any idea of how the
data is to be used. Datal anguage will provide a variety of
representational options which will allow for efficient inplenentation
of data structures. This includes the availability of auxiliary

Wnter, HIl & Geiff [Page 30]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

structures, automatically naintained by the data conputer system These
structures can be used to effect efficient retrieval of subsets of data
coll ections based on the contents of the nmenbers (i.e. the comon
concept of indices), efficient maintenance of orderings on a collection
of data, nmaintenance of redundant information for the purpose of data
integrity, and efficient handling of shared data whose behavi ora
characteristics are dependent on the path of access. It should be noted
here that, the datal anguage design effort, will attenpt to provide

nmet hods whereby the data user can describe the expected use of his data,
so that details of internal representation can be left to the

dat aconput er .

3.10 Data Attributes and Data C asses

The type of an itemdetermni nes the operations which are valid on that
itemand what they nmean. _Data_attributes_ are refinenents on the type
of data. The data attributes affect the neani ng of operations. For
exanple, we would like to provide for the option of defining fixed point
itens to be scaled. The scale factor, in this case, would be an
attribute of fixed point data. It effects the neaning of operations on
that data. The attribute concept is useful in that it allows information
concerning the mani pulation of an itemto be associated with the item
rather than with the invocation of all operations on that item

The attribute concept can be applied to aggregate as well as basic data.
For exanple, one attribute of a list could define where a new nenber is
to be inserted. Options mght be: insert at the beginning of the |ist;
insert at the end of the list; or insert in sone order based on the
contents of the nmenber. Adding a new nenber to a list with one of the
above attributes could be done by issuing a sinple insert request

wi t hout having to specify where the new nmenber is to be inserted.

The _data_class_ concept is actually the inverse of the data attribute
concept. A data class is a collection of data types. The data class
concept allows for definition of operations, independent of specific
type of an item For exanple, by defining the data class arithnetic to
be conposed of fixed point and floating point types of data, the
conpari son operators (_equal , _less than_, etc.) can be defined to
operate on arithmetic data, independent of whether it is fixed or
floating point. Al so the concept of data aggregate can be seen as a

cl ass enconpassing directories, lists, etc. As there are operations
defined on arithnmetic data, there are al so operations defined on
arbitrary aggregates.

The inverse relationship between data classes and data attributes is

very strong. For exanple, the concept of list can be seen as a data
cl ass, enconpassing all types of lists (e.g., lists of integers, lists

Wnter, HIl & Geiff [Page 31]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

of character strings, etc.), independent of the types of their nenbers.
The type of a list’s nenbers (e.g., integer, character string, etc.) are
then seen as attributes. Data attributes and classes are also relative
concepts. \While the concept of list can be viewed as a data class, it
can al so be seen as an attribute, relative to the concept of data

aggr egat e.

3.11 Data Description

A data description_is a statenment of the properties (see discussion of
attributes) of a data item Exanples of properties which are recorded
in a description are: the nane of an item its size; its data type; its
internal representation; privacy information; etc.

Dat al anguage wi || contain nechani sns for specifying data descriptions.
These descriptions will be processed by the data conputer, and used
whenever the data itemis referenced. The user will be able to
physically create data only by first specifying their descriptions. The
properties of a description can be divided into groups according to
their function. Some have the function of specifying details of
representation, which will not be of interest to nost users, while

ot hers, such as the nane are of alnpbst universal interest.

Al'l user data is a part of sone larger (user or systen) data structure.
The structures containing data establish a path of access to the data.
In the process of following this path the dataconputer system nust
accrue a conplete description of the data item For exanple, the
description of a data itemof a directory may be found associated with
that node of the directory. Menbers of a list or array are described as
part of the description of the list or array. W nust dispose of two
seem ng exceptions. First, while aspects of data may (on user request)
be left to the system those aspects are still described, they are
described by the system As discussed above, sone data will be, to some
degree, self describing (e.g. nenbers of mixed lists). However, it is
fully described in sone enconpassing structure, in that a nethod of
determining the full description is described.

It is worth noting here that the sooner a conplete description is found
in the path of access, the nore effective the dataconputer is likely to
be in processing requests which nmani pulate a data item However, the
ability to have data whose conpl ete description does not exist at high

| evel s of the access path provides greater flexibility in the definition
of data structures.

Wnter, HIl & Geiff [Page 32]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

3.12 Data Reference

Dat a cannot be mani pul ated unless it can be referenced. In the same way
that data cannot exist without its being described, it cannot exist
unless there is a path of access to the data. The nethod of data
reference is to define the path of access to the data. As nentioned
above, there is a nethod of referencing any itemrelative to the data
aggregate which contains it. Nodes of directories and conponents of
structs are referenced via the nane associated with the node or
component. Menbers of arrays are referenced via the index associ ated
with the menber. Menbers of lists are referenced via some net hod of
specifying the position of the menber or by uniquely identifying the
menber by content. To reference any arbitrary data itemthe path of
access nust be fully defined by either explicit or inplicit definition

of each link in the chain. 1In the case of virtual data there is an
extra inplicit link in the chain, that being the nethod enpl oyed to
obtain the data fromother data itens. |t should be noted also that if

poi nters are provided (see discussion on general relationa
capabilities) they can also serve as a link in the chain of access to an
item

The design of datal anguage will ease the problem (and reduce the cost)
of referencing data itenms by providi ng met hods whereby part of the
access path can be inplicitly defined. For exanple, datal anguage will
provi de a concept of "context". During the course of interacting with
t he dataconputer, levels of context can be set up so that data can be
referenced directly, in context. For exanple, on initiating a session
the user may (in fact will probably be required to) define a directory
which will be the context of that session. Al itens subordinate to
this directory can be referenced directly in this context. Another
feature will be partial qualification. Each |evel of struct need not be
mentioned in order to reference an item enbedded in a deep nest of
structs. Only those internediate |evels which are sufficient to
uniquely identify the item need be specified.

3.13 Qperations

In this section we discuss the builtin functions of datal anguage which
are of central inportance in manipulating data. Functions which operate
on itens, functions which operate on aggregates, primtive functions and

hi gh-1 evel functions are discussed.

O the primtives which operate on itens, those of npbst interest are
assi gnnent, conparisons, logicals, arithnetics and conversion functions.

Primtive assignnent transfers a value fromone itemto another; these
itens nust be of the sane type. Wen they are of different types,

Wnter, HIl & Geiff [Page 33]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

ei ther conversion nust be performed, or sone non-primtive form of
assignnent is involved.

The conparison operators accept a pair of itens of the same type, and
return a bool ean object which indicates whether or not a given condition
obtains. The type determ nes how nany different conditions can be
conpared for. A pair of nuneric itens can be conpared to see which is
greater, while a pair of uninterpreted itens can be conpared only for
equality. |In general, a concept of "greater than" is builtin for a
datatype only if it is a very widely applied concept. The conparison
operators are used in the construction of inclusion conditions when
defining subsets of aggregate data.

The result of a conparison operation is a boolean item one whose val ue
is either TRUE or FALSE. Logical prinitives are provided and
general i zed bool ean functions can be constructed fromthem Wth

| ogi cal and conparison operators, conplex conditions for inclusion of
objects in sets can be specified.

Arithnetic operators will be available for the mani pul ation of nuneric
data. Here, we are not interested in generalized conputation, but in
applications of arithnmetic in data sel ection, space allocation
subscript calculation, iteration control, etc.

Conversion is an inportant part of generalized data translation, and we
are interested in providing a substantial builtin conversion facility.
In particular, we will want to provide an efficient systemroutine for
each "standard" or wi dely-used conversion function. O particular

i mportance are conversions to and fromcharacter string data; in
character string representation of, for exanple, nuneric itens, there
are nany possible formats corresponding to a single data type.
Conversi on between character sets and dealing w th paddi ng and
truncation are viewed as conversi on probl ens.

There are two principal classes of primtive operators defined on
aggregates: those related to data reference (see previous section) and
t hose which add and del ete conponents. Changing an exi sting conponent

i s acconplished through assignnent, and is an operation on the
conmponent, not the aggregate.

Addition and deletion of conponents is defined only for aggregates which
are not inherently static in conposition. Thus one can add a conponent
to a LIST, but not to an ARRAY. To specify deletion it is necessary to
speci fy which conmponent is to be deleted, and from which aggregate (in
the case that it is shared). Addition requires specification of new
component, aggregate, and sonetimes auxiliary information. For exanpl e,
some aggregate types would permt addition of new components anywhere in
the structure; in these a position nust be indicated, relative to any

Wnter, HIl & Geiff [Page 34]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

exi sting conponents.

Oten it is desirable to operate on sone of the nenbers of a list, or to
treat a group of menbers as a list inits own right. For exanple, it

m ght be common to transnmit to a renote programfor analysis, the

medi cal history of patients devel oping heart di sease before the age of
30. These may be just a few of the nenbers of a large list of patients.

In this case, the operation to be perforned is transmission to the
renote system this operation is perfornmed on several nenbers of the
list of patients. The ones to be transmtted are thought of as a _set_;
the set is specified as containing all the nenbers of a given |ist
satisfying two conditions: (1) age |less than 30, and (2) has heart

di sease

Sets can be defined explicitly, or inplicitly sinply with appropriate

reference mechanisns. _Definition_ of a set is distinct from
_identification_of menbership_, which is distinct from
_access_to_nmenbership_. Definition involves specifying the candi dates

for set nenbership and specifying a rule by which nenbers of the set can
be di stingui shed from non-nmenbers; for exanple, an inclusion condition
such as "under 30 with heart disease". |Identification involves
effective application of the rule to all candi dates for nenbership.

When the nenbership has been identified, it can be counted, but the data
itself has not necessarily been accessed. Wen a nenber is accessed, its
contents can be operated on

Primtives to acconplish each of these operations on a set will be

provi ded; however, it will ordinarily be optimal for the dataconmputer to
det ermi ne when each step should be perfornmed. To enable users to
operate at a level at which the dataconputer can optim ze effectively,

hi gher -1 evel operators on sets will be provided. Sonme of these are

| ogi cal operators, such as union and intersection. These input and

out put sets. Al so available is an operator which conplenents a set
(since the definition establishes all possible candidates, a set always
has a wel | -defi ned conpl enent).

These hi gher |evel operators can be applied to any defined set; the set
menbers need not be identified or accessed. The systemwll perform
such operations w thout actually accessing nenbers if it can

Sonme of the other operators on sets are counting nenbership,
partitioning a set into a set of sets, uniting a set of sets into a set.
A set can be used to reference another set, providing there is a well-
defined way to identify menbers of the second set given the first set.
For exanple, a set C may contain all the children doing poorly in
school. A set F may be defined, where the nenbers of F are the records
about famlies having a child in set C

Wnter, HIl & Geiff [Page 35]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

Sonme ot her useful operations on sets are: adding all the nmenbers of a
set to an aggregate, deleting all the nenbers of a set (frequently such
a massi ve change can be perforned far nore efficiently than the same set
of changes individually requested), changing all the nmenbers of a set in
a given way.

A set can be made into a list, by actually accessi ng each nenber and
physically collecting them

Some of the operations on lists are: concatenation of lists into |arger
lists, division of alist into smaller lists, sorting a list, nerging a
pair of ordered lists (preserving order).

This is not intended to be a full enuneration of high-1level operations,
but to be suggestive. W are planning to build in high-level functions
for operations which are used very commonly, and can be i npl enent ed
within the systemsignificantly better than they can be inplenented by
users in the | anguage. For nobst of the functions nentioned here,

consi derabl e know edge i s accunul ated on good inplenentations. In
particular, the techniques used for inverted file access provide many
set operations to be perforned w thout actual access to the data.

3.14 Contro

The control features of datal anguage are to the basic operations as data
aggregates are to the basic data itenms. Control features are used to
create conpl ex requests out of the basic requests provided by

dat al anguage

Conditional requests allow the user to alter the nornmal request flow by
specifying that certain requests are to be executed under certain
conditions. |In general datal anguage will provide the ability to chose
at nost one of a nunber of requests to be made based on sone set of
conditions or the value of some item |In its sinplest formthe
conditional allows for optional execution of a given request.

Iterative requests cause a request (called the body) to be executed a
fixed or variable nunmber of times or until a given condition is net.

Dat al anguage will provide iterative requests that will allow for simlar
mani pul ations to be perfornmed on all menbers of some aggregate structure
as well as the standard type of iterative request based on counters. By
providing a capability of directly expressing manipul ati ons on
aggregates which require processing all of the items subordinate to the
aggregate, the dataconputer can be nore efficient in processing user
requests. For exanple, a user defined conversion process which operates
on character strings, can be inplenmented far nore efficiently if the

dat aconputer is explicitly informed that the process requires sequentia

Wnter, HIl & Geiff [Page 36]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

processing of the characters. Datal anguage will also provide for
parallel iteration. For exanple, the user will be able to specify
operations which require sequencing through two or nore lists in
parallel. This would be done if the contents of one file were to be
updat ed based on a file of correction information

Compound requests are collections of requests which act as one. They
are primarily provided to allow for the conditional perfornmance of or
iteration on nore than one statenment. Conpound requests al so provide
request reference points which can be used to control the request
processing flow That is, compound requests can be "named". The

dat al anguage user will be able to specify control information which will
conditionally cause a conmpound request to be exited. By providing

nam ng, the user may cause any nunber of previously entered conpound
requests to be exited.

We do not intend to provide the traditional _goto_ capability. By not
including a goto request, the chances for efficient operation (via
optim zation) of the dataconputer are increased. W al so hope, in this
way, to force the datal anguage user to specify his data nmanipulations in
a clear style

Two fornms of the conpound request will be provided, ordered and
unordered. In the unordered case the user is informng the dataconputer
that the requests can be perfornmed in any order. This should allow the
dat aconputer to performnore efficiently and mi ght even allow for
paral | el processing.

During a session with the dataconputer it is likely that a user wll
find a need for tenporary data. That is, data which is used to
remenber, for a short term information which is needed for the
processi ng of requests. This short termnmight be a session or a snall
part of a session. Datal anguage will provide a tenporary data facility.
Tenporary data will be easy to create, use and dispose of. This will be
acconpl i shed by allowing the systemto (optionally) make many deci sions
regarding the data. For exanple the representation of a tenporary
integer itemw |l often be of no concern to the user. Sone features
whi ch are provided for permanent data will be deened irrelevant with
regard to tenporary data.

Tenporary data will be associated with a collection of requests in what
will be called a block. A block will be no different than a conpound
request with the exception that data is defined with the requests which
conpose it and is automatically created on entrance to the bl ock and
destroyed on exiting the bl ock.

Wnter, HIl & Geiff [Page 37]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

3.15 Extensibility

The goal s of datal anguage are to provide facilities of data structure at
two levels. At one level the user may take advantage of high |level data
capabilities which will do nuch of his data managenent work
automatically and which allows for the data conputer to operate nore
effectively in sone cases since it has been given control of the data.

At anot her |evel, however, features are provided which allow the user to
describe his application in ternms of primtive concepts. In this way

t he dataconputer user may conpose a large variety of data constructs and
has great flexibility with respect to the mani pul ati ons he can perform
on his data. Also by interacting with the dataconputer at the prinitive
| evel, the user can exercise a good deal of control over the nethods
enpl oyed by the dataconputer which may result in nore effective usage of
resources for non-standard applications. Datal anguage will provide
features which allow the user to create an environnent whereby the

dat aconput er system appears to provide features especially tailored to
his application.

The control features discussed above allow the user to extend the
operations avail able on data by appropriate conposition of the
operations. Datal anguage will provide a nethod of defining a conposite
request to be a new request (called a _function_). 1In this way a new
operation on specific data can be defined once and then used repeatedly.
In order that the user may define general operations, datal anguage will
provi de functions which can be paraneterized. That is, functions wll
not only be able to operate on specific data but nay be defined to work
on any data of a specific type. This capability will not be limted to
basic data types (e.g. integers) or even specific aggregate types (e.g.
array of integers) but will also include the ability to define functions
whi ch operate on classes of data. For exanple, functions can be defined
whi ch operate on lists independent of the type of the list nmenbers.

Al so provided, will be the ability to expand and nodify existing
functions as well as creating new functions. This includes expanding
the types of data for which a function is defined or nodifying the
behavi or of a function for certain types of data.

As with operations, the data aggregates di scussed above allow the user
to extend the prinmtive data types by appropriate conposition. For
exanpl e, a two dinensional array of integers can be created by creating
an array of arrays of integers. The situation for data types is

anal ogous to that of operations. Datal anguage will provide the ability
to define a conposition of data to be a new data type. Al so the
capability of defining general data structures will be provided by
essentially paraneterizing the new data definition. This would allow
t he general concept of two dinensional array to be defined as an array
of arrays. Once defined, one could create two di nensional arrays of

i ntegers, two dinensional arrays of booleans, etc. As with functions

Wnter, HIl & Geiff [Page 38]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

there is also a need to expand or nodify existing data types. One night
want to expand the attributes which apply to a given data type, in that
he might want to add new attributes, or add new choices for the existing
attributes.

The control features can be extended al so. Special control features

m ght be needed to process a data structure in a special way or to
process a user defined data structure. For exanple, if a tree type data
structure has been defined in terms of lists of lists, the user might
like to define a control function which causes a specified operation to
be performed on each itemof a specified tree. As with data types and
functions, there is a need to be able to nodify and extend existing
control features as well as the ability to create new ones.

Dat al anguage will provide the ability to treat data descriptions and
operations in nuch the sane way that data is treated. One can describe
and mani pul ate descriptions and operations in the same way that he can
describe and nmani pulate data. It is inpossible to talk about data types
wi t hout consi deration of operations and equally as inpossible to talk
about operations without an understanding of the data types they operate
on. |In order for the user to be able to effect the behavior of the

dat aconputer system the design of datal anguage will include a
definition of the operational cycle of the dataconmputer. Precise
definitions of all aspects of data (data attributes, data cl asses,

rel ati onship of aggregates to their subordinate itens, etc.) in terns of
their interaction with datal anguage operations will be made. |In this
way the dataconputer can offer tools which will give the dataconputer
user the ability to be an active participant in the design of the

dat al anguage whi ch he uses.

Wnter, HIl & Geiff [Page 39]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

4. A Model for Datal anguage Senmantics

For the purpose of defining and experimenting with | anguage senmantics
and wi th | anguage processing techni ques, we are devel opi ng a nodel
dat aconput er .

The principal elenments of the nodel are the follow ng:

(1) A set of prinmitive functions

(2) An environment in which data objects can be created, manipul ated and
deleted, using the primtives

(3) A structure for the representation of collections of data val ues,
their descriptions, their relationships, and their nanes.

(4) An interpreter which executes the primtives

(5) A conpiler which inputs requests in a very sinple |anguage, performs
bi ndi ng and macro expansi on operations, and generates calls to the
internal semantic primtives.

If our nodeling efforts are successful, the nodel will evolve until it
accepts a |l anguage |i ke the datal anguage whose properties we have
described in sections 2 and 3 of this paper. Then the process of
writing the final specification will sinply require reconciliation of
details not nodeled with structure that has been nodel ed. One rather
| arge detail which we may never handle within the nodel is syntax; in
this case reconciliation will be nore involved; however, we firmy
believe that the semantic structure should determ ne the syntax rather
than the opposite, so we will be in the proper position to handle the
pr obl em

By constructing a nodel for each of the elenents |listed above, we are
"i mpl enenting"” the | anguage as we design it, in a very |oose sense. In
effect, we work in a laboratory, rather than working strictly on paper
Since we aren’t concerned with the performance or usability of the

dat aconputer we are building in the | aboratory, we are able to build

wi t hout becoming involved with some of the nost tinme-consum ng concerns
of an inplenmentor. However, because we are building and tinkering,

rat her than sinply working on paper, we do get sone of the advantages
that normally cone with the experience of inplenenting one’'s ideas.

The nodel dataconputer is a program developed in ECL, using the EL1

| anguage. Presently we are interested in the process of devel oping the
program not running it. Qur primary requirenment is to have, in advance
of the existence of datal anguage, a well-defined and flexible notation
in which to specify data structures, function definitions and exanpl es.
EL1 is convenient for this. Having a program which actually works and
acts like a sinple dataconputer is really a by-product of specifying
semantics in a programm ng | anguage. It is not necessary for the
programto work, but it does provide sone nice features. It enhances the
"l aboratory" effect, by doing such things as automatically conpiling

Wnter, HIl & Geiff [Page 40]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

strings of primtives, displaying the state of the environment in
conpl i cated exanpl es, autonatically discovering inconsistencies (in the
form of bugs), and so on

There are two maj or reasons that EL1 is a convenient notation for

speci fyi ng dat al anguage senantics. One is that the |anguages have a
certain anpbunt in conmon, in both concepts and in goals in data
description. (In part, this is because EL1 itself has been a good
source of ideas in attacking the datal anguage problem. Both | anguages
enphasi ze operations on data, independent of underlying representation
A second reason that EL1 is a convenient way to specify datal anguage, is
that EL1 is extensible; in fact, nmany prinitive functions could be
enbedded directly into EL1 by using the extension facilities. At tines,
we have chosen to enbed | ess than we could, to expose probl ens of
interest to us.

So far, the nodel has been useful primarily in exposing design issues
and rel ati onshi ps between desi gn decisions. Also, because it includes
so many of the elenents of the full system (conpiler, interpreter
environnment, etc.), it encourages a fairly conplete anal ysis of any

pr oposal

In presenting the nodel in this section, we have chosen to enphasize

i deas and exanples, rather than formal definitions in EL1. This is
because the ideas are nore pernmanent and relevant at this point (the
formalisns are changing rather frequently) and because we inagi ne people
reading the fornal definitions only to get at the ideas. The fornma
definitions may be interesting in thensel ves when the | anguage is
complete; at this point they are probably of interest only to us.

The section is organized into a | arge nunber of sub-sections. The first
few are concerned with the basic concepts of data objects, descriptions,
and rel ati onshi ps between objects. W then discuss prinitive senmantic
functions and present informal definitions and exanples in sections 4.7
and 4.8. Section 4.9 is a brief discussion of conpilation,
interpretation and the execution cycle. Section 4.10 provides a fairly
el aborat e exanple of how primtive functions can be conbined to do
sonmething of interest: a selective retrieval by content. The last two
sections wap up with discussions of high-level functions and sone
concl usi ons.

4.1 ojects

An _object_ has a name, a description, and a value. It can be related to
ot her objects.

The nane_ is a synbol, which can be used to access the object from

Wnter, HIl & Geiff [Page 41]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

| anguage functions.

The _description_is a specification of properties of the object, nany
of which relate to the neaning or the representation of the val ue.

The value_ is the information of ultimate interest in the object.

The rel ati onshi ps between objects are hierarchical. Each object can be
related directly to at nost four other objects, designated as its
_parent _, its _child_, its _left_sibling_, and its _right_sibling_.

This specific concept of relationship is all that has been built in to
the nodel to date. One of our primary objectives in the future is to
experinment with nore general relationshi ps anong objects.

4.2 Descriptions

A description has the conponents nane_, _type_and _type-

dependent paraneters . It can be related hierarchically to other
descriptions, according to a schene sinilar to the one described for
objects in 4.1.

The nane_ has a role in referencing, as in the case of objects.

Type is an undefined, intuitive idea for which we expect to develop a
preci se meani ng w thin datal anguage(see section 3.10 for sone of the

i deas about this). |In terns of the present nodel, it sinply means one
of the follow ng: LIST, STRUCT, STRING BOOL, DESC, DI R, FUNC, OPD

Each of these refers to a sort of value corresponding to comopn ideas in
programm ng (with the exception of OPD, which is explained in section
4.7), and on which certain operations are defined.

Exanpl es of _type-dependent _parameters are the two itens needed to
define a STRING size option and size. A STRINGis a sequence of
characters; the size of the STRINGis the nunber of characters in it.

If a STRING has a fixed size, then size option is FIXED and size is the
number of characters it always contains. |f a STRING has a varying
size, then size option is VARYING and size is its maxinmum (clearly, it
m ght also have a minimumin a nore refined schene).

When the description of an object has a type of STRING it is commonly
said that the object is a STRING
4.3 Val ues

The value is the data itself.

Wnter, HIl & Geiff [Page 42]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973
An object of type BOOL can have only either the value TRUE or the val ue
FALSE.

An object of type STRING has val ues such as "ABC, 'JOHN , or ’'BOSTON .
Each val ue has a representation, in bits. Thus a BOOL is represented by
a single bit, which will be a "one’ to represent TRUE and a 'zero’ to
represent FALSE.

4.4 Sone exanpl es

Here are sone exanpl es of structures involving objects, descriptions,
and values. |In these explanations and draw ngs, the objective is to
convey sone ideas about these prinitive structures; considerable detail

is omitted in the drawings in the interest of clarity.

Figure 4-1 shows two objects. X is of type string and has value ' ABC .
Y is of type bool and has val ue TRUE.

Wnter, HIl & Geiff [Page 43]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

| |
| |
|| X ||
|| ||
| NAME lf
| | | |
i iR R
| DESCRIPTION | | TYPE |
| | l_
| | | | DESCRI PTI ON
I || |
| VALUE |
| | | | |
OBJECT (/- \ | " ABC' |
n____ |
VALUE
| |
| |
|| Y ||
|| ||
| NAME lf
| | | |
|| | _| \| | BOOL | |
|| || L I
| DESCRI PTI ON | | TYPE |
| | l_
| | | | DESCRI PTI ON
I || |
| VALUE |
| | | |
OBJECT (/- \ | TRUE |
n____ |
VALUE
Figure 4-1
Two el ementary objects
Figure 4-2 illustrates an object of type dir (a _directory_) and rel ated

objects. The directory has name SMTH. There are two objects entered in
this directory, named X and Y.

Wnter, HIl & Geiff [Page 44]

1973

Decenber

Furt her Datal anguage Desi gn Concepts

RFC 610

|
|
|l e
| |
_ _ ~ ~
—— .z =z
4 T L
|6 ||
— L
- 3 2 | B
5 u L w
s B FR| B|| &
S A g 2 -
_ _ _ w < !
\—/
_
|
————
— 7T L
6 _ - Q
= K Q 3 4
- 2 T
| @ I - = : Py
s [BIIE Bl |l
2 I I 1 I I B S 7 2 -
- T T - w > -
- T T T — = T =
| | |
|l e
|
|

DESCRI PTI ON

DESCRI PTI ON

Figure 4-2: A directory with two nenbers

[Page 45]

HIl & Geiff

W nter,

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

The idea of a dir is simlar to the idea of a file directory in nost
systens. A directory is a place where one can store named objects,
freely adding and deleting them The entries in the directory are al

obj ects whose parent is that directory. Figure 4-3 shows a nore rigidly
structured group of objects. Here we have R a struct, and A and B, a
pair of strings. Note that the boxes |abeled 'object’ in figure 4-3
bear precisely the same rel ationships to one another as those | abel ed
"object’ in 4-2. However, there are two conditions which hold for 4-3
but do not hold for 4-2: (1) the value of R contains the values of A and
B, and (2) the descriptions of R A and B are all rel ated.

Structs have the following properties: (1) nane and description of each
conmponent in the struct is established when the struct is created, and
(2) in a value of the struct, the order of occurrence of conponent

val ues is fixed.

Wnter, HIl & Geiff [Page 46]

1973

Decenber

Dat al anguage Desi gn Concepts

Furt her

RFC 610

e
R m T
z |lw |6 Tz
(7= <
ML 05 g
||||| 2 > ¢
- T L=
|
LN z ||
M w m W mm m W | m |V_._BL
ﬁ _D W ﬁ_w — W m w — M
| BRIk BE || & BIE| BB
IHHHIHMII% IHHHIHHWIM IHHIIHHIIHHWIHHWI® ——
== = ==
|
T T T T T T T T
o IHHII&HIIHHIIHHII _
_ _
5 | || 1] [T |
@ K _ < H Q 3
[nd L _ X L — |V"A
g | @B 2k s | BB Bl
S ol B S 15 |5 g i RS D | _
_ELBLELER |LBLBLELG R L
||||||||||_||||||| ||||||||||_ ||||||| _H”||
S
|
|

[Page 47]

HIl & Geiff

W nter,

RFC 610

Figure 4-4 shows a |list naned L
i mplied, but because of the regularity of the structure,
boxes | abel ed ' object’

Furt her

Dat al anguage Desi gn Concepts

are actually present.

I I
| | L | |
| | | |
| NAME ¢\
I I | I
		_	\[LSt	
			T I		
DESCRI PTI ON		TYPE			
I I	I				
	I		[_	
VALUE			CHLD		
I I I [| ___|
OBJECT | DESCRI PTI ON |

I I

v V.
I I | I
| _ | | | STRING| |
| | ABC | | [||
I | | I I TYPE |
| XY | DESCRI PTI ON
| | | |
| _ |
| | ZLM | |
| | | |
I I
I I
I I
| | " BBBF" | |
| | ||
I I
VALUE

Figure 4-4
A LI ST
al |

L has a vari abl e nunber of conponents,
subordinate to L's description

W nter,

Hill

& Geiff

Decenber 1973

Here a similar structure of objects is

not all the

satisfying the description

[Page 48]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

We coul d i magi ne an 'object’ box for each string in L. Each of these
boxes would point to its respective string and to the comon description
of these strings. Instead, we think in ternms of creating such boxes as
we need t hem

4.5 Definitions of types

Foll owi ng are sone nore precise definitions of types, in terns of the
present nodel. These serve the purpose of establishing nmore firmy the
semantics of our structure of objects, descriptions and val ues; however,
they should not be thought of as providing a definition for the
conpl et ed | anguage specification.

An obj ect of type STRING has a value which is a sequence of characters
(figure 4-1).

An object of type BOOL has a value which is a truth value (TRUE or FALSE
-- figure 4-1).

An object of type DI R has subordinate objects, each having its own
description and value. Subordinate objects can be added and del eted at
will (figure 4-2).

An obj ect of type STRUCT has subordi nate objects, each of which has a
description which is subordinate to the STRUCT' s description, and a
val ue contained in the STRUCT's value. The nunber, order and
description of conponents is fixed when the STRUCT is created (figure
4-3).

An object of type LIST may be thought of as having i magi nary subordi nate
obj ects, whose existence is sinulated by the use of appropriate

techni ques in processing the LIST. Each of these has the sane
description, which is subordinate to the description of the LIST. Each
has a distinct value, contained in the value of the LIST. In fact, only
the LI ST object, the LIST and conponent descriptions, and the val ues
exist (figure 4-4).

An object of type DESC has a description as its value. This value is
the sane sort of entity which serves as the description of other
obj ect s.

An object of type FUNC has a function call as its value. W wll be
able to say nore about this after functions have been discussed.

An object of type OPD has an operation descriptor as its value. (see 4.7
for details).

Wnter, HIl & Geiff [Page 49]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

4.6 oject environnent

There are three categories of objects in the nodel dataconputer. These
are p/objects, t/objects, and i/objects.

P/ obj ects are pernmanent objects created explicitly with | anguage
functions. They correspond to the idea of stored data in the rea

dat aconputer. There are three special objects. These are special only
in that they are created as part of initializing the environment, rather
than as the result of executing a | anguage function. These are naned
STAR, BLOCK and TOP/LEVEL. Al three are of type DR

An object is a p/object if it is subordinate to STAR, it is a t/object
if it is subordinate to BLOCK. TOP/LEVEL is subordinate to BLOCK. (see
figures 4-5 and 4-6).

| |
| |
| | STAR []
|| ||
| NAME l\
	I				
		_	\[DR	
		Mol			
DESCRI PTI ON		TYPE			
	l_				
]		DESCRI PTI ON			
I D					
CHLD					
OBJECT					
\Y
ALL P/ OBJECTS
Fi gure 4-5

STAR and p/ obj ects

T/ objects are tenporary objects, also created explicitly with | anguage
functions. However, these correspond to user-defined tenporaries, both
|l ocal to requests and "top-level” (i.e. not local to any request, but
existing until deletion or |ogout.)

Wnter, HIl & Geiff [Page 50]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

| |
| |
=
| NAME lf
| | [|
| | | _| \| | DR | |
| [| o I
| DESCRI PTI ON | | TYPE |
| | [\
| | | | DESCRI PTI ON
[[| |
| VALUE | |
| | |
OBJECT |

|

|

V
: :
| | TOP/LEVEL | |
| | [|
| NAME lf
| | [|
| | | _| \| | DR | |
| [| o I
| DESCRI PTI ON | | TYPE |
| | [\
| | R I B DESCRI PTI ON
| [| |
| SIBLING | |
I | |\ ALL BLOCKS AND
| | || / LOCAL T/ OBJECTS
[|| |
| CHLD | |
| | |

|

|

V

ALL GLOBAL
T/ OBJECTS

Figure 4-6
BLOCK, TOP/LEVEL and t/objects

Wnter, HIl & Geiff [Page 51]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

I/ objects are internal, systemdefined objects whose creation and
deletion is inplicit in the execution of some |anguage function

I/ objects are hung directly off of function calls (objects of type
FUNC), and are always local to the execution of such function calls.
They correspond to the notions of (1) literal, and (2) conpiler- or
i nterpreter-generated tenporary.

4.7 Primtive Language Functions

Here we discuss the primtive |anguage functions presently inplenented
in the nodel and likely to be of npbst interest. In this section, the
enphasis is on relating functions to one another. Section 4.8 contains
nore detail and exanpl es.

Assign operates on a pair of objects, called the target and the
source. The value of the source is copied into the value of the target.
Figure 4-7 shows a pair of objects, X and Y, before and after execution
of an assignnent having X as target and Y as source. Presently,
assignnent is defined only for objects of type BOOL and objects of type
STRING The objects involved nust have identical descriptions.

Wnter, HIl & Geiff [Page 52]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

	X				Y			
NAME		NAME						
VALUE			VALUE					
OBJECT | OBJECT |

| |

V V
" ABC'		" DEF"
VALUE VALUE

BEFORE ASSI GNVENT

	X				Y			
NAME		NAME						
VALLE			VALLE					
OBJECT	OBJECT							
Y Y								
" DEF"		" DEF"						
VALUE VALUE

AFTER ASSI GNVENT

Figure 4-7
Ef fect of assignnent

Wnter, HIl & Geiff [Page 53]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

A class of prinmtive functions for manipulating LISTs is defined. These
are called Ilistops_ . Al listops input a special object called an
_operation_descriptor_ or OPD

To acconplish a conplete operation on a LIST, a sequence of |istops nust
be executed. There are senantic restrictions on the conposition of such
sequences, and it is best to think of the entire sequence as one |arge
operation. The state of such an operation is naintained in the OPD

Refer back to figure 4-4. There is one box |abeled "object"” in this
picture; this box represents the list as a whole. To operate on any

gi ven nenber we need an object box to represent that nenber. Figure 4-8
shows the structure with an additional object box; the new box
represents one nenber at any given nmonent. Its value is one of the
components of the LIST value; its description is subordinate to the LIST
description. In 4-8, the nane of this object is M

In 4-8 we have enough structure to provide a description and val ue for
M and this is sufficient to permt the execution of operations on Mas
an item However, there is no direct |ink between object Mand object
L. The structure is conpleted by the addition of an OPD, shown in
figure 4-9

Wnter, HIl & Geiff [Page 54]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

I I I I
I I || ||
|| L || || ||
|| || | TYPE I
| NAME I I I
I I || ||
|| | _| V[| I |
|| || Il CHLD I I
| DESCRI PTI ON | | | |
| | DESCRI PTI ON |
|| || I
I || | \%
| VALUE | | | |
I I I || STRING | |/___
OBJECT I || A
| | TYPE | |
\ I I I
| | DESCRI PTI ON |
I I I
|| " ABC' || I
|| || I I I
I I I I I
|| " XY || || M || I
|| || || || I
I I | NAME I I
|| "ZLM [— I I I
|| AN N R S [D
I [I
| | | | DESCRI PTI ON |
I (R I
	"BBBF"				l	
		VALUE				
VALUE | |
OBJECT
Figure 4-8

LI ST and nenber objects

Wnter, HIl & Geiff [Page 55]

1973

Decenber

Furt her Datal anguage Desi gn Concepts

RFC 610

T T
|
A
|
|
|
|a
L |-
|
£l
o
-

—_>
=] 2
— [nd
5| |E
- W
2 >
m -
N
|
]
s
|
|
|
Cp
|
E m

DESCRI PTI ON

8 > s &
(a0] - [ah]
< : N @

LI ST and nmenber

Fi gure 4-9

VALUE

COPD,

[Page 56]

HIl & Geiff

W nter,

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

The OPD establishes the object relationship, and contains infornation
about the sequence of prinitive listops in progress. Wen sufficient
information is maintained in the OPD, we have in 4-9 a structure which

i s adequate for the maintenance of the integrity of the LIST and of the
global list operation. 1In addition to LIST and nenber pointers, the OPD
contains information indicating: (1) which suboperations are enabled for
t he sequence, (2) the current suboperation, (3) the instance nunber of
the current LIST menber, (4) an end-of-list indicator. The
suboperati ons are add/ nenber, del ete/ menber, change/ nmenber and
get/nmenber. Al apply to the current nenber. Only suboperations which
have been enabl ed at the begi nning of a sequence may be executed during
that sequence; eventually, the advance know edge of intentions that is
inplied by this will provide inportant information for concurrency
control and optinization.

Presently, an OPD relates a single nmenber object to a single LIST
object. This inposes an inportant restriction on the class of operation
sequences which can be expressed. Any LIST transfornation requiring

si mul t aneous access to nore than one nmenber nust be represented as nore
than one sequence. (And we do not yet solve the problens inplied in
concurrent execution of such sequences, even when both are controlled by
one process.)

Any transformation of a LIST can still be achieved by storing
internediate results in tenporary objects; however, it is certainly nore
desirable to incorporate the idea of multiple current nmenbers into the
semantics of the |anguage, than it is to use such tenmporaries. An

i mportant future extension of the listops will deal with this problem

There are six listops: listop/begin, |istop/end, which/nenber,
end/ of /1ist, open/nenber and cl ose/ nenber.

Li stop/ begin and |istop/end performthe obvious functions of beginning
and term nating a sequence of listops. Listop/begin inputs LIST and
menber objects, an OPD, and a specification of suboperations to enable.
It initializes the OPD, including establishnent of the links to LIST and
MEMBER obj ects. After the OPD LI ST-nenber rel ationship has been
established, it is only necessary to supply the OPD and auxiliary
paraneters as input to a listop in the sequence. Fromthe OPD everything
el se can be derived

Li stop/end clears the OPD and frees any resources acquired by
I i stop/begin.

Whi ch/ nenber establishes the current nenber for any suboperations. This
is either the first LIST nenber, the last LIST nenber, or the next LIST
menber. This listop nmerely identifies which nmenber is to be operated
on; it does not nmake the contents of the menber accessible.

Wnter, HIl & Geiff [Page 57]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

Open/ nenber and cl ose/ nenber bracket a suboperation. The suboperation
is indicated as an argunent to open/nenmber. Open/nmenber al ways
establishes a pointer fromthe nmenber object to the nmenber val ue;

cl ose/ menber always clears this pointer. |In addition, each of these
listops may take sone action, depending on the suboperation

The details of the action would be dependent on the representation of
the LIST in storage, the size of a LIST nenber, and choices made in
i mpl enent ati on.

Bet ween execution of the open/nenber and the cl ose/ nenber, the data is
accessible. It can always be read; in the case of the add/ nenber and
change/ menber suboperations, it can also be witten into.

End/of /1ist tests a flag in the OPD and returns an object of type BOOL.
The value of the object is the same as the value of the flag; it is TRUE
if a get/menber, change/ nmenber or del ete/ nenber woul d be unsuccessfu

due to a whi ch/ menber having noved "beyond the end". T his listop is
provided so that it is possible to wite procedures which term nate
conditionally when all nenbers have been processed.

Get/struct/ menber provides the ability to handle STRUCTs. dven a
STRUCT obj ect which points to the STRUCT value, it will establish a

poi nter froma given nenber object to the nenber value. (The pointer it
establishes is represented by a dashed line in figure 4-10).

Wnter, HIl & Geiff [Page 58]

1973

Decenber

Furt her Datal anguage Desi gn Concepts

RFC 610

- - e
9 "
— | | -
5 2B ||| F
L a0 = ||
a m m = |
> — |<C |
~ N N |
e N
||||||||| | I
7] 7 —
- > _
_ m _
_ 5
: Bl s BB |<
= o o 0 Z [=
0 L | — L — — |
s | £ B s | BB |
m — _
~ _ N ~ N N _
|
_
——————— e ——
- - - - _
[_ I
<25 T I —
= o
- - .
14 w | a |
e B 2] Bk
I B s1_B g
- - - - _

Fi gure 4-10
Ef fect of GET/ STRUCT/ MEMBER

5
o W . Q
= - &
IIM |Im IIW Iz

IHHIImHIIHHIIHHII
_

I
< m . Q
= - &
IIM |Im IIW Iz

[Page 59]

HIl & Geiff

W nter,

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

The prinmitives discussed so far (assign, listops, and get/struct/nmenber)
provide a basic facility for operating on structures of LISTs, STRUCTs
and elenentary items. Using only them it is possible to transfer the
contents of one hierarchical structure to another, to append structures,
to delete portions of structures, and so on. To performnore
interesting operations facilities for control and selection are needed.

A rudinentary control facility is provided through the primtives
if/then, if/then/else, till and while. Al of these eval uate one
primtive function call, which nust return a BOOL. Based on the val ue
of this BOOL sone action is taken

Let A and B be function calls. If/then(A B) will execute Bif A returns
TRUE. If/then/else(A B,C) will execute Bif Areturns TRUE, it wll
execute Cif Areturns FALSE. The while and till operators iterate,

executing first Athen B. Wiile term nates the | oop when A returns
FALSE; till termnates the | oop when A returns TRUE. If this happens
the first tine, Bis never executed.

So far, we have nmentioned one function which returns a BOOL: the listop
end/of /list. Two other classes of functions which have this property
are the bool eans and the conparisons. There are 3 prinitive bool eans
(and, or, not) and six primtive conparisons (equal, |ess/than
greater/than, not/equal, |ess/than/or/equal, greater/than/or/equal --
only equal is inplenented at tinme of publication).

The bool eans i nput and out put BOOLs; the conparisons input pairs of

el ementary objects having the same description and out put BOOLs.
Expressi ons conmposed of bool eans and conparisons on itemcontents are
one of the principal tools used in selectively referencing data in data
managenent systens.

Wth the bool eans, the conparisons, and the primtives identified
earlier, we can performselective "retrievals". That is, we can
transfer to LIST B all items in LIST A having a value of "ABC . In
fact, we now have a (semantically) general ability to performcontent-
based retrievals and updates on arbitrary hierarchical structures. W
can even program sonething as conplex as the processing of a list of
transacti ons against a master list, which is one of the typica
applications in business data processing.

O course, we would not expect users of datal anguage to express requests
at the level of listops. Further, the listops defined here are not a
very efficient way of perform ng some of the tasks we have menti oned.

To get good solutions, we need both higher-Ievel operators and other
primtives which use other techniques in processing.

In addition to those already di scussed, the nodel contains functions

Wnter, HIl & Geiff [Page 60]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

for: (1) referencing an object by qualified name, (2) generating a
constant, (3) generating data descriptions, (4) witing conpound
functions and bl ocks with local variables, (5) creating objects.

The facilities for generating constants and data descriptions (which are
a special case of constants) are narginal, and have no features of
special interest. Qoviously, data description will be an inportant
concern in the nodeling effort later on

hj ect referencing functions permt reference to t/objects and p/objects
(these terns are defined in 4.6). A p/object is referenced by giving
the pathnane from STARto it. A t/object is referenced by giving the
pat hnane fromthe block directory in which it is defined to it.

Compound/ function pernmits a sequence of function calls to be treated
syntactically as a single call. Thus, for exanple, in if/then(A B), B
is frequently a call to conmpound/function, which in turn calls a
sequence of other functions.

Create takes two inputs: a superior object and a description. The
superior nust be a directory. The new object is created as the | eftnost
child of the directory; its nane is deternined by the description

4.8 Details of primtive | anguage functions

Thi s section provides specifications for the primtives discussed in the
previous section. W are still omtting details when we judge themto
be of no general interest; the objective is to provide enough
information for the reader to exam ne exanpl es

Most of the primitives occur at two levels in the nodel. The interna
primtives are called i/functions and the external, or |anguage
primtives are called I/functions. The relationship between the two
types are explained in 4.9. In this section we discuss i/functions.

L/functions input and output forms_, which are tree structures whose
term nal nodes are atons. The atons are such things as function nanes,
obj ect nanes, literal string constants, truth values and delimters.
Calls to i/functions are al so expressed as forns.

Any form can be eval uated, yielding sone object. A formwhich is an
i/function call yields the value returned by the i/function: another
form |In general, the formreturned by an i/function call will, when
eval uated, yield a datal anguage object (that is, the sort of object we
have been represented by an "object box" in the draw ngs).

Wnter, HIl & Geiff [Page 61]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

4.8.1 Nane recognition functions
These return a formwhich evaluates to an object.
L/ TOBJ

I nput must nane a tenporary object subordinate either to TOP/LEVEL or a
bl ock directory.

L/ PCBJ

I nput must nane a pernanent object (i.e., an object subordinate to
STAR) .

Typical calls are L/POBJ(X. Y.Z) and L/ TOBI(A).

4.8.2 Constant generators

Each of these inputs an atom c synbol yielding a value for a constant to
be created. Each returns a formwhich will evaluate to an object having
the specified value and an appropriate description.

LC/STRING - a typical call is LC STRING ' ABC)

LG BOOL - a typical call is LG BOOL(TRUE)

4.8.3 Elenentary item functions

These input and output fornms evaluating to elenentary objects (objects
whi ch can have no subordinate object -- in effect, objects whose val ue
is regarded as atonic). Eventually all the conparison operators will be
i mpl enent ed.

L/ ASSI GN

I nputs nmust evaluate either to STRING or BOOLs. Qutputs a form which
transfers the value of the second to the first. Typical call:

L/ ASSI G\N(L/ TOBI(A), LC/ STRI NG’ XYZ'))
The out put form when evaluated, will copy 'XYZ into A's val ue.

L/ EQUAL
Inputs a pair of forns evaluating to objects, which nust have identical
descriptions and be BOOLs or STRINGs. Returns a formevaluating to an

object of type BOOL. Value of this object is TRUE if inputs have
i dentical descriptions and values; otherwise it is false. Typical call:

Wnter, HIl & Geiff [Page 62]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

L/ EQUAL(L/ TOBJ(X), LC/ STRING ' DEF))
L/ AND, L/OR, L/NOT

The standard bool ean operators. |Inputs are forns evaluating to BOOLs;
output is a formevaluating to a BOOL. L/AND and L/OR take two inputs;
L/ NOT one. Typical call:
L/ AND(L/ EQUAL(L/TOBJ(X),LC STRING(’ DEF)),
L/ EQUAL(T/ TOBI(Y),LOSTRING"'GH ")))
The formreturned will, when evaluated, return TRUE i f both X has val ue
"DEF and Y has value "GH .

4.8.4 Data description functions

These all return a formevaluating to a description (i.e. that which is
represented in our draw ngs by a box |abel ed "description").

LD/ STRI NG

I nputs 3 paraneters specifying the name, size option and size for the
string. Typical call:

LD/ STRI N X, FI XED, 3)
This call returns a formevaluating to a description for a fixed-length
3-character string named X

LD/ LI ST

Inputs two forms. The first is the nane of the LIST and the second
eval uates to a description of the LIST nenber. Typical call:

LD/ LI ST(L, LD STRI NG M FI XED, 3))
Creates the structure shown in figure 4-11, and returns a form
evaluating to the description represented by the upper box.

Wnter, HIl & Geiff [Page 63]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

I

I

I

I

I

I

|| I
I

I

I

I

| CHILD
I

DESCRI PTI ON

<—————

PARAMETERS

DESCRI PTI ON

Fi gure 4-11
LI ST and menber descriptions

LD/ STRUCT
Inputs a formto use as the nanme for the STRUCT and one or nore forns

eval uating to descriptions; these are taken as the descriptions of the
menbers. Typical call:

Wnter, HIl & Geiff [Page 64]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

LD/ STRUCT(R,
LD/ STRI NG A, FI XED, 3)
LD/ BOOL(B))
produces the structure shown in 4-12; returns a formevaluating to the
top box.

DESCRI PTI ON

| STRING |

TYPE

|
PARAMVETER

| BOOL |

~

| |
SI BLI NG TYPE

DESCRI PTI ON DESCRI PTI ON

Fi gure 4-12
STRUCT and nmenber descri ptions

Wnter, HIl & Geiff [Page 65]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

LD/ BOOL, LB/DIR, LD/ OPD, LD/ FUNC, LD/ DESC

Each i nputs a nane and produces a single description; each returns a
formevaluating to the description produced. Typical call:
LD/ BOOL(X)

4.8.5 Data creation
L/ CREATE

Inputs two forns and evaluates them First nust yield an object of type
DR, second nust yield a description for the object to be created.
Creates the object and returns a form which, when evaluated, wll
generate a value for the new object. A sinple exanple:

L/ CREATE(L/ TOBJ(X), LDY BOOL(Y))

Fi gure 4-13 shows the directory X before execution of the above call. It
contains only an OPD. After execution, the directory appears as in 4-
14. Creation of a value for Y occurs when the formreturned by L/ CREATE
is evaluated (covered in section 4.9).

Wnter, HIl & Geiff [Page 66]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

| |
| |
|| X ||
|| ||
| NAME O
| | I |
| | | _| ‘[DR ||
|| ||) I
| DESCRIPTION | | TYPE |
| | l
|| || DESCRI PTI ON
[|| |
| CHLD | |
| | |
OBJECT |

|

|

Y
| |
| |
|| z ||
|| ||
| NAME O
| | I |
| | | _| \[] oD ||
|| ||) I
| DESCRIPTION | | TYPE |
| | l
|| || DESCRI PTI ON
I || |
| VALLE | r
| | | | |
OBJECT | \ |

Fi gure 4-13
X and Z before creation of Y

Wnter, HIl & Geiff [Page 67]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

I I
|| X ||
|| ||
| NAME I I I
I I || DI R ||
		_	V		
		Il TYPE			
DESCRI PTI ON					
	DESCRI PTI ON				
I					
VALUE					
I I I

OBJECT |

\Y

I I
|| Y ||
|| ||
| NAME I I I
I I || BOOL ||
|| | _| Vo ||
|| || Il TYPE I
| DESCRI PTI ON | | |
| | DESCRI PTI ON
|| ||
|| ||
| VALUE |
I I
|| | _|
|| || I
| SIBLING | |
I I V.

OBJECT I I I I
	z				oPD	
			Y			
NAME		/] TYPE				
I [I						
] I B DESCRI PTI ON						
I						
DESCRI PTI ON						
I I						
		_	\ I			

Fi gure 4-14 | | | | /] |

X, Y, and Z after | VALUE | OoPD

L/ CREATE | |

OBJECT

Wnter, HIl & Geiff [Page 68]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

4,.8.6 Control
L/ 1 F/ THEN, L/I|F THEN ELSE

Used to request conditional evaluation of a form Typical call:
L/ 1 F/ THEN(L/ EQUAL(L/ TOBJ(A), LC/ STRING " ABC),
L/ ASSI G\(L/ TOBJ(B), LG/ STRING' DE')))
The formreturned will do the follow ng, when evaluated: if A has val ue
"ABC , then store "DE' in the value of B.

L/WH LE, L/TILL

These iterate conditionally, as explained in the previous section.
Exanpl es appear |ater.

L/ CF

Compound function: it inputs one or nore fornms and returns a form which,
when eval uated, will evaluate each input in sequence. Typical call:
L/ CF(L/ ASSI GN(L/ TOBJ(R A), LL STRING(' XX)),
L/ ASSI G\N(L/ TOBJ(R. B), LG/ STRING " YY')))
When the output of L/CF is evaluated, it will assign new values to R A
and R B.

4.8.7 Listops

These prinmitives are executed in sequences in order to perform
operations on LISTs. Wth the exception of L/END/ OF/ LIST these
functions output forns which are evaluated for effect only; that is, the
out put forms do not thenselves return val ues.

L/ LI STOP/ BEG N

Inputs forns evaluating to: (1) a LIST, (2) an object to represent the
current LIST nenber, (3) an OPD. Also, inputs a list of atonmic forns
whose val ues are taken as suboperations to enable. Typical call:

L/ LI STOP/ BEG N(L/ POBJ(F), L/ TOBJ(R),

L/ TOBJ(OPF) , ADD, DELETE)

This returns a formthat will initialize a sequence of listops to be
performed on F. Caller has previously created R and OPF. He intends to
ADD and DELETE |ist nenbers.

Al'l subsequent calls in this sequence of |istops need specify only the
OPD and auxiliary paraneters.

Wnter, HIl & Geiff [Page 69]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

L/ LI STOP/ END

Inputs a formevaluating to an OPD. Qutputs a form which, when
eval uated, clears OPD and breaks rel ati onshi ps between OPD, LI ST and
menber obj ects.

L/ WH CH MEMBER

Inputs two forms. First evaluates to an OPD; second is one of FIRST,
LAST, NEXT. The form output, when evaluated, will establish a new
current nmenber for the next suboperation. Note: this does not make the
val ue of the nmenber accessible, it sinply identifies it by setting the
i nstance nunber in the OPD. A typical call:

L/ WH CH MEMBER(L/ TOBJ(OPF) , NEXT)
When a whi ch/ nenber causes advance beyond the end of the list, a flag is
set in the OPD.

L/ ENDY OF/ LI ST

Inputs a formevaluating to an OPD. Qutputs a form which, when
eval uated, returns a BOOL. This has value TRUE if the end of list flag
inthe OPDis on.

L/ OPEN MEMBER

Inputs a formevaluating to an OPD and a form whi ch nust be one of ADD,
DELETE, GET, CHANGE. OQutputs a form which, when evaluated, wll
initiate the requested suboperation on the current LIST nenber. The
suboperati on al ways establishes the pointer fromthe nenber object to
the current menber value instance. In addition, in the case of ADD this
val ue nust be created. Typical call:

L/ OPEN MEMBER (L/ TOBJ (COPF) , ADD)

L/ CLOSE/ MEMBER

Inputs a formevaluating to an OPD. Qutputs a form which, when

eval uated, will conplete the suboperation in progress. A typical call:
L/ CLOSE/ MEMBER(L/ TOBJ(OPF))

Al ways cl ears the pointer from nmenber object to nenber value. In

addition, in the case of DELETE, renoves the nenber value fromthe LI ST.

In the case of ADD enters the nmenber value in the LIST. Mkes the

menber added the current nenber, so that a sequence of ADDs executed

wi t hout intervening which/nmenbers will add the new nmenbers in sequence.

An el aborate exanple, involving listops and several other prinmitives,
appears in section 4.10.

Wnter, HIl & Geiff [Page 70]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

4.9 Execution cycle

The nodel dataconputer has a two-part execution cycle: it first conpiles
requests, then interprets them A "request"” is an |/function call;
"conpilation" is the aggregate result of executing all the I/function
calls involved in the request (typically this is many calls, as there
are usually several levels of nested calls, with the results of the
inner calls being delivered as argunments to the next level of calls).
Usual Iy, the process of executing an I/function involves a sinple nmacro
expansi on, preceded by sone binding, checking and (eventually)

optim zation.

The conpiled formconsists wholly of atonic synbols and i/function
calls. The i/functions are internal primtives which input and out put
dat al anguage objects (the entities represented by the boxes |abel ed
"object" in the draw ngs).

Each of the I/functions discussed conpiles into a single i/function;
thus the nmacro expansi on aspect of conpilation is presently trivial
However, this will not be true in general; it is only that these are
primtive |/functions that nakes it true now

The decision to use a conpile-and-interpret cycle calls for sone

expl anation. The way to understand this, is to think in ternms of the
functions that would be perfornmed in a strictly interpretive system
There would still be a requirenment to performglobal checks on the
validity of the request in advance of the execution of any part of it.
This is because partial execution of an incorrect request can | eave a
dat abase in an inconsistent state; if this is a |arge or conplex

dat abase, the cost of recovery will be considerable. Thus it pays to do
as much checking as is possible; when the systemis fully devel oped,
this will include a certain elenment of sinple prediction of execution
flow, in any case, nuch nore than syntactic checking is inplied.

Since any such gl obal checks will be perforned in advance of actua
execution, they are effectively not part of the execution itself, for
any given form By perfornming themas part of a separate conpilation
process, we only formalize a nodularity which already effectively

exi sts.

There will still be cases, however, in which checking, binding and
optimzation functions nust be executed during interpretation, if at
all. This will occur when the information needed is not avail able unti

sone of the data has been accessed. Wien practical, we will provide for
such occurrences by designing nost functions so that they can be
executed as part of either "half" of the cycle.

As the nodel devel ops, we expect to get a better feel for this problem

Wnter, HIl & Geiff [Page 71]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

it is certainly reasonable to end up with a structure in which there are
many cycl es of conpilation and interpretation, perhaps formng a
structure in which nesting of cycles within cycles occurs.

4.10 Exanpl es of operations on LISTs

Here we devel op an exanple of an operation on a LIST using primtive
I/functions. W first show the function calls required to create a LIST
naned F and give it a few nmenber values. W then selectively copy
certain nmenbers to a second LIST G

To create F:

L/ CREATE(" STAR", LDV LI ST(F,
LD/ STRUCT(R,
LD/ STRI NG A, FI XED, 2),
LD/ STRI NG B, FI XED, 2))))

This creates F as a nenber of the pernanent directory STAR (see section
4.6 for details about STAR). The synbol STAR has a special status in
the "l anguage", in that it is one of the few atonm c synbols to evaluate
directly to an object. (Recall that nost pernmanent objects are
referenced through a call to L/POBJ; reserving the synbol STAR is

equi val ent to reserving STAR as a nane and witing L/POBJ(STAR). The
sol ution we choose here is easier to wite.) Execution of this cal
builds the structure shown in 4-15 (except for STAR, which existed in
advance of the call). The value initially created for F is an enpty

LI ST--a LI ST of zero nenbers

Wnter, HIl & Geiff [Page 72]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

| | | |
NI
NAME		NAME				
					LI ST	
[
CHI LD			TYPE			
E R iR						
V _\| CcHLD						
		/]				
	F			DESCRI PTI ON		
	[
NAME		vV				
	S			R		
I —						
DESCRI PTI ON		NANVE				
NI						
VALUE			TYPE			
E B iR						
Y	CHLD					
	DESCRI PTI ON					
	vV					
VALUE						
	A					
NAME						
NI S N						
TYPE		NANVE				
_ | | S (O \| | STRING | |
Fi gure 4-15 | | | /| | |
F inmedi ately after | SIBLING | | TYPE |
creation | | | |
DESCRI PTI ON DESCRI PTI ON

Wnter, HIl & Geiff [Page 73]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

To add nenbers to F, we need to use listops, and for this we nust create
two nore objects: an object to represent the current nenber and an
operation descriptor (OPD). These are tenporaries rather than permanent
objects; they are also "top level" (i.e., not local to a request).
Tenporary, top level objects are created as nenbers of the directory
TOP/ LEVEL. The calls to create them are:
L/ CREATE(L/ TOBJ(TOP/ LEVEL),
LD/ STRUCT(M
LD/ STRI NG(A, FI XED, 2),
LD/ STRI NG B, FI XED, 2)))
L/ CREATE(L/ TOBJ(TOP/ LEVEL) , LD/ OPD(OPF))
We create Mto represent the current nenber; its description is the sane
as the one input for a nmenber of F (see the call which created F). The
proper way to acconplish this is with a nmechani sm which shares the
actual LIST nenber description with M however, this nmechani sm does not
yet exist in our nodel.

W now wi sh to add sone data to F; each nenber will be a STRUCT
contai ning two two-character STRI NGs.

To begin the listop sequence:
L/ LI STOP/ BEG N(L/ POBJ(F), L/ TOBJ(M,
L/ TOBJ(OPF) , ADD)
This call establishes the structure shown in figure 4-16. It initializes
the OPD, nmaking it point to F and Mand recording that only the ADD
suboperation is enabl ed.

Wnter, HIl & Geiff [Page 74]

1973

Decenber

Furt her Datal anguage Desi gn Concepts

RFC 610

5 T
e | B
|HHW|HHW|M
]
% T
5 .
| 25
S| Iz :

0@

L

7 Q

o <
T
—
|
|

——

|
LL |

g

= _N_

S B

VALUE

OBJECT

LIS

VALUE

OBJECT

OBJECT

Fi gure 4-16

OPF and M after

L/ BEG N LI STOP

F!

[Page 75]

HIl & Geiff

W nter,

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

Next we nust establish a current nenmber. We want to add nenbers to the
end (in this case, adding them anywhere would get the sane effect, since
the LIST is enpty), which is done by naking LAST the current nenber.

L/ WH CH MEMBER(L/ TOBJ(OP1), LAST)

Now, to add a new nenber to F, we can execute the foll ow ng:
L/ OPEN MEMBER(L/ TOBJ(OPF) , ADD)
L/ ASSI GN(L/ TOBI(M A), LC/ STRING ' AB'))
L/ ASSI G\N(L/ TOBJ(M B), LCI STRING ' CD'))
L/ CLOSE/ MEMBER(L/ TOBJ(OPF))

L/ OPEN MEMBER creates a STRUCT value for M It does not affect the
value of F. Each nenber of the STRUCT value is initialized when the
STRUCT is created. The result is shown in 4-17; notice that the STRUCT
menber values are as yet unrelated to the objects MA and M B.

Fi gure 4-18 shows the changes acconplished by the first L/ASSIGN;, the
pointer fromthe object MA to the value was set up by a

CET/ STRUCT/ MEMBER conpil ed by L/ TOBJ(MA). The value was filled in by
the assign operator. The second assign has sinilar effect, filling in
the second value. The call to L/ CLOSE/ MEMBER takes the val ue shown for
Min 4-18 (with the second nmenber value filled in) and adds it to the
value of F. The result is shown in 4-19; conpare with 4-16.

Wnter, HIl & Geiff [Page 76]

1973

Decenber

Furt her Datal anguage Desi gn Concepts

RFC 610

"STRING

I T oo T
|
== g -
M m m [0 m m m W
ﬂ _D W ﬂ — W m L
el Bl (Pl BE || 1] Bl 8k
IHHMIHH_IIm IHHMIHHWIm |HH|IHH|IHHWI®
—= = —=
|
T T T T T T
- IllllL IIIIIIIIIII
— —
6 LIIIIV | |6
s B _ b
e | 315 wm 5) w | BB w 5
S 811 1S M = o g 7) M
L g I 1= B U =

L/ OPEN MEMBER

Fi gure 4-17

After

VALUE

[Page 77]

HIl & Geiff

W nter,

1973

Decenber

Furt her Datal anguage Desi gn Concepts

RFC 610

"STRING

DESCRI PTI ON

—_— N~
r 2
® <
L —
o m
> —
~ 7
———————
_
_
T
_
||||| >

Fi gure 4-18
After first L/ASSI G\

[Page 78]

HIl & Geiff

W nter,

1973

Decenber

Furt her Datal anguage Desi gn Concepts

RFC 610

OPF

VALUE

OBJECT

VALUE

NEW MEMBER VALUE

OBJECT

OBJECT

L/ CLOSE/ MEMBER

Fi gure 4-19

After

[Page 79]

HIl & Geiff

W nter,

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

By executing simlar groups of four printives, varying only val ues of
constants, we can build up the LIST F shown in 4-20. The calls required
are shown bel ow

L/ OPEN/ MEVBER(L/ TOBJ(OPF) , ADD)

L/ ASSI GN(L/ TOBI(M A), LG/ STRING(’ FF'))
L/ ASSI GN(L/ TOBI(M B), LC/ STRING(’ GH))
L/ CLOSE/ MEMBER(L/ TOBJ(OPF))

L/ OPEN/ MEMBER(L/ TOBJ(OPF) , ADD)

L/ ASSI GN(L/ TOBJ(M A), LC/ STRING(’ AB'))
L/ ASSI GN(L/ TOBJ(M B), LG/ STRING(' 13"))
L/ CLOSE/ MEMBER(L/ TOBJ(OPF))

L/ OPEN/ MEMBER(L/ TOBJ(OPF) , ADD)

L/ ASSI GN(L/ TOBJ(M A), LT/ STRING(’ CD'))
L/ ASSI GN(L/ TOBJ(M B), LC/ STRING(’ LM))
L/ CLOSE/ MEMBER(L/ TOBJ(OPF))

The add suboperation has the effect of making the nenber just added, the
current nenber; thus no L/WH CH MEMBER calls are needed in this
sequence.

To terninate the sequence of |istops:
L/ ENDY LI STOP(L/ TOBJ(OPF))

Wnter, HIl & Geiff [Page 80]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

I I

|| F ||

|| ||

| NAME I

I I

|| | _| \

I || /

| DESCRIPTION |

I I

|| ||

I || |

| VALUE | |

I I I

OBJECT |
I
\Y
I I
		"AB"		"c	
I I					
I O € o U O					
I I					
A8		"3t]			
I I					
"ca M]					
I I
VALUE
Fi gure 4-20

After L/END/ LISTOR

Wnter, HIl & Geiff [Page 81]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

A slightly nore interesting exercise is to construct calls which create
a LI ST naned G having the same description as F, and then to copy into
G all nenbers of F having A equal to 'AB'.

We nust first create G an OPD and an object to represent the current
nenber .
L/ CREATE(" STAR', LD/ LI ST(G
LD/ STRUCT(R,
LD/ STRI NG A, STRI NG, 2),
LD/ STRI NG B, STRING 2)))
L/ CREATE(L/ TOBJ(TOP/ LEVEL) , LD OPD(OPG))
L/ CREATE(L/ TOBJ(TOP/ LEVEL) , LD/ STRUCT(GM
LD/ STRI NG A, STRING 2),
LD/ STRI NGB, STRI NG, 2)))

We now need to initiate two sequences of |istops, one on G and one on F.
L/ BEG N LI STOP(L/ POBJ(F), L/ TOBI(M ,
L/ TOBJ(OPF), GET)
L/ BEG N LI STOP(L/ POBJ(Q) , L/ TOBI(GV ,
L/ TOBJ(OPG), ADD)
L/ VH CH MEMBER(L/ TOBJ(OPF), FI RST)
L/ VWH CH MEMBER(L/ TOBJ(OPQ) , LAST)

We will now sequence through the nenbers of F; whenever the current
menber has A equal to "AB', we will add a menber to G W then copy the
val ues of the current nenber of F into the newy added nenber of G

Wien the current nenber does not neet this criterion, we do nothing with
it.

First, to wite a loop that will execute until we get to the end of F:
L/ TILL(L/ ENDY OF/ LI ST(L/ TOBJ(OPF)), X)

What ever we put in this call to replace "x" will execute repeatedly

until the end/of/list flag has been set in OPF.

We nust replace "x" with a single function call to in order to give
L/ TILL what it is looking for. However, we will be executing "x" once
for each nenber of F, and will need to execute several |istops each
time. The solution is to use L/CF, the conpound-function function:

L/ TILL(L/ ENDY OF/ LI ST(L/ TOBJ(OPF)), L/ CF(y))
We can now replace "y" with a sequence of function calls.

Each time we iterate, we need to process a new nenber of F;, initially we
are set up to get the first nmenber. The foll owi ng sequence, then, is
needed:
L/ CF(L/ OPEN MEMBER(L/ TOBJ(OPF), CET),
z
L/ CLOSE/ MEMBER(L/ TOBJ(OPF)),
L/ WH CH MEMBER(L/ TOBJ(OPF) , NEXT))

Wnter, HIl & Geiff [Page 82]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

The above is a conmpound function which will open the current nenber of
F, do sonething to it (represented above by "z"), close it, and ask for
t he next nenber.

We want to replace "z" by a function call which tests the contents of A
in the current nenber of F, and either does nothing or adds a nenber to
G copying the values of the current nmenber of F. If "wW' represents the
action of adding a nenber to G and copyi ng the values, then we can
express this:

L/ 1 F(L/ EQUAL(L/ TOBIJ(M A), LC/ STRING(' AB')), w)

A suitable way to express "add a nenber and copy val ues" is:
L/ CF(L/ OPEN MEMBER(L/ TOBJ(OPG), ADD),
L/ ASSI G\N(L/ TOBI(GM A), L/ TOBI(M A)),
L/ ASSI G\(L/ TOBJ(GM B), L/ TOBJ(M B)),
L/ CLOSE/ MEMBER(L/ TOBJ(OPG))
This is simlar enough to the previous exanple so that no expl anation
shoul d be necessary.

Putting this all together, we get:
L/ TILL(L/ ENDY OF/ LI ST(L/ TOBJ(OPF)),
L/ CF(L/ OPEN MEMBER(L/TOBJ(COPF), GET),
L/ I F(L/ EQUAL(L/ TOBJ(A), LC STRING ' AB')),
L/ CF(L/ OPEN MEMBER(L/ TOBJ(OPG) , ADD) ,

L/ ASSI G\(L/ TOBI(GM A), L/ TOBI(M A)) ,
L/ ASSI G\(L/ TOBJ(GM B), L/ TOBI(M B)),
L/ CLOSE/ MEMBER/ L/ TOBJ(OPQ))))

L/ CLOSE/ MEMBER(L/ TOBJ(OPF)),

L/ WH CH MEMBER(L/ TOBJ(OPF), NEXT)))

To conclude the operation, we execute:
L/ LI STOP/ END(L/ TOBJ(OPQ))
L/ LI STOP/ END(L/ TOBJ(OPF))

The result is a LI ST G whose first nenber has value ("AB',’CD), and
whose second nenber has value ("AB',’1J’). Wth a few variations on the
above exanple, quite a few LI ST operations can be perforned.

4.11 H gher | evel functions

While these primtive i/functions are useful, we would not ordinarily
expect users to operate in datal anguage at this low level. W want to
make these primitives available to users so that they can handl e the
exceptional case, and so that they can construct their own high-Ileve
functions for atypical applications. Odinarily, they ought to operate
at least at the level of the follow ng construction (which is legal in
the real datal anguage currently inplenented):

Wnter, HIl & Geiff [Page 83]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

FORGRF.RWTH A EQ ' AB
G R=F. R
END
This relatively conci se expression acconplishes the same result as the
el aborate construction of i/functions given at the close of the
preceding section. W could define i/functions very sinmlar to the
semantic functions used in the running software, and wite the above
request as:
L/ FOR(L/ POBI(G, R
L/ POBJ(F), R L/ WTH(L/ EQUAL(L/ TOBJ(A)
LC STRING' AB')))
The differences between the i/function call and the datal anguage request
above it are principally syntactic.

I n designing functions such as L/FOR and L/WTH, the central problens
have to do with choosing the right restrictions. One cannot have all
the generality available at the prinmtive level. Sone inportant choices
for these particular functions are: (1) handling nultiple inputs and
outputs, (2) when FORs are nested, how outer FORs restrict the options
available to inner FORs, (3) generality of selection functions (may then
in turn generate FORs?), (4) options with regard to where processing
shoul d start (are we updating, replacing or appending to the output
list(s)?).

Finally, this problemis related to the nore general problem of dealing
with sets , which are a generalization of the idea of a collection of
menbers in a LI ST having conmon properties. FOR is only one of many
operators that can input sets.

4,12 Concl usi on

The present nodel, though enbryonic, already contains enough primtives
and data types to pernmit definition and generalized mani pul ati on of

hi erarchi cal data structures. Conmobn data managenent operations, such
as retrieval by content and selective update can be expressed.

The use of this nodel in developing these primtives has resulted in
preci se, well-defined and internally consistent specifications for

| anguage el enents and processing functions. Operating in the |aboratory
envi ronnment provided by the nodel seens to be a substantial benefit.

Wnter, HIl & Geiff [Page 84]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

5. Furt her Work

In this section, we review what has been acconplished so far in the
design and descri be what work remains to be done before this design
iteration of datal anguage is conplete.

51 A Revi ew

Most i nmportant, anong our acconplishnments, we feel that we have
delineated the problens and presented the broad outlines of a solution
to devel opnent of a | anguage for the dataconputer system Key el enents
of our approach are the primacy of data description in capturing all the
aspects of the data, the separation of |ogical and physica
characteristics of data description, the ability of users to define
different views of the sane data, the ability to associate functions
with different uses of data itens, an attenpt to capture comopn aspects
of data at every possible level, and the ability of users to comunicate
with the dataconputer in as high a level as their application permts.

5.2 Topi cs for Further Research

Al t hough nore work needs to be done in general to turn out a finished
design for datal anguage, we can single out certain issues which in
particul ar need further investigation.

So far, only hierarchal data structures (i.e. those that can be nodel ed
by physical containment) have been devel oped to any extent. W also
intend to investigate and provide other types of data structures. W are
confident that our |anguage franmework does not neke assunptions that
woul d prohibit such additions.

Qur current work on access regul ation centers on the use of multiple
descriptions for data. W need to do nore work on both the technica

and admi ni strative aspects of access regulation. Problens of encrypting
data for both transm ssion and storage will al so be investigated.

Anot her issue requiring further research is the protocol requirenment for
process interaction with the dataconputer.

Separation of the description into i ndependent nodul es needs further
research. |In particular, we need to | ook into work which has al ready
been done on separate specifications of |ogical descriptions, physica
descriptions, and mappi ngs between the two.

Wnter, HIl & Geiff [Page 85]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

5.3 Dat al anguage Synt ax

We have not yet proposed a syntax for the datal anguage we are

devel oping. Certainly the nost difficult parts of the problem have been
the semantic and pragmatic issues. W are confident that various
syntactic forns can be chosen and inplenented w thout excessive
difficulty. It may be best to develop different syntactic forns for the
| anguage for different types of users or even for the various subparts
of the language itself. As discussed in section 2, the user syntax for
t he dataconputer is supposed to be at a low level. It should be easy
for _prograns_ to generate datal anguage requests in this syntax.

5.4 Furt her Work on the Datal anguage Mde

The nodel provides an excellent foundation on which to build up a
| anguage with the facilities described in section 3. Mch work is yet
to be done.

For a while, enphasis will be on sets, high-level operators, |anguage
extension and data description

We expect to nodel sets as a new datatype, whose value is ordinarily
shared with other objects. Sone further work on binding and sharing of
val ues i s needed to support this.

Sets can be regarded as a special case of generalized rel ations, which
will cone sonewhat |ater.

H gh-1 evel operators such as FOR will be constructed fromthe existing
primtives, and will eventually be defined to have one effect but
several possible expansions. The expansion will depend on the
representation of the data and the presence of auxiliary structures.

Al ternate expansions will be possible when the data description has been
broken up into its various nodules. This, also, requires sonme further
resear ch.

W feel that the | anguage extension problemis nmuch nore easily attacked
in the environment provided by the nodel dataconputer. |In particular,
we expect the | aboratory environment to be hel pful in evaluating the
conpl ex interactions and pervasive effects of operators in the | anguage
whi ch extend the | anguage.

Data description work in the near termwll focus on the isolation of
attributes, the representation of variable structure in description, the
description of descriptions and the devel opnent of a sufficient set of
builtin data types.

Wnter, HIl & Geiff [Page 86]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

Later, we expect to nodel the semantics of pointers as a datatype, when
the representation of the pointer and the semantics of the address space
into which it points are specified in the description of the pointer

A large nunber of |ower-level issues will be attacked, including some of
the probl ens discovered in the nodeling to date. Sone of these are
poi nted out in the discussions in section 4.

5.5 Appl i cations Support

The dat al anguage we are designing is intended to provide services to
sub-systens solving a broad class of problens related to data
managenent. Exanples of such sub-systens are: report generators, online
query systenms for non-programrers, docunent-handling systens,
transacti on processing systens, real-tinme data collection systens, and
library and bibliographic systens. There are nany nore.

The idea is that such systens will run on other nachines, reference or
store data at the dataconputer, and nmake heavy use of datal anguage.

Such a systemwould not be witten entirely in datal anguage, but a |arge
component of its function would be expressed in datal anguage requests;
some controlling nodul e would build the requests and performthe non-
dat al anguage functi ons.

Wil e we have experience with such applications in other environnments,
and we talk to potential users, it will require some work to determ ne
that our | anguage is actually adequate for them That is, we are not
attacking directly the problem of building a human-oriented online query
system we are trying to provide the tools which will nmake it easy to
build one. There is a definite need to anal yze whether the tools are
likely to be good enough. O course, the ultimate test will be in actua
use, but we want to filter out as many problens as we can before

i mpl enent ati on.

An i nportant conponent of supporting applications is that the using
prograns will frequently be witten in high-Ievel |anguages such as
FORTRAN, COBOL or PL/1. W will want to investigate the ability of
dat al anguage to support such users, while the design is taking shape.

5.6 Future Pl ans

This paper has laid the foundations for a new design of datal anguage.
Section 3 provides an outline for a datal anguage design, which will be
filled in during the comng nonths. Follow ng the issue of a detailed
specification, we anticipate extensive review, revisions, and

Wnter, HIl & Geiff [Page 87]

RFC 610 Furt her Datal anguage Desi gn Concepts Decenber 1973

i ncorporation into the inplenentation plans. Inplenentation will occur
in stages, conpatible with the established plans for devel opnent of
dat aconput er service and data nanagenent capabilities.

[This RFC was put into machine readable formfor entry]
[into the online RFC archives by Al ex McKenzie with]
[support from GTE, fornerly BBN Corp. 1/ 2000]

Wnter, HIl & Geiff [Page 88]

