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Abstract

   This document is published as a historical record of the SSL 3.0
   protocol.  The original Abstract follows.

   This document specifies version 3.0 of the Secure Sockets Layer (SSL
   3.0) protocol, a security protocol that provides communications
   privacy over the Internet.  The protocol allows client/server
   applications to communicate in a way that is designed to prevent
   eavesdropping, tampering, or message forgery.

Foreword

   Although the SSL 3.0 protocol is a widely implemented protocol, a
   pioneer in secure communications protocols, and the basis for
   Transport Layer Security (TLS), it was never formally published by
   the IETF, except in several expired Internet-Drafts.  This allowed no
   easy referencing to the protocol.  We believe a stable reference to
   the original document should exist and for that reason, this document
   describes what is known as the last published version of the SSL 3.0
   protocol, that is, the November 18, 1996, version of the protocol.

   There were no changes to the original document other than trivial
   editorial changes and the addition of a "Security Considerations"
   section.  However, portions of the original document that no longer
   apply were not included.  Such as the "Patent Statement" section, the
   "Reserved Ports Assignment" section, and the cipher-suite registrator
   note in the "The CipherSuite" section.  The "US export rules"
   discussed in the document do not apply today but are kept intact to
   provide context for decisions taken in protocol design.  The "Goals
   of This Document" section indicates the goals for adopters of SSL
   3.0, not goals of the IETF.

   The authors and editors were retained as in the original document.
   The editor of this document is Nikos Mavrogiannopoulos
   (nikos.mavrogiannopoulos@esat.kuleuven.be).  The editor would like to
   thank Dan Harkins, Linda Dunbar, Sean Turner, and Geoffrey Keating
   for reviewing this document and providing helpful comments.

Freier, et al.                  Historic                        [Page 1]



RFC 6101              The SSL Protocol Version 3.0           August 2011

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for the historical record.

   This document defines a Historic Document for the Internet community.
   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are a candidate for any level of Internet
   Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6101.

Copyright Notice

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.
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1.  Introduction

   The primary goal of the SSL protocol is to provide privacy and
   reliability between two communicating applications.  The protocol is
   composed of two layers.  At the lowest level, layered on top of some
   reliable transport protocol (e.g., TCP [RFC0793]), is the SSL record
   protocol.  The SSL record protocol is used for encapsulation of
   various higher level protocols.  One such encapsulated protocol, the
   SSL handshake protocol, allows the server and client to authenticate
   each other and to negotiate an encryption algorithm and cryptographic
   keys before the application protocol transmits or receives its first
   byte of data.  One advantage of SSL is that it is application
   protocol independent.  A higher level protocol can layer on top of
   the SSL protocol transparently.  The SSL protocol provides connection
   security that has three basic properties:

   o  The connection is private.  Encryption is used after an initial
      handshake to define a secret key.  Symmetric cryptography is used
      for data encryption (e.g., DES [DES], 3DES [3DES], RC4 [SCH]).

   o  The peer’s identity can be authenticated using asymmetric, or
      public key, cryptography (e.g., RSA [RSA], DSS [DSS]).

   o  The connection is reliable.  Message transport includes a message
      integrity check using a keyed Message Authentication Code (MAC)
      [RFC2104].  Secure hash functions (e.g., SHA, MD5) are used for
      MAC computations.

2.  Goals

   The goals of SSL protocol version 3.0, in order of their priority,
   are:

   1.  Cryptographic security

          SSL should be used to establish a secure connection between
          two parties.

   2.  Interoperability

          Independent programmers should be able to develop applications
          utilizing SSL 3.0 that will then be able to successfully
          exchange cryptographic parameters without knowledge of one
          another’s code.
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          Note: It is not the case that all instances of SSL (even in
          the same application domain) will be able to successfully
          connect.  For instance, if the server supports a particular
          hardware token, and the client does not have access to such a
          token, then the connection will not succeed.

   3.  Extensibility

          SSL seeks to provide a framework into which new public key and
          bulk encryption methods can be incorporated as necessary.
          This will also accomplish two sub-goals: to prevent the need
          to create a new protocol (and risking the introduction of
          possible new weaknesses) and to avoid the need to implement an
          entire new security library.

   4.  Relative efficiency

          Cryptographic operations tend to be highly CPU intensive,
          particularly public key operations.  For this reason, the SSL
          protocol has incorporated an optional session caching scheme
          to reduce the number of connections that need to be
          established from scratch.  Additionally, care has been taken
          to reduce network activity.

3.  Goals of This Document

   The SSL protocol version 3.0 specification is intended primarily for
   readers who will be implementing the protocol and those doing
   cryptographic analysis of it.  The spec has been written with this in
   mind, and it is intended to reflect the needs of those two groups.
   For that reason, many of the algorithm-dependent data structures and
   rules are included in the body of the text (as opposed to in an
   appendix), providing easier access to them.

   This document is not intended to supply any details of service
   definition or interface definition, although it does cover select
   areas of policy as they are required for the maintenance of solid
   security.

4.  Presentation Language

   This document deals with the formatting of data in an external
   representation.  The following very basic and somewhat casually
   defined presentation syntax will be used.  The syntax draws from
   several sources in its structure.  Although it resembles the
   programming language "C" in its syntax and External Data
   Representation (XDR) [RFC1832] in both its syntax and intent, it
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   would be risky to draw too many parallels.  The purpose of this
   presentation language is to document SSL only, not to have general
   application beyond that particular goal.

4.1.  Basic Block Size

   The representation of all data items is explicitly specified.  The
   basic data block size is one byte (i.e., 8 bits).  Multiple byte data
   items are concatenations of bytes, from left to right, from top to
   bottom.  From the byte stream, a multi-byte item (a numeric in the
   example) is formed (using C notation) by:

        value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) | ...
        | byte[n-1];

   This byte ordering for multi-byte values is the commonplace network
   byte order or big-endian format.

4.2.  Miscellaneous

   Comments begin with "/*" and end with "*/".  Optional components are
   denoted by enclosing them in "[[ ]]" double brackets.  Single-byte
   entities containing uninterpreted data are of type opaque.

4.3.  Vectors

   A vector (single dimensioned array) is a stream of homogeneous data
   elements.  The size of the vector may be specified at documentation
   time or left unspecified until runtime.  In either case, the length
   declares the number of bytes, not the number of elements, in the
   vector.  The syntax for specifying a new type T’ that is a fixed-
   length vector of type T is

        T T’[n];

   Here, T’ occupies n bytes in the data stream, where n is a multiple
   of the size of T.  The length of the vector is not included in the
   encoded stream.

   In the following example, Datum is defined to be three consecutive
   bytes that the protocol does not interpret, while Data is three
   consecutive Datum, consuming a total of nine bytes.

        opaque Datum[3];      /* three uninterpreted bytes */
        Datum Data[9];        /* 3 consecutive 3 byte vectors */
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   Variable-length vectors are defined by specifying a subrange of legal
   lengths, inclusively, using the notation <floor..ceiling>.  When
   encoded, the actual length precedes the vector’s contents in the byte
   stream.  The length will be in the form of a number consuming as many
   bytes as required to hold the vector’s specified maximum (ceiling)
   length.  A variable-length vector with an actual length field of zero
   is referred to as an empty vector.

        T T’<floor..ceiling>;

   In the following example, mandatory is a vector that must contain
   between 300 and 400 bytes of type opaque.  It can never be empty.
   The actual length field consumes two bytes, a uint16, sufficient to
   represent the value 400 (see Section 4.4).  On the other hand, longer
   can represent up to 800 bytes of data, or 400 uint16 elements, and it
   may be empty.  Its encoding will include a two-byte actual length
   field prepended to the vector.

        opaque mandatory<300..400>;
              /* length field is 2 bytes, cannot be empty */
        uint16 longer<0..800>;
              /* zero to 400 16-bit unsigned integers */

4.4.  Numbers

   The basic numeric data type is an unsigned byte (uint8).  All larger
   numeric data types are formed from fixed-length series of bytes
   concatenated as described in Section 4.1 and are also unsigned.  The
   following numeric types are predefined.

        uint8 uint16[2];
        uint8 uint24[3];
        uint8 uint32[4];
        uint8 uint64[8];

4.5.  Enumerateds

   An additional sparse data type is available called enum.  A field of
   type enum can only assume the values declared in the definition.
   Each definition is a different type.  Only enumerateds of the same
   type may be assigned or compared.  Every element of an enumerated
   must be assigned a value, as demonstrated in the following example.
   Since the elements of the enumerated are not ordered, they can be
   assigned any unique value, in any order.

        enum { e1(v1), e2(v2), ... , en(vn), [[(n)]] } Te;
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   Enumerateds occupy as much space in the byte stream as would its
   maximal defined ordinal value.  The following definition would cause
   one byte to be used to carry fields of type Color.

        enum { red(3), blue(5), white(7) } Color;

   Optionally, one may specify a value without its associated tag to
   force the width definition without defining a superfluous element.
   In the following example, Taste will consume two bytes in the data
   stream but can only assume the values 1, 2, or 4.

        enum { sweet(1), sour(2), bitter(4), (32000) } Taste;

   The names of the elements of an enumeration are scoped within the
   defined type.  In the first example, a fully qualified reference to
   the second element of the enumeration would be Color.blue.  Such
   qualification is not required if the target of the assignment is well
   specified.

        Color color = Color.blue;     /* overspecified, legal */
        Color color = blue;           /* correct, type implicit */

   For enumerateds that are never converted to external representation,
   the numerical information may be omitted.

        enum { low, medium, high } Amount;

4.6.  Constructed Types

   Structure types may be constructed from primitive types for
   convenience.  Each specification declares a new, unique type.  The
   syntax for definition is much like that of C.

      struct {
          T1 f1;
          T2 f2;
          ...
          Tn fn;
      } [[T]];

   The fields within a structure may be qualified using the type’s name
   using a syntax much like that available for enumerateds.  For
   example, T.f2 refers to the second field of the previous declaration.
   Structure definitions may be embedded.
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4.6.1.  Variants

   Defined structures may have variants based on some knowledge that is
   available within the environment.  The selector must be an enumerated
   type that defines the possible variants the structure defines.  There
   must be a case arm for every element of the enumeration declared in
   the select.  The body of the variant structure may be given a label
   for reference.  The mechanism by which the variant is selected at
   runtime is not prescribed by the presentation language.

        struct {
            T1 f1;
            T2 f2;
             ....
            Tn fn;
            select (E) {
                case e1: Te1;
                case e2: Te2;
                    ....
                case en: Ten;
            } [[fv]];
        } [[Tv]];

      For example,

        enum { apple, orange } VariantTag;
        struct {
            uint16 number;
            opaque string<0..10>; /* variable length */
        } V1;

        struct {
            uint32 number;
            opaque string[10];    /* fixed length */
        } V2;
        struct {
            select (VariantTag) { /* value of selector is implicit */
                case apple: V1;   /* VariantBody, tag = apple */
                case orange: V2;  /* VariantBody, tag = orange */
            } variant_body;       /* optional label on variant */
        } VariantRecord;
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   Variant structures may be qualified (narrowed) by specifying a value
   for the selector prior to the type.  For example, an

        orange VariantRecord

   is a narrowed type of a VariantRecord containing a variant_body of
   type V2.

4.7.  Cryptographic Attributes

   The four cryptographic operations digital signing, stream cipher
   encryption, block cipher encryption, and public key encryption are
   designated digitally-signed, stream-ciphered, block-ciphered, and
   public-key-encrypted, respectively.  A field’s cryptographic
   processing is specified by prepending an appropriate key word
   designation before the field’s type specification.  Cryptographic
   keys are implied by the current session state (see Section 5.1).

   In digital signing, one-way hash functions are used as input for a
   signing algorithm.  In RSA signing, a 36-byte structure of two hashes
   (one SHA and one MD5) is signed (encrypted with the private key).  In
   DSS, the 20 bytes of the SHA hash are run directly through the
   Digital Signature Algorithm with no additional hashing.

   In stream cipher encryption, the plaintext is exclusive-ORed with an
   identical amount of output generated from a cryptographically secure
   keyed pseudorandom number generator.

   In block cipher encryption, every block of plaintext encrypts to a
   block of ciphertext.  Because it is unlikely that the plaintext
   (whatever data is to be sent) will break neatly into the necessary
   block size (usually 64 bits), it is necessary to pad out the end of
   short blocks with some regular pattern, usually all zeroes.

   In public key encryption, one-way functions with secret "trapdoors"
   are used to encrypt the outgoing data.  Data encrypted with the
   public key of a given key pair can only be decrypted with the private
   key, and vice versa.  In the following example:

        stream-ciphered struct {
            uint8 field1;
            uint8 field2;
            digitally-signed opaque hash[20];
        } UserType;

   The contents of hash are used as input for the signing algorithm,
   then the entire structure is encrypted with a stream cipher.
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4.8.  Constants

   Typed constants can be defined for purposes of specification by
   declaring a symbol of the desired type and assigning values to it.
   Under-specified types (opaque, variable-length vectors, and
   structures that contain opaque) cannot be assigned values.  No fields
   of a multi-element structure or vector may be elided.

      For example,
        struct {
            uint8 f1;
            uint8 f2;
        } Example1;

        Example1 ex1 = {1, 4};/* assigns f1 = 1, f2 = 4 */

5.  SSL Protocol

   SSL is a layered protocol.  At each layer, messages may include
   fields for length, description, and content.  SSL takes messages to
   be transmitted, fragments the data into manageable blocks, optionally
   compresses the data, applies a MAC, encrypts, and transmits the
   result.  Received data is decrypted, verified, decompressed, and
   reassembled, then delivered to higher level clients.

5.1.  Session and Connection States

   An SSL session is stateful.  It is the responsibility of the SSL
   handshake protocol to coordinate the states of the client and server,
   thereby allowing the protocol state machines of each to operate
   consistently, despite the fact that the state is not exactly
   parallel.  Logically, the state is represented twice, once as the
   current operating state and (during the handshake protocol) again as
   the pending state.  Additionally, separate read and write states are
   maintained.  When the client or server receives a change cipher spec
   message, it copies the pending read state into the current read
   state.  When the client or server sends a change cipher spec message,
   it copies the pending write state into the current write state.  When
   the handshake negotiation is complete, the client and server exchange
   change cipher spec messages (see Section 5.3), and they then
   communicate using the newly agreed-upon cipher spec.

   An SSL session may include multiple secure connections; in addition,
   parties may have multiple simultaneous sessions.
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   The session state includes the following elements:

   session identifier:  An arbitrary byte sequence chosen by the server
      to identify an active or resumable session state.

   peer certificate:  X509.v3 [X509] certificate of the peer.  This
      element of the state may be null.

   compression method:  The algorithm used to compress data prior to
      encryption.

   cipher spec:  Specifies the bulk data encryption algorithm (such as
      null, DES, etc.) and a MAC algorithm (such as MD5 or SHA).  It
      also defines cryptographic attributes such as the hash_size.  (See
      Appendix A.7 for formal definition.)

   master secret:  48-byte secret shared between the client and server.

   is resumable:  A flag indicating whether the session can be used to
      initiate new connections.

   The connection state includes the following elements:

   server and client random:  Byte sequences that are chosen by the
      server and client for each connection.

   server write MAC secret:  The secret used in MAC operations on data
      written by the server.

   client write MAC secret:  The secret used in MAC operations on data
      written by the client.

   server write key:  The bulk cipher key for data encrypted by the
      server and decrypted by the client.

   client write key:  The bulk cipher key for data encrypted by the
      client and decrypted by the server.

   initialization vectors:  When a block cipher in Cipher Block Chaining
      (CBC) mode is used, an initialization vector (IV) is maintained
      for each key.  This field is first initialized by the SSL
      handshake protocol.  Thereafter, the final ciphertext block from
      each record is preserved for use with the following record.
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   sequence numbers:  Each party maintains separate sequence numbers for
      transmitted and received messages for each connection.  When a
      party sends or receives a change cipher spec message, the
      appropriate sequence number is set to zero.  Sequence numbers are
      of type uint64 and may not exceed 2^64-1.

5.2.  Record Layer

   The SSL record layer receives uninterpreted data from higher layers
   in non-empty blocks of arbitrary size.

5.2.1.  Fragmentation

   The record layer fragments information blocks into SSLPlaintext
   records of 2^14 bytes or less.  Client message boundaries are not
   preserved in the record layer (i.e., multiple client messages of the
   same ContentType may be coalesced into a single SSLPlaintext record).

        struct {
            uint8 major, minor;
        } ProtocolVersion;

        enum {
            change_cipher_spec(20), alert(21), handshake(22),
            application_data(23), (255)
        } ContentType;

        struct {
            ContentType type;
            ProtocolVersion version;
            uint16 length;
            opaque fragment[SSLPlaintext.length];
        } SSLPlaintext;

   type:  The higher level protocol used to process the enclosed
      fragment.

   version:  The version of protocol being employed.  This document
      describes SSL version 3.0 (see Appendix A.1).

   length:  The length (in bytes) of the following
      SSLPlaintext.fragment.  The length should not exceed 2^14.

   fragment:  The application data.  This data is transparent and
      treated as an independent block to be dealt with by the higher
      level protocol specified by the type field.
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   Note: Data of different SSL record layer content types may be
   interleaved.  Application data is generally of lower precedence for
   transmission than other content types.

5.2.2.  Record Compression and Decompression

   All records are compressed using the compression algorithm defined in
   the current session state.  There is always an active compression
   algorithm; however, initially it is defined as
   CompressionMethod.null.  The compression algorithm translates an
   SSLPlaintext structure into an SSLCompressed structure.  Compression
   functions erase their state information whenever the CipherSpec is
   replaced.

   Note: The CipherSpec is part of the session state described in
   Section 5.1.  References to fields of the CipherSpec are made
   throughout this document using presentation syntax.  A more complete
   description of the CipherSpec is shown in Appendix A.7.

   Compression must be lossless and may not increase the content length
   by more than 1024 bytes.  If the decompression function encounters an
   SSLCompressed.fragment that would decompress to a length in excess of
   2^14 bytes, it should issue a fatal decompression_failure alert
   (Section 5.4.2).

        struct {
            ContentType type;       /* same as SSLPlaintext.type */
            ProtocolVersion version;/* same as SSLPlaintext.version */
            uint16 length;
            opaque fragment[SSLCompressed.length];
        } SSLCompressed;

   length:  The length (in bytes) of the following
      SSLCompressed.fragment.  The length should not exceed 2^14 + 1024.

   fragment:  The compressed form of SSLPlaintext.fragment.

   Note: A CompressionMethod.null operation is an identity operation; no
   fields are altered (see Appendix A.4.1.)

   Implementation note: Decompression functions are responsible for
   ensuring that messages cannot cause internal buffer overflows.
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5.2.3.  Record Payload Protection and the CipherSpec

   All records are protected using the encryption and MAC algorithms
   defined in the current CipherSpec.  There is always an active
   CipherSpec; however, initially it is SSL_NULL_WITH_NULL_NULL, which
   does not provide any security.

   Once the handshake is complete, the two parties have shared secrets
   that are used to encrypt records and compute keyed Message
   Authentication Codes (MACs) on their contents.  The techniques used
   to perform the encryption and MAC operations are defined by the
   CipherSpec and constrained by CipherSpec.cipher_type.  The encryption
   and MAC functions translate an SSLCompressed structure into an
   SSLCiphertext.  The decryption functions reverse the process.
   Transmissions also include a sequence number so that missing,
   altered, or extra messages are detectable.

        struct {
            ContentType type;
            ProtocolVersion version;
            uint16 length;
            select (CipherSpec.cipher_type) {
                case stream: GenericStreamCipher;
                case block: GenericBlockCipher;
            } fragment;
        } SSLCiphertext;

   type:  The type field is identical to SSLCompressed.type.

   version:  The version field is identical to SSLCompressed.version.

   length:  The length (in bytes) of the following
      SSLCiphertext.fragment.  The length may not exceed 2^14 + 2048.

   fragment:  The encrypted form of SSLCompressed.fragment, including
      the MAC.

5.2.3.1.  Null or Standard Stream Cipher

   Stream ciphers (including BulkCipherAlgorithm.null; see Appendix A.7)
   convert SSLCompressed.fragment structures to and from stream
   SSLCiphertext.fragment structures.

        stream-ciphered struct {
            opaque content[SSLCompressed.length];
            opaque MAC[CipherSpec.hash_size];
        } GenericStreamCipher;
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   The MAC is generated as:

        hash(MAC_write_secret + pad_2 +
             hash(MAC_write_secret + pad_1 + seq_num +
                  SSLCompressed.type + SSLCompressed.length +
                  SSLCompressed.fragment));

   where "+" denotes concatenation.

   pad_1:  The character 0x36 repeated 48 times for MD5 or 40 times for
      SHA.

   pad_2:  The character 0x5c repeated 48 times for MD5 or 40 times for
      SHA.

   seq_num:  The sequence number for this message.

   hash:  Hashing algorithm derived from the cipher suite.

   Note that the MAC is computed before encryption.  The stream cipher
   encrypts the entire block, including the MAC.  For stream ciphers
   that do not use a synchronization vector (such as RC4), the stream
   cipher state from the end of one record is simply used on the
   subsequent packet.  If the CipherSuite is SSL_NULL_WITH_NULL_NULL,
   encryption consists of the identity operation (i.e., the data is not
   encrypted and the MAC size is zero implying that no MAC is used).
   SSLCiphertext.length is SSLCompressed.length plus
   CipherSpec.hash_size.

5.2.3.2.  CBC Block Cipher

   For block ciphers (such as RC2 or DES), the encryption and MAC
   functions convert SSLCompressed.fragment structures to and from block
   SSLCiphertext.fragment structures.

        block-ciphered struct {
            opaque content[SSLCompressed.length];
            opaque MAC[CipherSpec.hash_size];
            uint8 padding[GenericBlockCipher.padding_length];
            uint8 padding_length;
        } GenericBlockCipher;

   The MAC is generated as described in Section 5.2.3.1.

   padding:  Padding that is added to force the length of the plaintext
      to be a multiple of the block cipher’s block length.
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   padding_length:  The length of the padding must be less than the
      cipher’s block length and may be zero.  The padding length should
      be such that the total size of the GenericBlockCipher structure is
      a multiple of the cipher’s block length.

   The encrypted data length (SSLCiphertext.length) is one more than the
   sum of SSLCompressed.length, CipherSpec.hash_size, and
   padding_length.

   Note: With CBC, the initialization vector (IV) for the first record
   is provided by the handshake protocol.  The IV for subsequent records
   is the last ciphertext block from the previous record.

5.3.  Change Cipher Spec Protocol

   The change cipher spec protocol exists to signal transitions in
   ciphering strategies.  The protocol consists of a single message,
   which is encrypted and compressed under the current (not the pending)
   CipherSpec.  The message consists of a single byte of value 1.

        struct {
            enum { change_cipher_spec(1), (255) } type;
        } ChangeCipherSpec;

   The change cipher spec message is sent by both the client and server
   to notify the receiving party that subsequent records will be
   protected under the just-negotiated CipherSpec and keys.  Reception
   of this message causes the receiver to copy the read pending state
   into the read current state.  The client sends a change cipher spec
   message following handshake key exchange and certificate verify
   messages (if any), and the server sends one after successfully
   processing the key exchange message it received from the client.  An
   unexpected change cipher spec message should generate an
   unexpected_message alert (Section 5.4.2).  When resuming a previous
   session, the change cipher spec message is sent after the hello
   messages.

5.4.  Alert Protocol

   One of the content types supported by the SSL record layer is the
   alert type.  Alert messages convey the severity of the message and a
   description of the alert.  Alert messages with a level of fatal
   result in the immediate termination of the connection.  In this case,
   other connections corresponding to the session may continue, but the
   session identifier must be invalidated, preventing the failed session
   from being used to establish new connections.  Like other messages,
   alert messages are encrypted and compressed, as specified by the
   current connection state.
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        enum { warning(1), fatal(2), (255) } AlertLevel;

        enum {
            close_notify(0),
            unexpected_message(10),
            bad_record_mac(20),
            decompression_failure(30),
            handshake_failure(40),
            no_certificate(41),
            bad_certificate(42),
            unsupported_certificate(43),
            certificate_revoked(44),
            certificate_expired(45),
            certificate_unknown(46),
            illegal_parameter (47)
            (255)
        } AlertDescription;

        struct {
            AlertLevel level;
            AlertDescription description;
        } Alert;

5.4.1.  Closure Alerts

   The client and the server must share knowledge that the connection is
   ending in order to avoid a truncation attack.  Either party may
   initiate the exchange of closing messages.

   close_notify:  This message notifies the recipient that the sender
      will not send any more messages on this connection.  The session
      becomes unresumable if any connection is terminated without proper
      close_notify messages with level equal to warning.

   Either party may initiate a close by sending a close_notify alert.
   Any data received after a closure alert is ignored.

   Each party is required to send a close_notify alert before closing
   the write side of the connection.  It is required that the other
   party respond with a close_notify alert of its own and close down the
   connection immediately, discarding any pending writes.  It is not
   required for the initiator of the close to wait for the responding
   close_notify alert before closing the read side of the connection.

   NB: It is assumed that closing a connection reliably delivers pending
   data before destroying the transport.
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5.4.2.  Error Alerts

   Error handling in the SSL handshake protocol is very simple.  When an
   error is detected, the detecting party sends a message to the other
   party.  Upon transmission or receipt of a fatal alert message, both
   parties immediately close the connection.  Servers and clients are
   required to forget any session identifiers, keys, and secrets
   associated with a failed connection.  The following error alerts are
   defined:

   unexpected_message:  An inappropriate message was received.  This
      alert is always fatal and should never be observed in
      communication between proper implementations.

   bad_record_mac:  This alert is returned if a record is received with
      an incorrect MAC.  This message is always fatal.

   decompression_failure:  The decompression function received improper
      input (e.g., data that would expand to excessive length).  This
      message is always fatal.

   handshake_failure:  Reception of a handshake_failure alert message
      indicates that the sender was unable to negotiate an acceptable
      set of security parameters given the options available.  This is a
      fatal error.

   no_certificate:  A no_certificate alert message may be sent in
      response to a certification request if no appropriate certificate
      is available.

   bad_certificate:  A certificate was corrupt, contained signatures
      that did not verify correctly, etc.

   unsupported_certificate:  A certificate was of an unsupported type.

   certificate_revoked:  A certificate was revoked by its signer.

   certificate_expired:  A certificate has expired or is not currently
      valid.

   certificate_unknown:  Some other (unspecified) issue arose in
      processing the certificate, rendering it unacceptable.

   illegal_parameter:  A field in the handshake was out of range or
      inconsistent with other fields.  This is always fatal.
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5.5.  Handshake Protocol Overview

   The cryptographic parameters of the session state are produced by the
   SSL handshake protocol, which operates on top of the SSL record
   layer.  When an SSL client and server first start communicating, they
   agree on a protocol version, select cryptographic algorithms,
   optionally authenticate each other, and use public key encryption
   techniques to generate shared secrets.  These processes are performed
   in the handshake protocol, which can be summarized as follows: the
   client sends a client hello message to which the server must respond
   with a server hello message, or else a fatal error will occur and the
   connection will fail.  The client hello and server hello are used to
   establish security enhancement capabilities between client and
   server.  The client hello and server hello establish the following
   attributes: Protocol Version, Session ID, Cipher Suite, and
   Compression Method.  Additionally, two random values are generated
   and exchanged: ClientHello.random and ServerHello.random.

   Following the hello messages, the server will send its certificate,
   if it is to be authenticated.  Additionally, a server key exchange
   message may be sent, if it is required (e.g., if their server has no
   certificate, or if its certificate is for signing only).  If the
   server is authenticated, it may request a certificate from the
   client, if that is appropriate to the cipher suite selected.  Now the
   server will send the server hello done message, indicating that the
   hello-message phase of the handshake is complete.  The server will
   then wait for a client response.  If the server has sent a
   certificate request message, the client must send either the
   certificate message or a no_certificate alert.  The client key
   exchange message is now sent, and the content of that message will
   depend on the public key algorithm selected between the client hello
   and the server hello.  If the client has sent a certificate with
   signing ability, a digitally-signed certificate verify message is
   sent to explicitly verify the certificate.

   At this point, a change cipher spec message is sent by the client,
   and the client copies the pending CipherSpec into the current
   CipherSpec.  The client then immediately sends the finished message
   under the new algorithms, keys, and secrets.  In response, the server
   will send its own change cipher spec message, transfer the pending to
   the current CipherSpec, and send its finished message under the new
   CipherSpec.  At this point, the handshake is complete and the client
   and server may begin to exchange application layer data.  (See flow
   chart below.)
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      Client                                                Server

      ClientHello                   -------->
                                                       ServerHello
                                                      Certificate*
                                                ServerKeyExchange*
                                               CertificateRequest*
                                    <--------      ServerHelloDone
      Certificate*
      ClientKeyExchange
      CertificateVerify*
      [ChangeCipherSpec]
      Finished                      -------->
                                                [ChangeCipherSpec]
                                    <--------             Finished
      Application Data              <------->     Application Data

      * Indicates optional or situation-dependent messages that are not
        always sent.

   Note: To help avoid pipeline stalls, ChangeCipherSpec is an
   independent SSL protocol content type, and is not actually an SSL
   handshake message.

   When the client and server decide to resume a previous session or
   duplicate an existing session (instead of negotiating new security
   parameters) the message flow is as follows:

   The client sends a ClientHello using the session ID of the session to
   be resumed.  The server then checks its session cache for a match.
   If a match is found, and the server is willing to re-establish the
   connection under the specified session state, it will send a
   ServerHello with the same session ID value.  At this point, both
   client and server must send change cipher spec messages and proceed
   directly to finished messages.  Once the re-establishment is
   complete, the client and server may begin to exchange application
   layer data.  (See flow chart below.)  If a session ID match is not
   found, the server generates a new session ID and the SSL client and
   server perform a full handshake.
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      Client                                                Server

      ClientHello                   -------->
                                                       ServerHello
                                              [change cipher spec]
                                    <--------             Finished
      change cipher spec
      Finished                      -------->
      Application Data              <------->     Application Data

   The contents and significance of each message will be presented in
   detail in the following sections.

5.6.  Handshake Protocol

   The SSL handshake protocol is one of the defined higher level clients
   of the SSL record protocol.  This protocol is used to negotiate the
   secure attributes of a session.  Handshake messages are supplied to
   the SSL record layer, where they are encapsulated within one or more
   SSLPlaintext structures, which are processed and transmitted as
   specified by the current active session state.

        enum {
            hello_request(0), client_hello(1), server_hello(2),
            certificate(11), server_key_exchange (12),
            certificate_request(13), server_hello_done(14),
            certificate_verify(15), client_key_exchange(16),
            finished(20), (255)
        } HandshakeType;

        struct {
            HandshakeType msg_type;    /* handshake type */
            uint24 length;             /* bytes in message */
            select (HandshakeType) {
                case hello_request: HelloRequest;
                case client_hello: ClientHello;
                case server_hello: ServerHello;
                case certificate: Certificate;
                case server_key_exchange: ServerKeyExchange;
                case certificate_request: CertificateRequest;
                case server_hello_done: ServerHelloDone;
                case certificate_verify: CertificateVerify;
                case client_key_exchange: ClientKeyExchange;
                case finished: Finished;
            } body;
        } Handshake;
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   The handshake protocol messages are presented in the order they must
   be sent; sending handshake messages in an unexpected order results in
   a fatal error.

5.6.1.  Hello messages

   The hello phase messages are used to exchange security enhancement
   capabilities between the client and server.  When a new session
   begins, the CipherSpec encryption, hash, and compression algorithms
   are initialized to null.  The current CipherSpec is used for
   renegotiation messages.

5.6.1.1.  Hello Request

   The hello request message may be sent by the server at any time, but
   will be ignored by the client if the handshake protocol is already
   underway.  It is a simple notification that the client should begin
   the negotiation process anew by sending a client hello message when
   convenient.

   Note: Since handshake messages are intended to have transmission
   precedence over application data, it is expected that the negotiation
   begin in no more than one or two times the transmission time of a
   maximum-length application data message.

   After sending a hello request, servers should not repeat the request
   until the subsequent handshake negotiation is complete.  A client
   that receives a hello request while in a handshake negotiation state
   should simply ignore the message.

   The structure of a hello request message is as follows:

        struct { } HelloRequest;

5.6.1.2.  Client Hello

   When a client first connects to a server it is required to send the
   client hello as its first message.  The client can also send a client
   hello in response to a hello request or on its own initiative in
   order to renegotiate the security parameters in an existing
   connection.  The client hello message includes a random structure,
   which is used later in the protocol.
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      struct {
          uint32 gmt_unix_time;
          opaque random_bytes[28];
      } Random;

   gmt_unix_time:  The current time and date in standard UNIX 32-bit
      format according to the sender’s internal clock.  Clocks are not
      required to be set correctly by the basic SSL protocol; higher
      level or application protocols may define additional requirements.

   random_bytes:  28 bytes generated by a secure random number
      generator.

   The client hello message includes a variable-length session
   identifier.  If not empty, the value identifies a session between the
   same client and server whose security parameters the client wishes to
   reuse.  The session identifier may be from an earlier connection,
   this connection, or another currently active connection.  The second
   option is useful if the client only wishes to update the random
   structures and derived values of a connection, while the third option
   makes it possible to establish several simultaneous independent
   secure connections without repeating the full handshake protocol.
   The actual contents of the SessionID are defined by the server.

        opaque SessionID<0..32>;

   Warning: Servers must not place confidential information in session
   identifiers or let the contents of fake session identifiers cause any
   breach of security.

   The CipherSuite list, passed from the client to the server in the
   client hello message, contains the combinations of cryptographic
   algorithms supported by the client in order of the client’s
   preference (first choice first).  Each CipherSuite defines both a key
   exchange algorithm and a CipherSpec.  The server will select a cipher
   suite or, if no acceptable choices are presented, return a handshake
   failure alert and close the connection.

        uint8 CipherSuite[2];  /* Cryptographic suite selector */

   The client hello includes a list of compression algorithms supported
   by the client, ordered according to the client’s preference.  If the
   server supports none of those specified by the client, the session
   must fail.

        enum { null(0), (255) } CompressionMethod;

   Issue: Which compression methods to support is under investigation.
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   The structure of the client hello is as follows.

        struct {
            ProtocolVersion client_version;
            Random random;
            SessionID session_id;
            CipherSuite cipher_suites<2..2^16-1>;
            CompressionMethod compression_methods<1..2^8-1>;
        } ClientHello;

   client_version:  The version of the SSL protocol by which the client
      wishes to communicate during this session.  This should be the
      most recent (highest valued) version supported by the client.  For
      this version of the specification, the version will be 3.0 (see
      Appendix E for details about backward compatibility).

   random:  A client-generated random structure.

   session_id:  The ID of a session the client wishes to use for this
      connection.  This field should be empty if no session_id is
      available or the client wishes to generate new security
      parameters.

   cipher_suites:  This is a list of the cryptographic options supported
      by the client, sorted with the client’s first preference first.
      If the session_id field is not empty (implying a session
      resumption request), this vector must include at least the
      cipher_suite from that session.  Values are defined in
      Appendix A.6.

   compression_methods:  This is a list of the compression methods
      supported by the client, sorted by client preference.  If the
      session_id field is not empty (implying a session resumption
      request), this vector must include at least the compression_method
      from that session.  All implementations must support
      CompressionMethod.null.

   After sending the client hello message, the client waits for a server
   hello message.  Any other handshake message returned by the server
   except for a hello request is treated as a fatal error.

   Implementation note: Application data may not be sent before a
   finished message has been sent.  Transmitted application data is
   known to be insecure until a valid finished message has been
   received.  This absolute restriction is relaxed if there is a
   current, non-null encryption on this connection.
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   Forward compatibility note: In the interests of forward
   compatibility, it is permitted for a client hello message to include
   extra data after the compression methods.  This data must be included
   in the handshake hashes, but must otherwise be ignored.

5.6.1.3.  Server Hello

   The server processes the client hello message and responds with
   either a handshake_failure alert or server hello message.

        struct {
            ProtocolVersion server_version;
            Random random;
            SessionID session_id;
            CipherSuite cipher_suite;
            CompressionMethod compression_method;
        } ServerHello;

   server_version:  This field will contain the lower of that suggested
      by the client in the client hello and the highest supported by the
      server.  For this version of the specification, the version will
      be 3.0 (see Appendix E for details about backward compatibility).

   random:  This structure is generated by the server and must be
      different from (and independent of) ClientHello.random.

   session_id:  This is the identity of the session corresponding to
      this connection.  If the ClientHello.session_id was non-empty, the
      server will look in its session cache for a match.  If a match is
      found and the server is willing to establish the new connection
      using the specified session state, the server will respond with
      the same value as was supplied by the client.  This indicates a
      resumed session and dictates that the parties must proceed
      directly to the finished messages.  Otherwise, this field will
      contain a different value identifying the new session.  The server
      may return an empty session_id to indicate that the session will
      not be cached and therefore cannot be resumed.

   cipher_suite:  The single cipher suite selected by the server from
      the list in ClientHello.cipher_suites.  For resumed sessions, this
      field is the value from the state of the session being resumed.

   compression_method:  The single compression algorithm selected by the
      server from the list in ClientHello.compression_methods.  For
      resumed sessions, this field is the value from the resumed session
      state.
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5.6.2.  Server Certificate

   If the server is to be authenticated (which is generally the case),
   the server sends its certificate immediately following the server
   hello message.  The certificate type must be appropriate for the
   selected cipher suite’s key exchange algorithm, and is generally an
   X.509.v3 certificate (or a modified X.509 certificate in the case of
   FORTEZZA(tm) [FOR]).  The same message type will be used for the
   client’s response to a certificate request message.

        opaque ASN.1Cert<1..2^24-1>;
        struct {
            ASN.1Cert certificate_list<1..2^24-1>;
        } Certificate;

   certificate_list:  This is a sequence (chain) of X.509.v3
      certificates, ordered with the sender’s certificate first followed
      by any certificate authority certificates proceeding sequentially
      upward.

   Note: PKCS #7 [PKCS7] is not used as the format for the certificate
   vector because PKCS #6 [PKCS6] extended certificates are not used.
   Also, PKCS #7 defines a Set rather than a Sequence, making the task
   of parsing the list more difficult.

5.6.3.  Server Key Exchange Message

   The server key exchange message is sent by the server if it has no
   certificate, has a certificate only used for signing (e.g., DSS [DSS]
   certificates, signing-only RSA [RSA] certificates), or FORTEZZA KEA
   key exchange is used.  This message is not used if the server
   certificate contains Diffie-Hellman [DH1] parameters.

   Note: According to current US export law, RSA moduli larger than 512
   bits may not be used for key exchange in software exported from the
   US.  With this message, larger RSA keys may be used as signature-only
   certificates to sign temporary shorter RSA keys for key exchange.

        enum { rsa, diffie_hellman, fortezza_kea }
               KeyExchangeAlgorithm;

        struct {
            opaque rsa_modulus<1..2^16-1>;
            opaque rsa_exponent<1..2^16-1>;
        } ServerRSAParams;
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   rsa_modulus:  The modulus of the server’s temporary RSA key.

   rsa_exponent:  The public exponent of the server’s temporary RSA key.

        struct {
            opaque dh_p<1..2^16-1>;
            opaque dh_g<1..2^16-1>;
            opaque dh_Ys<1..2^16-1>;
        } ServerDHParams;     /* Ephemeral DH parameters */

   dh_p:  The prime modulus used for the Diffie-Hellman operation.

   dh_g:  The generator used for the Diffie-Hellman operation.

   dh_Ys:  The server’s Diffie-Hellman public value (gX mod p).

        struct {
            opaque r_s [128];
        } ServerFortezzaParams;

   r_s:  Server random number for FORTEZZA KEA (Key Exchange Algorithm).

        struct {
            select (KeyExchangeAlgorithm) {
                case diffie_hellman:
                    ServerDHParams params;
                    Signature signed_params;
                case rsa:
                    ServerRSAParams params;
                    Signature signed_params;
                case fortezza_kea:
                    ServerFortezzaParams params;
            };
        } ServerKeyExchange;

   params:  The server’s key exchange parameters.

   signed_params:  A hash of the corresponding params value, with the
      signature appropriate to that hash applied.

   md5_hash:  MD5(ClientHello.random + ServerHello.random +
      ServerParams);
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   sha_hash:  SHA(ClientHello.random + ServerHello.random +
      ServerParams);

        enum { anonymous, rsa, dsa } SignatureAlgorithm;

        digitally-signed struct {
            select(SignatureAlgorithm) {
                case anonymous: struct { };
                case rsa:
                    opaque md5_hash[16];
                    opaque sha_hash[20];
                case dsa:
                    opaque sha_hash[20];
            };
        } Signature;

5.6.4.  Certificate Request

   A non-anonymous server can optionally request a certificate from the
   client, if appropriate for the selected cipher suite.

        enum {
            rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
            rsa_ephemeral_dh(5), dss_ephemeral_dh(6), fortezza_kea(20),
            (255)
        } ClientCertificateType;

        opaque DistinguishedName<1..2^16-1>;

        struct {
            ClientCertificateType certificate_types<1..2^8-1>;
            DistinguishedName certificate_authorities<3..2^16-1>;
        } CertificateRequest;

   certificate_types:  This field is a list of the types of certificates
      requested, sorted in order of the server’s preference.

   certificate_authorities:  A list of the distinguished names of
      acceptable certificate authorities.

   Note: DistinguishedName is derived from [X509].

   Note: It is a fatal handshake_failure alert for an anonymous server
   to request client identification.
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5.6.5.  Server Hello Done

   The server hello done message is sent by the server to indicate the
   end of the server hello and associated messages.  After sending this
   message, the server will wait for a client response.

        struct { } ServerHelloDone;

   Upon receipt of the server hello done message the client should
   verify that the server provided a valid certificate if required and
   check that the server hello parameters are acceptable.

5.6.6.  Client Certificate

   This is the first message the client can send after receiving a
   server hello done message.  This message is only sent if the server
   requests a certificate.  If no suitable certificate is available, the
   client should send a no_certificate alert instead.  This alert is
   only a warning; however, the server may respond with a fatal
   handshake failure alert if client authentication is required.  Client
   certificates are sent using the certificate defined in Section 5.6.2.

   Note: Client Diffie-Hellman certificates must match the server
   specified Diffie-Hellman parameters.

5.6.7.  Client Key Exchange Message

   The choice of messages depends on which public key algorithm(s) has
   (have) been selected.  See Section 5.6.3 for the KeyExchangeAlgorithm
   definition.

        struct {
            select (KeyExchangeAlgorithm) {
                case rsa: EncryptedPreMasterSecret;
                case diffie_hellman: ClientDiffieHellmanPublic;
                case fortezza_kea: FortezzaKeys;
            } exchange_keys;
        } ClientKeyExchange;

   The information to select the appropriate record structure is in the
   pending session state (see Section 5.1).
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5.6.7.1.  RSA Encrypted Premaster Secret Message

   If RSA is being used for key agreement and authentication, the client
   generates a 48-byte premaster secret, encrypts it under the public
   key from the server’s certificate or temporary RSA key from a server
   key exchange message, and sends the result in an encrypted premaster
   secret message.

        struct {
            ProtocolVersion client_version;
            opaque random[46];
        } PreMasterSecret;

   client_version:  The latest (newest) version supported by the client.
      This is used to detect version roll-back attacks.

   random:  46 securely-generated random bytes.

        struct {
            public-key-encrypted PreMasterSecret pre_master_secret;
        } EncryptedPreMasterSecret;

   pre_master_secret:  This random value is generated by the client and
      is used to generate the master secret, as specified in
      Section 6.1.

5.6.7.2.  FORTEZZA Key Exchange Message

   Under FORTEZZA, the client derives a token encryption key (TEK) using
   the FORTEZZA Key Exchange Algorithm (KEA).  The client’s KEA
   calculation uses the public key in the server’s certificate along
   with private parameters in the client’s token.  The client sends
   public parameters needed for the server to generate the TEK, using
   its own private parameters.  The client generates session keys, wraps
   them using the TEK, and sends the results to the server.  The client
   generates IVs for the session keys and TEK and sends them also.  The
   client generates a random 48-byte premaster secret, encrypts it using
   the TEK, and sends the result:
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        struct {
            opaque y_c<0..128>;
            opaque r_c[128];
            opaque y_signature[40];
            opaque wrapped_client_write_key[12];
            opaque wrapped_server_write_key[12];
            opaque client_write_iv[24];
            opaque server_write_iv[24];
            opaque master_secret_iv[24];
            block-ciphered opaque encrypted_pre_master_secret[48];
        } FortezzaKeys;

   y_signature:  y_signature is the signature of the KEA public key,
      signed with the client’s DSS private key.

   y_c:  The client’s Yc value (public key) for the KEA calculation.  If
      the client has sent a certificate, and its KEA public key is
      suitable, this value must be empty since the certificate already
      contains this value.  If the client sent a certificate without a
      suitable public key, y_c is used and y_signature is the KEA public
      key signed with the client’s DSS private key.  For this value to
      be used, it must be between 64 and 128 bytes.

   r_c:  The client’s Rc value for the KEA calculation.

   wrapped_client_write_key:  This is the client’s write key, wrapped by
      the TEK.

   wrapped_server_write_key:  This is the server’s write key, wrapped by
      the TEK.

   client_write_iv:  The IV for the client write key.

   server_write_iv:  The IV for the server write key.

   master_secret_iv:  This is the IV for the TEK used to encrypt the
      premaster secret.

   pre_master_secret:  A random value, generated by the client and used
      to generate the master secret, as specified in Section 6.1.  In
      the above structure, it is encrypted using the TEK.

Freier, et al.                  Historic                       [Page 33]



RFC 6101              The SSL Protocol Version 3.0           August 2011

5.6.7.3.  Client Diffie-Hellman Public Value

   This structure conveys the client’s Diffie-Hellman public value (Yc)
   if it was not already included in the client’s certificate.  The
   encoding used for Yc is determined by the enumerated
   PublicValueEncoding.

        enum { implicit, explicit } PublicValueEncoding;

   implicit:  If the client certificate already contains the public
      value, then it is implicit and Yc does not need to be sent again.

   explicit:  Yc needs to be sent.

        struct {
            select (PublicValueEncoding) {
                case implicit: struct { };
                case explicit: opaque dh_Yc<1..2^16-1>;
            } dh_public;
        } ClientDiffieHellmanPublic;

   dh_Yc:  The client’s Diffie-Hellman public value (Yc).

5.6.8.  Certificate Verify

   This message is used to provide explicit verification of a client
   certificate.  This message is only sent following any client
   certificate that has signing capability (i.e., all certificates
   except those containing fixed Diffie-Hellman parameters).

          struct {
               Signature signature;
          } CertificateVerify;

        CertificateVerify.signature.md5_hash
                   MD5(master_secret + pad_2 +
                       MD5(handshake_messages + master_secret + pad_1));
        Certificate.signature.sha_hash
                   SHA(master_secret + pad_2 +
                       SHA(handshake_messages + master_secret + pad_1));

   pad_1:  This is identical to the pad_1 defined in Section 5.2.3.1.

   pad_2:  This is identical to the pad_2 defined in Section 5.2.3.1.

   Here, handshake_messages refers to all handshake messages starting at
   client hello up to but not including this message.
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5.6.9.  Finished

   A finished message is always sent immediately after a change cipher
   spec message to verify that the key exchange and authentication
   processes were successful.  The finished message is the first
   protected with the just-negotiated algorithms, keys, and secrets.  No
   acknowledgment of the finished message is required; parties may begin
   sending encrypted data immediately after sending the finished
   message.  Recipients of finished messages must verify that the
   contents are correct.

        enum { client(0x434C4E54), server(0x53525652) } Sender;

        struct {
            opaque md5_hash[16];
            opaque sha_hash[20];
        } Finished;

   md5_hash:  MD5(master_secret + pad2 + MD5(handshake_messages + Sender
      + master_secret + pad1));

   sha_hash:  SHA(master_secret + pad2 + SHA(handshake_messages + Sender
      + master_secret + pad1));

   handshake_messages:  All of the data from all handshake messages up
      to but not including this message.  This is only data visible at
      the handshake layer and does not include record layer headers.

   It is a fatal error if a finished message is not preceeded by a
   change cipher spec message at the appropriate point in the handshake.

   The hash contained in finished messages sent by the server
   incorporate Sender.server; those sent by the client incorporate
   Sender.client.  The value handshake_messages includes all handshake
   messages starting at client hello up to but not including this
   finished message.  This may be different from handshake_messages in
   Section 5.6.8 because it would include the certificate verify message
   (if sent).

   Note: Change cipher spec messages are not handshake messages and are
   not included in the hash computations.
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5.7.  Application Data Protocol

   Application data messages are carried by the record layer and are
   fragmented, compressed, and encrypted based on the current connection
   state.  The messages are treated as transparent data to the record
   layer.

6.  Cryptographic Computations

   The key exchange, authentication, encryption, and MAC algorithms are
   determined by the cipher_suite selected by the server and revealed in
   the server hello message.

6.1.  Asymmetric Cryptographic Computations

   The asymmetric algorithms are used in the handshake protocol to
   authenticate parties and to generate shared keys and secrets.

   For Diffie-Hellman, RSA, and FORTEZZA, the same algorithm is used to
   convert the pre_master_secret into the master_secret.  The
   pre_master_secret should be deleted from memory once the
   master_secret has been computed.

        master_secret =
          MD5(pre_master_secret + SHA(’A’ + pre_master_secret +
              ClientHello.random + ServerHello.random)) +
          MD5(pre_master_secret + SHA(’BB’ + pre_master_secret +
              ClientHello.random + ServerHello.random)) +
          MD5(pre_master_secret + SHA(’CCC’ + pre_master_secret +
              ClientHello.random + ServerHello.random));

6.1.1.  RSA

   When RSA is used for server authentication and key exchange, a 48-
   byte pre_master_secret is generated by the client, encrypted under
   the server’s public key, and sent to the server.  The server uses its
   private key to decrypt the pre_master_secret.  Both parties then
   convert the pre_master_secret into the master_secret, as specified
   above.

   RSA digital signatures are performed using PKCS #1 [PKCS1] block
   type 1.  RSA public key encryption is performed using PKCS #1 block
   type 2.
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6.1.2.  Diffie-Hellman

   A conventional Diffie-Hellman computation is performed.  The
   negotiated key (Z) is used as the pre_master_secret, and is converted
   into the master_secret, as specified above.

   Note: Diffie-Hellman parameters are specified by the server, and may
   be either ephemeral or contained within the server’s certificate.

6.1.3.  FORTEZZA

   A random 48-byte pre_master_secret is sent encrypted under the TEK
   and its IV.  The server decrypts the pre_master_secret and converts
   it into a master_secret, as specified above.  Bulk cipher keys and
   IVs for encryption are generated by the client’s token and exchanged
   in the key exchange message; the master_secret is only used for MAC
   computations.

6.2.  Symmetric Cryptographic Calculations and the CipherSpec

   The technique used to encrypt and verify the integrity of SSL records
   is specified by the currently active CipherSpec.  A typical example
   would be to encrypt data using DES and generate authentication codes
   using MD5.  The encryption and MAC algorithms are set to
   SSL_NULL_WITH_NULL_NULL at the beginning of the SSL handshake
   protocol, indicating that no message authentication or encryption is
   performed.  The handshake protocol is used to negotiate a more secure
   CipherSpec and to generate cryptographic keys.

6.2.1.  The Master Secret

   Before secure encryption or integrity verification can be performed
   on records, the client and server need to generate shared secret
   information known only to themselves.  This value is a 48-byte
   quantity called the master secret.  The master secret is used to
   generate keys and secrets for encryption and MAC computations.  Some
   algorithms, such as FORTEZZA, may have their own procedure for
   generating encryption keys (the master secret is used only for MAC
   computations in FORTEZZA).

6.2.2.  Converting the Master Secret into Keys and MAC Secrets

   The master secret is hashed into a sequence of secure bytes, which
   are assigned to the MAC secrets, keys, and non-export IVs required by
   the current CipherSpec (see Appendix A.7).  CipherSpecs require a
   client write MAC secret, a server write MAC secret, a client write
   key, a server write key, a client write IV, and a server write IV,
   which are generated from the master secret in that order.  Unused
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   values, such as FORTEZZA keys communicated in the KeyExchange
   message, are empty.  The following inputs are available to the key
   definition process:

          opaque MasterSecret[48]
          ClientHello.random
          ServerHello.random

   When generating keys and MAC secrets, the master secret is used as an
   entropy source, and the random values provide unencrypted salt
   material and IVs for exportable ciphers.

   To generate the key material, compute

        key_block =
          MD5(master_secret + SHA(‘A’ + master_secret +
                                  ServerHello.random +
                                  ClientHello.random)) +
          MD5(master_secret + SHA(‘BB’ + master_secret +
                                  ServerHello.random +
                                  ClientHello.random)) +
          MD5(master_secret + SHA(‘CCC’ + master_secret +
                                  ServerHello.random +
                                  ClientHello.random)) + [...];

   until enough output has been generated.  Then, the key_block is
   partitioned as follows.

        client_write_MAC_secret[CipherSpec.hash_size]
        server_write_MAC_secret[CipherSpec.hash_size]
        client_write_key[CipherSpec.key_material]
        server_write_key[CipherSpec.key_material]
        client_write_IV[CipherSpec.IV_size] /* non-export ciphers */
        server_write_IV[CipherSpec.IV_size] /* non-export ciphers */

   Any extra key_block material is discarded.

   Exportable encryption algorithms (for which CipherSpec.is_exportable
   is true) require additional processing as follows to derive their
   final write keys:

        final_client_write_key = MD5(client_write_key +
                                     ClientHello.random +
                                     ServerHello.random);
        final_server_write_key = MD5(server_write_key +
                                     ServerHello.random +
                                     ClientHello.random);
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   Exportable encryption algorithms derive their IVs from the random
   messages:

        client_write_IV = MD5(ClientHello.random + ServerHello.random);
        server_write_IV = MD5(ServerHello.random + ClientHello.random);

   MD5 outputs are trimmed to the appropriate size by discarding the
   least-significant bytes.

6.2.2.1.  Export Key Generation Example

   SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 requires five random bytes for
   each of the two encryption keys and 16 bytes for each of the MAC
   keys, for a total of 42 bytes of key material.  MD5 produces 16 bytes
   of output per call, so three calls to MD5 are required.  The MD5
   outputs are concatenated into a 48-byte key_block with the first MD5
   call providing bytes zero through 15, the second providing bytes 16
   through 31, etc.  The key_block is partitioned, and the write keys
   are salted because this is an exportable encryption algorithm.

        client_write_MAC_secret = key_block[0..15]
        server_write_MAC_secret = key_block[16..31]
        client_write_key      = key_block[32..36]
        server_write_key      = key_block[37..41]
        final_client_write_key = MD5(client_write_key +
                                     ClientHello.random +
                                     ServerHello.random)[0..15];
        final_server_write_key = MD5(server_write_key +
                                     ServerHello.random +
                                     ClientHello.random)[0..15];
        client_write_IV = MD5(ClientHello.random +
                              ServerHello.random)[0..7];
        server_write_IV = MD5(ServerHello.random +
                              ClientHello.random)[0..7];

7.  Security Considerations

   See Appendix F.
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Appendix A.  Protocol Constant Values

   This section describes protocol types and constants.

A.1.  Record Layer

        struct {
            uint8 major, minor;
        } ProtocolVersion;

        ProtocolVersion version = { 3,0 };

        enum {
            change_cipher_spec(20), alert(21), handshake(22),
            application_data(23), (255)
        } ContentType;

        struct {
            ContentType type;
            ProtocolVersion version;
            uint16 length;
            opaque fragment[SSLPlaintext.length];
        } SSLPlaintext;

        struct {
            ContentType type;
            ProtocolVersion version;
            uint16 length;
            opaque fragment[SSLCompressed.length];
        } SSLCompressed;

        struct {
            ContentType type;
            ProtocolVersion version;
            uint16 length;
            select (CipherSpec.cipher_type) {
                case stream: GenericStreamCipher;
                case block:  GenericBlockCipher;
            } fragment;
        } SSLCiphertext;

        stream-ciphered struct {
            opaque content[SSLCompressed.length];
            opaque MAC[CipherSpec.hash_size];
        } GenericStreamCipher;

        block-ciphered struct {
            opaque content[SSLCompressed.length];
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            opaque MAC[CipherSpec.hash_size];
            uint8 padding[GenericBlockCipher.padding_length];
            uint8 padding_length;
        } GenericBlockCipher;

A.2.  Change Cipher Specs Message

        struct {
            enum { change_cipher_spec(1), (255) } type;
        } ChangeCipherSpec;

A.3.  Alert Messages

        enum { warning(1), fatal(2), (255) } AlertLevel;

        enum {
            close_notify(0),
            unexpected_message(10),
            bad_record_mac(20),
            decompression_failure(30),
            handshake_failure(40),
            no_certificate(41),
            bad_certificate(42),
            unsupported_certificate(43),
            certificate_revoked(44),
            certificate_expired(45),
            certificate_unknown(46),
            illegal_parameter (47),
            (255)
        } AlertDescription;

        struct {
            AlertLevel level;
            AlertDescription description;
        } Alert;
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A.4.  Handshake Protocol

      enum {
          hello_request(0), client_hello(1), server_hello(2),
          certificate(11), server_key_exchange (12),
          certificate_request(13), server_done(14),
          certificate_verify(15), client_key_exchange(16),
          finished(20), (255)
      } HandshakeType;

        struct {
            HandshakeType msg_type;
            uint24 length;
            select (HandshakeType) {
                case hello_request: HelloRequest;
                case client_hello: ClientHello;
                case server_hello: ServerHello;
                case certificate: Certificate;
                case server_key_exchange: ServerKeyExchange;
                case certificate_request: CertificateRequest;
                case server_done: ServerHelloDone;
                case certificate_verify: CertificateVerify;
                case client_key_exchange: ClientKeyExchange;
                case finished: Finished;
            } body;
        } Handshake;

A.4.1.  Hello Messages

        struct { } HelloRequest;

        struct {
            uint32 gmt_unix_time;
            opaque random_bytes[28];
        } Random;

        opaque SessionID<0..32>;

        uint8 CipherSuite[2];

        enum { null(0), (255) } CompressionMethod;

        struct {
            ProtocolVersion client_version;
            Random random;
            SessionID session_id;
            CipherSuite cipher_suites<0..2^16-1>;
            CompressionMethod compression_methods<0..2^8-1>;
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        } ClientHello;

        struct {
            ProtocolVersion server_version;
            Random random;
            SessionID session_id;
            CipherSuite cipher_suite;
            CompressionMethod compression_method;
        } ServerHello;

A.4.2.  Server Authentication and Key Exchange Messages

        opaque ASN.1Cert<2^24-1>;

        struct {
            ASN.1Cert certificate_list<1..2^24-1>;
        } Certificate;

        enum { rsa, diffie_hellman, fortezza_kea } KeyExchangeAlgorithm;

        struct {
            opaque RSA_modulus<1..2^16-1>;
            opaque RSA_exponent<1..2^16-1>;
        } ServerRSAParams;

        struct {
            opaque DH_p<1..2^16-1>;
            opaque DH_g<1..2^16-1>;
            opaque DH_Ys<1..2^16-1>;
        } ServerDHParams;

        struct {
            opaque r_s [128]
        } ServerFortezzaParams

        struct {
            select (KeyExchangeAlgorithm) {
                case diffie_hellman:
                    ServerDHParams params;
                    Signature signed_params;
                case rsa:
                    ServerRSAParams params;
                    Signature signed_params;
                case fortezza_kea:
                    ServerFortezzaParams params;
            };
        } ServerKeyExchange;
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        enum { anonymous, rsa, dsa } SignatureAlgorithm;

        digitally-signed struct {
            select(SignatureAlgorithm) {
                case anonymous: struct { };
                case rsa:
                    opaque md5_hash[16];
                    opaque sha_hash[20];
                case dsa:
                    opaque sha_hash[20];
            };
        } Signature;

        enum {
            RSA_sign(1), DSS_sign(2), RSA_fixed_DH(3),
            DSS_fixed_DH(4), RSA_ephemeral_DH(5), DSS_ephemeral_DH(6),
            FORTEZZA_MISSI(20), (255)
        } CertificateType;

        opaque DistinguishedName<1..2^16-1>;

        struct {
            CertificateType certificate_types<1..2^8-1>;
            DistinguishedName certificate_authorities<3..2^16-1>;
        } CertificateRequest;

        struct { } ServerHelloDone;

A.5.  Client Authentication and Key Exchange Messages

        struct {
            select (KeyExchangeAlgorithm) {
                case rsa: EncryptedPreMasterSecret;
                case diffie_hellman: DiffieHellmanClientPublicValue;
                case fortezza_kea: FortezzaKeys;
            } exchange_keys;
        } ClientKeyExchange;

        struct {
            ProtocolVersion client_version;
            opaque random[46];
        } PreMasterSecret;

        struct {
            public-key-encrypted PreMasterSecret pre_master_secret;
        } EncryptedPreMasterSecret;
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        struct {
            opaque y_c<0..128>;
            opaque r_c[128];
            opaque y_signature[40];
            opaque wrapped_client_write_key[12];
            opaque wrapped_server_write_key[12];
            opaque client_write_iv[24];
            opaque server_write_iv[24];
            opaque master_secret_iv[24];
            opaque encrypted_preMasterSecret[48];
        } FortezzaKeys;

        enum { implicit, explicit } PublicValueEncoding;

        struct {
            select (PublicValueEncoding) {
                case implicit: struct {};
                case explicit: opaque DH_Yc<1..2^16-1>;
            } dh_public;
        } ClientDiffieHellmanPublic;

        struct {
            Signature signature;
        } CertificateVerify;

A.5.1.  Handshake Finalization Message

        struct {
            opaque md5_hash[16];
            opaque sha_hash[20];
        } Finished;

A.6.  The CipherSuite

   The following values define the CipherSuite codes used in the client
   hello and server hello messages.

   A CipherSuite defines a cipher specifications supported in SSL
   version 3.0.

     CipherSuite SSL_NULL_WITH_NULL_NULL                = { 0x00,0x00 };

   The following CipherSuite definitions require that the server provide
   an RSA certificate that can be used for key exchange.  The server may
   request either an RSA or a DSS signature-capable certificate in the
   certificate request message.
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     CipherSuite SSL_RSA_WITH_NULL_MD5                  = { 0x00,0x01 };
     CipherSuite SSL_RSA_WITH_NULL_SHA                  = { 0x00,0x02 };
     CipherSuite SSL_RSA_EXPORT_WITH_RC4_40_MD5         = { 0x00,0x03 };
     CipherSuite SSL_RSA_WITH_RC4_128_MD5               = { 0x00,0x04 };
     CipherSuite SSL_RSA_WITH_RC4_128_SHA               = { 0x00,0x05 };
     CipherSuite SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5     = { 0x00,0x06 };
     CipherSuite SSL_RSA_WITH_IDEA_CBC_SHA              = { 0x00,0x07 };
     CipherSuite SSL_RSA_EXPORT_WITH_DES40_CBC_SHA      = { 0x00,0x08 };
     CipherSuite SSL_RSA_WITH_DES_CBC_SHA               = { 0x00,0x09 };
     CipherSuite SSL_RSA_WITH_3DES_EDE_CBC_SHA          = { 0x00,0x0A };

   The following CipherSuite definitions are used for server-
   authenticated (and optionally client-authenticated) Diffie-Hellman.
   DH denotes cipher suites in which the server’s certificate contains
   the Diffie-Hellman parameters signed by the certificate authority
   (CA).  DHE denotes ephemeral Diffie-Hellman, where the Diffie-Hellman
   parameters are signed by a DSS or RSA certificate, which has been
   signed by the CA.  The signing algorithm used is specified after the
   DH or DHE parameter.  In all cases, the client must have the same
   type of certificate, and must use the Diffie-Hellman parameters
   chosen by the server.

     CipherSuite SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA   = { 0x00,0x0B };
     CipherSuite SSL_DH_DSS_WITH_DES_CBC_SHA            = { 0x00,0x0C };
     CipherSuite SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA       = { 0x00,0x0D };
     CipherSuite SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA   = { 0x00,0x0E };
     CipherSuite SSL_DH_RSA_WITH_DES_CBC_SHA            = { 0x00,0x0F };
     CipherSuite SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA       = { 0x00,0x10 };
     CipherSuite SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA  = { 0x00,0x11 };
     CipherSuite SSL_DHE_DSS_WITH_DES_CBC_SHA           = { 0x00,0x12 };
     CipherSuite SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA      = { 0x00,0x13 };
     CipherSuite SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA  = { 0x00,0x14 };
     CipherSuite SSL_DHE_RSA_WITH_DES_CBC_SHA           = { 0x00,0x15 };
     CipherSuite SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA      = { 0x00,0x16 };

   The following cipher suites are used for completely anonymous Diffie-
   Hellman communications in which neither party is authenticated.  Note
   that this mode is vulnerable to man-in-the-middle attacks and is
   therefore strongly discouraged.

     CipherSuite SSL_DH_anon_EXPORT_WITH_RC4_40_MD5     = { 0x00,0x17 };
     CipherSuite SSL_DH_anon_WITH_RC4_128_MD5           = { 0x00,0x18 };
     CipherSuite SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA  = { 0x00,0x19 };
     CipherSuite SSL_DH_anon_WITH_DES_CBC_SHA           = { 0x00,0x1A };
     CipherSuite SSL_DH_anon_WITH_3DES_EDE_CBC_SHA      = { 0x00,0x1B };
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   The final cipher suites are for the FORTEZZA token.

     CipherSuite SSL_FORTEZZA_KEA_WITH_NULL_SHA         = { 0X00,0X1C };
     CipherSuite SSL_FORTEZZA_KEA_WITH_FORTEZZA_CBC_SHA = { 0x00,0x1D };
     CipherSuite SSL_FORTEZZA_KEA_WITH_RC4_128_SHA      = { 0x00,0x1E };

   Note: All cipher suites whose first byte is 0xFF are considered
   private and can be used for defining local/experimental algorithms.
   Interoperability of such types is a local matter.

A.7.  The CipherSpec

   A cipher suite identifies a CipherSpec.  These structures are part of
   the SSL session state.  The CipherSpec includes:

        enum { stream, block } CipherType;

        enum { true, false } IsExportable;

        enum { null, rc4, rc2, des, 3des, des40, fortezza }
            BulkCipherAlgorithm;

        enum { null, md5, sha } MACAlgorithm;

        struct {
            BulkCipherAlgorithm bulk_cipher_algorithm;
            MACAlgorithm mac_algorithm;
            CipherType cipher_type;
            IsExportable is_exportable
            uint8 hash_size;
            uint8 key_material;
            uint8 IV_size;
        } CipherSpec;
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Appendix B.  Glossary

   application protocol:  An application protocol is a protocol that
      normally layers directly on top of the transport layer (e.g.,
      TCP/IP [RFC0793]/[RFC0791]).  Examples include HTTP [RFC1945],
      TELNET [RFC0959], FTP [RFC0854], and SMTP.

   asymmetric cipher:  See public key cryptography.

   authentication:  Authentication is the ability of one entity to
      determine the identity of another entity.

   block cipher:  A block cipher is an algorithm that operates on
      plaintext in groups of bits, called blocks. 64 bits is a typical
      block size.

   bulk cipher:  A symmetric encryption algorithm used to encrypt large
      quantities of data.

   cipher block chaining (CBC) mode:  CBC is a mode in which every
      plaintext block encrypted with the block cipher is first
      exclusive-ORed with the previous ciphertext block (or, in the case
      of the first block, with the initialization vector).

   certificate:  As part of the X.509 protocol (a.k.a.  ISO
      Authentication framework), certificates are assigned by a trusted
      certificate authority and provide verification of a party’s
      identity and may also supply its public key.

   client:  The application entity that initiates a connection to a
      server.

   client write key:  The key used to encrypt data written by the
      client.

   client write MAC secret:  The secret data used to authenticate data
      written by the client.

   connection:  A connection is a transport (in the OSI layering model
      definition) that provides a suitable type of service.  For SSL,
      such connections are peer-to-peer relationships.  The connections
      are transient.  Every connection is associated with one session.

   Data Encryption Standard (DES):  DES is a very widely used symmetric
      encryption algorithm.  DES is a block cipher [DES] [3DES].
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   Digital Signature Standard:  (DSS) A standard for digital signing,
      including the Digital Signature Algorithm, approved by the
      National Institute of Standards and Technology, defined in NIST
      FIPS PUB 186, "Digital Signature Standard," published May, 1994 by
      the U.S. Dept. of Commerce.

   digital signatures:  Digital signatures utilize public key
      cryptography and one-way hash functions to produce a signature of
      the data that can be authenticated, and is difficult to forge or
      repudiate.

   FORTEZZA:  A PCMCIA card that provides both encryption and digital
      signing.

   handshake:  An initial negotiation between client and server that
      establishes the parameters of their transactions.

   Initialization Vector (IV):  When a block cipher is used in CBC mode,
      the initialization vector is exclusive-ORed with the first
      plaintext block prior to encryption.

   IDEA:  A 64-bit block cipher designed by Xuejia Lai and James Massey
      [IDEA].

   Message Authentication Code (MAC):  A Message Authentication Code is
      a one-way hash computed from a message and some secret data.  Its
      purpose is to detect if the message has been altered.

   master secret:  Secure secret data used for generating encryption
      keys, MAC secrets, and IVs.

   MD5:  MD5 [RFC1321] is a secure hashing function that converts an
      arbitrarily long data stream into a digest of fixed size.

   public key cryptography:  A class of cryptographic techniques
      employing two-key ciphers.  Messages encrypted with the public key
      can only be decrypted with the associated private key.
      Conversely, messages signed with the private key can be verified
      with the public key.

   one-way hash function:  A one-way transformation that converts an
      arbitrary amount of data into a fixed-length hash.  It is
      computationally hard to reverse the transformation or to find
      collisions.  MD5 and SHA are examples of one-way hash functions.
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   RC2, RC4:  Proprietary bulk ciphers from RSA Data Security, Inc.
      (There is no good reference to these as they are unpublished
      works; however, see [RSADSI]).  RC2 is a block cipher and RC4 is a
      stream cipher.

   RSA:  A very widely used public key algorithm that can be used for
      either encryption or digital signing.

   salt:  Non-secret random data used to make export encryption keys
      resist precomputation attacks.

   server:  The server is the application entity that responds to
      requests for connections from clients.  The server is passive,
      waiting for requests from clients.

   session:  An SSL session is an association between a client and a
      server.  Sessions are created by the handshake protocol.  Sessions
      define a set of cryptographic security parameters, which can be
      shared among multiple connections.  Sessions are used to avoid the
      expensive negotiation of new security parameters for each
      connection.

   session identifier:  A session identifier is a value generated by a
      server that identifies a particular session.

   server write key:  The key used to encrypt data written by the
      server.

   server write MAC secret:  The secret data used to authenticate data
      written by the server.

   SHA:  The Secure Hash Algorithm is defined in FIPS PUB 180-1.  It
      produces a 20-byte output [SHA].

   stream cipher:  An encryption algorithm that converts a key into a
      cryptographically strong keystream, which is then exclusive-ORed
      with the plaintext.

   symmetric cipher:  See bulk cipher.

Freier, et al.                  Historic                       [Page 52]



RFC 6101              The SSL Protocol Version 3.0           August 2011

Appendix C.  CipherSuite Definitions

CipherSuite                  Is         Key            Cipher       Hash
                             Exportable Exchange

SSL_NULL_WITH_NULL_NULL               * NULL           NULL         NULL
SSL_RSA_WITH_NULL_MD5                 * RSA            NULL         MD5
SSL_RSA_WITH_NULL_SHA                 * RSA            NULL         SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5        * RSA_EXPORT     RC4_40       MD5
SSL_RSA_WITH_RC4_128_MD5                RSA            RC4_128      MD5
SSL_RSA_WITH_RC4_128_SHA                RSA            RC4_128      SHA
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5    * RSA_EXPORT     RC2_CBC_40   MD5
SSL_RSA_WITH_IDEA_CBC_SHA               RSA            IDEA_CBC     SHA
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA     * RSA_EXPORT     DES40_CBC    SHA
SSL_RSA_WITH_DES_CBC_SHA                RSA            DES_CBC      SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA           RSA            3DES_EDE_CBC SHA
SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA  * DH_DSS_EXPORT  DES40_CBC    SHA
SSL_DH_DSS_WITH_DES_CBC_SHA             DH_DSS         DES_CBC      SHA
SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA        DH_DSS         3DES_EDE_CBC SHA
SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA  * DH_RSA_EXPORT  DES40_CBC    SHA
SSL_DH_RSA_WITH_DES_CBC_SHA             DH_RSA         DES_CBC      SHA
SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA        DH_RSA         3DES_EDE_CBC SHA
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA * DHE_DSS_EXPORT DES40_CBC    SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA            DHE_DSS        DES_CBC      SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA       DHE_DSS        3DES_EDE_CBC SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA * DHE_RSA_EXPORT DES40_CBC    SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA            DHE_RSA        DES_CBC      SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA       DHE_RSA        3DES_EDE_CBC SHA
SSL_DH_anon_EXPORT_WITH_RC4_40_MD5    * DH_anon_EXPORT RC4_40       MD5
SSL_DH_anon_WITH_RC4_128_MD5            DH_anon        RC4_128      MD5
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA   DH_anon        DES40_CBC    SHA
SSL_DH_anon_WITH_DES_CBC_SHA            DH_anon        DES_CBC      SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA       DH_anon        3DES_EDE_CBC SHA
SSL_FORTEZZA_KEA_WITH_NULL_SHA          FORTEZZA_KEA   NULL         SHA
SSL_FORTEZZA_KEA_WITH_FORTEZZA_CBC_SHA  FORTEZZA_KEA   FORTEZZA_CBC SHA
SSL_FORTEZZA_KEA_WITH_RC4_128_SHA       FORTEZZA_KEA   RC4_128      SHA
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   +----------------+------------------------------+-------------------+
   |  Key Exchange  |          Description         |   Key Size Limit  |
   |    Algorithm   |                              |                   |
   +----------------+------------------------------+-------------------+
   |     DHE_DSS    |     Ephemeral DH with DSS    |        None       |
   |                |          signatures          |                   |
   | DHE_DSS_EXPORT |     Ephemeral DH with DSS    |   DH = 512 bits   |
   |                |          signatures          |                   |
   |     DHE_RSA    |     Ephemeral DH with RSA    |        None       |
   |                |          signatures          |                   |
   | DHE_RSA_EXPORT |     Ephemeral DH with RSA    |   DH = 512 bits,  |
   |                |          signatures          |     RSA = none    |
   |     DH_anon    |  Anonymous DH, no signatures |        None       |
   | DH_anon_EXPORT |  Anonymous DH, no signatures |   DH = 512 bits   |
   |     DH_DSS     |       DH with DSS-based      |        None       |
   |                |         certificates         |                   |
   |  DH_DSS_EXPORT |       DH with DSS-based      |   DH = 512 bits   |
   |                |         certificates         |                   |
   |     DH_RSA     |       DH with RSA-based      |        None       |
   |                |         certificates         |                   |
   |  DH_RSA_EXPORT |       DH with RSA-based      |   DH = 512 bits,  |
   |                |         certificates         |     RSA = none    |
   |  FORTEZZA_KEA  |     FORTEZZA KEA. Details    |        N/A        |
   |                |          unpublished         |                   |
   |      NULL      |        No key exchange       |        N/A        |
   |       RSA      |       RSA key exchange       |        None       |
   |   RSA_EXPORT   |       RSA key exchange       |   RSA = 512 bits  |
   +----------------+------------------------------+-------------------+

                                  Table 1

   Key size limit:  The key size limit gives the size of the largest
      public key that can be legally used for encryption in cipher
      suites that are exportable.
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   +--------------+--------+-----+-------+-------+-------+------+------+
   | Cipher       | Cipher | IsE |  Key  |  Exp. | Effec |  IV  | Bloc |
   |              |  Type  | xpo | Mater |  Key  |  tive | Size |   k  |
   |              |        | rta |  ial  | Mater |  Key  |      | Size |
   |              |        | ble |       |  ial  |  Bits |      |      |
   +--------------+--------+-----+-------+-------+-------+------+------+
   | NULL         | Stream |  *  |   0   |   0   |   0   |   0  |  N/A |
   | FORTEZZA_CBC |  Block |     |   NA  |   12  |   96  |  20  |   8  |
   |              |        |     |  (**) |  (**) |  (**) | (**) |      |
   | IDEA_CBC     |  Block |     |   16  |   16  |  128  |   8  |   8  |
   | RC2_CBC_40   |  Block |  *  |   5   |   16  |   40  |   8  |   8  |
   | RC4_40       | Stream |  *  |   5   |   16  |   40  |   0  |  N/A |
   | RC4_128      | Stream |     |   16  |   16  |  128  |   0  |  N/A |
   | DES40_CBC    |  Block |  *  |   5   |   8   |   40  |   8  |   8  |
   | DES_CBC      |  Block |     |   8   |   8   |   56  |   8  |   8  |
   | 3DES_EDE_CBC |  Block |     |   24  |   24  |  168  |   8  |   8  |
   +--------------+--------+-----+-------+-------+-------+------+------+

                     * Indicates IsExportable is true.
        ** FORTEZZA uses its own key and IV generation algorithms.

                                  Table 2

   Key Material:  The number of bytes from the key_block that are used
      for generating the write keys.

   Expanded Key Material:  The number of bytes actually fed into the
      encryption algorithm.

   Effective Key Bits:  How much entropy material is in the key material
      being fed into the encryption routines.

               +---------------+-----------+--------------+
               | Hash Function | Hash Size | Padding Size |
               +---------------+-----------+--------------+
               |      NULL     |     0     |       0      |
               |      MD5      |     16    |      48      |
               |      SHA      |     20    |      40      |
               +---------------+-----------+--------------+

                                  Table 3
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Appendix D.  Implementation Notes

   The SSL protocol cannot prevent many common security mistakes.  This
   section provides several recommendations to assist implementers.

D.1.  Temporary RSA Keys

   US export restrictions limit RSA keys used for encryption to 512
   bits, but do not place any limit on lengths of RSA keys used for
   signing operations.  Certificates often need to be larger than 512
   bits, since 512-bit RSA keys are not secure enough for high-value
   transactions or for applications requiring long-term security.  Some
   certificates are also designated signing-only, in which case they
   cannot be used for key exchange.

   When the public key in the certificate cannot be used for encryption,
   the server signs a temporary RSA key, which is then exchanged.  In
   exportable applications, the temporary RSA key should be the maximum
   allowable length (i.e., 512 bits).  Because 512-bit RSA keys are
   relatively insecure, they should be changed often.  For typical
   electronic commerce applications, it is suggested that keys be
   changed daily or every 500 transactions, and more often if possible.
   Note that while it is acceptable to use the same temporary key for
   multiple transactions, it must be signed each time it is used.

   RSA key generation is a time-consuming process.  In many cases, a
   low-priority process can be assigned the task of key generation.
   Whenever a new key is completed, the existing temporary key can be
   replaced with the new one.

D.2.  Random Number Generation and Seeding

   SSL requires a cryptographically secure pseudorandom number generator
   (PRNG).  Care must be taken in designing and seeding PRNGs.  PRNGs
   based on secure hash operations, most notably MD5 and/or SHA, are
   acceptable, but cannot provide more security than the size of the
   random number generator state.  (For example, MD5-based PRNGs usually
   provide 128 bits of state.)

   To estimate the amount of seed material being produced, add the
   number of bits of unpredictable information in each seed byte.  For
   example, keystroke timing values taken from a PC-compatible’s 18.2 Hz
   timer provide 1 or 2 secure bits each, even though the total size of
   the counter value is 16 bits or more.  To seed a 128-bit PRNG, one
   would thus require approximately 100 such timer values.
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   Note: The seeding functions in RSAREF and versions of BSAFE prior to
   3.0 are order independent.  For example, if 1000 seed bits are
   supplied, one at a time, in 1000 separate calls to the seed function,
   the PRNG will end up in a state that depends only on the number of 0
   or 1 seed bits in the seed data (i.e., there are 1001 possible final
   states).  Applications using BSAFE or RSAREF must take extra care to
   ensure proper seeding.

D.3.  Certificates and Authentication

   Implementations are responsible for verifying the integrity of
   certificates and should generally support certificate revocation
   messages.  Certificates should always be verified to ensure proper
   signing by a trusted certificate authority (CA).  The selection and
   addition of trusted CAs should be done very carefully.  Users should
   be able to view information about the certificate and root CA.

D.4.  CipherSuites

   SSL supports a range of key sizes and security levels, including some
   that provide no or minimal security.  A proper implementation will
   probably not support many cipher suites.  For example, 40-bit
   encryption is easily broken, so implementations requiring strong
   security should not allow 40-bit keys.  Similarly, anonymous Diffie-
   Hellman is strongly discouraged because it cannot prevent man-in-the-
   middle attacks.  Applications should also enforce minimum and maximum
   key sizes.  For example, certificate chains containing 512-bit RSA
   keys or signatures are not appropriate for high-security
   applications.

D.5.  FORTEZZA

   This section describes implementation details for cipher suites that
   make use of the FORTEZZA hardware encryption system.

D.5.1.  Notes on Use of FORTEZZA Hardware

   A complete explanation of all issues regarding the use of FORTEZZA
   hardware is outside the scope of this document.  However, there are a
   few special requirements of SSL that deserve mention.

   Because SSL is a full duplex protocol, two crypto states must be
   maintained, one for reading and one for writing.  There are also a
   number of circumstances that can result in the crypto state in the
   FORTEZZA card being lost.  For these reasons, it’s recommended that
   the current crypto state be saved after processing a record, and
   loaded before processing the next.
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   After the client generates the TEK, it also generates two message
   encryption keys (MEKs), one for reading and one for writing.  After
   generating each of these keys, the client must generate a
   corresponding IV and then save the crypto state.  The client also
   uses the TEK to generate an IV and encrypt the premaster secret.  All
   three IVs are sent to the server, along with the wrapped keys and the
   encrypted premaster secret in the client key exchange message.  At
   this point, the TEK is no longer needed, and may be discarded.

   On the server side, the server uses the master IV and the TEK to
   decrypt the premaster secret.  It also loads the wrapped MEKs into
   the card.  The server loads both IVs to verify that the IVs match the
   keys.  However, since the card is unable to encrypt after loading an
   IV, the server must generate a new IV for the server write key.  This
   IV is discarded.

   When encrypting the first encrypted record (and only that record),
   the server adds 8 bytes of random data to the beginning of the
   fragment.  These 8 bytes are discarded by the client after
   decryption.  The purpose of this is to synchronize the state on the
   client and server resulting from the different IVs.

D.5.2.  FORTEZZA Cipher Suites

   5) FORTEZZA_NULL_WITH_NULL_SHA: Uses the full FORTEZZA key exchange,
   including sending server and client write keys and IVs.

D.5.3.  FORTEZZA Session Resumption

   There are two possibilities for FORTEZZA session restart: 1) Never
   restart a FORTEZZA session. 2) Restart a session with the previously
   negotiated keys and IVs.

   Never restarting a FORTEZZA session:

   Clients who never restart FORTEZZA sessions should never send session
   IDs that were previously used in a FORTEZZA session as part of the
   ClientHello.  Servers who never restart FORTEZZA sessions should
   never send a previous session id on the ServerHello if the negotiated
   session is FORTEZZA.

   Restart a session:

   You cannot restart FORTEZZA on a session that has never done a
   complete FORTEZZA key exchange (that is, you cannot restart FORTEZZA
   if the session was an RSA/RC4 session renegotiated for FORTEZZA).  If
   you wish to restart a FORTEZZA session, you must save the MEKs and
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   IVs from the initial key exchange for this session and reuse them for
   any new connections on that session.  This is not recommended, but it
   is possible.

Appendix E.  Version 2.0 Backward Compatibility

   Version 3.0 clients that support version 2.0 servers must send
   version 2.0 client hello messages [SSL-2].  Version 3.0 servers
   should accept either client hello format.  The only deviations from
   the version 2.0 specification are the ability to specify a version
   with a value of three and the support for more ciphering types in the
   CipherSpec.

   Warning: The ability to send version 2.0 client hello messages will
   be phased out with all due haste.  Implementers should make every
   effort to move forward as quickly as possible.  Version 3.0 provides
   better mechanisms for transitioning to newer versions.

   The following cipher specifications are carryovers from SSL version
   2.0.  These are assumed to use RSA for key exchange and
   authentication.

        V2CipherSpec SSL_RC4_128_WITH_MD5          = { 0x01,0x00,0x80 };
        V2CipherSpec SSL_RC4_128_EXPORT40_WITH_MD5 = { 0x02,0x00,0x80 };
        V2CipherSpec SSL_RC2_CBC_128_CBC_WITH_MD5  = { 0x03,0x00,0x80 };
        V2CipherSpec SSL_RC2_CBC_128_CBC_EXPORT40_WITH_MD5
                                                   = { 0x04,0x00,0x80 };
        V2CipherSpec SSL_IDEA_128_CBC_WITH_MD5     = { 0x05,0x00,0x80 };
        V2CipherSpec SSL_DES_64_CBC_WITH_MD5       = { 0x06,0x00,0x40 };
        V2CipherSpec SSL_DES_192_EDE3_CBC_WITH_MD5 = { 0x07,0x00,0xC0 };

   Cipher specifications introduced in version 3.0 can be included in
   version 2.0 client hello messages using the syntax below.  Any
   V2CipherSpec element with its first byte equal to zero will be
   ignored by version 2.0 servers.  Clients sending any of the above
   V2CipherSpecs should also include the version 3.0 equivalent (see
   Appendix A.6):

        V2CipherSpec (see Version 3.0 name) = { 0x00, CipherSuite };

E.1.  Version 2 Client Hello

   The version 2.0 client hello message is presented below using this
   document’s presentation model.  The true definition is still assumed
   to be the SSL version 2.0 specification.
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        uint8 V2CipherSpec[3];

        struct {
            unit8 msg_type;
            Version version;
            uint16 cipher_spec_length;
            uint16 session_id_length;
            uint16 challenge_length;
            V2CipherSpec cipher_specs[V2ClientHello.cipher_spec_length];
            opaque session_id[V2ClientHello.session_id_length];
            Random challenge;
        } V2ClientHello;

   session msg_type:  This field, in conjunction with the version field,
      identifies a version 2 client hello message.  The value should
      equal one (1).

   version:  The highest version of the protocol supported by the client
      (equals ProtocolVersion.version; see Appendix A.1).

   cipher_spec_length:  This field is the total length of the field
      cipher_specs.  It cannot be zero and must be a multiple of the
      V2CipherSpec length (3).

   session_id_length:  This field must have a value of either zero or
      16.  If zero, the client is creating a new session.  If 16, the
      session_id field will contain the 16 bytes of session
      identification.

   challenge_length:  The length in bytes of the client’s challenge to
      the server to authenticate itself.  This value must be 32.

   cipher_specs:  This is a list of all CipherSpecs the client is
      willing and able to use.  There must be at least one CipherSpec
      acceptable to the server.

   session_id:  If this field’s length is not zero, it will contain the
      identification for a session that the client wishes to resume.

   challenge:  The client’s challenge to the server for the server to
      identify itself is a (nearly) arbitrary length random.  The
      version 3.0 server will right justify the challenge data to become
      the ClientHello.random data (padded with leading zeroes, if
      necessary), as specified in this version 3.0 protocol.  If the
      length of the challenge is greater than 32 bytes, then only the
      last 32 bytes are used.  It is legitimate (but not necessary) for
      a V3 server to reject a V2 ClientHello that has fewer than 16
      bytes of challenge data.
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   Note: Requests to resume an SSL 3.0 session should use an SSL 3.0
   client hello.

E.2.  Avoiding Man-in-the-Middle Version Rollback

   When SSL version 3.0 clients fall back to version 2.0 compatibility
   mode, they use special PKCS #1 block formatting.  This is done so
   that version 3.0 servers will reject version 2.0 sessions with
   version 3.0-capable clients.

   When version 3.0 clients are in version 2.0 compatibility mode, they
   set the right-hand (least-significant) 8 random bytes of the PKCS
   padding (not including the terminal null of the padding) for the RSA
   encryption of the ENCRYPTED-KEY-DATA field of the CLIENT-MASTER-KEY
   to 0x03 (the other padding bytes are random).  After decrypting the
   ENCRYPTED-KEY-DATA field, servers that support SSL 3.0 should issue
   an error if these eight padding bytes are 0x03.  Version 2.0 servers
   receiving blocks padded in this manner will proceed normally.

Appendix F.  Security Analysis

   The SSL protocol is designed to establish a secure connection between
   a client and a server communicating over an insecure channel.  This
   document makes several traditional assumptions, including that
   attackers have substantial computational resources and cannot obtain
   secret information from sources outside the protocol.  Attackers are
   assumed to have the ability to capture, modify, delete, replay, and
   otherwise tamper with messages sent over the communication channel.
   This appendix outlines how SSL has been designed to resist a variety
   of attacks.

F.1.  Handshake Protocol

   The handshake protocol is responsible for selecting a CipherSpec and
   generating a MasterSecret, which together comprise the primary
   cryptographic parameters associated with a secure session.  The
   handshake protocol can also optionally authenticate parties who have
   certificates signed by a trusted certificate authority.

F.1.1.  Authentication and Key Exchange

   SSL supports three authentication modes: authentication of both
   parties, server authentication with an unauthenticated client, and
   total anonymity.  Whenever the server is authenticated, the channel
   should be secure against man-in-the-middle attacks, but completely
   anonymous sessions are inherently vulnerable to such attacks.
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   Anonymous servers cannot authenticate clients, since the client
   signature in the certificate verify message may require a server
   certificate to bind the signature to a particular server.  If the
   server is authenticated, its certificate message must provide a valid
   certificate chain leading to an acceptable certificate authority.
   Similarly, authenticated clients must supply an acceptable
   certificate to the server.  Each party is responsible for verifying
   that the other’s certificate is valid and has not expired or been
   revoked.

   The general goal of the key exchange process is to create a
   pre_master_secret known to the communicating parties and not to
   attackers.  The pre_master_secret will be used to generate the
   master_secret (see Section 6.1).  The master_secret is required to
   generate the finished messages, encryption keys, and MAC secrets (see
   Sections 5.6.9 and 6.2.2).  By sending a correct finished message,
   parties thus prove that they know the correct pre_master_secret.

F.1.1.1.  Anonymous Key Exchange

   Completely anonymous sessions can be established using RSA, Diffie-
   Hellman, or FORTEZZA for key exchange.  With anonymous RSA, the
   client encrypts a pre_master_secret with the server’s uncertified
   public key extracted from the server key exchange message.  The
   result is sent in a client key exchange message.  Since eavesdroppers
   do not know the server’s private key, it will be infeasible for them
   to decode the pre_master_secret.

   With Diffie-Hellman or FORTEZZA, the server’s public parameters are
   contained in the server key exchange message and the client’s are
   sent in the client key exchange message.  Eavesdroppers who do not
   know the private values should not be able to find the Diffie-Hellman
   result (i.e., the pre_master_secret) or the FORTEZZA token encryption
   key (TEK).

   Warning: Completely anonymous connections only provide protection
   against passive eavesdropping.  Unless an independent tamper-proof
   channel is used to verify that the finished messages were not
   replaced by an attacker, server authentication is required in
   environments where active man-in-the-middle attacks are a concern.

F.1.1.2.  RSA Key Exchange and Authentication

   With RSA, key exchange and server authentication are combined.  The
   public key either may be contained in the server’s certificate or may
   be a temporary RSA key sent in a server key exchange message.  When
   temporary RSA keys are used, they are signed by the server’s RSA or
   DSS certificate.  The signature includes the current
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   ClientHello.random, so old signatures and temporary keys cannot be
   replayed.  Servers may use a single temporary RSA key for multiple
   negotiation sessions.

   Note: The temporary RSA key option is useful if servers need large
   certificates but must comply with government-imposed size limits on
   keys used for key exchange.

   After verifying the server’s certificate, the client encrypts a
   pre_master_secret with the server’s public key.  By successfully
   decoding the pre_master_secret and producing a correct finished
   message, the server demonstrates that it knows the private key
   corresponding to the server certificate.

   When RSA is used for key exchange, clients are authenticated using
   the certificate verify message (see Section 5.6.8).  The client signs
   a value derived from the master_secret and all preceding handshake
   messages.  These handshake messages include the server certificate,
   which binds the signature to the server, and ServerHello.random,
   which binds the signature to the current handshake process.

F.1.1.3.  Diffie-Hellman Key Exchange with Authentication

   When Diffie-Hellman key exchange is used, the server either can
   supply a certificate containing fixed Diffie-Hellman parameters or
   can use the server key exchange message to send a set of temporary
   Diffie-Hellman parameters signed with a DSS or RSA certificate.
   Temporary parameters are hashed with the hello.random values before
   signing to ensure that attackers do not replay old parameters.  In
   either case, the client can verify the certificate or signature to
   ensure that the parameters belong to the server.

   If the client has a certificate containing fixed Diffie-Hellman
   parameters, its certificate contains the information required to
   complete the key exchange.  Note that in this case, the client and
   server will generate the same Diffie-Hellman result (i.e.,
   pre_master_secret) every time they communicate.  To prevent the
   pre_master_secret from staying in memory any longer than necessary,
   it should be converted into the master_secret as soon as possible.
   Client Diffie-Hellman parameters must be compatible with those
   supplied by the server for the key exchange to work.

   If the client has a standard DSS or RSA certificate or is
   unauthenticated, it sends a set of temporary parameters to the server
   in the client key exchange message, then optionally uses a
   certificate verify message to authenticate itself.
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F.1.1.4.  FORTEZZA

   FORTEZZA’s design is classified, but at the protocol level it is
   similar to Diffie-Hellman with fixed public values contained in
   certificates.  The result of the key exchange process is the token
   encryption key (TEK), which is used to wrap data encryption keys,
   client write key, server write key, and master secret encryption key.
   The data encryption keys are not derived from the pre_master_secret
   because unwrapped keys are not accessible outside the token.  The
   encrypted pre_master_secret is sent to the server in a client key
   exchange message.

F.1.2.  Version Rollback Attacks

   Because SSL version 3.0 includes substantial improvements over SSL
   version 2.0, attackers may try to make version 3.0-capable clients
   and servers fall back to version 2.0.  This attack is occurring if
   (and only if) two version 3.0-capable parties use an SSL 2.0
   handshake.

   Although the solution using non-random PKCS #1 block type 2 message
   padding is inelegant, it provides a reasonably secure way for version
   3.0 servers to detect the attack.  This solution is not secure
   against attackers who can brute force the key and substitute a new
   ENCRYPTED-KEY-DATA message containing the same key (but with normal
   padding) before the application specified wait threshold has expired.
   Parties concerned about attacks of this scale should not be using 40-
   bit encryption keys anyway.  Altering the padding of the least
   significant 8 bytes of the PKCS padding does not impact security,
   since this is essentially equivalent to increasing the input block
   size by 8 bytes.

F.1.3.  Detecting Attacks against the Handshake Protocol

   An attacker might try to influence the handshake exchange to make the
   parties select different encryption algorithms than they would
   normally choose.  Because many implementations will support 40-bit
   exportable encryption and some may even support null encryption or
   MAC algorithms, this attack is of particular concern.

   For this attack, an attacker must actively change one or more
   handshake messages.  If this occurs, the client and server will
   compute different values for the handshake message hashes.  As a
   result, the parties will not accept each other’s finished messages.
   Without the master_secret, the attacker cannot repair the finished
   messages, so the attack will be discovered.
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F.1.4.  Resuming Sessions

   When a connection is established by resuming a session, new
   ClientHello.random and ServerHello.random values are hashed with the
   session’s master_secret.  Provided that the master_secret has not
   been compromised and that the secure hash operations used to produce
   the encryption keys and MAC secrets are secure, the connection should
   be secure and effectively independent from previous connections.
   Attackers cannot use known encryption keys or MAC secrets to
   compromise the master_secret without breaking the secure hash
   operations (which use both SHA and MD5).

   Sessions cannot be resumed unless both the client and server agree.
   If either party suspects that the session may have been compromised,
   or that certificates may have expired or been revoked, it should
   force a full handshake.  An upper limit of 24 hours is suggested for
   session ID lifetimes, since an attacker who obtains a master_secret
   may be able to impersonate the compromised party until the
   corresponding session ID is retired.  Applications that may be run in
   relatively insecure environments should not write session IDs to
   stable storage.

F.1.5.  MD5 and SHA

   SSL uses hash functions very conservatively.  Where possible, both
   MD5 and SHA are used in tandem to ensure that non-catastrophic flaws
   in one algorithm will not break the overall protocol.

F.2.  Protecting Application Data

   The master_secret is hashed with the ClientHello.random and
   ServerHello.random to produce unique data encryption keys and MAC
   secrets for each connection.  FORTEZZA encryption keys are generated
   by the token, and are not derived from the master_secret.

   Outgoing data is protected with a MAC before transmission.  To
   prevent message replay or modification attacks, the MAC is computed
   from the MAC secret, the sequence number, the message length, the
   message contents, and two fixed-character strings.  The message type
   field is necessary to ensure that messages intended for one SSL
   record layer client are not redirected to another.  The sequence
   number ensures that attempts to delete or reorder messages will be
   detected.  Since sequence numbers are 64 bits long, they should never
   overflow.  Messages from one party cannot be inserted into the
   other’s output, since they use independent MAC secrets.  Similarly,
   the server-write and client-write keys are independent so stream
   cipher keys are used only once.
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   If an attacker does break an encryption key, all messages encrypted
   with it can be read.  Similarly, compromise of a MAC key can make
   message modification attacks possible.  Because MACs are also
   encrypted, message-alteration attacks generally require breaking the
   encryption algorithm as well as the MAC.

   Note: MAC secrets may be larger than encryption keys, so messages can
   remain tamper resistant even if encryption keys are broken.

F.3.  Final Notes

   For SSL to be able to provide a secure connection, both the client
   and server systems, keys, and applications must be secure.  In
   addition, the implementation must be free of security errors.

   The system is only as strong as the weakest key exchange and
   authentication algorithm supported, and only trustworthy
   cryptographic functions should be used.  Short public keys, 40-bit
   bulk encryption keys, and anonymous servers should be used with great
   caution.  Implementations and users must be careful when deciding
   which certificates and certificate authorities are acceptable; a
   dishonest certificate authority can do tremendous damage.
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