I nt ernet Engi neering Task Force (I ETF) A. Freier

Request for Comments: 6101 P. Karlton
Category: Historic Net scape Conmuni cati ons
| SSN: 2070-1721 P. Kocher

I ndependent Consul t ant
August 2011

The Secure Sockets Layer (SSL) Protocol Version 3.0
Abstr act

Thi s docunent is published as a historical record of the SSL 3.0
protocol. The original Abstract foll ows.

This docunent specifies version 3.0 of the Secure Sockets Layer (SSL
3.0) protocol, a security protocol that provides conmunications
privacy over the Internet. The protocol allows client/server
applications to communicate in a way that is designed to prevent
eavesdroppi ng, tanpering, or nessage forgery.

For ewor d

Al t hough the SSL 3.0 protocol is a widely inplenmented protocol, a

pi oneer in secure conmuni cations protocols, and the basis for
Transport Layer Security (TLS), it was never formally published by
the |1 ETF, except in several expired Internet-Drafts. This allowed no
easy referencing to the protocol. W believe a stable reference to
the original document should exist and for that reason, this docunent
descri bes what is known as the | ast published version of the SSL 3.0
protocol, that is, the Novenber 18, 1996, version of the protocol

There were no changes to the original docunent other than trivia
editorial changes and the addition of a "Security Considerations"
section. However, portions of the original docunent that no | onger
apply were not included. Such as the "Patent Statenent" section, the
"Reserved Ports Assignnent" section, and the cipher-suite registrator
note in the "The G pherSuite" section. The "US export rul es”

di scussed in the docunent do not apply today but are kept intact to
provi de context for decisions taken in protocol design. The "Goals
of This Docunent" section indicates the goals for adopters of SSL
3.0, not goals of the | ETF.

The authors and editors were retained as in the original docunent.
The editor of this docunment is N kos Mavrogi annopoul os

(ni kos. mavr ogi annopoul os@sat . kul euven. be). The editor would like to
thank Dan Harkins, Linda Dunbar, Sean Turner, and Geoffrey Keating
for reviewing this docunent and providing hel pful coments.

Freier, et al. Hi storic [Page 1]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Status of This Meno

This docunent is not an Internet Standards Track specification; it is
published for the historical record.

This docunent defines a Historic Docunent for the Internet conmunity.
This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Not all docunents
approved by the I ESG are a candidate for any |evel of Internet

St andard; see Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/info/rfc6101

Copyright Notice

Copyright (c) 2011 I ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment rnust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

This docunent may contain material from|ETF Docunents or | ETF
Contributions published or made publicly avail abl e bef ore Novenber
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the I ETF Trust the right to all ow
nodi fi cations of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunment may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
than Engli sh.

Freier, et al. Hi storic [Page 2]

RFC 6101 The SSL Protocol Version 3.0 August

Tabl e of Contents

1. IntroduCti ON
2. Goal S .. e
3. Goals of This DOCUNMENL e e e
4. Presentation Language i e
4.1. Basic BloCk Size
4.2, Mscell aneous
4. 3. VEeCt O S .
4.4, NUNMDEI S . o
4.5, BEnumerateds
4.6. Constructed TYPeS ... ittt e e

4.6.1. Variant s

4.7. Cryptographic Attributes
4. 8. CoNstant S
5. SSL Protocol e
5.1. Session and Connection States
5.2, Record Layer e

5.2.1. Fragmentation
5.2.2. Record Conpression and Deconpression
5.2.3. Record Payl oad Protection and the CipherSpec
Change Cipher Spec Protocol
Alert Protocol
5.4.1. Adosure Alerts ...
5.4.2. Error Al erts ...
Handshake Protocol Overview,
Handshake Protocol
Hel [0 mBSSages
Server Certificate i,
Server Key Exchange Message
Certificate Request
Server Hello Done
Cient Certificate
Cient Key Exchange Message
Certificate Verify i,
9. Finished ...
lication Data Protocol
aphic Conmputations i
mretric Cryptographic Conputations
L RSA
2. Diffie-Hellman

6. 1.3. FORTEZZA e
6.2. Symmetric Cryptographic Cal culations and the G pherSpec ...

6.2.1. The Master Secret

oo
Pw

o1 o
o Ul

o oo aaaa
PPS-T 000000000
COND O A WNE

o
Q0
N

-

~—

[e2Ne)]

6.2.2. Converting the Master Secret into Keys and

MAC SeCret s ... e
7. Security Considerati Ons
8. Informative References i

2011

Freier, et al. Hi storic [Page 3]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Appendi x A. Protocol Constant Values 42
A L. Record Layer ... 42
A. 2. Change G pher Specs MeSSagettt 43
A 3. Al ert MeSSageS .. i it 43
A. 4. Handshake Protocol 44

A d. 1. Hel 10 MBSSAgES ..ottt 44
A 4.2. Server Authentication and Key Exchange Messages 45
A.5. dient Authentication and Key Exchange Messages 46
A.5.1. Handshake Finalization Message oo, 47
A 6. The CipherSuite e 47
A 7. The CGipherSpec e 49

Appendi X B. G 0SSaAlrY ...ttt e 50

Appendi x C. CipherSuite Definitions 53

Appendix D. Inplementation Notes i, 56
D.1. Tenporary RSA Keys e 56
D. 2. Random Number Generation and Seeding 56
D.3. Certificates and Authentication 57
D.4. GpherSuites 57
D. 5. FORTEZZA . . 57

D.5.1. Notes on Use of FORTEZZA Hardware 57
D.5.2. FORTEZZA G pher Suites 58
D.5.3. FORTEZZA Session Resunption oo, 58

Appendi x E. Version 2.0 Backward Conpatibility 59
E.1. Version 2 dient Hello i 59
E. 2. Avoiding Man-in-the-Mddle Version Rollback 61

Appendi x F. Security AnalysSis 61
F. 1. Handshake Protocol 61

F.1.1. Authentication and Key Exchange 61
F.1.2. Version Rollback Attacks 64
F.1.3. Detecting Attacks agai nst the Handshake Protocol 64
F.1.4. ResUM NG SESSI ONSottt e e e e 65
F.1.5. MD5 and SHA 65
F.2. Protecting Application Data 65
F. 3. Final Notes 66

Appendi x G Acknowl edgements 66
G 1. Oher Contributors 66
G 2. Early ReVi BWBr S .. i e 67

Freier, et al. Hi storic [Page 4]

RFC 6101 The SSL Protocol Version 3.0 August 2011

1

I ntroduction

The primary goal of the SSL protocol is to provide privacy and
reliability between two conmuni cating applications. The protocol is

conmposed of two layers. At the |lowest |level, layered on top of sone
reliable transport protocol (e.g., TCP [RFC0793]), is the SSL record
protocol. The SSL record protocol is used for encapsul ation of

various higher level protocols. One such encapsul ated protocol, the
SSL handshake protocol, allows the server and client to authenticate
each other and to negotiate an encryption algorithm and cryptographic
keys before the application protocol transmts or receives its first
byte of data. One advantage of SSL is that it is application
protocol independent. A higher level protocol can |ayer on top of
the SSL protocol transparently. The SSL protocol provides connection
security that has three basic properties:

o The connection is private. Encryption is used after an initial
handshake to define a secret key. Symmetric cryptography is used
for data encryption (e.g., DES [DES], 3DES [3DES], RC4 [SCH]).

0 The peer’s identity can be authenticated using asymetric, or
public key, cryptography (e.g., RSA [RSA], DSS [DSS]).

0 The connection is reliable. Mssage transport includes a nessage
integrity check using a keyed Message Aut hentication Code (MAC)
[RFC2104]. Secure hash functions (e.g., SHA, MDS) are used for
MAC conput ati ons.

Goal s

The goals of SSL protocol version 3.0, in order of their priority,
are:

1. Cryptographic security

SSL shoul d be used to establish a secure connection between
two parties.

2. Interoperability

I ndependent progranmmers should be able to devel op applications
utilizing SSL 3.0 that will then be able to successfully
exchange cryptographi c paraneters w thout know edge of one
anot her’ s code.

Freier, et al. Hi storic [Page 5]

RFC 6101 The SSL Protocol Version 3.0 August 2011

3.

Note: It is not the case that all instances of SSL (even in
the sane application domain) will be able to successfully
connect. For instance, if the server supports a particular
hardware token, and the client does not have access to such a
token, then the connection will not succeed.

3. Extensibility

SSL seeks to provide a franework into which new public key and
bul k encrypti on nmet hods can be incorporated as necessary.

This will also acconplish two sub-goals: to prevent the need
to create a new protocol (and risking the introduction of
possi bl e new weaknesses) and to avoid the need to inplenment an
entire new security library.

4, Re

ative efficiency

Crypt ographi c operations tend to be highly CPU intensive,
particularly public key operations. For this reason, the SSL
protocol has incorporated an optional session caching scheme
to reduce the nunber of connections that need to be
established fromscratch. Additionally, care has been taken
to reduce network activity.

Goal s of This Docunent

The SSL protocol version 3.0 specification is intended primarily for
readers who will be inplenenting the protocol and those doing
cryptographic analysis of it. The spec has been witten with this in
mnd, and it is intended to reflect the needs of those two groups.

For that reason, many of the al gorithm dependent data structures and
rules are included in the body of the text (as opposed to in an
appendi x), providing easier access to them

This docunent is not intended to supply any details of service
definition or interface definition, although it does cover sel ect
areas of policy as they are required for the maintenance of solid
security.

Present ati on Language

This docunent deals with the fornatting of data in an externa
representation. The follow ng very basic and sonewhat casually
defined presentation syntax will be used. The syntax draws from
several sources in its structure. Although it resenbles the
programm ng | anguage "C' in its syntax and External Data
Representation (XDR) [RFC1832] in both its syntax and intent, it

Freier, et al. Hi storic [Page 6]

RFC 6101 The SSL Protocol Version 3.0 August 2011

woul d be risky to draw too nany parallels. The purpose of this
presentation | anguage is to docunent SSL only, not to have genera
application beyond that particul ar goal

4. 1. Basi ¢ Bl ock Size

The representation of all data itens is explicitly specified. The
basi ¢ data block size is one byte (i.e., 8 bits). Miltiple byte data
items are concatenations of bytes, fromleft to right, fromtop to
bottom Fromthe byte stream a nulti-byte item (a nuneric in the
exanple) is formed (using C notation) by:

value = (byte[0] << 8*(n-1)) | (byte[l] << 8*(n-2))
| byte[n-1];

This byte ordering for multi-byte values is the comonpl ace network
byte order or big-endian format.

4.2. Mscell aneous

Conments begin with "/*" and end with "*/". Optional conponents are
denoted by enclosing themin "[[]]" double brackets. Single-byte
entities containing uninterpreted data are of type opaque.

4.3. \Vectors

A vector (single dinensioned array) is a stream of honbgeneous data
el ements. The size of the vector may be specified at docunentation
time or left unspecified until runtinme. 1In either case, the length
decl ares the nunber of bytes, not the nunber of elenents, in the
vector. The syntax for specifying a newtype T that is a fixed-

| ength vector of type T is

T TI[n];
Here, T occupies n bytes in the data stream where nis a multiple
of the size of T. The length of the vector is not included in the
encoded stream
In the follow ng exanple, Datumis defined to be three consecutive
bytes that the protocol does not interpret, while Data is three
consecutive Datum consuming a total of nine bytes

opaque Datunf 3]; /* three uninterpreted bytes */
Dat um Dat a[9] ; /* 3 consecutive 3 byte vectors */

Freier, et al. Hi storic [Page 7]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Vari abl e-1 ength vectors are defined by specifying a subrange of | egal
| engt hs, inclusively, using the notation <floor..ceiling> Wen
encoded, the actual length precedes the vector’'s contents in the byte
stream The length will be in the formof a nunber consum ng as many
bytes as required to hold the vector’s specified nmaxi mum (ceiling)
length. A variable-length vector with an actual length field of zero
is referred to as an enpty vector.

T T <floor..ceiling>;

In the foll ow ng exanple, nandatory is a vector that mnust contain

bet ween 300 and 400 bytes of type opaque. |t can never be enpty.

The actual length field consunes two bytes, a uintl6, sufficient to
represent the value 400 (see Section 4.4). On the other hand, |onger
can represent up to 800 bytes of data, or 400 uintl16 elenents, and it
may be enpty. Its encoding will include a two-byte actual |ength
field prepended to the vector.

opaque nandat or y<300. . 400>;

/* length field is 2 bytes, cannot be enpty */
ui nt 16 | onger <0. . 800>;

/* zero to 400 16-bit unsigned integers */

4.4, Nunbers

The basic numeric data type is an unsigned byte (uint8). Al larger
nunmeric data types are formed fromfixed-1ength series of bytes
concat enated as described in Section 4.1 and are al so unsigned. The
followi ng numeric types are predefined.

uint8 uintl6[2];
ui nt 8 uint24[3];
ui nt 8 uint32[4];
ui nt 8 ui nt 64[8] ;

4.5, Enuner at eds

An additional sparse data type is available called enum A field of
type enum can only assunme the values declared in the definition
Each definition is a different type. Only enunerateds of the sane
type may be assigned or conpared. Every elenent of an enunerated
nmust be assigned a value, as denonstrated in the foll owi ng exanpl e.
Since the elenents of the enunerated are not ordered, they can be
assi gned any uni que val ue, in any order

enum { el(vl), e2(v2), ... , en(vn), [[(n)]] } Te

Freier, et al. Hi storic [Page 8]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Enuner at eds occupy as nuch space in the byte streamas would its
maxi mal defined ordinal value. The followi ng definition would cause
one byte to be used to carry fields of type Col or

enum { red(3), blue(5), white(7) } Color

Optionally, one may specify a value without its associated tag to

force the width definition without defining a superfluous el enent.
In the foll owi ng exanple, Taste will consunme two bytes in the data
stream but can only assume the values 1, 2, or 4.

enum { sweet (1), sour(2), bitter(4), (32000) } Taste;

The nanmes of the elements of an enuneration are scoped within the
defined type. 1In the first exanple, a fully qualified reference to
the second el enent of the enuneration would be Col or.blue. Such
qualification is not required if the target of the assignment is well

speci fi ed.
Col or col or = Col or. bl ue; /* overspecified, legal */
Col or col or = bl ue; /* correct, type inplicit */

For enunerateds that are never converted to external representation
the nunerical information may be omitted.

enum { | ow, nedium high } Amount;
4.6. Constructed Types

Structure types may be constructed fromprimtive types for
conveni ence. Each specification declares a new, unique type. The
syntax for definition is much like that of C

struct {
T1 1,
T2 2

fﬁ.fn;
FLOTIL

The fields within a structure may be qualified using the type's nane
using a syntax nuch like that available for enunerateds. For
exanple, T.f2 refers to the second field of the previous declaration
Structure definitions my be enbedded.

Freier, et al. Hi storic [Page 9]

RFC 6101 The SSL Protocol Version 3.0 August 2011

4.6.1. Variants

Defined structures may have variants based on sonme know edge that is
available within the environnment. The selector nust be an enunerated
type that defines the possible variants the structure defines. There
nmust be a case armfor every elenent of the enuneration declared in
the select. The body of the variant structure nmay be given a | abe
for reference. The nmechani sm by which the variant is selected at
runtime is not prescribed by the presentation | anguage.

struct {
T1 1,
T2 2
™ fn;
select (E) {

case el: Tel;
case e2: Tez;

case.éﬁ; Ten;
PLOfvIT,
PLITvITG

For exanpl e,

enum { apple, orange } Variant Tag;
struct {
ui nt 16 numnber;
opaque string<0..10>; /* variable length */
} Vv,

struct {
ui nt 32 nunber;
opaque string[10]; /* fixed length */
}ove;
struct {
select (VariantTag) { /* value of selector is inplicit */
case apple: Vi; /* Vari ant Body, tag appl e */
case orange: V2; /* VariantBody, tag orange */
} variant _body; /* optional |abel on variant */
} Vari ant Recor d;

Freier, et al. Hi storic [Page 10]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Variant structures nay be qualified (narrowed) by specifying a val ue
for the selector prior to the type. For exanple, an

orange Vari ant Record

is a narrowed type of a VariantRecord containing a variant_body of
type V2.

4.7. Cryptographic Attributes

The four cryptographic operations digital signing, stream cipher
encryption, block cipher encryption, and public key encryption are
designated digitally-signed, streamciphered, bl ock-ciphered, and
public-key-encrypted, respectively. A field s cryptographic
processing is specified by prepending an appropriate key word
designation before the field s type specification. Cryptographic
keys are inplied by the current session state (see Section 5.1).

In digital signing, one-way hash functions are used as input for a
signing algorithm |In RSA signing, a 36-byte structure of two hashes
(one SHA and one MD5) is signed (encrypted with the private key). In
DSS, the 20 bytes of the SHA hash are run directly through the
Digital Signature Algorithmw th no additional hashing.

In stream ci pher encryption, the plaintext is exclusive-ORed with an
i dentical anount of output generated froma cryptographically secure
keyed pseudorandom nunber generat or

In bl ock cipher encryption, every block of plaintext encrypts to a
bl ock of ciphertext. Because it is unlikely that the plaintext
(whatever data is to be sent) will break neatly into the necessary
bl ock size (usually 64 bits), it is necessary to pad out the end of
short blocks with sone regular pattern, usually all zeroes.

In public key encryption, one-way functions with secret "trapdoors"”
are used to encrypt the outgoing data. Data encrypted with the
public key of a given key pair can only be decrypted with the private
key, and vice versa. |In the follow ng exanple:

streamci phered struct {

uint8 fieldl;

uint8 field2;

digitally-signed opaque hash[20];
} User Type;

The contents of hash are used as input for the signing al gorithm
then the entire structure is encrypted with a stream ci pher

Freier, et al. Hi storic [Page 11]

RFC 6101 The SSL Protocol Version 3.0 August 2011

4.8. Constants

Typed constants can be defined for purposes of specification by
declaring a synbol of the desired type and assigning values to it.
Under - speci fied types (opaque, variable-length vectors, and
structures that contain opaque) cannot be assigned values. No fields
of a nmulti-elenent structure or vector may be elided.

For exanpl e,
struct {
uint8 f1,
uint8 f2;
} Exanpl el;

Exanpl el ex1 = {1, 4};/* assigns f1 =1, f2 = 4 */
5. SSL Protoco

SSL is a |layered protocol. At each layer, nessages nay include
fields for length, description, and content. SSL takes nessages to
be transnmitted, fragnments the data into manageabl e bl ocks, optionally
conpresses the data, applies a MAC, encrypts, and transmits the
result. Received data is decrypted, verified, deconpressed, and
reassenbl ed, then delivered to higher level clients.

5.1. Session and Connection States

An SSL session is stateful. It is the responsibility of the SSL
handshake protocol to coordinate the states of the client and server
thereby allow ng the protocol state nachines of each to operate
consistently, despite the fact that the state is not exactly
parallel. Logically, the state is represented twi ce, once as the
current operating state and (during the handshake protocol) again as
the pending state. Additionally, separate read and wite states are
mai nt ai ned. Wen the client or server receives a change ci pher spec
nmessage, it copies the pending read state into the current read
state. Wien the client or server sends a change ci pher spec nessage,
it copies the pending wite state into the current wite state. Wen
t he handshake negotiation is conplete, the client and server exchange
change ci pher spec nmessages (see Section 5.3), and they then

communi cate using the new y agreed-upon ci pher spec.

An SSL session nmay include nultiple secure connections; in addition
parties may have nultiple sinultaneous sessions.

Freier, et al. Hi storic [Page 12]

RFC 6101 The SSL Protocol Version 3.0 August 2011

The session state includes the follow ng el enents:

session identifier: An arbitrary byte sequence chosen by the server
to identify an active or resunabl e session state.

peer certificate: X509.v3 [X509] certificate of the peer. This
el ement of the state may be null

conpression nethod: The algorithmused to conpress data prior to
encryption.

ci pher spec: Specifies the bulk data encryption algorithm (such as
null, DES, etc.) and a MAC algorithm (such as MD5 or SHA). It
al so defines cryptographic attributes such as the hash_size. (See
Appendix A 7 for formal definition.)

master secret: 48-byte secret shared between the client and server

is resunable: A flag indicating whether the session can be used to
initiate new connections

The connection state includes the follow ng el ements:

server and client random Byte sequences that are chosen by the
server and client for each connection

server wite MAC secret: The secret used in MAC operations on data
written by the server.

client wite MAC secret: The secret used in MAC operations on data
witten by the client.

server wite key: The bulk cipher key for data encrypted by the
server and decrypted by the client.

client wite key: The bulk cipher key for data encrypted by the
client and decrypted by the server

initialization vectors: Wen a block cipher in G pher Block Chaining
(CBC) node is used, an initialization vector (IV) is maintained
for each key. This field is first initialized by the SSL
handshake protocol. Thereafter, the final ciphertext block from
each record is preserved for use with the follow ng record

Freier, et al. Hi storic [Page 13]

RFC 6101 The SSL Protocol Version 3.0 August 2011

sequence nunbers: Each party naintains separate sequence nunbers for
transmitted and recei ved nessages for each connection. Wen a
party sends or receives a change ci pher spec nessage, the
appropriate sequence nunber is set to zero. Sequence nunbers are
of type uint64 and may not exceed 2"64-1

5.2. Record Layer

The SSL record | ayer receives uninterpreted data from hi gher |ayers
in non-enpty bl ocks of arbitrary size.

5.2.1. Fragnentation

The record | ayer fragnents infornmation blocks into SSLPI ai nt ext
records of 2714 bytes or less. Cient nessage boundaries are not
preserved in the record layer (i.e., multiple client messages of the
same Content Type nmay be coal esced into a single SSLPI ai ntext record).

struct {
uint8 maj or, mnor;
} Protocol Version;

enum {
change_ci pher _spec(20), alert(21), handshake(22),
application_data(23), (255)

} Content Type;

struct {

Cont ent Type type;

Pr ot ocol Ver si on versi on;

uint16 | ength;

opaque fragment|[SSLPI ai ntext.|ength];
} SSLPI ai nt ext;

type: The higher level protocol used to process the encl osed
fragnment.

versi on: The version of protocol being enployed. This docunent
descri bes SSL version 3.0 (see Appendix A 1).

length: The length (in bytes) of the follow ng
SSLPl ai ntext.fragnent. The I ength should not exceed 2"14.

fragment: The application data. This data is transparent and

treated as an independent block to be dealt with by the higher
| evel protocol specified by the type field.

Freier, et al. Hi storic [Page 14]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Note: Data of different SSL record |ayer content types nay be
interleaved. Application data is generally of |ower precedence for
transm ssion than ot her content types.

5.2.2. Record Conpression and Deconpression

Al'l records are conpressed using the conpression algorithmdefined in
the current session state. There is always an active conpression

al gorithm however, initially it is defined as

Conpr essi onMet hod. nul I . The conpression algorithmtransl ates an
SSLPl ai ntext structure into an SSLConpressed structure. Conpression
functions erase their state informati on whenever the G pherSpec is
repl aced.

Note: The Ci pherSpec is part of the session state described in
Section 5.1. References to fields of the C pherSpec are nmade

t hroughout this document using presentation syntax. A nore conplete
description of the G pherSpec is shown in Appendix A 7.

Conpressi on nust be | ossless and may not increase the content |ength
by nore than 1024 bytes. |If the deconpression function encounters an
SSLConpr essed. fragnment that woul d deconpress to a length in excess of
2714 bytes, it should issue a fatal deconpression_failure alert
(Section 5.4.2).

struct {
Cont ent Type type; /* same as SSLPI ai ntext.type */
Pr ot ocol Versi on version;/* sanme as SSLPI ai ntext.version */
uint 16 | engt h;
opaque fragment[SSLConpr essed. | engt h];
} SSLConpr essed;

length: The length (in bytes) of the follow ng
SSLConpr essed. fragment. The |l ength should not exceed 2714 + 1024.

fragment: The conpressed form of SSLPI ai ntext.fragnent.

Not e: A ConpressionMethod. null operation is an identity operation; no
fields are altered (see Appendix A 4.1.)

| mpl enent ati on note: Deconpression functions are responsible for
ensuring that nessages cannot cause internal buffer overfl ows.

Freier, et al. Hi storic [Page 15]

RFC 6101 The SSL Protocol Version 3.0 August 2011

5.2.3. Record Payl oad Protection and the G pher Spec

Al'l records are protected using the encryption and MAC al gorithns
defined in the current C pherSpec. There is always an active

Ci pher Spec; however, initially it is SSL_NULL_ W TH NULL_NULL, which
does not provide any security.

Once the handshake is conplete, the two parties have shared secrets
that are used to encrypt records and conpute keyed Message

Aut henti cati on Codes (MACs) on their contents. The techni ques used
to performthe encryption and MAC operations are defined by the

Ci pher Spec and constrai ned by Ci pher Spec. ci pher _type. The encryption
and MAC functions translate an SSLConpressed structure into an

SSLCi phertext. The decryption functions reverse the process.

Transm ssions al so include a sequence nunber so that m ssing,

altered, or extra nmessages are detectable.

struct {
Cont ent Type type;
Pr ot ocol Versi on version;
uint16 | ength;
sel ect (G pher Spec. ci pher_type) {
case stream GenericStreanCi pher;
case bl ock: GenericBl ockGi pher;
} fragnent;
} SSLGi phertext;

type: The type field is identical to SSLConpressed.type.
version: The version field is identical to SSLConpressed. version.

length: The length (in bytes) of the follow ng
SSLCi phertext.fragnent. The length may not exceed 2714 + 2048.

fragment: The encrypted form of SSLConpressed.fragment, including
the MAC.

5.2.3.1. Null or Standard Stream G pher

Stream ci phers (including Bul kG pher Al gorithmnull; see Appendix A7)
convert SSLConpressed.fragnment structures to and from stream
SSLCi phertext.fragnent structures.

streamci phered struct {
opaque content[SSLConpressed. | engt h];
opaque MAC Ci pher Spec. hash_si ze] ;

} CenericStreanC pher;

Freier, et al. Hi storic [Page 16]

RFC 6101 The SSL Protocol Version 3.0 August 2011

The MAC i s generated as:

hash(MAC wite_secret + pad_2 +
hash(MAC wite_secret + pad_1 + seq_nhum +
SSLConpr essed. type + SSLConpressed. | ength +
SSLConpr essed. fragnment)) ;

where "+" denot es concatenation

pad_1: The character 0x36 repeated 48 tines for MD5 or 40 tinmes for
SHA.

pad 2: The character 0x5c repeated 48 tines for MD5 or 40 tines for
SHA,

seq_num The sequence nunber for this nessage.
hash: Hashing al gorithmderived fromthe ci pher suite.

Note that the MAC i s conputed before encryption. The stream cipher
encrypts the entire block, including the MAC. For stream ciphers
that do not use a synchronization vector (such as RC4), the stream
ci pher state fromthe end of one record is sinply used on the
subsequent packet. If the C pherSuite is SSL_NULL W TH NULL_ NULL,
encryption consists of the identity operation (i.e., the data is not
encrypted and the MAC size is zero inplying that no MAC i s used).
SSLCi phertext.length is SSLConpressed. | ength plus

Ci pher Spec. hash_si ze.

5.2.3.2. CBC Block Ci pher

For bl ock ciphers (such as RC2 or DES), the encryption and MAC
functions convert SSLConpressed. fragment structures to and from bl ock
SSLCi phertext.fragnment structures.

bl ock-ci phered struct {
opaque content[SSLConpressed. | engt h];
opaque MAC Ci pher Spec. hash_si ze] ;
ui nt 8 paddi ng[Generi cBl ockCi pher. paddi ng_| engt h];
ui nt 8 paddi ng_I| engt h;
} CGeneri cBl ockCi pher;

The MAC is generated as described in Section 5.2.3.1.

paddi ng: Padding that is added to force the length of the plaintext
to be a nultiple of the bl ock cipher’s block | ength.

Freier, et al. Hi storic [Page 17]

RFC 6101 The SSL Protocol Version 3.0 August 2011

paddi ng_| ength: The I ength of the padding nust be |ess than the
ci pher’s block Iength and may be zero. The padding |ength should
be such that the total size of the GenericBl ockG pher structure is
a multiple of the cipher’s block Iength.

The encrypted data | ength (SSLC phertext.length) is one nore than the
sum of SSLConpressed. | ength, Ci pherSpec. hash_si ze, and
paddi ng_I engt h.

Note: Wth CBC, the initialization vector (1V) for the first record
is provided by the handshake protocol. The IV for subsequent records
is the last ciphertext block fromthe previous record.

5.3. Change Ci pher Spec Protoco

The change ci pher spec protocol exists to signal transitions in

ci phering strategies. The protocol consists of a single nmessage,
which is encrypted and conpressed under the current (not the pending)
Ci pher Spec. The nessage consists of a single byte of value 1

struct {
enum { change_ci pher _spec(1), (255) } type;
} ChangeGi pher Spec;

The change ci pher spec nessage is sent by both the client and server
to notify the receiving party that subsequent records wll be
protected under the just-negotiated C pherSpec and keys. Reception
of this nmessage causes the receiver to copy the read pending state
into the read current state. The client sends a change ci pher spec
nmessage foll owi ng handshake key exchange and certificate verify
messages (if any), and the server sends one after successfully
processing the key exchange nessage it received fromthe client. An
unexpect ed change ci pher spec nmessage shoul d generate an

unexpect ed_nessage alert (Section 5.4.2). \When resuning a previous
session, the change cipher spec nessage is sent after the hello
nessages.

5.4. Aert Protoco

One of the content types supported by the SSL record |ayer is the
alert type. Alert nessages convey the severity of the nessage and a
description of the alert. Alert nessages with a | evel of fatal

result in the inmmediate term nation of the connection. In this case,
ot her connections corresponding to the session nmay continue, but the
session identifier nust be invalidated, preventing the failed session
frombeing used to establish new connections. Like other nessages,

al ert nessages are encrypted and conpressed, as specified by the
current connection state.

Freier, et al. Hi storic [Page 18]

RFC 6101 The SSL Protocol Version 3.0 August 2011

5. 4.

enum { warning(1l), fatal (2), (255) } AlertlLevel

enum {
cl ose_notify(0),
unexpect ed_nessage(10),
bad record _nac(20),
deconpressi on_fail ure(30),
handshake fail ure(40),
no_certificate(41),
bad _certificate(42),
unsupported_certificate(43),
certificate revoked(44),
certificate_expired(45),
certificate_unknown(46),
illegal _paraneter (47)
(255)

} AlertDescription;

struct {

Al ertlLevel |evel;

Al ert Descri ption description;
} Alert;

1. Cosure Aerts

The client and the server nust share know edge that the connection is
ending in order to avoid a truncation attack. Either party may
initiate the exchange of closing nessages.

close notify: This nmessage notifies the recipient that the sender
will not send any nore nessages on this connection. The session
becones unresumable if any connection is terminated w thout proper
close_notify nmessages with | evel equal to warning.

Either party may initiate a close by sending a close_notify alert.
Any data received after a closure alert is ignored.

Each party is required to send a close notify alert before closing

the wite side of the connection. It is required that the other
party respond with a close_notify alert of its own and cl ose down the
connection inmedi ately, discarding any pending wites. It is not

required for the initiator of the close to wait for the respondi ng
close notify alert before closing the read side of the connection

NB: It is assunmed that closing a connection reliably delivers pending
data before destroying the transport.

Freier, et al. Hi storic [Page 19]

RFC 6101 The SSL Protocol Version 3.0 August 2011

5.4.2. Error Aerts

Error handling in the SSL handshake protocol is very sinple. Wen an
error is detected, the detecting party sends a nessage to the other
party. Upon transmi ssion or receipt of a fatal alert nessage, both
parties i mediately close the connection. Servers and clients are
required to forget any session identifiers, keys, and secrets
associated with a failed connection. The following error alerts are
defi ned:

unexpect ed_nessage: An inappropriate nessage was received. This
alert is always fatal and shoul d never be observed in
communi cati on between proper inplenentations.

bad record_nmac: This alert is returned if a record is received with
an incorrect MAC. This nmessage is always fatal

deconpression _failure: The deconpression function received i nproper
i nput (e.g., data that would expand to excessive length). This
nessage is always fatal.

handshake failure: Reception of a handshake_failure alert nmessage
i ndi cates that the sender was unable to negotiate an acceptable
set of security paraneters given the options available. This is a
fatal error.

no_certificate: A no_certificate alert nessage nmay be sent in
response to a certification request if no appropriate certificate
is avail able.

bad certificate: A certificate was corrupt, contained signatures
that did not verify correctly, etc.

unsupported_certificate: A certificate was of an unsupported type.
certificate revoked: A certificate was revoked by its signer

certificate_expired: A certificate has expired or is not currently
val i d.

certificate_unknown: Sonme other (unspecified) issue arose in
processing the certificate, rendering it unacceptabl e.

illegal _parameter: A field in the handshake was out of range or
i nconsistent with other fields. This is always fatal

Freier, et al. Hi storic [Page 20]

RFC 6101 The SSL Protocol Version 3.0 August 2011

5.5. Handshake Protocol Overview

The cryptographic paraneters of the session state are produced by the
SSL handshake protocol, which operates on top of the SSL record

| ayer. Wen an SSL client and server first start conmunicating, they
agree on a protocol version, select cryptographic algorithns,
optionally authenticate each other, and use public key encryption
techni ques to generate shared secrets. These processes are perforned
i n the handshake protocol, which can be sumuarized as follows: the
client sends a client hello nessage to which the server nust respond
with a server hello nmessage, or else a fatal error will occur and the
connection will fail. The client hello and server hello are used to
establish security enhancenent capabilities between client and
server. The client hello and server hello establish the follow ng
attributes: Protocol Version, Session ID, G pher Suite, and
Conpression Method. Additionally, two random val ues are generated
and exchanged: CientHello.random and ServerHell o.random

Fol I owi ng the hell o nmessages, the server will send its certificate,
if it is to be authenticated. Additionally, a server key exchange
nmessage may be sent, if it is required (e.g., if their server has no
certificate, or if its certificate is for signing only). [If the
server is authenticated, it may request a certificate fromthe
client, if that is appropriate to the cipher suite selected. Now the
server will send the server hell o done nessage, indicating that the
hel | o- ressage phase of the handshake is conplete. The server will
then wait for a client response. |f the server has sent a
certificate request nessage, the client nust send either the
certificate nmessage or a no_certificate alert. The client key
exchange nessage is now sent, and the content of that nessage wl|l
depend on the public key al gorithm sel ected between the client hello
and the server hello. |If the client has sent a certificate with
signing ability, a digitally-signed certificate verify message is
sent to explicitly verify the certificate.

At this point, a change cipher spec nessage is sent by the client,
and the client copies the pending G pherSpec into the current

Ci pher Spec. The client then imredi ately sends the finished nessage
under the new al gorithms, keys, and secrets. In response, the server
will send its own change ci pher spec nessage, transfer the pending to
the current C pherSpec, and send its finished nmessage under the new
Ci pherSpec. At this point, the handshake is conplete and the client
and server may begin to exchange application |layer data. (See flow
chart bel ow.)

Freier, et al. Hi storic [Page 21]

RFC 6101 The SSL Protocol Version 3.0 August 2011

dient Server

CientHello aeeaa-- >
ServerHell o

Certificate*

Ser ver KeyExchange*

Certificat eRequest*

<-m----- Server Hel | oDone
Certificate*
d i ent KeyExchange
CertificateVerify*
[ChangeGi pher Spec]
Finished a------- >

[ChangeCi pher Spec]

Lommmmma Fi ni shed

Application Data S > Application Data

* | ndicates optional or situation-dependent nessages that are not
al ways sent.

Note: To help avoid pipeline stalls, ChangeC pherSpec is an
i ndependent SSL protocol content type, and is not actually an SSL
handshake nessage.

When the client and server decide to resune a previous session or
duplicate an existing session (instead of negotiating new security
paraneters) the nmessage flowis as follows:

The client sends a CientHello using the session ID of the session to
be resuned. The server then checks its session cache for a match.
If a match is found, and the server is willing to re-establish the
connection under the specified session state, it will send a
ServerHello with the same session ID value. At this point, both
client and server must send change ci pher spec nessages and proceed
directly to finished nessages. Once the re-establishnent is
conplete, the client and server may begin to exchange application

| ayer data. (See flow chart below) |If a session ID natch is not
found, the server generates a new session ID and the SSL client and
server performa full handshake.

Freier, et al. Hi storic [Page 22]

RFC 6101 The SSL Protocol Version 3.0 August 2011

dient Server

CientHello aeeaa-- >
ServerHel |l o
[change ci pher spec]

<e-m----- Fi ni shed
change ci pher spec
Fi nished — a------- >
Application Data <------- > Application Data

The contents and significance of each nmessage will be presented in
detail in the follow ng sections.

5.6. Handshake Protoco

The SSL handshake protocol is one of the defined higher level clients
of the SSL record protocol. This protocol is used to negotiate the
secure attributes of a session. Handshake nessages are supplied to
the SSL record layer, where they are encapsulated within one or nore
SSLPI ai ntext structures, which are processed and transnitted as
specified by the current active session state.

enum {
hell o_request(0), client_hello(1l), server_hello(2),
certificate(11l), server_key_exchange (12),
certificate_request(13), server_hell o_done(14),
certificate_verify(15), client_key_ exchange(16),
fini shed(20), (255)

} HandshakeType;

struct {
HandshakeType nsg_type; / * handshake type */
ui nt 24 | engt h; /* bytes in message */

sel ect (HandshakeType) {
case hello_request: Hell oRequest;
case client_hello: dientHello;
case server_hello: ServerHello;
case certificate: Certificate;
case server_key_exchange: ServerKeyExchange
case certificate_request: CertificateRequest;
case server_hell o_done: ServerHel |l oDone;
case certificate verify: CertificateVerify;
case client_key exchange: dientKeyExchange;
case finished: Finished;

} body;

} Handshake;

Freier, et al. Hi storic [Page 23]

RFC 6101 The SSL Protocol Version 3.0 August 2011

The handshake protocol nessages are presented in the order they nust
be sent; sendi ng handshake nessages in an unexpected order results in
a fatal error.

5.6.1. Hello nessages

The hell o phase nessages are used to exchange security enhancenent
capabilities between the client and server. Wen a new session
begi ns, the G pherSpec encryption, hash, and conpression al gorithns
are initialized to null. The current C pherSpec is used for
renegoti ati on nessages.

5.6.1.1. Hello Request

The hell o request nmessage may be sent by the server at any tine, but
will be ignored by the client if the handshake protocol is already
underway. It is a sinple notification that the client should begin
the negoti ati on process anew by sending a client hello nessage when
conveni ent.

Not e: Since handshake nessages are intended to have transm ssion
precedence over application data, it is expected that the negotiation
begin in no nore than one or two tinmes the transmission tine of a
maxi mum | ength application data nessage.

After sending a hello request, servers should not repeat the request
until the subsequent handshake negotiation is conplete. A client
that receives a hello request while in a handshake negoti ati on state
shoul d sinply ignore the nessage.

The structure of a hello request nessage is as foll ows:
struct { } Hell oRequest;
5.6.1.2. dient Hello
When a client first connects to a server it is required to send the
client hello as its first nessage. The client can also send a client
hello in response to a hello request or on its own initiative in
order to renegotiate the security paraneters in an existing

connection. The client hello nessage includes a random structure,
which is used later in the protocol

Freier, et al. Hi storic [Page 24]

RFC 6101 The SSL Protocol Version 3.0 August 2011

struct {
uint 32 gnt _uni x_ti me;
opaque random byt es[28];
} Random

gnt_unix_time: The current tine and date in standard UNI X 32-bit
format according to the sender’s internal clock. C ocks are not
required to be set correctly by the basic SSL protocol; higher
I evel or application protocols nmay define additional requirements.

random bytes: 28 bytes generated by a secure random nunber
gener at or.

The client hello nessage includes a variable-length session
identifier. |If not enpty, the value identifies a session between the
same client and server whose security paranmeters the client wi shes to
reuse. The session identifier may be froman earlier connection

this connection, or another currently active connection. The second
option is useful if the client only wishes to update the random
structures and derived values of a connection, while the third option
makes it possible to establish several sinmnultaneous independent
secure connections w thout repeating the full handshake protocol

The actual contents of the SessionlD are defined by the server.

opaque Sessi onl D<0. . 32>;

Warni ng: Servers nust not place confidential information in session
identifiers or let the contents of fake session identifiers cause any
breach of security.

The CipherSuite list, passed fromthe client to the server in the
client hell o nessage, contains the conbinations of cryptographic

al gorithms supported by the client in order of the client’s
preference (first choice first). Each CipherSuite defines both a key
exchange al gorithm and a Ci pherSpec. The server will select a cipher
suite or, if no acceptable choices are presented, return a handshake
failure alert and cl ose the connection

uint8 G pherSuite[2]; /* Cryptographic suite selector */

The client hello includes a list of conpression algorithns supported

by the client, ordered according to the client’s preference. |If the
server supports none of those specified by the client, the session
nmust fail.

enum { null (0), (255) } Conpressi onMet hod;

| ssue: Which conpression nethods to support is under investigation

Freier, et al. Hi storic [Page 25]

RFC 6101 The SSL Protocol Version 3.0 August 2011

The structure of the client hello is as fol |l ows.

struct {
Pr ot ocol Versi on client_version;
Random r andom
Sessi onl D session_id;
Ci pher Sui te ci pher_suites<2..2"16-1>;
Conpr essi onMet hod conpressi on_net hods<1..278- 1>;
} dientHell o;

client_version: The version of the SSL protocol by which the client
wi shes to comunicate during this session. This should be the
nost recent (highest val ued) version supported by the client. For
this version of the specification, the version will be 3.0 (see
Appendi x E for details about backward conpatibility).

random A client-generated random structure.

session_id: The ID of a session the client wishes to use for this
connection. This field should be enpty if no session_id is
avail able or the client wishes to generate new security
par aneters

ci pher_suites: This is a list of the cryptographic options supported
by the client, sorted with the client’'s first preference first.
If the session_id field is not enpty (inplying a session
resunption request), this vector nust include at |east the
ci pher_suite fromthat session. Values are defined in
Appendi x A. 6.

conpression_nethods: This is a list of the conpression nethods
supported by the client, sorted by client preference. |f the
session_id field is not enpty (inplying a session resunption
request), this vector must include at |east the conpression_nethod
fromthat session. Al inplenentations nust support
Conpr essi onMet hod. nul I .

After sending the client hello nessage, the client waits for a server
hell o message. Any other handshake nessage returned by the server
except for a hello request is treated as a fatal error.

| rpl enent ati on note: Application data may not be sent before a
fini shed message has been sent. Transmitted application data is
known to be insecure until a valid finished nessage has been
received. This absolute restriction is relaxed if there is a
current, non-null encryption on this connection

Freier, et al. Hi storic [Page 26]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Forward conpatibility note: In the interests of forward
compatibility, it is permitted for a client hello nessage to include
extra data after the conpression nethods. This data nust be included
i n the handshake hashes, but mnust otherw se be ignored.

5.6.1.3. Server Hello

The server processes the client hell o nessage and responds with
ei ther a handshake_failure alert or server hello nessage.

struct {
Pr ot ocol Ver si on server_version;
Random r andom
Sessi onl D session_id;
Ci pher Sui te ci pher_suite;
Conpr essi onMet hod conpr essi on_net hod,;
} ServerHell o;

server_version: This field will contain the |ower of that suggested
by the client in the client hello and the highest supported by the
server. For this version of the specification, the version wll
be 3.0 (see Appendix E for details about backward conpatibility).

random This structure is generated by the server and nust be
different from (and i ndependent of) CientHello.random

session_id: This is the identity of the session corresponding to
this connection. |If the CientHello.session_id was non-enpty, the
server will look in its session cache for a match. |If a match is
found and the server is willing to establish the new connection
using the specified session state, the server will respond with
the sane value as was supplied by the client. This indicates a
resunmed session and dictates that the parties nust proceed
directly to the finished nessages. Oherwise, this field wll
contain a different value identifying the new session. The server
may return an enpty session_id to indicate that the session wll
not be cached and therefore cannot be resuned.

ci pher_suite: The single cipher suite selected by the server from
the list in CientHello.cipher_suites. For resuned sessions, this
field is the value fromthe state of the session being resuned.

conpressi on_nethod: The single conpression algorithmselected by the
server fromthe list in CientHello.conpression_nethods. For
resuned sessions, this field is the value fromthe resuned session
st at e.

Freier, et al. Hi storic [Page 27]

RFC 6101 The SSL Protocol Version 3.0 August 2011

5.6.2. Server Certificate

If the server is to be authenticated (which is generally the case),
the server sends its certificate immediately foll owi ng the server
hell o message. The certificate type nust be appropriate for the

sel ected ci pher suite's key exchange algorithm and is generally an
X.509.v3 certificate (or a nodified X 509 certificate in the case of
FORTEZZA(tm) [FOR]). The sanme nessage type will be used for the
client’s response to a certificate request nessage.

opaque ASN. 1Cert<1..2724- 1>,
struct {

ASN. 1Cert certificate |ist<l..2"24-1>;
} Certificate;

certificate list: This is a sequence (chain) of X 509.v3
certificates, ordered with the sender’s certificate first foll owed
by any certificate authority certificates proceeding sequentially
upwar d.

Note: PKCS #7 [PKCS7] is not used as the format for the certificate
vector because PKCS #6 [PKCS6] extended certificates are not used.
Al so, PKCS #7 defines a Set rather than a Sequence, making the task
of parsing the list nore difficult.

5.6.3. Server Key Exchange Message

The server key exchange nessage is sent by the server if it has no
certificate, has a certificate only used for signing (e.g., DSS [DSS]
certificates, signing-only RSA [RSA] certificates), or FORTEZZA KEA
key exchange is used. This nessage is not used if the server
certificate contains Diffie-Hellman [DHL] paraneters.

Note: According to current US export law, RSA noduli |arger than 512
bits may not be used for key exchange in software exported fromthe
US. Wth this nessage, |arger RSA keys may be used as signature-only
certificates to sign tenporary shorter RSA keys for key exchange

enum{ rsa, diffie_hellman, fortezza_kea }
KeyExchangeAl gorit hm

struct {
opaque rsa_nodul us<l..2"16- 1>;
opaque rsa_exponent<l..2216-1>;
} Server RSAPar ans;

Freier, et al. Hi storic [Page 28]

RFC 6101 The SSL Protocol Version 3.0 August 2011

rsa_nodul us: The nodul us of the server’s tenporary RSA key.
rsa_exponent: The public exponent of the server’s tenporary RSA key.

struct {
opaque dh_p<1..2716-1>;
opaque dh_g<1..2716-1>;
opaque dh_Ys<1..2"16-1>;
} Server DHPar ans; /* Epheneral DH paraneters */

dh_p: The prine nodulus used for the Diffie-Hell man operation
dh_g: The generator used for the Diffie-Hellman operation
dh_Ys: The server’'s Diffie-Hellman public value (gX nod p).

struct {
opaque r_s [128];
} Server FortezzaPar ans;

r_s: Server random nunmber for FORTEZZA KEA (Key Exchange Al gorithm.

struct {
sel ect (KeyExchangeAl gorithm {
case diffie_hell man:
Ser ver DHPar ans par amns;
Si gnat ure si gned_par ans;
case rsa
Ser ver RSAPar anms par ans;
Si gnature signed_parans;
case fortezza kea:
Server Fort ezzaPar ans par amns;
i
} Server KeyExchange;

parans: The server’s key exchange paraneters

signed_paranms: A hash of the correspondi ng parans value, with the
signature appropriate to that hash applied.

md5_hash: MD5(C ientHello.random + ServerHell o.random +
Ser ver Par ans) ;

Freier, et al. Hi storic [Page 29]

RFC 6101 The SSL Protocol Version 3.0 August 2011

sha_hash: SHA(C ientHello.random + ServerHell o.random +
Ser ver Par ans) ;

enum { anonynous, rsa, dsa } SignatureAl gorithm

digitally-signed struct {
sel ect (SignatureAl gorithm {
case anonynous: struct { };
case rsa
opaque nd5_hash[16];
opaque sha_hash[20];
case dsa
opaque sha_hash[20];
i

} Signature;
5.6.4. Certificate Request

A non-anonynous server can optionally request a certificate fromthe
client, if appropriate for the selected cipher suite.

enum {
rsa_sign(l), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
rsa_epheneral _dh(5), dss_epheneral dh(6), fortezza kea(20),
(255)

} dientCertificateType;

opaque Di stingui shedNane<1..2"16-1>;

struct {

CientCertificateType certificate types<l..2"8-1>;
Di stingui shedNanme certificate_ authorities<3..2"16-1>;
} CertificateRequest;

certificate types: This fieldis alist of the types of certificates
requested, sorted in order of the server’s preference.

certificate_authorities: A list of the distinguished names of
acceptable certificate authorities.

Not e: Di stingui shedNane is derived from [X509].

Note: It is a fatal handshake failure alert for an anonynous server
to request client identification

Freier, et al. Hi storic [Page 30]

RFC 6101 The SSL Protocol Version 3.0 August 2011

5.6.5. Server Hello Done

The server hello done nessage is sent by the server to indicate the
end of the server hello and associ ated nessages. After sending this
message, the server will wait for a client response.

struct { } ServerHell oDone;

Upon recei pt of the server hello done nessage the client should
verify that the server provided a valid certificate if required and
check that the server hello paraneters are acceptable.

5.6.6. Client Certificate

This is the first message the client can send after receiving a
server hell o done nmessage. This nessage is only sent if the server
requests a certificate. |If no suitable certificate is available, the
client should send a no_certificate alert instead. This alert is
only a warni ng; however, the server nmay respond with a fata

handshake failure alert if client authentication is required. dient
certificates are sent using the certificate defined in Section 5.6.2.

Note: Client Diffie-Hellman certificates nmust match the server
specified D ffie-Hellman paraneters.

5.6.7. dient Key Exchange Message

The choi ce of nmessages depends on which public key al gorithm(s) has
(have) been selected. See Section 5.6.3 for the KeyExchangeAl gorithm
definition.

struct {
sel ect (KeyExchangeAl gorithm {
case rsa: EncryptedPreMasterSecret;
case diffie_hellman: CientDiffieHell manPublic
case fortezza kea: FortezzaKeys;
} exchange_keys;
} dient KeyExchange;

The information to select the appropriate record structure is in the
pendi ng session state (see Section 5.1).

Freier, et al. Hi storic [Page 31]

RFC 6101 The SSL Protocol Version 3.0 August 2011

5.6.7.1. RSA Encrypted Prenmaster Secret Message

If RSA is being used for key agreenent and authentication, the client
generates a 48-byte premaster secret, encrypts it under the public
key fromthe server’s certificate or tenporary RSA key from a server
key exchange nessage, and sends the result in an encrypted prenaster
secret nessage.

struct {
Pr ot ocol Versi on client_version;
opaque randonf 46] ;

} PreMasterSecret;

client_version: The |latest (newest) version supported by the client.
This is used to detect version roll-back attacks.

random 46 securel y-generated random byt es.

struct {
publ i c-key-encrypted PreMasterSecret pre_naster_secret;
} Encrypt edPreMast er Secr et ;

pre_master_secret: This randomvalue is generated by the client and
is used to generate the naster secret, as specified in
Section 6. 1.

5.6.7.2. FORTEZZA Key Exchange Message

Under FORTEZZA, the client derives a token encryption key (TEK) using
t he FORTEZZA Key Exchange Al gorithm (KEA). The client’s KEA
calculation uses the public key in the server’s certificate al ong
with private paraneters in the client’s token. The client sends
public paraneters needed for the server to generate the TEK, using
its own private paraneters. The client generates session keys, waps
themusing the TEK, and sends the results to the server. The client
generates |IVs for the session keys and TEK and sends them al so. The
client generates a random 48-byte premaster secret, encrypts it using
the TEK, and sends the result:

Freier, et al. Hi storic [Page 32]

RFC 6101 The SSL Protocol Version 3.0 August 2011

struct {
opaque y_c<0..128>;
opaque r_c[128];
opaque y_si gnature[40];
opaque wrapped_client_wite_key[12];
opaque wrapped_server _wite key[12];
opaque client_wite_ iv[24];
opaque server_wite_iv[24];
opaque master_secret_iv[24];
bl ock- ci phered opaque encrypted_pre_naster_secret[48];
} FortezzaKeys;

y _signature: y signature is the signature of the KEA public key,
signed with the client’'s DSS private key.

y_c: The client’s Yc value (public key) for the KEA calculation. |If
the client has sent a certificate, and its KEA public key is
suitable, this value nust be enpty since the certificate already
contains this value. |If the client sent a certificate without a
suitable public key, y c is used and y_signature is the KEA public
key signed with the client’s DSS private key. For this value to
be used, it nust be between 64 and 128 bytes.

r c: The client’s Rc value for the KEA cal cul ation

wrapped_client_wite_key: This is the client’s wite key, wapped by
the TEK

wr apped_server _wite key: This is the server’'s wite key, wapped by
the TEK

client_wite iv: The IV for the client wite key.
server_wite_iv: The IV for the server wite key.

master_secret _iv: This is the IV for the TEK used to encrypt the
premaster secret.

pre_master_secret: A random val ue, generated by the client and used

to generate the nmaster secret, as specified in Section 6.1. In
the above structure, it is encrypted using the TEK

Freier, et al. Hi storic [Page 33]

RFC 6101 The SSL Protocol Version 3.0 August 2011

5,6.7.3. dient Dffie-Hellnman Public Val ue

This structure conveys the client’s Diffie-Hellmn public value (Yc)
if it was not already included in the client’s certificate. The
encodi ng used for Yc is determ ned by the enunerated

Publ i cVal ueEncodi ng.

enum{ inplicit, explicit } PublicVal ueEncodi ng;

inmplicit: |If the client certificate already contains the public
value, then it is inplicit and Yc does not need to be sent again.

explicit: Yc needs to be sent.

struct {
sel ect (PublicVal ueEncodi ng) {
case inplicit: struct { };
case explicit: opaque dh_Yc<l..2"16-1>;
} dh_public;
} CientDi ffieHell manPublic

dh_Yc: The client’'s Diffie-Hellmn public value (Yc).
5.6.8. Certificate Verify

This nessage is used to provide explicit verification of a client
certificate. This message is only sent follow ng any client
certificate that has signing capability (i.e., all certificates
except those containing fixed Diffie-Hellman paraneters).

struct {
Si gnat ure signature;
} CertificateVerify;

CertificateVerify.signature.md5_hash
MD5(nmast er _secret + pad_2 +
MD5(handshake_messages + nmaster_secret + pad_1));
Certificate.signature.sha_hash
SHA(nast er _secret + pad_2 +
SHA(handshake_nessages + nmaster_secret + pad_1));

pad _1: This is identical to the pad_1 defined in Section 5.2.3.1.
pad_2: This is identical to the pad_2 defined in Section 5.2.3.1.

Here, handshake nessages refers to all handshake messages starting at
client hello up to but not including this nessage.

Freier, et al. Hi storic [Page 34]

RFC 6101 The SSL Protocol Version 3.0 August 2011

5.6.9. Finished

A finished nessage is always sent inmmedi ately after a change cipher
spec nmessage to verify that the key exchange and authentication
processes were successful. The finished nessage is the first
protected with the just-negotiated algorithns, keys, and secrets. No
acknow edgnent of the finished nessage is required; parties nmay begin
sendi ng encrypted data i mediately after sending the finished
message. Recipients of finished nessages nust verify that the
contents are correct.

enum { client (0x434C4E54), server(0x53525652) } Sender

struct {
opaque nd5_hash[16];
opaque sha_hash[20];
} Finished;

md5_hash: MD5(naster_secret + pad2 + MD5(handshake _nessages + Sender
+ master_secret + padl));

sha_hash: SHA(master_secret + pad2 + SHA(handshake_nessages + Sender
+ master_secret + padl));

handshake nessages: Al of the data fromall handshake nessages up
to but not including this nmessage. This is only data visible at
t he handshake | ayer and does not include record |ayer headers.

It is a fatal error if a finished nessage is not preceeded by a
change ci pher spec nessage at the appropriate point in the handshake.

The hash contained in finished nessages sent by the server

i ncorporate Sender.server; those sent by the client incorporate
Sender.client. The val ue handshake_nessages includes all handshake
messages starting at client hello up to but not including this
finished message. This may be different from handshake nessages in
Section 5.6.8 because it would include the certificate verify nessage
(if sent).

Not e: Change ci pher spec nessages are not handshake nessages and are
not included in the hash conputations.

Freier, et al. Hi storic [Page 35]

RFC 6101 The SSL Protocol Version 3.0 August 2011

5.7. Application Data Protoco

Application data nmessages are carried by the record | ayer and are
fragment ed, conpressed, and encrypted based on the current connection
state. The nessages are treated as transparent data to the record

| ayer.

6. Cryptographi c Conputations

The key exchange, authentication, encryption, and MAC al gorithnms are
determ ned by the cipher_suite selected by the server and revealed in
the server hell o nessage.

6.1. Asymmretric Cryptographic Conputations

The asymmetric algorithnms are used in the handshake protocol to
aut henticate parties and to generate shared keys and secrets.

For Diffie-Hellman, RSA, and FORTEZZA, the same algorithmis used to
convert the pre_master_secret into the nmaster_secret. The
pre_master_secret should be deleted fromnenory once the
mast er _secret has been conput ed.

nmast er_secret =
MD5(pre_naster_secret + SHA('A' + pre_nmster_secret +
CdientHello.random + ServerHell o.randon)) +
MD5(pre_naster_secret + SHA(’' BB + pre_naster_secret +
CientHello.random + ServerHell o.randon)) +
MD5(pre_nmaster_secret + SHA(' CCC + pre_mmster_secret +
dientHello.random + ServerHel | 0. randon));

6.1.1. RSA

When RSA is used for server authentication and key exchange, a 48-
byte pre_master_secret is generated by the client, encrypted under
the server’s public key, and sent to the server. The server uses its
private key to decrypt the pre _naster_secret. Both parties then
convert the pre_nmaster_secret into the nmaster_secret, as specified
above.

RSA digital signatures are performed using PKCS #1 [PKCS1] bl ock

type 1. RSA public key encryption is perforned using PKCS #1 bl ock
type 2.

Freier, et al. Hi storic [Page 36]

RFC 6101 The SSL Protocol Version 3.0 August 2011

6.1.2. Diffie-Hellnmn

A conventional Diffie-Hellmn conputation is performed. The
negoti ated key (Z) is used as the pre_nmaster_secret, and is converted
into the master_secret, as specified above.

Note: Diffie-Hellman paraneters are specified by the server, and nmay
be either epheneral or contained within the server’s certificate.

6.1.3. FORTEZZA

A random 48-byte pre_nmaster_secret is sent encrypted under the TEK
and its IV. The server decrypts the pre_master_secret and converts
it into a master_secret, as specified above. Bulk cipher keys and
IVs for encryption are generated by the client’s token and exchanged
in the key exchange nessage; the naster_secret is only used for MAC
comput ati ons.

6.2. Symetric Cryptographic Cal cul ations and the Ci pher Spec

The techni que used to encrypt and verify the integrity of SSL records
is specified by the currently active Ci pherSpec. A typical exanple
woul d be to encrypt data using DES and generate authentication codes
using MD5. The encryption and MAC algorithns are set to
SSL_NULL_W TH NULL_NULL at the begi nning of the SSL handshake
protocol, indicating that no nmessage authentication or encryption is
performed. The handshake protocol is used to negotiate a nore secure
Ci pher Spec and to generate cryptographic keys.

6.2.1. The Master Secret

Bef ore secure encryption or integrity verification can be perforned
on records, the client and server need to generate shared secret

i nformati on known only to thenmselves. This value is a 48-byte
quantity called the master secret. The nmaster secret is used to
generate keys and secrets for encryption and MAC conputations. Sone
al gorithns, such as FORTEZZA, nmay have their own procedure for
generating encryption keys (the master secret is used only for MAC
conputations in FORTEZZA).

6.2.2. Converting the Master Secret into Keys and MAC Secrets

The master secret is hashed into a sequence of secure bytes, which
are assigned to the MAC secrets, keys, and non-export |Vs required by
the current C pherSpec (see Appendix A 7). Ci pherSpecs require a
client wite MAC secret, a server wite MAC secret, a client wite
key, a server wite key, a client wite IV, and a server wite |V,
which are generated fromthe naster secret in that order. Unused

Freier, et al. Hi storic [Page 37]

RFC 6101 The SSL Protocol Version 3.0 August 2011

val ues, such as FORTEZZA keys conmuni cated in the KeyExchange
message, are enpty. The following inputs are available to the key
definition process:

opaque Mast er Secret[48]
dientHello.random
Server Hel | o. random

When generating keys and MAC secrets, the master secret is used as an
entropy source, and the random val ues provi de unencrypted salt
material and IVs for exportable ciphers.

To generate the key material, conpute

key_ bl ock =

MD5(mast er _secret + SHA(' A + nmaster_secret +
Server Hel | o. random +
dientHello.random) +

MD5(nmast er _secret + SHA('BB + naster_secret +
Server Hel | 0. random +
CientHello.randonm)) +

MD5(mast er _secret + SHA(' CCC + mmster_secret +
Server Hel | o. random +
CientHello.randon)) + [...];

until enough output has been generated. Then, the key block is
partitioned as foll ows.

client_wite_ MAC secret[G pherSpec. hash_si ze]

server_write MAC secret[G pher Spec. hash_si ze]
client_write_key[C pher Spec. key materi al]

server_write_key[G pher Spec. key _materi al]

client_write_I V[C pherSpec.|1V_size] /* non-export ciphers */
server_wite_| V[Ci pherSpec.IV_size] /* non-export ciphers */

Any extra key_ block material is discarded.
Exportabl e encryption algorithnms (for which G pherSpec.is_exportabl e

is true) require additional processing as follows to derive their
final wite keys:

MD5(client_wite key +
ClientHello.random +
Server Hel | o. randon) ;

MD5(server_wite_key +
Server Hel | o. random +
CientHello.randon;

final _client_wite key

final _server_wite_key

Freier, et al. Hi storic [Page 38]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Exportabl e encryption algorithns derive their Vs fromthe random
nessages:

MD5(C i ent Hel | o. random + Server Hel | 0. randon

client_ wite |V
MD5(Server Hel | o. random + d i ent Hel | 0. random)

server_ wite |V =
MD5 outputs are trinmed to the appropriate size by discarding the
| east -significant bytes.

6.2.2.1. Export Key Ceneration Exanple

7.

SSL_RSA EXPORT_W TH RC2_CBC 40_MD5 requires five random bytes for
each of the two encryption keys and 16 bytes for each of the MAC
keys, for a total of 42 bytes of key material. M5 produces 16 bytes
of output per call, so three calls to MD5 are required. The M5

out puts are concatenated into a 48-byte key_block with the first M5
call providing bytes zero through 15, the second providing bytes 16
through 31, etc. The key block is partitioned, and the wite keys
are salted because this is an exportable encryption algorithm

client_wite MAC secret key_ bl ock[0. . 15]
server_write_ MAC secret = key_bl ock[16. . 31]
client_wite_key = key_bl ock][32. . 36]
server_wite_key = key_bl ock[37. . 41]
final _client_wite key = MD5(client_wite key +
ClientHello.random +
ServerHel |l 0. random [0. . 15] ;
final _server_wite_key = MD5(server_wite_key +
Server Hel | o. random +
dientHello.randon[O0..15];
MD5(d i ent Hel | o. random +
ServerHell o.random [O0..7];
server_wite_ |V = MD5(ServerHell o.random +
CientHello.random[0..7];

client_wite |V

Security Considerations

See Appendi x F.

Freier, et al. Hi storic [Page 39]

RFC 6101 The SSL Protocol Version 3.0 August 2011
8. Informative References

[DH1] Dffie, W and M Hellman, "New Directions in
Crypt ography", |EEE Transactions on Information Theory V.
| T-22, n. 6, pp. 74-84, June 1977.

[SSL- 2] H ckman, K., "The SSL Protocol", February 1995.

[3DES] Tuchman, W, "Hellman Presents No Shortcut Sol utions To
DES', |EEE Spectrum v. 16, n. 7, pp 40-41, July 1979.

[DES] ANSI X3.106, "Anerican National Standard for Infornmation
Systens-Data Link Encryption”, Anerican National
Standards Institute, 1983.

[DSS] NI ST FIPS PUB 186, "Digital Signature Standard", National
Institute of Standards and Technol ogy U.S. Departnent of
Commerce, May 1994.

[FOR| NSA X22, "FORTEZZA:. Application |nplenmenters Guide",
Document # PD4002103-1.01, April 1995.

[RFC0959] Postel, J. and J. Reynolds, "File Transfer Protocol",
STD 9, RFC 959, OCctober 1985.

[RFCO791] Postel, J., "Internet Protocol", STD 5, RFC 791,
Sept enmber 1981.

[RFC1945] Berners-Lee, T., Fielding, R, and H Nielsen, "Hypertext
Transfer Protocol -- HTTP/1.0", RFC 1945, My 1996.

[RFC1321] Rivest, R, "The MD5 Message-Digest Al gorithnt, RFC 1321,
April 1992.

[RFCO793] Postel, J., "Transm ssion Control Protocol", STD 7,
RFC 793, Septenber 1981.

[RFC0O854] Postel, J. and J. Reynolds, "Tel net Protocol
Specification", STD 8, RFC 854, May 1983.

[RFC1832] Srinivasan, R, "XDR External Data Representation

Freier, et al.

St andard", RFC 1832, August 1995.

Hi storic [Page 40]

RFC 6101

[RFC2104]

[I DEA]

[PKCS1]

[PKCS6]

[PKCS7]

[RSA]

[SCH

[SHA]

[X509]

[RSADSI]

Freier, et al.

The SSL Protocol Version 3.0 August 2011

Krawczyk, H., Bellare, M, and R Canetti, "HWVAC. Keyed-
Hashi ng for Message Authentication", RFC 2104,
February 1997.

Lai, X., "On the Design and Security of Block Ci phers",
ETH Series in Informati on Processing, v. 1, Konstanz:
Hart ung- Gorre Verlag, 1992.

RSA Laboratories, "PKCS #1: RSA Encryption Standard
version 1.5", Novenber 1993.

RSA Laboratories, "PKCS #6: RSA Extended Certificate
Syntax Standard version 1.5", Novenber 1993.

RSA Laboratories, "PKCS #7: RSA Cryptographi c Message
Syntax Standard version 1.5", Novenber 1993.

Rivest, R, Shamir, A, and L. Adleman, "A Method for
btaining Digital Signatures and Public-Key

Crypt osystens”, Communications of the ACMv. 21, n. 2 pp.
120-126., February 1978.

Schneier, B., "Applied Cryptography: Protocols,

Al gorithns, and Source Code in C', John Wley & Sons,
1994,

NI ST FIPS PUB 180-1, "Secure Hash Standard", May 1994.

National Institute of Standards and Technol ogy, U. S
Department of Conmerce, DRAFT

CCI TT, "The Directory - Authentication Framework",
Recomendati on X. 509 , 1988.

RSA Data Security, Inc., "Unpublished works".

Hi storic [Page 41]

RFC 6101

Appendi X
Thi s

Al Re

Freier,

The SSL Protocol Version 3.0

A. Protocol Constant Val ues
section describes protocol types and constants.
cord Layer

struct {
uint8 major, mnor;
} Protocol Version;

Prot ocol Version version = { 3,0 };

enum {
change_ci pher _spec(20), alert(21), handshake(22),
application_data(23), (255)

} Content Type;

struct {

Cont ent Type type;

Pr ot ocol Versi on version;

uint16 | ength;

opaque fragment[SSLPI ai nt ext. | ength];
} SSLPI ai nt ext;

struct {

Cont ent Type type;

Pr ot ocol Versi on version;

uint16 | engt h;

opaque fragment[SSLConpr essed. | engt h];
} SSLConpr essed;

struct {
Cont ent Type type;
Pr ot ocol Ver si on versi on;
uint 16 | engt h;
sel ect (G pher Spec. ci pher _type) {
case stream GenericStreanC pher;
case bl ock: CenericBl ockCi pher
} fragnent;
} SSLGi phertext;

streamci phered struct {
opaque content[SSLConpressed. | engt h];
opaque MAC Ci pher Spec. hash_si ze] ;

} GenericStreanC pher;

bl ock- ci phered struct {
opaque content[SSLConpressed. | engt h];

et al. Hi storic

August 2011

[Page 42]

RFC 6101 The SSL Protocol Version 3.0

opaque MAC Ci pher Spec. hash_si ze] ;
ui nt 8 paddi ng[Generi cBl ockGCi pher. paddi ng_| engt h];
ui nt 8 paddi ng_I engt h;

} Ceneri cBl ockCi pher;

A. 2. Change Ci pher Specs Message

struct {
enum { change_ci pher _spec(1), (255) } type;
} ChangeGi pher Spec;

A. 3. Alert Messages
enum{ warning(l), fatal (2), (255) } AertLevel

enum {
cl ose_notify(0),
unexpect ed_nessage(10),
bad record_nac(20),
deconpressi on_fail ure(30),
handshake_f ail ure(40),
no_certificate(41),
bad _certificate(42),
unsupported certificate(43),
certificate revoked(44),
certificate_expired(45),
certificate_unknown(46),
illegal _paraneter (47),
(255)

} AlertDescription;

struct {

Al ertlLevel |evel;

Al ert Description description;
} Alert;

Freier, et al. Hi storic

August 2011

[Page 43]

RFC 6101 The SSL Protocol Version 3.0 August 2011

A. 4. Handshake Protocol

enum {
hell o_request (0), client_hello(1l), server_hello(2),
certificate(1l1l), server_key_exchange (12),
certificate request(13), server_done(14),
certificate verify(15), client_key exchange(16),
fini shed(20), (255)

} HandshakeType;

struct {
HandshakeType nsg _type
ui nt 24 | engt h;
sel ect (HandshakeType) {
case hello_request: Hell oRequest;
case client _hello: dientHello;
case server_hell o: ServerHell o;
case certificate: Certificate;
case server_key exchange: Server KeyExchange
case certificate request: CertificateRequest;
case server_done: ServerHel | oDone;
case certificate verify: CertificateVerify;
case client_key exchange: i entKeyExchange;
case finished: Finished;
} body;
} Handshake;

A 4.1. Hello Messages
struct { } Hell oRequest;
struct {
ui nt 32 gnt _uni x_tine;
opaque random byt es[28];
} Random
opaque Sessi onl D<0. . 32>;
uint8 G pherSuite[?2];
enum { null (0), (255) } Conpressi onMet hod;
struct {
Pr ot ocol Version client_version;
Random r andom
Sessionl D session_id;

Ci pher Sui te ci pher_suites<0..2"16-1>;
Conpr essi onMet hod conpr essi on_net hods<0. . 278- 1>;

Freier, et al. Hi storic [Page 44]

RFC 6101 The SSL Protocol Version 3.0 August 2011

} dientHell o;

struct {
Pr ot ocol Versi on server_version;
Random r andom
Sessi onl D session_id;
Ci pher Sui te ci pher_suite;
Conpr essi onMet hod conpressi on_net hod;
} ServerHell o;

A.4.2. Server Authentication and Key Exchange Messages
opaque ASN. 1Cert <2”24- 1>;

struct {
ASN. 1Cert certificate list<l..2"24-1>;
} Certificate;

enum{ rsa, diffie_hellman, fortezza kea } KeyExchangeAl gorithm

struct {
opaque RSA nodul us<l1..2716-1>;
opaque RSA exponent<l..2”"16-1>;
} Server RSAPar ans;

struct {
opaque DH p<1..2716-1>;
opaque DH g<1..2716-1>;
opaque DH Ys<1..2716-1>
} Server DHPar ans;

struct {
opaque r_s [128]
} Server FortezzaParans

struct {
sel ect (KeyExchangeAl gorithm {
case diffie_hell man:
Ser ver DHPar ans par ans;
Si gnat ure si gned_par ans;
case rsa
Server RSAPar ans par ans;
Si gnature signed_parans;
case fortezza_kea:
Server Fort ezzaPar ans par ans;

b
} Server KeyExchange;

Freier, et al. Hi storic [Page 45]

RFC 6101 The SSL Protocol Version 3.0 August 2011

enum { anonynous, rsa, dsa } SignatureAlgorithm

digitally-signed struct {
sel ect (Si gnatureAl gorithm {
case anonymous: struct { };
case rsa
opaque nd5_ hash[16];
opaque sha_hash[20];
case dsa
opaque sha_hash[20];
i

} Signature;

enum {
RSA sign(1), DSS sign(2), RSA fixed DH(3),

DSS fixed_DH(4), RSA epheneral DH(5), DSS epheneral _DH(6)

FORTEZZA M SSI (20), (255)
} CertificateType

opaque Di stingui shedNane<1..2716-1>;

struct {

CertificateType certificate types<l..2"8-1>;

Di sti ngui shedNane certificate_ authorities<3..2"16-1>;
} CertificateRequest;

struct { } ServerHell oDone;
A.5. Cdient Authentication and Key Exchange Messages

struct {
sel ect (KeyExchangeAl gorithm {
case rsa: EncryptedPreMasterSecret;
case diffie_hellman: DiffieHell mand i ent PublicVal ue;
case fortezza kea: FortezzaKeys;
} exchange_keys;
} dient KeyExchange;

struct {
Pr ot ocol Versi on client_version;
opaque randonf 46];

} PreMaster Secret;

struct {

publi c- key-encrypted PreMasterSecret pre_naster_secret;
} Encrypt edPr eMast er Secr et ;

Freier, et al. Hi storic [Page

46]

RFC 6101 The SSL Protocol Version 3.0 August 2011

A 6.

Fre

struct {
opaque y_c<0..128>;
opaque r_c[128];
opaque y_si gnature[40];
opaque wrapped_client_wite_key[12];
opaque wrapped_server _wite key[12];
opaque client_wite_ iv[24];
opaque server_wite_iv[24];
opaque master_secret_iv[24];
opaque encrypted_preMaster Secret[48];
} FortezzaKeys;

enum{ inplicit, explicit } PublicVal ueEncodi ng;

struct {
sel ect (PublicVal ueEncodi ng) {
case inplicit: struct {};
case explicit: opaque DH Yc<l..2"16-1>;
} dh_public;
} CientDi ffieHell manPublic

struct {
Si gnat ure signature;
} CertificateVerify;

. 1. Handshake Finalization Message
struct {
opaque nd5_hash[16] ;
opaque sha_hash[20];
} Finished;
The G pherSuite

The follow ng val ues define the CipherSuite codes used in the client
hell o and server hell o nessages.

A CipherSuite defines a cipher specifications supported in SSL
version 3.0.

Ci pherSuite SSL_NULL_W TH_NULL_NULL = { 0x00, 0x00 };
The following CipherSuite definitions require that the server provide
an RSA certificate that can be used for key exchange. The server may

request either an RSA or a DSS signature-capable certificate in the
certificate request nessage.

ier, et al. Hi storic [Page 47]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Ci pherSuite SSL_RSA W TH NULL_MD5 = { 0x00, 0x01 };
Ci pherSuite SSL_RSA W TH NULL_SHA = { 0x00, 0x02 };
Ci pher Suite SSL_RSA EXPORT_W TH_RCA4_40_ND5 = { 0x00, 0x03 };
Ci pherSuite SSL_RSA WTH RC4_128 MD5 = { 0x00, 0x04 };
CipherSuite SSL_RSA WTH RC4_128_ SHA = { 0x00, 0x05 };
Ci pher Sui te SSL_RSA EXPORT_W TH_RC2_CBC 40_MD5 = { 0x00, 0x06 };
Ci pherSuite SSL_RSA WTH | DEA CBC SHA = { 0x00, 0x07 };
Ci pher Sui te SSL_RSA EXPORT_W TH_DES40_CBC_SHA = { 0x00, 0x08 };
Ci pherSuite SSL_RSA W TH DES_CBC_SHA = { 0x00, 0x09 };
Ci pherSuite SSL_RSA W TH 3DES_EDE CBC SHA = { 0x00, Ox0A };

The following CipherSuite definitions are used for server-

aut henticated (and optionally client-authenticated) Diffie-Hellnman.
DH denot es ci pher suites in which the server’'s certificate contains
the Diffie-Hellman paraneters signed by the certificate authority
(CA). DHE denotes epheneral Diffie-Hellman, where the Diffie-Hellman
paraneters are signed by a DSS or RSA certificate, which has been
signed by the CA. The signing algorithmused is specified after the
DH or DHE parameter. 1In all cases, the client nust have the sane
type of certificate, and nmust use the Diffie-Hellman paraneters
chosen by the server.

Ci pherSuite SSL_DH DSS EXPORT_W TH DES40_CBC SHA = { 0x00, Ox0B };
Ci pherSuite SSL_DH DSS W TH_DES_CBC_SHA = { 0x00, 0x0C };
Ci pherSuite SSL_DH DSS W TH 3DES EDE CBC_SHA = { 0x00, Ox0D };
Ci pherSuite SSL_DH RSA EXPORT W TH DES40_CBC SHA = { 0x00, OxO0E };
Ci pherSuite SSL_DH RSA W TH_DES_CBC_SHA = { 0x00, OxOF };
Ci pherSuite SSL_DH RSA W TH 3DES_EDE_CBC_SHA = { 0x00, 0x10 };
Ci pherSuite SSL_DHE DSS _EXPORT_W TH DES40_CBC SHA = { 0x00, Ox11 };
Ci pherSuite SSL_DHE _DSS W TH_DES_CBC_SHA = { 0x00, 0x12 };
Ci pherSuite SSL_DHE DSS W TH 3DES EDE CBC SHA = { 0x00, 0x13 };
Ci pher Suite SSL_DHE RSA EXPORT W TH DES40 CBC SHA = { 0x00, 0x14 };
Ci pherSuite SSL_DHE RSA W TH_DES_CBC_SHA = { 0x00, 0x15 };
Ci pherSuite SSL_DHE RSA W TH 3DES _EDE_CBC_SHA = { 0x00, 0x16 };

The follow ng cipher suites are used for conpletely anonynous Diffie-
Hel | man communi cations in which neither party is authenticated. Note
that this node is vulnerable to nan-in-the-niddle attacks and is
therefore strongly di scouraged.

Ci pherSuite SSL_DH anon_EXPORT_W TH _RC4_40_NMD5 = { 0x00, 0x17 };
Ci pherSuite SSL_DH anon W TH RC4_ 128 MD5 = { 0x00, 0x18 };
Ci pher Suite SSL_DH anon EXPORT_W TH DES40_CBC SHA = { 0x00, 0x19 };
Ci pherSuite SSL_DH anon_ W TH DES CBC SHA = { 0x00, Ox1A };
Ci pherSuite SSL_DH anon_W TH 3DES EDE CBC_SHA = { 0x00, 0x1B };

Freier, et al. Hi storic [Page 48]

RFC 6101 The SSL Protocol Version 3.0 August 2011

The final cipher suites are for the FORTEZZA token.

Gi pher Sui te SSL_FORTEZZA KEA W TH NULL_SHA
Gi pher Sui te SSL_FORTEZZA_KEA_W TH_FORTEZZA CBC_SHA
Gi pher Sui te SSL_FORTEZZA KEA W TH_RC4_128 SHA

{ 0X00, 0X1C };
{ 0x00, 0x1D };
{ 0x00, Ox1E };

Note: All cipher suites whose first byte is OxFF are consi dered
private and can be used for defining |ocal/experinental algorithns.
Interoperability of such types is a local natter.

A. 7. The Ci pher Spec

A cipher suite identifies a C pherSpec. These structures are part of
the SSL session state. The G pherSpec includes:

enum { stream block } C pherType;
enum { true, false } |sExportable;

enum{ null, rc4, rc2, des, 3des, des40, fortezza }
Bul kG pher Al gorithm

enum { null, nmd5, sha } MACAl gorithm

struct {
Bul kG pher Al gorithm bul k_ci pher_al gorithm
MACAI gorit hm mac_al gorithm
Ci pher Type ci pher _type;
| sExportabl e i s_exportable
ui nt 8 hash_si ze;
uint8 key naterial;
uint8 |V _size;
} G pher Spec;

Freier, et al. Hi storic [Page 49]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Appendi x B. d ossary

application protocol: An application protocol is a protocol that
normal ly layers directly on top of the transport layer (e.g.
TCP/ | P [RFCO793] /[RFC0791]). Exanples include HTTP [RFC1945],
TELNET [RFC0959], FTP [RFC0854], and SMIP

asynmetric cipher: See public key cryptography.

aut hentication: Authentication is the ability of one entity to
determne the identity of another entity.

bl ock cipher: A block cipher is an algorithmthat operates on
plaintext in groups of bits, called blocks. 64 bits is a typica
bl ock size

bul k cipher: A symmetric encryption algorithmused to encrypt |arge
quantities of data.

ci pher block chaining (CBC) node: CBCis a node in which every
pl ai nt ext bl ock encrypted with the block cipher is first
excl usive-ORed with the previous ciphertext block (or, in the case
of the first block, with the initialization vector).

certificate: As part of the X 509 protocol (a.k.a. |SO
Aut hentication framework), certificates are assigned by a trusted
certificate authority and provide verification of a party’'s
identity and may also supply its public key.

client: The application entity that initiates a connection to a
server.

client wite key: The key used to encrypt data witten by the
client.

client wite MAC secret: The secret data used to authenticate data
witten by the client.

connection: A connection is a transport (in the OSI |ayering node
definition) that provides a suitable type of service. For SSL,
such connections are peer-to-peer relationships. The connections
are transient. Every connection is associated with one session.

Data Encryption Standard (DES): DES is a very widely used synmretric
encryption algorithm DES is a block cipher [DES] [3DES].

Freier, et al. Hi storic [Page 50]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Digital Signature Standard: (DSS) A standard for digital signing,
including the Digital Signature Al gorithm approved by the
National Institute of Standards and Technol ogy, defined in N ST
FIPS PUB 186, "Digital Signature Standard," published May, 1994 by
the U S. Dept. of Conmmerce.

digital signatures: Digital signatures utilize public key
crypt ography and one-way hash functions to produce a signature of
the data that can be authenticated, and is difficult to forge or
repudi at e.

FORTEZZA: A PCMCI A card that provides both encryption and digital
si gni ng.

handshake: An initial negotiation between client and server that
est abli shes the paraneters of their transactions.

Initialization Vector (1V): Wen a block cipher is used in CBC node
the initialization vector is exclusive-ORed with the first
pl ai ntext block prior to encryption.

| DEA: A 64-bit bl ock cipher designed by Xuejia Lai and Janes Massey
[1 DEA] .

Message Authentication Code (MAC): A Message Authentication Code is
a one-way hash conputed froma nmessage and sone secret data. |Its
purpose is to detect if the nessage has been altered.

mast er secret: Secure secret data used for generating encryption
keys, MAC secrets, and |Vs.

MD5: MD5 [RFC1321] is a secure hashing function that converts an
arbitrarily long data streaminto a digest of fixed size

public key cryptography: A class of cryptographic techniques
enpl oyi ng two-key ci phers. Messages encrypted with the public key
can only be decrypted with the associated private key.
Conversely, messages signed with the private key can be verified
with the public key.

one-way hash function: A one-way transformation that converts an
arbitrary amount of data into a fixed-length hash. It is
conputationally hard to reverse the transformation or to find
collisions. M5 and SHA are exanpl es of one-way hash functions.

Freier, et al. Hi storic [Page 51]

RFC 6101 The SSL Protocol Version 3.0 August 2011

RC2, RC4: Proprietary bulk ciphers fromRSA Data Security, Inc.
(There is no good reference to these as they are unpublished
wor ks; however, see [RSADSI]). RC2 is a block cipher and RA is a
stream ci pher.

RSA: A very widely used public key algorithmthat can be used for
ei ther encryption or digital signing.

salt: Non-secret random data used to nake export encryption keys
resi st preconputation attacks.

server: The server is the application entity that responds to
requests for connections fromclients. The server is passive,
wai ting for requests fromclients.

session: An SSL session is an association between a client and a
server. Sessions are created by the handshake protocol. Sessions
define a set of cryptographic security paraneters, which can be
shared anong nul tiple connections. Sessions are used to avoid the
expensi ve negotiation of new security paraneters for each
connecti on.

session identifier: A session identifier is a value generated by a
server that identifies a particular session

server wite key: The key used to encrypt data witten by the
server.

server wite MAC secret: The secret data used to authenticate data
written by the server

SHA: The Secure Hash Algorithmis defined in FIPS PUB 180-1. It
produces a 20-byte output [SHA].

stream ci pher: An encryption algorithmthat converts a key into a
cryptographically strong keystream which is then excl usive-ORed
with the plaintext.

symretric cipher: See bul k cipher

Freier, et al. Hi storic [Page 52]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Appendi x C. CipherSuite Definitions

Ci pherSuite I's Key G pher Hash
Export abl e Exchange
SSL_NULL_W TH_NULL_NULL * NULL NULL NULL
SSL_RSA W TH_NULL_MD5 * RSA NULL VD5
SSL_RSA W TH NULL_SHA * RSA NULL SHA
SSL_RSA EXPORT_W TH_RCA_40_MD5 * RSA_EXPORT RC4_40 MD5
SSL_RSA W TH_RC4_128_MD5 RSA RC4_128 VD5
SSL_RSA W TH_RC4_128_SHA RSA RC4_128 SHA
SSL_RSA_EXPORT_W TH_RC2_CBC_40_NMD5 * RSA_EXPORT RC2_CBC_40 VD5
SSL_RSA W TH_| DEA_CBC_SHA RSA | DEA_CBC SHA
SSL_RSA EXPORT_W TH_DES40_CBC_SHA * RSA_EXPORT DES40_CBC SHA
SSL_RSA W TH_DES_CBC_SHA RSA DES_CBC SHA
SSL_RSA W TH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA
SSL_DH DSS EXPORT_W TH_DES40_CBC SHA * DH DSS EXPORT DES40_CBC SHA
SSL_DH DSS W TH_DES_CBC_SHA DH_DSS DES_CBC SHA
SSL_DH _DSS W TH_3DES_EDE_CBC_SHA DH_DSS 3DES_EDE_CBC SHA
SSL_DH RSA EXPORT_W TH_DES40_CBC SHA * DH RSA EXPORT DES40_CBC SHA
SSL_DH RSA W TH_DES CBC_SHA DH_RSA DES_CBC SHA
SSL_DH RSA W TH 3DES_EDE_CBC_SHA DH_RSA 3DES_EDE_CBC SHA
SSL_DHE_DSS_EXPORT_W TH_DES40_CBC_SHA * DHE DSS_EXPORT DES40_CBC SHA
SSL_DHE_DSS_W TH_DES_CBC_SHA DHE_DSS DES_CBC SHA
SSL_DHE_DSS_W TH_3DES_EDE_CBC_SHA DHE_DSS 3DES_EDE_CBC SHA
SSL_DHE_RSA EXPORT_W TH_DES40_CBC_SHA * DHE_RSA EXPORT DES40_CBC SHA
SSL_DHE RSA W TH_DES_CBC_SHA DHE_RSA DES_CBC SHA
SSL_DHE_RSA_ W TH 3DES_EDE _CBC_SHA DHE_RSA 3DES_EDE_CBC SHA
SSL_DH_anon_EXPORT_W TH_RC4_40_ND5 * DH_anon_EXPORT RC4_40 VD5
SSL_DH anon_W TH_RC4_128 MD5 DH_anon RC4_128 VD5
SSL_DH anon_EXPORT_W TH _DES40_CBC SHA DH_anon DES40_CBC SHA
SSL_DH anon_W TH _DES_CBC_SHA DH _anon DES_CBC SHA
SSL_DH anon_W TH_3DES_EDE_CBC_SHA DH_anon 3DES_EDE_CBC SHA
SSL_FORTEZZA _KEA W TH_NULL_SHA FORTEZZA _KEA NULL SHA
SSL_FORTEZZA_KEA W TH_FORTEZZA CBC SHA FORTEZZA KEA FORTEZZA CBC SHA
SSL_FORTEZZA_KEA W TH_RC4_128_SHA FORTEZZA_KEA RC4_128 SHA

Freier, et al. Hi storic [Page 53]

RFC 6101

| Key Exchange
| Al gorithm

DHE_RSA
DHE_RSA EXPORT
DH_anon

DH_anon_EXPORT
DH_DSS

DH_RSA
DH_RSA_EXPORT
FORTEZZA KEA

NULL

RSA
RSA_EXPORT

Key size lint:

The SSL Protoco

Anonynous DH
Anonynous DH

Epheneral DH wi th DSS
si gnatures
Epheneral DH wi th DSS
si gnat ures
Epheneral DH with RSA
si gnat ures
Epheneral DH with RSA
si gnatures

DH wi t h DSS- based
certificates
DH wi t h DSS- based
certificates
DH wi t h RSA- based
certificates
DH wi t h RSA- based
certificates
FORTEZZA KEA. Details
unpubl i shed
No key exchange
RSA key exchange
RSA key exchange

Table 1

Version 3.0

no signatures
no signatures

August 2011

___________________ +
Key Size Limt |
|
___________________ +
None |
|
DH = 512 bits
|
None |
|
DH = 512 bits,
RSA = none |
None |
DH = 512 bhits
None |
|
DH = 512 bits
|
None |
|
DH = 512 bits,
RSA = none |
N A |
|
N A |
None |
RSA = 512 bits
___________________ +

The key size linit gives the size of the Iargest

public key that can be legally used for encryption in cipher
suites that are exportable.

Freier, et al.

Hi storic

[Page 54]

RFC 6101 The SSL Protocol Version 3.0 August 2011

e S S e Fommnnan Fommnnan Fommnnan Foomonn Foomonn +
| G pher | Cpher | ISE| Key | Exp. | Effec | IV | Bloc

| | Type | xpo | Mater | Key | tive | Size | k

| | | rta | ial | Mater | Key | | Size

| | | ble | | ial | Bits | | |
RS Fom e oo - L F - F - F - Hom - - Hom - - +
| NULL | Stream| * | 0 | 0 | 0 | 0 | NA

| FORTEZZA CBC | Block | | NA | 12 | 96 | 20 | 8

I I | =)y)) | () I
| 1 DEA_CBC | Block | | 16 | 16 | 128 | 8 | 8

| RC2_CBC_ 40 | Block | | 5 | 16 | 40 | 8 | 8

| RC4_40 | Stream | | 5 | 16 | 40 | 0 | NA

| RC4_128 | Stream | | 16 | 16 | 128 | 0 | NA

| DES40_CBC | Block | * | 5 | 8 | 40 | 8 | 8

| DES_CBC | Block | | 8 | 8 | 56 | 8 | 8

| 3DES EDE_CBC | Block | | 24 | 24 | 168 | 8 | 8

B TS Fom e e e - L Fomm - Fomm - Fomm - Hom - - Hom - - +

* | ndicates | sExportable is true.
** FORTEZZA uses its own key and |V generation al gorithmns.

Table 2

Key Material: The nunber of bytes fromthe key block that are used
for generating the wite keys.

Expanded Key Material: The nunber of bytes actually fed into the
encryption algorithm

Effective Key Bits: How nmuch entropy material is in the key naterial
being fed into the encryption routines.

I I . +
| Hash Function | Hash Size | Padding Size
S S B TS +
| NULL | 0 | 0 |
| VD5 | 16 | 48

| SHA | 20 | 40
. - . +

Table 3

Freier, et al. Hi storic [Page 55]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Appendi x D. I nplenentation Notes

The SSL protocol cannot prevent nany comon security nistakes. This
section provides several recommendations to assist inplenenters.

D.1. Tenporary RSA Keys

US export restrictions linmt RSA keys used for encryption to 512
bits, but do not place any linmt on | engths of RSA keys used for
signing operations. Certificates often need to be |arger than 512
bits, since 512-bit RSA keys are not secure enough for high-val ue
transactions or for applications requiring long-termsecurity. Sone
certificates are al so designated signing-only, in which case they
cannot be used for key exchange.

When the public key in the certificate cannot be used for encryption
the server signs a tenporary RSA key, which is then exchanged. In
exportabl e applications, the tenporary RSA key should be the maxi num
all owabl e length (i.e., 512 bits). Because 512-bit RSA keys are
relatively insecure, they should be changed often. For typica

el ectronic comerce applications, it is suggested that keys be
changed daily or every 500 transactions, and nore often if possible.
Note that while it is acceptable to use the sane tenporary key for
nmul tiple transactions, it nust be signed each tinme it is used.

RSA key generation is a tine-consunmi ng process. |In nany cases, a
lowpriority process can be assigned the task of key generation
Whenever a new key is conpleted, the existing tenporary key can be
replaced with the new one.

D. 2. Random Nunmber Ceneration and Seedi ng

SSL requires a cryptographically secure pseudorandom nunber generator
(PRNG . Care nmust be taken in designing and seeding PRNGs. PRNGs
based on secure hash operations, nost notably MD5 and/or SHA, are
acceptabl e, but cannot provide nore security than the size of the
random nunber generator state. (For exanple, MD5-based PRNGs usually
provide 128 bits of state.)

To estimate the amount of seed material being produced, add the
nunber of bits of unpredictable information in each seed byte. For
exanpl e, keystroke timng values taken froma PC-conpatible’ s 18.2 Hz
tinmer provide 1 or 2 secure bits each, even though the total size of
the counter value is 16 bits or nore. To seed a 128-bit PRNG one
woul d thus require approxi mately 100 such tiner val ues.

Freier, et al. Hi storic [Page 56]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Not e: The seedi ng functions in RSAREF and versions of BSAFE prior to
3.0 are order independent. For exanple, if 1000 seed bits are
supplied, one at a tinme, in 1000 separate calls to the seed function
the PRNGwill end up in a state that depends only on the nunmber of 0
or 1 seed bits in the seed data (i.e., there are 1001 possible fina
states). Applications using BSAFE or RSAREF nust take extra care to
ensure proper seeding.

D.3. Certificates and Authentication

| mpl enent ati ons are responsible for verifying the integrity of
certificates and should generally support certificate revocation
messages. Certificates should always be verified to ensure proper
signing by a trusted certificate authority (CA). The selection and
addition of trusted CAs shoul d be done very carefully. Users should
be able to view informati on about the certificate and root CA

D.4. Ci pherSuites

SSL supports a range of key sizes and security levels, including sone
that provide no or miniml security. A proper inplenmentation wll
probably not support many cipher suites. For exanple, 40-bit
encryption is easily broken, so inplenmentations requiring strong
security should not allow 40-bit keys. Similarly, anonynous Diffie-
Hel I man is strongly discouraged because it cannot prevent nan-in-the-
m ddl e attacks. Applications should al so enforce mi ni num and nmaxi num
key sizes. For exanple, certificate chains containing 512-bit RSA
keys or signatures are not appropriate for high-security

applications.

D.5. FORTEZZA

This section describes inplenentation details for cipher suites that
make use of the FORTEZZA hardware encryption system

D.5.1. Notes on Use of FORTEZZA Har dwar e

A compl ete explanation of all issues regarding the use of FORTEZZA
hardware is outside the scope of this docunent. However, there are a
few special requirenents of SSL that deserve nention

Because SSL is a full duplex protocol, two crypto states nust be
mai nt ai ned, one for reading and one for witing. There are also a
nunber of circunstances that can result in the crypto state in the
FORTEZZA card being lost. For these reasons, it’'s recomended t hat
the current crypto state be saved after processing a record, and

| oaded before processing the next.

Freier, et al. Hi storic [Page 57]

RFC 6101 The SSL Protocol Version 3.0 August 2011

D. 5.

D. 5.

Fre

After the client generates the TEK, it also generates two nessage
encryption keys (MEKs), one for reading and one for witing. After
generating each of these keys, the client nust generate a
corresponding IV and then save the crypto state. The client also
uses the TEK to generate an IV and encrypt the premaster secret. Al
three Vs are sent to the server, along with the wapped keys and the
encrypted prenaster secret in the client key exchange nessage. At
this point, the TEK is no | onger needed, and nay be discarded.

On the server side, the server uses the master |V and the TEK to
decrypt the premaster secret. It also |oads the wapped MEKs into
the card. The server loads both IVs to verify that the 1Vs match the
keys. However, since the card is unable to encrypt after |oading an
IV, the server nmust generate a new |V for the server wite key. This
IV is discarded

When encrypting the first encrypted record (and only that record),
the server adds 8 bytes of random data to the begi nning of the
fragment. These 8 bytes are discarded by the client after
decryption. The purpose of this is to synchronize the state on the
client and server resulting fromthe different |Vs.

2. FORTEZZA Cipher Suites

5) FORTEZZA NULL_W TH NULL_SHA: Uses the full FORTEZZA key exchange
i ncludi ng sending server and client wite keys and |Vs.

3. FORTEZZA Session Resunption

There are two possibilities for FORTEZZA session restart: 1) Never
restart a FORTEZZA session. 2) Restart a session with the previously
negoti ated keys and | Vs.

Never restarting a FORTEZZA session

dients who never restart FORTEZZA sessions shoul d never send session
I Ds that were previously used in a FORTEZZA session as part of the
ClientHello. Servers who never restart FORTEZZA sessions shoul d
never send a previous session id on the ServerHello if the negotiated
session i s FORTEZZA.

Restart a session:
You cannot restart FORTEZZA on a session that has never done a
conpl et e FORTEZZA key exchange (that is, you cannot restart FORTEZZA

if the session was an RSA/RC4 session renegotiated for FORTEZZA). |If
you wish to restart a FORTEZZA session, you nust save the MEKs and

ier, et al. Hi storic [Page 58]

RFC 6101 The SSL Protocol Version 3.0 August 2011

IVs fromthe initial key exchange for this session and reuse them for
any new connections on that session. This is not reconrended, but it
i s possible.

Appendi x E. Version 2.0 Backward Conpatibility

Version 3.0 clients that support version 2.0 servers nust send
version 2.0 client hello nmessages [SSL-2]. Version 3.0 servers
shoul d accept either client hello format. The only deviations from
the version 2.0 specification are the ability to specify a version
with a value of three and the support for nore ciphering types in the
Ci pher Spec.

Warning: The ability to send version 2.0 client hello nessages wil |
be phased out with all due haste. |Inplenenters should nake every
effort to move forward as quickly as possible. Version 3.0 provides
better nechanisns for transitioning to newer versions.

The follow ng cipher specifications are carryovers from SSL version
2.0. These are assuned to use RSA for key exchange and
aut henti cati on.

V2Ci pher Spec SSL_RC4_128 W TH_MD5

V2Ci pher Spec SSL_RC4_128_ EXPORT40_W TH_MD5
V2Ci pher Spec SSL_RC2 _CBC 128 CBC W TH_MD5
V2Ci pher Spec SSL_RC2_ CBC 128 CBC EXPORT40 W TH MD5

{ 0x01, 0x00, 0x80 }
|
{ 0x04, 0x00, 0x80 }
|

{ 0x02, 0x00, 0x80
{ 0x03, 0x00, 0x80

V2Gi pher Spec SSL_I DEA_128_CBC W TH_MD5
V2Gi pher Spec SSL_DES_64_CBC W TH_MD5
V2Gi pher Spec SSL_DES_192_EDE3_CBC_W TH_MD5

{ 0x05, 0x00, 0x80
{ 0x06, 0x00, 0x40
{ 0x07, 0x00, 0xCO0

Ci pher specifications introduced in version 3.0 can be included in
version 2.0 client hello nessages using the syntax below. Any
V2Ci pher Spec elenent with its first byte equal to zero will be

i gnored by version 2.0 servers. dients sending any of the above
V2Ci pher Specs should al so include the version 3.0 equival ent (see
Appendi x A. 6):

V2Ci pher Spec (see Version 3.0 nane) = { 0x00, C pherSuite };
E.1. Version 2 Client Hello
The version 2.0 client hello nessage is presented bel ow using this

docunent’s presentation nodel. The true definition is still assuned
to be the SSL version 2.0 specification

Freier, et al. Hi storic [Page 59]

RFC 6101 The SSL Protocol Version 3.0 August 2011

ui nt 8 V2Gi pher Spec[3] ;

struct {
unit8 nsg_type
Ver si on versi on;
uint 16 ci pher _spec_|l engt h;
uint16 session_id_|ength;
ui nt 16 chal | enge_I| engt h;
V2Ci pher Spec ci pher _specs[V2d i ent Hel | 0. ci pher _spec_| engt h];
opaque session_id[V2C ientHello.session_id_|ength];
Random chal | enge
} V2dient Hel | o;

session nsg_type: This field, in conjunction with the version field,
identifies a version 2 client hello nessage. The val ue should
equal one (1).

version: The highest version of the protocol supported by the client
(equal s Protocol Version.version; see Appendix A 1).

ci pher_spec_length: This field is the total length of the field
ci pher_specs. It cannot be zero and nust be a multiple of the
V2Ci pher Spec | ength (3).

session_id length: This field nust have a value of either zero or
16. If zero, the client is creating a new session. |f 16, the
session_id field will contain the 16 bytes of session
i dentification.

chal l enge I ength: The length in bytes of the client’s challenge to
the server to authenticate itself. This value nust be 32.

ci pher_specs: This is a list of all G pherSpecs the client is
willing and able to use. There nmust be at |east one C pher Spec
acceptable to the server.

session_id: If this field s length is not zero, it will contain the
identification for a session that the client wi shes to resune.

chal l enge: The client’s challenge to the server for the server to
identify itself is a (nearly) arbitrary length random The
version 3.0 server will right justify the challenge data to becone
the CientHello.random data (padded with | eading zeroes, if

necessary), as specified in this version 3.0 protocol. |If the
Il ength of the challenge is greater than 32 bytes, then only the
| ast 32 bytes are used. It is legitimate (but not necessary) for

a V3 server toreject a V2 CientHello that has fewer than 16
byt es of chall enge data.

Freier, et al. Hi storic [Page 60]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Not e: Requests to resune an SSL 3.0 session should use an SSL 3.0
client hello.

E. 2. Avoiding Man-in-the-M ddl e Version Roll back

When SSL version 3.0 clients fall back to version 2.0 conpatibility
node, they use special PKCS #1 block formatting. This is done so
that version 3.0 servers will reject version 2.0 sessions wth
versi on 3.0-capable clients.

When version 3.0 clients are in version 2.0 conpatibility node, they
set the right-hand (least-significant) 8 random bytes of the PKCS
paddi ng (not including the terminal null of the padding) for the RSA
encryption of the ENCRYPTED- KEY- DATA field of the CLIENT- MASTER- KEY
to 0x03 (the other padding bytes are randon). After decrypting the
ENCRYPTED- KEY- DATA field, servers that support SSL 3.0 should issue
an error if these eight padding bytes are 0x03. Version 2.0 servers
recei ving bl ocks padded in this nmanner will proceed nornally.

Appendi x F. Security Analysis

The SSL protocol is designed to establish a secure connection between
a client and a server comuni cating over an insecure channel. This
docunent nmakes several traditional assunptions, including that
attackers have substantial conputational resources and cannot obtain
secret information fromsources outside the protocol. Attackers are
assuned to have the ability to capture, nodify, delete, replay, and
otherwi se tanper with nessages sent over the comunication channel
Thi s appendi x outlines how SSL has been designed to resist a variety
of attacks.

F.1. Handshake Protoco

The handshake protocol is responsible for selecting a C pher Spec and
generating a MasterSecret, which together conprise the primary
cryptographi c paraneters associated with a secure session. The
handshake protocol can also optionally authenticate parties who have
certificates signed by a trusted certificate authority.

F.1.1. Authentication and Key Exchange

SSL supports three authentication nodes: authentication of both
parties, server authentication with an unauthenticated client, and
total anonymity. \Whenever the server is authenticated, the channe
shoul d be secure against man-in-the-mniddle attacks, but conpletely
anonynous sessions are inherently vul nerable to such attacks.

Freier, et al. Hi storic [Page 61]

RFC 6101 The SSL Protocol Version 3.0 August 2011

Anonynmous servers cannot authenticate clients, since the client
signature in the certificate verify message may require a server
certificate to bind the signature to a particular server. |If the
server is authenticated, its certificate nmessage must provide a valid
certificate chain leading to an acceptable certificate authority.
Simlarly, authenticated clients nust supply an acceptabl e
certificate to the server. Each party is responsible for verifying
that the other’s certificate is valid and has not expired or been

r evoked.

The general goal of the key exchange process is to create a
pre_naster_secret known to the communicating parties and not to
attackers. The pre_nmaster_secret will be used to generate the
mast er _secret (see Section 6.1). The master_secret is required to
generate the finished nessages, encryption keys, and MAC secrets (see
Sections 5.6.9 and 6.2.2). By sending a correct finished nessage,
parties thus prove that they know the correct pre_master_secret.

F.1.1.1. Anonynous Key Exchange

Conpl etely anonynous sessions can be established using RSA, Diffie-
Hel | man, or FORTEZZA for key exchange. Wth anonynous RSA, the
client encrypts a pre_naster_secret with the server’s uncertified
public key extracted fromthe server key exchange nessage. The
result is sent in a client key exchange nessage. Since eavesdroppers
do not know the server’'s private key, it will be infeasible for them
to decode the pre_master_secret.

Wth Diffie-Hellman or FORTEZZA, the server’s public paraneters are
contained in the server key exchange nessage and the client’'s are
sent in the client key exchange nessage. Eavesdroppers who do not
know t he private val ues should not be able to find the Diffie-Hellman
result (i.e., the pre_master_secret) or the FORTEZZA token encryption
key (TEK).

War ni ng: Conpl etely anonynous connections only provide protection
agai nst passive eavesdroppi ng. Unless an i ndependent tanper- proof
channel is used to verify that the finished nessages were not
repl aced by an attacker, server authentication is required in
environnments where active nan-in-the-mddle attacks are a concern

F.1.1.2. RSA Key Exchange and Aut hentication

Wth RSA, key exchange and server authentication are conbined. The
public key either may be contained in the server’s certificate or may
be a tenporary RSA key sent in a server key exchange nessage. Wen
tenporary RSA keys are used, they are signed by the server’s RSA or
DSS certificate. The signature includes the current

Freier, et al. Hi storic [Page 62]

RFC 6101 The SSL Protocol Version 3.0 August 2011

CientHell o.random so old signatures and tenporary keys cannot be
replayed. Servers may use a single tenporary RSA key for multiple
negoti ati on sessions.

Not e: The tenporary RSA key option is useful if servers need |arge
certificates but nust conply with governnent-inposed size limts on
keys used for key exchange.

After verifying the server’s certificate, the client encrypts a
pre_master_secret with the server’s public key. By successfully
decodi ng the pre_naster_secret and producing a correct finished
message, the server denonstrates that it knows the private key
corresponding to the server certificate.

When RSA is used for key exchange, clients are authenticated using
the certificate verify nmessage (see Section 5.6.8). The client signs
a value derived fromthe nmaster_secret and all precedi ng handshake
messages. These handshake nessages include the server certificate,
whi ch binds the signature to the server, and ServerHello.random

whi ch binds the signature to the current handshake process.

F.1.1.3. Diffie-Hellnman Key Exchange wi th Authentication

When Diffie-Hellman key exchange is used, the server either can
supply a certificate containing fixed Diffie-Hellman paranmeters or
can use the server key exchange nessage to send a set of tenporary
Diffie-Hellman paranmeters signed with a DSS or RSA certificate
Tenporary paraneters are hashed with the hello.random val ues before
signing to ensure that attackers do not replay old paraneters. In
either case, the client can verify the certificate or signature to
ensure that the paraneters belong to the server

If the client has a certificate containing fixed Diffie-Hellnman
paraneters, its certificate contains the information required to
compl ete the key exchange. Note that in this case, the client and
server will generate the sane Diffie-Hellman result (i.e.
pre_naster_secret) every tinme they communicate. To prevent the
pre_master_secret fromstaying in nmenory any |onger than necessary,
it should be converted into the master_secret as soon as possible.
Cient Diffie-Hellman paraneters nmust be conpatible with those
supplied by the server for the key exchange to work.

If the client has a standard DSS or RSA certificate or is

unaut henticated, it sends a set of tenporary paraneters to the server
in the client key exchange nmessage, then optionally uses a
certificate verify nessage to authenticate itself.

Freier, et al. Hi storic [Page 63]

RFC 6101 The SSL Protocol Version 3.0 August 2011

F.1.1. 4. FORTEZZA

FORTEZZA' s design is classified, but at the protocol level it is
simlar to Diffie-Hellman with fixed public val ues contained in
certificates. The result of the key exchange process is the token
encryption key (TEK), which is used to wap data encryption keys,
client wite key, server wite key, and naster secret encryption key.
The data encryption keys are not derived fromthe pre_master_secret
because unwrapped keys are not accessible outside the token. The
encrypted pre_master_secret is sent to the server in a client key
exchange nessage

F.1.2. Version Rollback Attacks

Because SSL version 3.0 includes substantial inprovenents over SSL
version 2.0, attackers may try to make version 3.0-capable clients
and servers fall back to version 2.0. This attack is occurring if
(and only if) two version 3.0-capable parties use an SSL 2.0
handshake.

Al t hough the sol ution using non-random PKCS #1 bl ock type 2 nessage
padding is inelegant, it provides a reasonably secure way for version
3.0 servers to detect the attack. This solution is not secure

agai nst attackers who can brute force the key and substitute a new
ENCRYPTED- KEY- DATA nessage contai ning the sane key (but w th nornal
paddi ng) before the application specified wait threshold has expired.
Parti es concerned about attacks of this scale should not be using 40-
bit encryption keys anyway. Altering the padding of the |east
significant 8 bytes of the PKCS paddi ng does not inpact security,
since this is essentially equivalent to increasing the input block
size by 8 bytes.

F.1.3. Detecting Attacks agai nst the Handshake Protoco

An attacker might try to influence the handshake exchange to nake the
parties select different encryption algorithns than they woul d
normal |y choose. Because nmany inplenentations will support 40-bit
exportabl e encryption and some may even support null encryption or
MAC al gorithns, this attack is of particular concern.

For this attack, an attacker nust actively change one or nore
handshake nessages. |If this occurs, the client and server will
conpute different values for the handshake nessage hashes. As a
result, the parties will not accept each other’s finished nessages.
Wthout the master_secret, the attacker cannot repair the finished
messages, so the attack will be discovered.

Freier, et al. Hi storic [Page 64]

RFC 6101 The SSL Protocol Version 3.0 August 2011

F.1.4. Resumi ng Sessions

When a connection is established by resuning a session, new
CdientHello.random and ServerHell o.random val ues are hashed with the
session’s master_secret. Provided that the master_secret has not
been conproni sed and that the secure hash operations used to produce
the encryption keys and MAC secrets are secure, the connection should
be secure and effectively independent from previous connections.
Attackers cannot use known encryption keys or MAC secrets to
conprom se the master_secret wi thout breaking the secure hash
operations (which use both SHA and MD5).

Sessions cannot be resuned unless both the client and server agree.

If either party suspects that the session nay have been conprom sed
or that certificates may have expired or been revoked, it should
force a full handshake. An upper linmt of 24 hours is suggested for
session IDIlifetimes, since an attacker who obtains a master_secret
may be able to inpersonate the conpronised party until the
corresponding session IDis retired. Applications that nay be run in
relatively insecure environnents should not wite session IDs to
stabl e storage.

F.1.5. M5 and SHA

SSL uses hash functions very conservatively. Were possible, both
MD5 and SHA are used in tandemto ensure that non-catastrophic flaws
in one algorithmw |l not break the overall protocol

F.2. Protecting Application Data

The master_secret is hashed with the dientHello.random and
ServerHel |l o.randomto produce uni que data encryption keys and MAC
secrets for each connection. FORTEZZA encryption keys are generated
by the token, and are not derived fromthe master_secret.

Qutgoing data is protected with a MAC before transmi ssion. To
prevent nessage replay or nodification attacks, the MAC is conputed
fromthe MAC secret, the sequence nunber, the nessage |ength, the
nmessage contents, and two fixed-character strings. The nessage type
field is necessary to ensure that nmessages intended for one SSL
record |l ayer client are not redirected to another. The sequence
nunber ensures that attenpts to delete or reorder nmessages will be
detected. Since sequence nunbers are 64 bits |ong, they should never
overflow. Messages fromone party cannot be inserted into the
other’s output, since they use independent MAC secrets. Sinilarly,
the server-wite and client-wite keys are independent so stream

ci pher keys are used only once.

Freier, et al. Hi storic [Page 65]

The SSL Protocol Version 3.0 August 2011

RFC 6101

If an attacker does break an encryption key, all nessages encrypted
with it can be read. Sinmlarly, conprom se of a MAC key can nake
nmessage nodification attacks possible. Because MACs are al so
encrypted, message-alteration attacks generally require breaking the
encryption algorithmas well as the MAC

Note: MAC secrets may be larger than encryption keys, so nessages can
remai n tanmper resistant even if encryption keys are broken

F. 3. Fi nal Notes

For SSL to be able to provide a secure connection, both the client
and server systems, keys, and applications nust be secure. In
addition, the inplenentation nmust be free of security errors.

The systemis only as strong as the weakest key exchange and

aut henti cation al gorithm supported, and only trustworthy
cryptographi c functions should be used. Short public keys, 40-bit
bul k encryption keys, and anonynous servers should be used with great
caution. Inplenentations and users mnmust be careful when deciding
which certificates and certificate authorities are acceptable; a

di shonest certificate authority can do trenmendous danage

Appendi x G Acknow edgenent s
G1l. Oher Contributors
Martin Abadi Robert Rel yea
Di gital Equi pnent Corporation Netscape Communi cations

ma@a. dec. com rel yea@et scape. com

Taher El gamal Ji m Roski nd

Net scape Conmmuni cati ons
el ganmal @et scape. com

Ani| Gangol |
Net scape Conmmuni cati ons
gangol | i @et scape. com

Ki pp E. B. Hi ckman
Net scape Conmuni cati ons
ki pp@et scape. com

Freier, et al.

Net scape Conmmuni cati ons
j ar @et scape. com

M cheal J. Sabin, Ph.D
Consul ti ng Engi neer
nsabi n@et com com

Tom Wei nstei n

Net scape Conmuni cati ons
t omw@ et scape. com

Hi storic

[Page 66]

RFC 6101

G 2. Early Reviewers

Robert Bal dwi n
RSA Data Security, Inc.
bal dwi n@ sa. com

Ceor ge Cox
Intel Corporation
cox@beam jf.intel.com

Cheri Dowel |
Sun M crosystens
cheri @ng. sun. com

Stuart Haber
Bel | core
stuart @el | core. com
Burt Kal i ski
RSA Data Security, Inc.
burt @sa. com

Aut hors’ Addresses

Alan O Freier
Net scape Commruni cati ons

Philip Karlton
Net scape Conmuni cati ons

Paul C. Kocher
I ndependent Consul t ant

Freier, et al.

The SSL Protocol Version 3.0

August

d yde Monnma
Bel | core
cl yde@el | core. com

Eric Mirray
eri cm@ne. com

Avi Rubin
Bel | core
rubi n@el | core. com

Don Stephenson
Sun M crosystens
don. st ephenson@ng. sun. com

Joe Tardo

General Magic
tar do@ennagi c. com

Hi storic

2011

[Page 67]

