
Internet Engineering Task Force (IETF) T. Richardson
Request for Comments: 6143 J. Levine
Category: Informational RealVNC Ltd.
ISSN: 2070-1721 March 2011

 The Remote Framebuffer Protocol

Abstract

 RFB ("remote framebuffer") is a simple protocol for remote access to
 graphical user interfaces that allows a client to view and control a
 window system on another computer. Because it works at the
 framebuffer level, RFB is applicable to all windowing systems and
 applications. This document describes the protocol used to
 communicate between an RFB client and RFB server. RFB is the
 protocol used in VNC.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6143.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Richardson & Levine Informational [Page 1]

RFC 6143 The Remote Framebuffer Protocol March 2011

Table of Contents

 1. Introduction . 3
 2. Initial Connection . 4
 3. Display Protocol . 4
 4. Input Protocol . 5
 5. Representation of Pixel Data 5
 6. Protocol Versions and Extensions 6
 7. Protocol Messages . 7
 7.1. Handshake Messages . 8
 7.1.1. ProtocolVersion Handshake 8
 7.1.2. Security Handshake 8
 7.1.3. SecurityResult Handshake 10
 7.2. Security Types . 10
 7.2.1. None . 10
 7.2.2. VNC Authentication 10
 7.3. Initialization Messages 11
 7.3.1. ClientInit . 11
 7.3.2. ServerInit . 11
 7.4. Pixel Format Data Structure 12
 7.5. Client-to-Server Messages 13
 7.5.1. SetPixelFormat . 13
 7.5.2. SetEncodings . 14
 7.5.3. FramebufferUpdateRequest 15
 7.5.4. KeyEvent . 16
 7.5.5. PointerEvent . 19
 7.5.6. ClientCutText . 19
 7.6. Server-to-Client Messages 20
 7.6.1. FramebufferUpdate 20
 7.6.2. SetColorMapEntries 21
 7.6.3. Bell . 22
 7.6.4. ServerCutText . 22
 7.7. Encodings . 22
 7.7.1. Raw Encoding . 23
 7.7.2. CopyRect Encoding 23
 7.7.3. RRE Encoding . 23
 7.7.4. Hextile Encoding 24
 7.7.5. TRLE . 27
 7.7.6. ZRLE . 30
 7.8. Pseudo-Encodings . 30
 7.8.1. Cursor Pseudo-Encoding 30
 7.8.2. DesktopSize Pseudo-Encoding 31
 8. IANA Considerations . 31
 8.1. RFB Security Types . 32
 8.1.1. Registry Name . 32
 8.1.2. Registry Contents 32
 8.2. Client-to-Server Message Types 32
 8.2.1. Registry Name . 32

Richardson & Levine Informational [Page 2]

RFC 6143 The Remote Framebuffer Protocol March 2011

 8.2.2. Registry Contents 32
 8.3. Server-to-Client Message Types 33
 8.3.1. Registry Name . 33
 8.3.2. Registry Contents 33
 8.4. RFB Encoding Types . 34
 8.4.1. Registry Name . 34
 8.4.2. Registry Contents 34
 9. Security . 36
 10. Acknowledgements . 36
 11. References . 36
 11.1. Normative References 36
 11.2. Informative References 36
 Appendix A. Differences in Earlier Protocol Versions 38
 A.1. Differences in the Version 3.3 Protocol 38
 A.2. Differences in the Version 3.7 Protocol 38

1. Introduction

 RFB ("remote framebuffer") is a simple protocol for remote access to
 graphical user interfaces. Because it works at the framebuffer
 level, it is applicable to all windowing systems and applications,
 including X11, Windows, and Macintosh. RFB is the protocol used in
 VNC. The protocol is widely implemented and has had fairly good
 interoperability.

 The remote endpoint where the user sits (typically with a display,
 keyboard, and pointer) is called the RFB client or viewer. The
 endpoint where changes to the framebuffer originate (i.e., the
 windowing system and applications) is known as the RFB server.

 RFB is a "thin client" protocol. The emphasis in the design of the
 RFB protocol is to make very few requirements of the client. In this
 way, clients can run on the widest range of hardware, and the task of
 implementing a client is made as simple as possible.

 The protocol also makes the client stateless. If a client
 disconnects from a given server and subsequently reconnects to that
 same server, the state of the user interface is preserved.
 Furthermore, a different client endpoint can be used to connect to
 the same RFB server. At the new endpoint, the user will see exactly
 the same graphical user interface as at the original endpoint. In
 effect, the interface to the user’s applications becomes completely
 mobile. Wherever suitable network connectivity exists, the user can
 access their own personal applications, and the state of these
 applications is preserved between accesses from different locations.
 This provides the user with a familiar, uniform view of the computing
 infrastructure wherever they go.

Richardson & Levine Informational [Page 3]

RFC 6143 The Remote Framebuffer Protocol March 2011

 The RFB protocol has evolved over the past decade, and has been
 implemented several times, including at least one open source
 version. This document describes the RFB protocol as actually
 implemented, so that future implementers can interoperate with
 existing clients and servers.

2. Initial Connection

 An RFB server is typically a long-lived process that maintains the
 state of a framebuffer. RFB clients typically connect, communicate
 with the server for a period of time to use and manipulate the
 framebuffer, then disconnect. A subsequent RFB session will then
 pick up where a prior session left off, with the state of the
 framebuffer intact.

 An RFB client contacts the server on TCP port 5900. On systems with
 multiple RFB servers, server N typically listens on port 5900+N,
 analogous to the way that X Window servers listen on port 6000+N.

 Some browser-based clients use a Java application to run the RFB
 protocol. RFB servers sometimes provide a simple HTTP server on port
 5800 that provides the requisite Java applet.

 In some cases, the initial roles of the client and server are
 reversed, with the RFB client listening on port 5500, and the RFB
 server contacting the RFB client. Once the connection is
 established, the two sides take their normal roles, with the RFB
 server sending the first handshake message.

 Note that the only port number assigned by IANA for RFB is port 5900,
 so RFB clients and servers should avoid using other port numbers
 unless they are communicating with servers or clients known to use
 the non-standard ports.

3. Display Protocol

 The display side of the protocol is based around a single graphics
 primitive: "put a rectangle of pixel data at a given x,y position".
 This might seem an inefficient way of drawing many user interface
 components. However, allowing various different encodings for the
 pixel data gives us a large degree of flexibility in how to trade off
 various parameters such as network bandwidth, client drawing speed,
 and server processing speed.

Richardson & Levine Informational [Page 4]

RFC 6143 The Remote Framebuffer Protocol March 2011

 A sequence of these rectangles makes a framebuffer update (simply
 referred to here as "update"). An update represents a change from
 one valid framebuffer state to another, so in some ways is similar to
 a frame of video. The rectangles in an update are usually but not
 always disjoint.

 The update protocol is demand-driven by the client. That is, an
 update is only sent from the server to the client in response to an
 explicit request from the client. This gives the protocol an
 adaptive quality. The slower the client and the network are, the
 lower the rate of updates. With typical applications, changes to the
 same area of the framebuffer tend to happen soon after one another.
 With a slow client or network, transient states of the framebuffer
 can be ignored, resulting in less network traffic and less drawing
 for the client.

 After the initial handshake sequence, the protocol is asynchronous,
 with each side sending messages as needed. The server must not send
 unsolicited updates. An update must only be sent in response to a
 request from the client. When several requests from the client are
 outstanding, a single update from the server may satisfy all of them.

4. Input Protocol

 The input side of the protocol is based on a standard workstation
 model of a keyboard and multi-button pointing device. Input events
 are simply sent to the server by the client whenever the user presses
 a key or pointer button, or whenever the pointing device is moved.
 These input events can also be synthesized from other non-standard
 I/O devices. For example, a pen-based handwriting recognition engine
 might generate keyboard events.

5. Representation of Pixel Data

 Initial interaction between the RFB client and server involves a
 negotiation of the format and encoding of the pixel data that will be
 sent. This negotiation has been designed to make the job of the
 client as easy as possible. The server must always be able to supply
 pixel data in the form the client wants. However, if the client is
 able to cope equally with several different formats or encodings, it
 may choose one that is easier for the server to produce.

 Pixel format refers to the representation of individual colors by
 pixel values. The most common pixel formats are 24-bit or 16-bit
 "true color", where bit-fields within the pixel value translate
 directly to red, green, and blue intensities, and 8-bit "color map"
 (palette) where the pixel values are indices into a 256-entry table
 that contains the actual RGB intensities.

Richardson & Levine Informational [Page 5]

RFC 6143 The Remote Framebuffer Protocol March 2011

 Encoding refers to the way that a rectangle of pixel data will be
 sent to the client. Every rectangle of pixel data is prefixed by a
 header giving the X,Y position of the rectangle on the screen, the
 width and height of the rectangle, and an encoding type which
 specifies the encoding of the pixel data. The data itself then
 follows using the specified encoding.

 The encoding types defined at present are: Raw, CopyRect, RRE, TRLE,
 Hextile, and ZRLE. In practice, current servers use the ZRLE, TRLE,
 and CopyRect encodings since they provide the best compression for
 typical desktops. Clients generally also support Hextile, which was
 often used by older RFB servers that didn’t support TRLE. See
 Section 7.7 for a description of each of the encodings.

6. Protocol Versions and Extensions

 The RFB protocol has evolved through three published versions: 3.3,
 3.7, and 3.8. This document primarily documents the final version
 3.8; differences from the earlier versions, which are minor, are
 described in Appendix A. Under no circumstances should an
 implementation use a protocol version number other than one defined
 in this document. Over the years, different implementations of RFB
 have attempted to use different version numbers to add undocumented
 extensions, with the result being that to interoperate, any unknown
 3.x version must be treated as 3.3, so it is not possible to add a
 3.9 or higher version in a backward-compatible fashion. Future
 evolution of RFB will use 4.x version numbers.

 It is not necessary to change the protocol version number to extend
 the protocol. The protocol can be extended within an existing
 version by:

 New encodings
 A new encoding type can be added to the protocol relatively easily
 while maintaining compatibility with existing clients and servers.
 Existing servers will simply ignore requests for a new encoding
 that they don’t support. Existing clients will never request the
 new encoding so will never see rectangles encoded that way.

 Pseudo-encodings
 In addition to genuine encodings, a client can request a "pseudo-
 encoding" to declare to the server that it supports a certain
 extension to the protocol. A server that does not support the
 extension will simply ignore the pseudo-encoding. Note that this
 means the client must assume that the server does not support the
 extension until it gets some extension-specific confirmation from
 the server. See Section 7.8 for a description of current pseudo-
 encodings.

Richardson & Levine Informational [Page 6]

RFC 6143 The Remote Framebuffer Protocol March 2011

 New security types
 Adding a new security type gives full flexibility in modifying the
 behavior of the protocol without sacrificing compatibility with
 existing clients and servers. A client and server that agree on a
 new security type can effectively talk whatever protocol they like
 after that -- it doesn’t necessarily have to be anything like the
 RFB protocol.

 See Section 8 for information on obtaining an ID for a new encoding
 or security type.

7. Protocol Messages

 The RFB protocol can operate over any reliable transport, either
 byte-stream or message based. It usually operates over a TCP/IP
 connection. There are three stages to the protocol. First is the
 handshaking phase, the purpose of which is to agree upon the protocol
 version and the type of security to be used. The second stage is an
 initialization phase where the client and server exchange ClientInit
 and ServerInit messages. The final stage is the normal protocol
 interaction. The client can send whichever messages it wants, and
 may receive messages from the server as a result. All these messages
 begin with a message-type byte, followed by message-specific data.

 The following descriptions of protocol messages use the basic types
 U8, U16, U32, S8, S16, and S32. These represent, respectively, 8-,
 16-, and 32-bit unsigned integers and 8-, 16-, and 32-bit signed
 integers. All multiple-byte integers (other than pixel values
 themselves) are in big endian order (most significant byte first).
 Some messages use arrays of the basic types, with the number of
 entries in the array determined from fields preceding the array.

 The type PIXEL means a pixel value of bytesPerPixel bytes, where
 bytesPerPixel is the number of bits-per-pixel divided by 8. The
 bits-per-pixel is agreed by the client and server, either in the
 ServerInit message (Section 7.3.2) or a SetPixelFormat message
 (Section 7.5.1). See Section 7.4 for the detailed description of the
 pixel format.

 Several message formats include padding bits or bytes. For maximum
 compatibility, messages should be generated with padding set to zero,
 but message recipients should not assume padding has any particular
 value.

Richardson & Levine Informational [Page 7]

RFC 6143 The Remote Framebuffer Protocol March 2011

7.1. Handshake Messages

 When an RFB client and server first connect, they exchange a sequence
 of handshake messages that determine the protocol version, what type
 of connection security (if any) to use, a password check if the
 security type requires it, and some initialization information.

7.1.1. ProtocolVersion Handshake

 Handshaking begins by the server sending the client a ProtocolVersion
 message. This lets the client know which is the highest RFB protocol
 version number supported by the server. The client then replies with
 a similar message giving the version number of the protocol that
 should actually be used (which may be different to that quoted by the
 server). A client should never request a protocol version higher
 than that offered by the server. It is intended that both clients
 and servers may provide some level of backwards compatibility by this
 mechanism.

 The only published protocol versions at this time are 3.3, 3.7, and
 3.8. Other version numbers are reported by some servers and clients,
 but should be interpreted as 3.3 since they do not implement the
 different handshake in 3.7 or 3.8. Addition of a new encoding or
 pseudo-encoding type does not require a change in protocol version,
 since a server can simply ignore encodings it does not understand.

 The ProtocolVersion message consists of 12 bytes interpreted as a
 string of ASCII characters in the format "RFB xxx.yyy\n" where xxx
 and yyy are the major and minor version numbers, left-padded with
 zeros:

 RFB 003.008\n (hex 52 46 42 20 30 30 33 2e 30 30 38 0a)

7.1.2. Security Handshake

 Once the protocol version has been decided, the server and client
 must agree on the type of security to be used on the connection. The
 server lists the security types that it supports:

 +--------------------------+-------------+--------------------------+
 | No. of bytes | Type | Description |
 | | [Value] | |
 +--------------------------+-------------+--------------------------+
 | 1 | U8 | number-of-security-types |
 | number-of-security-types | U8 array | security-types |
 +--------------------------+-------------+--------------------------+

Richardson & Levine Informational [Page 8]

RFC 6143 The Remote Framebuffer Protocol March 2011

 If the server listed at least one valid security type supported by
 the client, the client sends back a single byte indicating which
 security type is to be used on the connection:

 +--------------+--------------+---------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+---------------+
 | 1 | U8 | security-type |
 +--------------+--------------+---------------+

 If number-of-security-types is zero, then for some reason the
 connection failed (e.g., the server cannot support the desired
 protocol version). This is followed by a string describing the
 reason (where a string is specified as a length followed by that many
 ASCII characters):

 +---------------+--------------+---------------+
 | No. of bytes | Type [Value] | Description |
 +---------------+--------------+---------------+
 | 4 | U32 | reason-length |
 | reason-length | U8 array | reason-string |
 +---------------+--------------+---------------+

 The server closes the connection after sending the reason-string.

 The security types defined in this document are:

 +--------+--------------------+
 | Number | Name |
 +--------+--------------------+
 | 0 | Invalid |
 | 1 | None |
 | 2 | VNC Authentication |
 +--------+--------------------+

 Other security types exist but are not publicly documented.

 Once the security-type has been decided, data specific to that
 security-type follows (see Section 7.2 for details). At the end of
 the security handshaking phase, the protocol normally continues with
 the SecurityResult message.

 Note that after the security handshaking phase, it is possible that
 further communication is over an encrypted or otherwise altered
 channel if the two ends agree on an extended security type beyond the
 ones described here.

Richardson & Levine Informational [Page 9]

RFC 6143 The Remote Framebuffer Protocol March 2011

7.1.3. SecurityResult Handshake

 The server sends a word to inform the client whether the security
 handshaking was successful.

 +--------------+--------------+-------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+-------------+
 | 4 | U32 | status: |
 | | 0 | OK |
 | | 1 | failed |
 +--------------+--------------+-------------+

 If successful, the protocol passes to the initialization phase
 (Section 7.3).

 If unsuccessful, the server sends a string describing the reason for
 the failure, and then closes the connection:

 +---------------+--------------+---------------+
 | No. of bytes | Type [Value] | Description |
 +---------------+--------------+---------------+
 | 4 | U32 | reason-length |
 | reason-length | U8 array | reason-string |
 +---------------+--------------+---------------+

7.2. Security Types

 Two security types are defined here.

7.2.1. None

 No authentication is needed. The protocol continues with the
 SecurityResult message.

7.2.2. VNC Authentication

 VNC authentication is to be used. The server sends a random 16-byte
 challenge:

 +--------------+--------------+-------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+-------------+
 | 16 | U8 | challenge |
 +--------------+--------------+-------------+

Richardson & Levine Informational [Page 10]

RFC 6143 The Remote Framebuffer Protocol March 2011

 The client encrypts the challenge with DES, using a password supplied
 by the user as the key. To form the key, the password is truncated
 to eight characters, or padded with null bytes on the right. The
 client then sends the resulting 16-byte response:

 +--------------+--------------+-------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+-------------+
 | 16 | U8 | response |
 +--------------+--------------+-------------+

 The protocol continues with the SecurityResult message.

 This type of authentication is known to be cryptographically weak and
 is not intended for use on untrusted networks. Many implementations
 will want to use stronger security, such as running the session over
 an encrypted channel provided by IPsec [RFC4301] or SSH [RFC4254].

7.3. Initialization Messages

 Once the client and server agree on and perhaps validate a security
 type, the protocol passes to the initialization stage. The client
 sends a ClientInit message. Then, the server sends a ServerInit
 message.

7.3.1. ClientInit

 +--------------+--------------+-------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+-------------+
 | 1 | U8 | shared-flag |
 +--------------+--------------+-------------+

 Shared-flag is non-zero (true) if the server should try to share the
 desktop by leaving other clients connected, and zero (false) if it
 should give exclusive access to this client by disconnecting all
 other clients.

7.3.2. ServerInit

 After receiving the ClientInit message, the server sends a ServerInit
 message. This tells the client the width and height of the server’s
 framebuffer, its pixel format, and the name associated with the
 desktop:

Richardson & Levine Informational [Page 11]

RFC 6143 The Remote Framebuffer Protocol March 2011

 +--------------+--------------+------------------------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+------------------------------+
 | 2 | U16 | framebuffer-width in pixels |
 | 2 | U16 | framebuffer-height in pixels |
 | 16 | PIXEL_FORMAT | server-pixel-format |
 | 4 | U32 | name-length |
 | name-length | U8 array | name-string |
 +--------------+--------------+------------------------------+

 Server-pixel-format specifies the server’s natural pixel format.
 This pixel format will be used unless the client requests a different
 format using the SetPixelFormat message (Section 7.5.1).

7.4. Pixel Format Data Structure

 Several server-to-client messages include a PIXEL_FORMAT, a 16-byte
 structure that describes the way a pixel is transmitted.

 +--------------+--------------+-----------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+-----------------+
 | 1 | U8 | bits-per-pixel |
 | 1 | U8 | depth |
 | 1 | U8 | big-endian-flag |
 | 1 | U8 | true-color-flag |
 | 2 | U16 | red-max |
 | 2 | U16 | green-max |
 | 2 | U16 | blue-max |
 | 1 | U8 | red-shift |
 | 1 | U8 | green-shift |
 | 1 | U8 | blue-shift |
 | 3 | | padding |
 +--------------+--------------+-----------------+

 Bits-per-pixel is the number of bits used for each pixel value on the
 wire. This must be greater than or equal to the depth, which is the
 number of useful bits in the pixel value. Currently bits-per-pixel
 must be 8, 16, or 32. Big-endian-flag is non-zero (true) if multi-
 byte pixels are interpreted as big endian. Although the depth should
 be consistent with the bits-per-pixel and the various -max values,
 clients do not use it when interpreting pixel data.

 If true-color-flag is non-zero (true), then the last six items
 specify how to extract the red, green, and blue intensities from the
 pixel value. Red-max is the maximum red value and must be 2^N - 1,
 where N is the number of bits used for red. Note the -max values are
 always in big endian order. Red-shift is the number of shifts needed

Richardson & Levine Informational [Page 12]

RFC 6143 The Remote Framebuffer Protocol March 2011

 to get the red value in a pixel to the least significant bit. Green-
 max, green-shift, blue-max, and blue-shift are similar for green and
 blue. For example, to find the red value (between 0 and red-max)
 from a given pixel, do the following:

 o Swap the pixel value according to big-endian-flag, e.g., if big-
 endian-flag is zero (false) and host byte order is big endian,
 then swap.

 o Shift right by red-shift.

 o AND with red-max (in host byte order).

 If true-color-flag is zero (false), then the server uses pixel values
 that are not directly composed from the red, green, and blue
 intensities, but serve as indices into a color map. Entries in the
 color map are set by the server using the SetColorMapEntries message
 (See Section 7.6.2).

7.5. Client-to-Server Messages

 The client-to-server message types defined in this document are:

 +--------+--------------------------+
 | Number | Name |
 +--------+--------------------------+
 | 0 | SetPixelFormat |
 | 2 | SetEncodings |
 | 3 | FramebufferUpdateRequest |
 | 4 | KeyEvent |
 | 5 | PointerEvent |
 | 6 | ClientCutText |
 +--------+--------------------------+

 Other message types exist but are not publicly documented. Before
 sending a message other than those described in this document, a
 client must have determined that the server supports the relevant
 extension by receiving an appropriate extension-specific confirmation
 from the server.

7.5.1. SetPixelFormat

 A SetPixelFormat message sets the format in which pixel values should
 be sent in FramebufferUpdate messages. If the client does not send a
 SetPixelFormat message, then the server sends pixel values in its
 natural format as specified in the ServerInit message
 (Section 7.3.2).

Richardson & Levine Informational [Page 13]

RFC 6143 The Remote Framebuffer Protocol March 2011

 If true-color-flag is zero (false), then this indicates that a "color
 map" is to be used. The server can set any of the entries in the
 color map using the SetColorMapEntries message (Section 7.6.2).
 Immediately after the client has sent this message, the contents of
 the color map are undefined, even if entries had previously been set
 by the server.

 +--------------+--------------+--------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+--------------+
 | 1 | U8 [0] | message-type |
 | 3 | | padding |
 | 16 | PIXEL_FORMAT | pixel-format |
 +--------------+--------------+--------------+

 PIXEL_FORMAT is as described in Section 7.4.

7.5.2. SetEncodings

 A SetEncodings message sets the encoding types in which pixel data
 can be sent by the server. The order of the encoding types given in
 this message is a hint by the client as to its preference (the first
 encoding specified being most preferred). The server may or may not
 choose to make use of this hint. Pixel data may always be sent in
 raw encoding even if not specified explicitly here.

 In addition to genuine encodings, a client can request "pseudo-
 encodings" to declare to the server that it supports certain
 extensions to the protocol. A server that does not support the
 extension will simply ignore the pseudo-encoding. Note that this
 means the client must assume that the server does not support the
 extension until it gets some extension-specific confirmation from the
 server.

 See Section 7.7 for a description of each encoding and Section 7.8
 for the meaning of pseudo-encodings.

 +--------------+--------------+---------------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+---------------------+
 | 1 | U8 [2] | message-type |
 | 1 | | padding |
 | 2 | U16 | number-of-encodings |
 +--------------+--------------+---------------------+

Richardson & Levine Informational [Page 14]

RFC 6143 The Remote Framebuffer Protocol March 2011

 This is followed by number-of-encodings repetitions of the following:

 +--------------+--------------+---------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+---------------+
 | 4 | S32 | encoding-type |
 +--------------+--------------+---------------+

7.5.3. FramebufferUpdateRequest

 A FramebufferUpdateRequest message notifies the server that the
 client is interested in the area of the framebuffer specified by
 x-position, y-position, width, and height. The server usually
 responds to a FramebufferUpdateRequest by sending a
 FramebufferUpdate. A single FramebufferUpdate may be sent in reply
 to several FramebufferUpdateRequests.

 The server assumes that the client keeps a copy of all parts of the
 framebuffer in which it is interested. This means that normally the
 server only needs to send incremental updates to the client.

 If the client has lost the contents of a particular area that it
 needs, then the client sends a FramebufferUpdateRequest with
 incremental set to zero (false). This requests that the server send
 the entire contents of the specified area as soon as possible. The
 area will not be updated using the CopyRect encoding.

 If the client has not lost any contents of the area in which it is
 interested, then it sends a FramebufferUpdateRequest with incremental
 set to non-zero (true). If and when there are changes to the
 specified area of the framebuffer, the server will send a
 FramebufferUpdate. Note that there may be an indefinite period
 between the FramebufferUpdateRequest and the FramebufferUpdate.

 In the case of a fast client, the client may want to regulate the
 rate at which it sends incremental FramebufferUpdateRequests to avoid
 excessive network traffic.

 +--------------+--------------+--------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+--------------+
 | 1 | U8 [3] | message-type |
 | 1 | U8 | incremental |
 | 2 | U16 | x-position |
 | 2 | U16 | y-position |
 | 2 | U16 | width |
 | 2 | U16 | height |
 +--------------+--------------+--------------+

Richardson & Levine Informational [Page 15]

RFC 6143 The Remote Framebuffer Protocol March 2011

7.5.4. KeyEvent

 A KeyEvent message indicates a key press or release. Down-flag is
 non-zero (true) if the key is now pressed, and zero (false) if it is
 now released. The key itself is specified using the "keysym" values
 defined by the X Window System, even if the client or server is not
 running the X Window System.

 +--------------+--------------+--------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+--------------+
 | 1 | U8 [4] | message-type |
 | 1 | U8 | down-flag |
 | 2 | | padding |
 | 4 | U32 | key |
 +--------------+--------------+--------------+

 For most ordinary keys, the keysym is the same as the corresponding
 ASCII value. For full details, see [XLIBREF] or see the header file
 <X11/keysymdef.h> in the X Window System distribution. Some other
 common keys are:

Richardson & Levine Informational [Page 16]

RFC 6143 The Remote Framebuffer Protocol March 2011

 +-----------------+--------------------+
 | Key name | Keysym value (hex) |
 +-----------------+--------------------+
 | BackSpace | 0xff08 |
 | Tab | 0xff09 |
 | Return or Enter | 0xff0d |
 | Escape | 0xff1b |
 | Insert | 0xff63 |
 | Delete | 0xffff |
 | Home | 0xff50 |
 | End | 0xff57 |
 | Page Up | 0xff55 |
 | Page Down | 0xff56 |
 | Left | 0xff51 |
 | Up | 0xff52 |
 | Right | 0xff53 |
 | Down | 0xff54 |
 | F1 | 0xffbe |
 | F2 | 0xffbf |
 | F3 | 0xffc0 |
 | F4 | 0xffc1 |
 | ... | ... |
 | F12 | 0xffc9 |
 | Shift (left) | 0xffe1 |
 | Shift (right) | 0xffe2 |
 | Control (left) | 0xffe3 |
 | Control (right) | 0xffe4 |
 | Meta (left) | 0xffe7 |
 | Meta (right) | 0xffe8 |
 | Alt (left) | 0xffe9 |
 | Alt (right) | 0xffea |
 +-----------------+--------------------+

 The interpretation of keysyms is a complex area. In order to be as
 widely interoperable as possible, the following guidelines should be
 followed:

 o The "shift state" (i.e., whether either of the Shift keysyms is
 down) should only be used as a hint when interpreting a keysym.
 For example, on a US keyboard the ’#’ character is shifted, but on
 a UK keyboard it is not. A server with a US keyboard receiving a
 ’#’ character from a client with a UK keyboard will not have been
 sent any shift presses. In this case, it is likely that the
 server will internally need to simulate a shift press on its local
 system in order to get a ’#’ character and not a ’3’.

Richardson & Levine Informational [Page 17]

RFC 6143 The Remote Framebuffer Protocol March 2011

 o The difference between upper and lower case keysyms is
 significant. This is unlike some of the keyboard processing in
 the X Window System that treats them as the same. For example, a
 server receiving an upper case ’A’ keysym without any shift
 presses should interpret it as an upper case ’A’. Again this may
 involve an internal simulated shift press.

 o Servers should ignore "lock" keysyms such as CapsLock and NumLock
 where possible. Instead, they should interpret each character-
 based keysym according to its case.

 o Unlike Shift, the state of modifier keys such as Control and Alt
 should be taken as modifying the interpretation of other keysyms.
 Note that there are no keysyms for ASCII control characters such
 as Ctrl-A -- these should be generated by clients sending a
 Control press followed by an ’a’ press.

 o On a client where modifiers like Control and Alt can also be used
 to generate character-based keysyms, the client may need to send
 extra "release" events in order that the keysym is interpreted
 correctly. For example, on a German PC keyboard, Ctrl-Alt-Q
 generates the ’@’ character. In this case, the client needs to
 send simulated release events for Control and Alt in order that
 the ’@’ character is interpreted correctly, since Ctrl-Alt-@ may
 mean something completely different to the server.

 o There is no universal standard for "backward tab" in the X Window
 System. On some systems shift+tab gives the keysym
 "ISO_Left_Tab", on others it gives a private "BackTab" keysym, and
 on others it gives "Tab" and applications tell from the shift
 state that it means backward-tab rather than forward-tab. In the
 RFB protocol, the latter approach is preferred. Clients should
 generate a shifted Tab rather than ISO_Left_Tab. However, to be
 backwards-compatible with existing clients, servers should also
 recognize ISO_Left_Tab as meaning a shifted Tab.

 o Modern versions of the X Window System handle keysyms for Unicode
 characters, consisting of the Unicode character with the hex
 1000000 bit set. For maximum compatibility, if a key has both a
 Unicode and a legacy encoding, clients should send the legacy
 encoding.

 o Some systems give a special interpretation to key combinations
 such as Ctrl-Alt-Delete. RFB clients typically provide a menu or
 toolbar function to send such key combinations. The RFB protocol
 does not treat them specially; to send Ctrl-Alt-Delete, the client
 sends the key presses for left or right Control, left or right

Richardson & Levine Informational [Page 18]

RFC 6143 The Remote Framebuffer Protocol March 2011

 Alt, and Delete, followed by the key releases. Many RFB servers
 accept Shift-Ctrl-Alt-Delete as a synonym for Ctrl-Alt-Delete that
 can be entered directly from the keyboard.

7.5.5. PointerEvent

 A PointerEvent message indicates either pointer movement or a pointer
 button press or release. The pointer is now at (x-position,
 y-position), and the current state of buttons 1 to 8 are represented
 by bits 0 to 7 of button-mask, respectively; 0 means up, 1 means down
 (pressed).

 On a conventional mouse, buttons 1, 2, and 3 correspond to the left,
 middle, and right buttons on the mouse. On a wheel mouse, each step
 of the wheel upwards is represented by a press and release of button
 4, and each step downwards is represented by a press and release of
 button 5.

 +--------------+--------------+--------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+--------------+
 | 1 | U8 [5] | message-type |
 | 1 | U8 | button-mask |
 | 2 | U16 | x-position |
 | 2 | U16 | y-position |
 +--------------+--------------+--------------+

7.5.6. ClientCutText

 RFB provides limited support for synchronizing the "cut buffer" of
 selected text between client and server. This message tells the
 server that the client has new ISO 8859-1 (Latin-1) text in its cut
 buffer. Ends of lines are represented by the newline character (hex
 0a) alone. No carriage-return (hex 0d) is used. There is no way to
 transfer text outside the Latin-1 character set.

 +--------------+--------------+--------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+--------------+
 | 1 | U8 [6] | message-type |
 | 3 | | padding |
 | 4 | U32 | length |
 | length | U8 array | text |
 +--------------+--------------+--------------+

Richardson & Levine Informational [Page 19]

RFC 6143 The Remote Framebuffer Protocol March 2011

7.6. Server-to-Client Messages

 The server-to-client message types defined in this document are:

 +--------+--------------------+
 | Number | Name |
 +--------+--------------------+
 | 0 | FramebufferUpdate |
 | 1 | SetColorMapEntries |
 | 2 | Bell |
 | 3 | ServerCutText |
 +--------+--------------------+

 Other private message types exist but are not publicly documented.
 Before sending a message other than those described in this document
 a server must have determined that the client supports the relevant
 extension by receiving some extension-specific confirmation from the
 client -- usually a request for a given pseudo-encoding.

7.6.1. FramebufferUpdate

 A framebuffer update consists of a sequence of rectangles of pixel
 data that the client should put into its framebuffer. It is sent in
 response to a FramebufferUpdateRequest from the client. Note that
 there may be an indefinite period between the
 FramebufferUpdateRequest and the FramebufferUpdate.

 +--------------+--------------+----------------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+----------------------+
 | 1 | U8 [0] | message-type |
 | 1 | | padding |
 | 2 | U16 | number-of-rectangles |
 +--------------+--------------+----------------------+

 This header is followed by number-of-rectangles rectangles of pixel
 data. Each rectangle starts with a rectangle header:

 +--------------+--------------+---------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+---------------+
 | 2 | U16 | x-position |
 | 2 | U16 | y-position |
 | 2 | U16 | width |
 | 2 | U16 | height |
 | 4 | S32 | encoding-type |
 +--------------+--------------+---------------+

Richardson & Levine Informational [Page 20]

RFC 6143 The Remote Framebuffer Protocol March 2011

 The rectangle header is followed by the pixel data in the specified
 encoding. See Section 7.7 for the format of the data for each
 encoding and Section 7.8 for the meaning of pseudo-encodings.

7.6.2. SetColorMapEntries

 When the pixel format uses a "color map", this message tells the
 client that the specified pixel values should be mapped to the given
 RGB values. Note that this message may only update part of the color
 map. This message should not be sent by the server until after the
 client has sent at least one FramebufferUpdateRequest, and only when
 the agreed pixel format uses a color map.

 Color map values are always 16 bits, with the range of values running
 from 0 to 65535, regardless of the display hardware in use. The
 color map value for white, for example, is 65535,65535,65535.

 The message starts with a header describing the range of colormap
 entries to be updated.

 +--------------+--------------+------------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+------------------+
 | 1 | U8 [1] | message-type |
 | 1 | | padding |
 | 2 | U16 | first-color |
 | 2 | U16 | number-of-colors |
 +--------------+--------------+------------------+

 This header is followed by number-of-colors RGB values, each of which
 is in this format:

 +--------------+--------------+-------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+-------------+
 | 2 | U16 | red |
 | 2 | U16 | green |
 | 2 | U16 | blue |
 +--------------+--------------+-------------+

Richardson & Levine Informational [Page 21]

RFC 6143 The Remote Framebuffer Protocol March 2011

7.6.3. Bell

 A Bell message makes an audible signal on the client if it provides
 one.

 +--------------+--------------+--------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+--------------+
 | 1 | U8 [2] | message-type |
 +--------------+--------------+--------------+

7.6.4. ServerCutText

 The server has new ISO 8859-1 (Latin-1) text in its cut buffer. Ends
 of lines are represented by the newline character (hex 0a) alone. No
 carriage-return (hex 0d) is used. There is no way to transfer text
 outside the Latin-1 character set.

 +--------------+--------------+--------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+--------------+
 | 1 | U8 [3] | message-type |
 | 3 | | padding |
 | 4 | U32 | length |
 | length | U8 array | text |
 +--------------+--------------+--------------+

7.7. Encodings

 The encodings defined in this document are:

 +--------+-----------------------------+
 | Number | Name |
 +--------+-----------------------------+
 | 0 | Raw |
 | 1 | CopyRect |
 | 2 | RRE |
 | 5 | Hextile |
 | 15 | TRLE |
 | 16 | ZRLE |
 | -239 | Cursor pseudo-encoding |
 | -223 | DesktopSize pseudo-encoding |
 +--------+-----------------------------+

 Other encoding types exist but are not publicly documented.

Richardson & Levine Informational [Page 22]

RFC 6143 The Remote Framebuffer Protocol March 2011

7.7.1. Raw Encoding

 The simplest encoding type is raw pixel data. In this case, the data
 consists of width*height pixel values (where width and height are the
 width and height of the rectangle). The values simply represent each
 pixel in left-to-right scan line order. All RFB clients must be able
 to handle pixel data in this raw encoding, and RFB servers should
 only produce raw encoding unless the client specifically asks for
 some other encoding type.

 +----------------------------+--------------+-------------+
 | No. of bytes | Type [Value] | Description |
 +----------------------------+--------------+-------------+
 | width*height*bytesPerPixel | PIXEL array | pixels |
 +----------------------------+--------------+-------------+

7.7.2. CopyRect Encoding

 The CopyRect (copy rectangle) encoding is a very simple and efficient
 encoding that can be used when the client already has the same pixel
 data elsewhere in its framebuffer. The encoding on the wire simply
 consists of an X,Y coordinate. This gives a position in the
 framebuffer from which the client can copy the rectangle of pixel
 data. This can be used in a variety of situations, the most common
 of which are when the user moves a window across the screen, and when
 the contents of a window are scrolled.

 +--------------+--------------+----------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+----------------+
 | 2 | U16 | src-x-position |
 | 2 | U16 | src-y-position |
 +--------------+--------------+----------------+

 For maximum compatibility, the source rectangle of a CopyRect should
 not include pixels updated by previous entries in the same
 FramebufferUpdate message.

7.7.3. RRE Encoding

 Note: RRE encoding is obsolescent. In general, ZRLE and TRLE
 encodings are more compact.

 RRE stands for rise-and-run-length encoding. As its name implies, it
 is essentially a two-dimensional analogue of run-length encoding.
 RRE-encoded rectangles arrive at the client in a form that can be

Richardson & Levine Informational [Page 23]

RFC 6143 The Remote Framebuffer Protocol March 2011

 rendered immediately by the simplest of graphics engines. RRE is not
 appropriate for complex desktops, but can be useful in some
 situations.

 The basic idea behind RRE is the partitioning of a rectangle of pixel
 data into rectangular subregions (subrectangles) each of which
 consists of pixels of a single value, and the union of which
 comprises the original rectangular region. The near-optimal
 partition of a given rectangle into such subrectangles is relatively
 easy to compute.

 The encoding consists of a background pixel value, Vb (typically the
 most prevalent pixel value in the rectangle) and a count N, followed
 by a list of N subrectangles, each of which consists of a tuple
 <v,x,y,w,h> where v (which should be different from Vb) is the pixel
 value, (x,y) are the coordinates of the subrectangle relative to the
 top-left corner of the rectangle, and (w,h) are the width and height
 of the subrectangle. The client can render the original rectangle by
 drawing a filled rectangle of the background pixel value and then
 drawing a filled rectangle corresponding to each subrectangle.

 On the wire, the data begins with the header:

 +---------------+--------------+-------------------------+
 | No. of bytes | Type [Value] | Description |
 +---------------+--------------+-------------------------+
 | 4 | U32 | number-of-subrectangles |
 | bytesPerPixel | PIXEL | background-pixel-value |
 +---------------+--------------+-------------------------+

 This is followed by number-of-subrectangles instances of the
 following structure:

 +---------------+--------------+---------------------+
 | No. of bytes | Type [Value] | Description |
 +---------------+--------------+---------------------+
 | bytesPerPixel | PIXEL | subrect-pixel-value |
 | 2 | U16 | x-position |
 | 2 | U16 | y-position |
 | 2 | U16 | width |
 | 2 | U16 | height |
 +---------------+--------------+---------------------+

7.7.4. Hextile Encoding

 Note: Hextile encoding is obsolescent. In general, ZRLE and TRLE
 encodings are more compact.

Richardson & Levine Informational [Page 24]

RFC 6143 The Remote Framebuffer Protocol March 2011

 Hextile is a variation on RRE. Rectangles are split up into 16x16
 tiles, allowing the dimensions of the subrectangles to be specified
 in 4 bits each, 16 bits in total. The rectangle is split into tiles
 starting at the top left going in left-to-right, top-to-bottom order.
 The encoded contents of the tiles simply follow one another in the
 predetermined order. If the width of the whole rectangle is not an
 exact multiple of 16, then the width of the last tile in each row
 will be correspondingly smaller. Similarly, if the height of the
 whole rectangle is not an exact multiple of 16, then the height of
 each tile in the final row will also be smaller.

 Each tile is either encoded as raw pixel data, or as a variation on
 RRE. Each tile has a background pixel value, as before. The
 background pixel value does not need to be explicitly specified for a
 given tile if it is the same as the background of the previous tile.
 However, the background pixel value may not be carried over if the
 previous tile was raw. If all of the subrectangles of a tile have
 the same pixel value, this can be specified once as a foreground
 pixel value for the whole tile. As with the background, the
 foreground pixel value can be left unspecified, meaning it is carried
 over from the previous tile. The foreground pixel value may not be
 carried over if the previous tile was raw or had the SubrectsColored
 bit set. It may, however, be carried over from a previous tile with
 the AnySubrects bit clear, as long as that tile itself carried over a
 valid foreground from its previous tile.

 The data consists of each tile encoded in order. Each tile begins
 with a subencoding type byte, which is a mask made up of a number of
 bits:

 +--------------+--------------+---------------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+---------------------+
 | 1 | U8 | subencoding-mask: |
 | | [1] | Raw |
 | | [2] | BackgroundSpecified |
 | | [4] | ForegroundSpecified |
 | | [8] | AnySubrects |
 | | [16] | SubrectsColored |
 +--------------+--------------+---------------------+

 If the Raw bit is set, then the other bits are irrelevant;
 width*height pixel values follow (where width and height are the
 width and height of the tile). Otherwise, the other bits in the mask
 are as follows:

Richardson & Levine Informational [Page 25]

RFC 6143 The Remote Framebuffer Protocol March 2011

 BackgroundSpecified
 If set, a pixel value of bytesPerPixel bytes follows and specifies
 the background color for this tile. The first non-raw tile in a
 rectangle must have this bit set. If this bit isn’t set, then the
 background is the same as the last tile.

 ForegroundSpecified
 If set, a pixel value of bytesPerPixel bytes follows and specifies
 the foreground color to be used for all subrectangles in this
 tile.

 If this bit is set, then the SubrectsColored bit must be zero.

 AnySubrects
 If set, a single byte follows and gives the number of
 subrectangles following. If not set, there are no subrectangles
 (i.e., the whole tile is just solid background color).

 SubrectsColored
 If set, then each subrectangle is preceded by a pixel value giving
 the color of that subrectangle, so a subrectangle is:

 +---------------+--------------+---------------------+
 | No. of bytes | Type [Value] | Description |
 +---------------+--------------+---------------------+
 | bytesPerPixel | PIXEL | subrect-pixel-value |
 | 1 | U8 | x-and-y-position |
 | 1 | U8 | width-and-height |
 +---------------+--------------+---------------------+

 If not set, all subrectangles are the same color -- the foreground
 color; if the ForegroundSpecified bit wasn’t set, then the
 foreground is the same as the last tile. A subrectangle is:

 +--------------+--------------+------------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+------------------+
 | 1 | U8 | x-and-y-position |
 | 1 | U8 | width-and-height |
 +--------------+--------------+------------------+

 The position and size of each subrectangle is specified in two bytes,
 x-and-y-position and width-and-height. The most significant 4 bits
 of x-and-y-position specify the X position, the least significant
 specify the Y position. The most significant 4 bits of width-and-
 height specify the width minus 1, the least significant specify the
 height minus 1.

Richardson & Levine Informational [Page 26]

RFC 6143 The Remote Framebuffer Protocol March 2011

7.7.5. TRLE

 TRLE stands for Tiled Run-Length Encoding, and combines tiling,
 palettization, and run-length encoding. The rectangle is divided
 into tiles of 16x16 pixels in left-to-right, top-to-bottom order,
 similar to Hextile. If the width of the rectangle is not an exact
 multiple of 16, then the width of the last tile in each row is
 smaller, and if the height of the rectangle is not an exact multiple
 of 16, then the height of each tile in the final row is smaller.

 TRLE makes use of a new type CPIXEL (compressed pixel). This is the
 same as a PIXEL for the agreed pixel format, except as a special
 case, it uses a more compact format if true-color-flag is non-zero,
 bits-per-pixel is 32, depth is 24 or less, and all of the bits making
 up the red, green, and blue intensities fit in either the least
 significant 3 bytes or the most significant 3 bytes. If all of these
 are the case, a CPIXEL is only 3 bytes long, and contains the least
 significant or the most significant 3 bytes as appropriate.
 bytesPerCPixel is the number of bytes in a CPIXEL.

 Each tile begins with a subencoding type byte. The top bit of this
 byte is set if the tile has been run-length encoded, clear otherwise.
 The bottom 7 bits indicate the size of the palette used: zero means
 no palette, 1 means that the tile is of a single color, and 2 to 127
 indicate a palette of that size. The special subencoding values 129
 and 127 indicate that the palette is to be reused from the last tile
 that had a palette, with and without RLE, respectively.

 Note: in this discussion, the div(a,b) function means the result of
 dividing a/b truncated to an integer.

 The possible values of subencoding are:

 0: Raw pixel data. width*height pixel values follow (where width and
 height are the width and height of the tile):

 +-----------------------------+--------------+-------------+
 | No. of bytes | Type [Value] | Description |
 +-----------------------------+--------------+-------------+
 | width*height*BytesPerCPixel | CPIXEL array | pixels |
 +-----------------------------+--------------+-------------+

Richardson & Levine Informational [Page 27]

RFC 6143 The Remote Framebuffer Protocol March 2011

 1: A solid tile consisting of a single color. The pixel value
 follows:

 +----------------+--------------+-------------+
 | No. of bytes | Type [Value] | Description |
 +----------------+--------------+-------------+
 | bytesPerCPixel | CPIXEL | pixelValue |
 +----------------+--------------+-------------+

 2 to 16: Packed palette types. The paletteSize is the value of the
 subencoding, which is followed by the palette, consisting of
 paletteSize pixel values. The packed pixels follow, with each
 pixel represented as a bit field yielding a zero-based index into
 the palette. For paletteSize 2, a 1-bit field is used; for
 paletteSize 3 or 4, a 2-bit field is used; and for paletteSize
 from 5 to 16, a 4-bit field is used. The bit fields are packed
 into bytes, with the most significant bits representing the
 leftmost pixel (i.e., big endian). For tiles not a multiple of 8,
 4, or 2 pixels wide (as appropriate), padding bits are used to
 align each row to an exact number of bytes.

 +----------------------------+--------------+--------------+
 | No. of bytes | Type [Value] | Description |
 +----------------------------+--------------+--------------+
 | paletteSize*bytesPerCPixel | CPIXEL array | palette |
 | m | U8 array | packedPixels |
 +----------------------------+--------------+--------------+

 where m is the number of bytes representing the packed pixels.
 For paletteSize of 2, this is div(width+7,8)*height; for
 paletteSize of 3 or 4, this is div(width+3,4)*height; or for
 paletteSize of 5 to 16, this is div(width+1,2)*height.

 17 to 126: Unused. (Packed palettes of these sizes would offer no
 advantage over palette RLE).

 127: Packed palette with the palette reused from the previous tile.
 The subencoding byte is followed by the packed pixels as described
 above for packed palette types.

 128: Plain RLE. The data consists of a number of runs, repeated
 until the tile is done. Runs may continue from the end of one row
 to the beginning of the next. Each run is represented by a single
 pixel value followed by the length of the run. The length is
 represented as one or more bytes. The length is calculated as one
 more than the sum of all the bytes representing the length. Any
 byte value other than 255 indicates the final byte. So for

Richardson & Levine Informational [Page 28]

RFC 6143 The Remote Framebuffer Protocol March 2011

 example, length 1 is represented as [0], 255 as [254], 256 as
 [255,0], 257 as [255,1], 510 as [255,254], 511 as [255,255,0], and
 so on.

 +-------------------------+--------------+-----------------------+
 | No. of bytes | Type [Value] | Description |
 +-------------------------+--------------+-----------------------+
 | bytesPerCPixel | CPIXEL | pixelValue |
 | div(runLength - 1, 255) | U8 array | 255 |
 | 1 | U8 | (runLength-1) mod 255 |
 +-------------------------+--------------+-----------------------+

 129: Palette RLE with the palette reused from the previous tile.
 Followed by a number of runs, repeated until the tile is done, as
 described below for 130 to 255.

 130 to 255: Palette RLE. Followed by the palette, consisting of
 paletteSize = (subencoding - 128) pixel values:

 +----------------------------+--------------+-------------+
 | No. of bytes | Type [Value] | Description |
 +----------------------------+--------------+-------------+
 | paletteSize*bytesPerCPixel | CPIXEL array | palette |
 +----------------------------+--------------+-------------+

 Following the palette is, as with plain RLE, a number of runs,
 repeated until the tile is done. A run of length one is
 represented simply by a palette index:

 +--------------+--------------+--------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+--------------+
 | 1 | U8 | paletteIndex |
 +--------------+--------------+--------------+

 A run of length more than one is represented by a palette index
 with the top bit set, followed by the length of the run as for
 plain RLE.

 +-------------------------+--------------+-----------------------+
 | No. of bytes | Type [Value] | Description |
 +-------------------------+--------------+-----------------------+
 | 1 | U8 | paletteIndex + 128 |
 | div(runLength - 1, 255) | U8 array | 255 |
 | 1 | U8 | (runLength-1) mod 255 |
 +-------------------------+--------------+-----------------------+

Richardson & Levine Informational [Page 29]

RFC 6143 The Remote Framebuffer Protocol March 2011

7.7.6. ZRLE

 ZRLE stands for Zlib (see [RFC1950] and [RFC1951]) Run-Length
 Encoding, and combines an encoding similar to TRLE with zlib
 compression. On the wire, the rectangle begins with a 4-byte length
 field, and is followed by that many bytes of zlib-compressed data. A
 single zlib "stream" object is used for a given RFB protocol
 connection, so that ZRLE rectangles must be encoded and decoded
 strictly in order.

 +--------------+--------------+-------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+-------------+
 | 4 | U32 | length |
 | length | U8 array | zlibData |
 +--------------+--------------+-------------+

 The zlibData when uncompressed represents tiles in left-to-right,
 top-to-bottom order, similar to TRLE, but with a tile size of 64x64
 pixels. If the width of the rectangle is not an exact multiple of
 64, then the width of the last tile in each row is smaller, and if
 the height of the rectangle is not an exact multiple of 64, then the
 height of each tile in the final row is smaller.

 The tiles are encoded in exactly the same way as TRLE, except that
 subencoding may not take the values 127 or 129, i.e., palettes cannot
 be reused between tiles.

 The server flushes the zlib stream to a byte boundary at the end of
 each ZRLE-encoded rectangle. It need not flush the stream between
 tiles within a rectangle. Since the zlibData for a single rectangle
 can potentially be quite large, clients can incrementally decode and
 interpret the zlibData but must not assume that encoded tile data is
 byte aligned.

7.8. Pseudo-Encodings

 An update rectangle with a "pseudo-encoding" does not directly
 represent pixel data but instead allows the server to send arbitrary
 data to the client. How this data is interpreted depends on the
 pseudo-encoding.

7.8.1. Cursor Pseudo-Encoding

 A client that requests the Cursor pseudo-encoding is declaring that
 it is capable of drawing a pointer cursor locally. This can
 significantly improve perceived performance over slow links. The
 server sets the cursor shape by sending a rectangle with the Cursor

Richardson & Levine Informational [Page 30]

RFC 6143 The Remote Framebuffer Protocol March 2011

 pseudo-encoding as part of an update. The rectangle’s x-position and
 y-position indicate the hotspot of the cursor, and width and height
 indicate the width and height of the cursor in pixels. The data
 consists of width*height raw pixel values followed by a shape
 bitmask, with one bit corresponding to each pixel in the cursor
 rectangle. The bitmask consists of left-to-right, top-to-bottom scan
 lines, where each scan line is padded to a whole number of bytes, the
 number being div(width+7,8). Within each byte, the most significant
 bit represents the leftmost pixel; a bit set to 1 means the
 corresponding pixel in the cursor is valid.

 +----------------------------+--------------+---------------+
 | No. of bytes | Type [Value] | Description |
 +----------------------------+--------------+---------------+
 | width*height*bytesPerPixel | PIXEL array | cursor-pixels |
 | div(width+7,8)*height | U8 array | bitmask |
 +----------------------------+--------------+---------------+

7.8.2. DesktopSize Pseudo-Encoding

 A client that requests the DesktopSize pseudo-encoding is declaring
 that it is capable of coping with a change in the framebuffer width
 and height. The server changes the desktop size by sending a
 rectangle with the DesktopSize pseudo-encoding as the last rectangle
 in an update. The rectangle’s x-position and y-position are ignored,
 and width and height indicate the new width and height of the
 framebuffer.

 There is no further data associated with the rectangle. After
 changing the desktop size, the server must assume that the client no
 longer has the previous framebuffer contents. This will usually
 result in a complete update of the framebuffer at the next update.
 However, for maximum interoperability with existing servers the
 client should preserve the top-left portion of the framebuffer
 between the old and new sizes.

8. IANA Considerations

 IANA has allocated port 5900 to the RFB protocol. The other port
 numbers mentioned in Section 2 are called out for historical context
 and do not match IANA allocations.

 Future assignments to the IANA registries created by this
 specification are to be made through either "Expert Review" or "IESG
 Approval" (if there is no currently appointed expert) as defined in
 [RFC5226].

Richardson & Levine Informational [Page 31]

RFC 6143 The Remote Framebuffer Protocol March 2011

8.1. RFB Security Types

8.1.1. Registry Name

 The name of this registry is "Remote Framebuffer Security Types".

8.1.2. Registry Contents

 IANA established a registry for security types that are used with the
 RFB protocol.

 The initial entries in the registry are:

 +------------+-------------------------+-----------------------+
 | Number | Name | References |
 +------------+-------------------------+-----------------------+
 | 0 | Invalid | (this document) |
 | 1 | None | (this document) |
 | 2 | VNC Authentication | (this document) |
 | 3 to 15 | RealVNC | (historic assignment) |
 | 16 | Tight | (historic assignment) |
 | 17 | Ultra | (historic assignment) |
 | 18 | TLS | (historic assignment) |
 | 19 | VeNCrypt | (historic assignment) |
 | 20 | GTK-VNC SASL | (historic assignment) |
 | 21 | MD5 hash authentication | (historic assignment) |
 | 22 | Colin Dean xvp | (historic assignment) |
 | 128 to 255 | RealVNC | (historic assignment) |
 +------------+-------------------------+-----------------------+

8.2. Client-to-Server Message Types

8.2.1. Registry Name

 The name of this registry is "Remote Framebuffer Client-to-Server
 Message Types".

8.2.2. Registry Contents

 IANA established a registry for client-to-server message types that
 are used with the RFB protocol.

 The initial entries in the registry are:

Richardson & Levine Informational [Page 32]

RFC 6143 The Remote Framebuffer Protocol March 2011

 +--------+------------------------------+-----------------------+
 | Number | Name | References |
 +--------+------------------------------+-----------------------+
 | 0 | SetPixelFormat | (this document) |
 | 2 | SetEncodings | (this document) |
 | 3 | FramebufferUpdateRequest | (this document) |
 | 4 | KeyEvent | (this document) |
 | 5 | PointerEvent | (this document) |
 | 6 | ClientCutText | (this document) |
 | 127 | VMWare | (historic assignment) |
 | 128 | Nokia Terminal Mode Spec | (historic assignment) |
 | 249 | OLIVE Call Control | (historic assignment) |
 | 250 | Colin Dean xvp | (historic assignment) |
 | 251 | Pierre Ossman SetDesktopSize | (historic assignment) |
 | 252 | tight | (historic assignment) |
 | 253 | gii | (historic assignment) |
 | 254 | VMWare | (historic assignment) |
 | 255 | Anthony Liguori | (historic assignment) |
 +--------+------------------------------+-----------------------+

8.3. Server-to-Client Message Types

8.3.1. Registry Name

 The name of this registry is "Remote Framebuffer Server-to-Client
 Message Types".

8.3.2. Registry Contents

 IANA established a registry for server-to-client message types that
 are used with the RFB protocol.

 The initial entries in the registry are:

Richardson & Levine Informational [Page 33]

RFC 6143 The Remote Framebuffer Protocol March 2011

 +--------+--------------------------+-----------------------+
 | Number | Name | References |
 +--------+--------------------------+-----------------------+
 | 0 | FramebufferUpdate | (this document) |
 | 1 | SetColourMapEntries | (this document) |
 | 2 | Bell | (this document) |
 | 3 | ServerCutText | (this document) |
 | 127 | VMWare | (historic assignment) |
 | 128 | Nokia Terminal Mode Spec | (historic assignment) |
 | 249 | OLIVE Call Control | (historic assignment) |
 | 250 | Colin Dean xvp | (historic assignment) |
 | 252 | tight | (historic assignment) |
 | 253 | gii | (historic assignment) |
 | 254 | VMWare | (historic assignment) |
 | 255 | Anthony Liguori | (historic assignment) |
 +--------+--------------------------+-----------------------+

8.4. RFB Encoding Types

8.4.1. Registry Name

 The name of this registry is "Remote Framebuffer Encoding Types".

8.4.2. Registry Contents

 IANA established a registry for encoding types that are used with the
 RFB protocol.

 The initial entries in the registry are:

Richardson & Levine Informational [Page 34]

RFC 6143 The Remote Framebuffer Protocol March 2011

 +-------------------+----------------------------+------------------+
 | Number | Name | References |
 +-------------------+----------------------------+------------------+
0	Raw	(this document)
1	CopyRect	(this document)
2	RRE	(this document)
5	Hextile	(this document)
16	ZRLE	(this document)
-239	Cursor pseudo-encoding	(this document)
-223	DesktopSize	(this document)
	pseudo-encoding	
4	CoRRE	(historic
		assignment)
6	zlib	(historic
		assignment)
7	tight	(historic
		assignment)
8	zlibhex	(historic
		assignment)
15	TRLE	(this document)
17	Hitachi ZYWRLE	(historic
		assignment)
1024 to 1099	RealVNC	(historic
		assignment)
-1 to -222	tight options	(historic
		assignment)
-224 to -238	tight options	(historic
		assignment)
-240 to -256	tight options	(historic
		assignment)
-257 to -272	Anthony Liguori	(historic
		assignment)
-273 to -304	VMWare	(historic
		assignment)
-305	gii	(historic
		assignment)
-306	popa	(historic
		assignment)
-307	Peter Astrand DesktopName	(historic
		assignment)
-308	Pierre Ossman	(historic
	ExtendedDesktopSize	assignment)
-309	Colin Dean xvp	(historic
		assignment)
-310	OLIVE Call Control	(historic
		assignment)
-412 to -512	TurboVNC fine-grained	(historic
	quality level	assignment)

Richardson & Levine Informational [Page 35]

RFC 6143 The Remote Framebuffer Protocol March 2011

-523 to -524	Nokia Terminal Mode Spec	(historic
		assignment)
-763 to -768	TurboVNC subsampling level	(historic
		assignment)
0x574d5600 to	VMWare	(historic
0x574d56ff		assignment)
 +-------------------+----------------------------+------------------+

9. Security

 The RFB protocol as defined here provides no security beyond the
 optional and cryptographically weak password check described in
 Section 7.2.2. In particular, it provides no protection against
 observation of or tampering with the data stream. It has typically
 been used on secure physical or virtual networks.

 Security methods beyond those described here may be used to protect
 the integrity of the data. The client and server might agree to use
 an extended security type to encrypt the session, or the session
 might be transmitted over a secure channel such as IPsec [RFC4301] or
 SSH [RFC4254].

10. Acknowledgements

 James Weatherall, Andy Harter, and Ken Wood also contributed to the
 design of the RFB protocol.

 RFB and VNC are registered trademarks of RealVNC Ltd. in the U.S. and
 in other countries.

11. References

11.1. Normative References

 [RFC1950] Deutsch, L. and J-L. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950, May 1996.

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 [XLIBREF] Nye, A., "XLIB Reference Manual R5", June 1994.

11.2. Informative References

 [RFC4254] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, January 2006.

Richardson & Levine Informational [Page 36]

RFC 6143 The Remote Framebuffer Protocol March 2011

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

Richardson & Levine Informational [Page 37]

RFC 6143 The Remote Framebuffer Protocol March 2011

Appendix A. Differences in Earlier Protocol Versions

 For maximum interoperability, clients and servers should be prepared
 to fall back to the earlier 3.3 and 3.7 versions of the RFB protocol.
 Any version reported other than 3.7 or 3.8 should be treated as 3.3.

 All of the differences occur in the initial handshake phase. Once
 the session reaches the ClientInit and ServerInit messages, all three
 protocol versions are identical. Even within a protocol version,
 clients and servers may support different subsets of the encoding and
 pseudo-encoding types.

A.1. Differences in the Version 3.3 Protocol

 The ProtocolVersion message is:

 RFB 003.003\n (hex 52 46 42 20 30 30 33 2e 30 30 33 0a)

 In the security handshake (Section 7.1.2), rather than a two-way
 negotiation, the server decides the security type and sends a single
 word:

 +--------------+--------------+---------------+
 | No. of bytes | Type [Value] | Description |
 +--------------+--------------+---------------+
 | 4 | U32 | security-type |
 +--------------+--------------+---------------+

 The security-type may only take the value 0, 1, or 2. A value of 0
 means that the connection has failed and is followed by a string
 giving the reason, as described in Section 7.1.2.

 If the security-type is 1, for no authentication, the server does not
 send the SecurityResult message but proceeds directly to the
 initialization messages (Section 7.3).

 In VNC Authentication (Section 7.2.2), if the authentication fails,
 the server sends the SecurityResult message, but does not send an
 error message before closing the connection.

A.2. Differences in the Version 3.7 Protocol

 The ProtocolVersion message is:

 RFB 003.007\n (hex 52 46 42 20 30 30 33 2e 30 30 37 0a)

Richardson & Levine Informational [Page 38]

RFC 6143 The Remote Framebuffer Protocol March 2011

 After the security handshake, if the security-type is 1, for no
 authentication, the server does not send the SecurityResult message
 but proceeds directly to the initialization messages (Section 7.3).

 In VNC Authentication (Section 7.2.2), if the authentication fails,
 the server sends the SecurityResult message, but does not send an
 error message before closing the connection.

Authors’ Addresses

 Tristan Richardson
 RealVNC Ltd.
 Betjeman House, 104 Hills Road
 Cambridge CB2 1LQ
 UK

 Phone: +44 1223 310400
 EMail: standards@realvnc.com
 URI: http://www.realvnc.com

 John Levine
 RealVNC Ltd.

 Phone: +44 1223 790005
 EMail: standards@taugh.com
 URI: http://jl.ly

Richardson & Levine Informational [Page 39]

