
Internet Engineering Task Force (IETF) M. Phillips
Request for Comments: 6167 P. Adams
Category: Informational IBM
ISSN: 2070-1721 D. Rokicki
 Software AG
 E. Johnson
 TIBCO
 April 2011

 URI Scheme for Java(tm) Message Service 1.0

Abstract

 This document defines the format of Uniform Resource Identifiers
 (URIs) as defined in RFC 3986, for designating connections and
 destination addresses used in the Java(tm) Messaging Service (JMS).
 It was originally designed for particular uses, but applies generally
 wherever a JMS URI is needed to describe the connection to a JMS
 provider, and access to a JMS Destination. The syntax of this JMS
 URI is not compatible with previously existing, but unregistered,
 "jms" URI schemes. However, the expressiveness of the scheme
 described herein should satisfy the requirements of all existing
 circumstances.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6167.

Phillips, et al. Informational [Page 1]

RFC 6167 jms" URI Scheme April 2011

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Phillips, et al. Informational [Page 2]

RFC 6167 jms" URI Scheme April 2011

Table of Contents

 1. Introduction ..3
 1.1. Requirements Notation4
 2. URI Scheme Name ...5
 3. Syntax of a JMS URI ...5
 4. URI Scheme Semantics ..5
 4.1. Shared Parameters ..6
 4.2. "jndi" Variant ...7
 4.3. Vendor Destination Names -- Variants "queue" and "topic" ..11
 4.4. Custom Parameters ...12
 5. Encoding Considerations ..13
 6. Applications/Protocols That Use the JMS URI13
 7. Interoperability Considerations13
 8. Security Considerations ..14
 8.1. Reliability and Consistency14
 8.2. Malicious Construction14
 8.3. Back-End Transcoding15
 8.4. Semantic Attacks ..15
 8.5. Other Security Concerns16
 9. IANA Considerations ..16
 9.1. URI Scheme Registration16
 9.2. "jms" URI Scheme Registries17
 10. Contributors ..18
 11. Acknowledgements ..19
 12. References ..20
 12.1. Normative References20
 12.2. Informative References21

1. Introduction

 The "jms" URI scheme is used to designate a javax.jms.Destination
 object and an associated javax.jms.ConnectionFactory object [JMS],
 and, optionally, to provide additional information concerning the way
 that the Destination object is to be used. Probably the most common,
 and certainly the most compatible, way in Java to retrieve such
 Destinations is via Java Naming and Directory Information (JNDI)
 [JNDI] methods. So as to extend compatibility to existing vendor
 mechanisms beyond JNDI lookup, the JMS URI syntax allows variants on
 the core syntax. The variant exists as an explicit part of the
 syntax so that tools that are otherwise unfamiliar with the variant
 can recognize the presence of a URI with an alternate interpretation.

Phillips, et al. Informational [Page 3]

RFC 6167 jms" URI Scheme April 2011

 In its simplest and most interoperable form, this URI scheme starts
 with "jms:jndi:" plus a JNDI name for a Destination. Since
 interaction with some resources might require JNDI contextual
 information or JMS header fields and properties to be specified as
 well, the "jndi" variant of the "jms" URI scheme includes support for
 supplying this additional JNDI information as query parameters.

 While the "jndi" variant provides compatibility, vendors can define
 additional variants. This specification defines three variants:
 "jndi", "queue", and "topic". Vendors defining additional variants
 are strongly encouraged to register them with IANA as documented in
 Section 9.2.1.

 While the "jms" URI scheme allows the location of network resources,
 it does not map to a single underlying protocol, unlike most other
 URI schemes that do so. Instead, it achieves interoperability
 through the use of a common Java-based API [JAVA] for messaging.
 Because of this, interoperability is dependent upon the
 implementation of the API and its capabilities; two implementations
 of JMS might or might not interoperate in practice. Furthermore, it
 might be impractical to use JMS URIs in non-Java environments.

 As a consequence of building upon an API, rather than a protocol, the
 utility of a JMS URI depends on the context in which it is used.
 That context includes agreement on the same JMS provider or
 underlying protocol; agreement on how to look up endpoints (JNDI);
 and, when using serialized Java object messages, sufficiently similar
 Java Class environments that serialized objects can be appropriately
 read and written. Users of this scheme need to establish the
 necessary shared-context parts as just enumerated -- a context that
 can span the globe, or merely a small local network. With that
 shared context, this URI scheme enables endpoint identification in a
 uniform way, and the means to connect to those endpoints.

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 All syntax descriptions use the ABNF specified by [RFC5234],
 "Augmented BNF for Syntax Specifications: ABNF".

 Note that some examples in this document wrap long JMS URIs for
 readability. The line breaks are not part of the actual URIs.

Phillips, et al. Informational [Page 4]

RFC 6167 jms" URI Scheme April 2011

2. URI Scheme Name

 The name of the URI scheme is "jms".

3. Syntax of a JMS URI

 The following ABNF describes the "jms" scheme URI syntax:

 jms-uri = "jms:" jms-variant ":" jms-dest
 ["?" param *("&" param)]

 jms-variant = segment-nz-nc

 jms-dest = segment-nz ; specific meaning per variant

 param = param-name "=" param-value

 param-name = 1*(unreserved / pct-encoded)

 param-value = *(unreserved / pct-encoded)

 segment-nz-nc = <as defined in RFC 3986>

 path-rootless = <as defined in RFC 3986>

 unreserved = <as defined in RFC 3986>

 pct-encoded = <as defined in RFC 3986>

 The URIs are percent-encoded UTF-8 [RFC3629]. Please see Section 5
 of this document for encoding considerations.

4. URI Scheme Semantics

 JMS URIs are used to locate JMS [JMS] Destination resources and do
 not specify actions to be taken on those resources. Operations
 available on JMS Destinations are fully and normatively defined by
 the JMS specification and as such are out of scope for this URI
 specification.

 The required portions of the syntax include the terminal of "jms" for
 the URI scheme name; the <jms-variant> element to indicate the
 variant of the scheme; and the <jms-dest> element, which identifies
 the Destination based on the chosen variant. For the <jms-variant>
 element, this document defines three values: "jndi", "queue", and
 "topic". All the terminals resulting from <jms-variant> and
 <jms-dest> production rules are case-sensitive.

Phillips, et al. Informational [Page 5]

RFC 6167 jms" URI Scheme April 2011

 Parameters further refine how to locate and use the Destination. The
 parameter names and values are case-sensitive. They can occur in any
 order, and each parameter name SHOULD NOT appear more than once. In
 the event that a parameter appears multiple times, all but the last
 instance of the parameter MUST be ignored. For comparison purposes,
 the absence of a parameter does not mean the same thing as a URI with
 a parameter set to a default value, due to the potential variation in
 default values as determined by the context of a specific use.

 Each variant can have query parameters specific to that variation.
 All such variant-specific parameters SHOULD use the name of the
 variant as the prefix to the parameters. For example, a vendor-
 specific variant of "vnd.example.ex" might also define a parameter
 with a name like "vnd.example.exParameter". Parameters that apply
 across multiple variants -- perhaps because they are generally
 applicable, such as JMS settings -- MUST NOT have a name that starts
 with the name of any known variant. This pattern enables tools that
 are otherwise unfamiliar with a particular variant to distinguish
 those parameters that are specific to a variant from those that are
 more generally applicable.

 Examples of the URI scheme include:

 jms:jndi:SomeJndiNameForDestination?
 jndiInitialContextFactory=
 com.example.jndi.JndiFactory&priority=3

 jms:queue:ExampleQueueName?timeToLive=1000

4.1. Shared Parameters

 In addition to the required particles, the "jms" URI scheme supports
 the following shared parameters, which are available to all variants.
 These parameters correspond to headers and properties on the JMS
 Messages to be sent. For the parameters deliveryMode, timeToLive,
 and priority, the default values might be specified in the context of
 a specific use, for example by environment variables, or in the
 configuration of a particular network application. JMS also defines
 default values for these properties. The context default is hereby
 defined as the default value in the context of a specific use, or the
 JMS default for a particular property if the context does not define
 a default.

Phillips, et al. Informational [Page 6]

RFC 6167 jms" URI Scheme April 2011

4.1.1. deliveryMode

 Indicates whether the request message is persistent or not. This
 property corresponds to the JMS message header field
 "JMSDeliveryMode" defined in Section 3.4.2 of the JMS 1.1
 specification [JMS]. The value of this parameter MUST be
 "PERSISTENT" or "NON_PERSISTENT". If this parameter is not
 specified, then the context default MUST be used.

4.1.2. timeToLive

 The lifetime, in milliseconds, of the request message, specified as a
 decimal number. This property corresponds to the JMS Time-To-Live
 value defined in Section 4.8 of the JMS 1.1 specification. If this
 parameter is not specified, then the context default MUST be used.

4.1.3. priority

 The JMS priority associated with the request message. As per
 Section 3.4.10 of the JMS 1.1 specification, this MUST be a value
 between 0 and 9 inclusive, specified as a decimal number. This
 corresponds to the JMS message header field "JMSPriority". If this
 parameter is not specified, then the context default MUST be used.

4.1.4. replyToName

 This property corresponds to the JMS message header field
 "JMSReplyTo" defined in Section 3.4.6 of the JMS 1.1 specification.
 As interpreted by the particular variant, this property value
 specifies the JMS Destination object to which a response message
 ought to be sent.

4.2. "jndi" Variant

 The "jndi" variant implies the use of JNDI for discovering the
 Destination object. When this is specified as the variant, the
 <jms-dest> portion of the syntax is the name for JNDI lookup
 purposes. Additional JNDI-specific parameters can be specified. The
 JNDI-specific parameters SHOULD only be processed when the URI
 variant is "jndi".

4.2.1. JNDI Parameters

4.2.1.1. jndiConnectionFactoryName

 Specifies the JNDI name of the Java class (see Section 3.8,
 "Identifiers", of [JLS] for the specification of a legal Java class
 name) providing the connection factory.

Phillips, et al. Informational [Page 7]

RFC 6167 jms" URI Scheme April 2011

4.2.1.2. jndiInitialContextFactory

 Specifies the fully qualified Java class name of the
 "InitialContextFactory" implementation class to use.

4.2.1.3. jndiURL

 Specifies the JNDI provider URL, in a form consistent with
 javax.naming.spi.NamingManager.getURLContext(String scheme, Hashtable
 environment) as defined in the JNDI specification [JNDI].

4.2.1.4. Additional JNDI Parameters

 It is possible that connecting to a JNDI provider requires additional
 parameters. These parameters can be passed in as custom parameters
 (see Section 4.4). To identify a custom parameter as JNDI specific,
 the parameter name needs to start with the prefix "jndi-".

 For example, if the JNDI provider requires a parameter named
 "com.example.jndi.someParameter", you can supply the parameter in the
 URI as: jndi-com.example.jndi.someParameter=someValue

4.2.2. Example of Performing a JNDI Lookup

 To perform a lookup based on a "jndi" variant URI using Java APIs, an
 application might start by creating a JNDI InitialContext object.
 The InitialContext object can then be used to look up the JMS
 ConnectionFactory object (using the "jndiConnectionFactoryName" URI
 parameter), the target JMS Destination object (using the <jms-dest>
 portion of the JMS URI), and the "replyToName" JMS Destination object
 (if the "replyToName" parameter is specified on the URI). The
 application creates the InitialContext object by first setting up two
 properties: "Context.INITIAL_CONTEXT_FACTORY", with the value of the
 jndiInitialContextFactory JMS URI parameter; and
 "Context.PROVIDER_URL", with the value of the jndiURL URI parameter;
 and then passing the two properties to the InitialContext
 constructor.

 To locate a connection factory or Destination object, the application
 passes the name of the object into the InitialContext.lookup()
 method.

Phillips, et al. Informational [Page 8]

RFC 6167 jms" URI Scheme April 2011

 For example, the JMS URI...

 jms:jndi:REQ_QUEUE
 ?jndiURL=file:/C:/JMSAdmin
 &jndiInitialContextFactory
 =com.sun.jndi.fscontext.RefFSContextFactory
 &jndiConnectionFactoryName=CONNFACT
 &replyToName=RESP_QUEUE

 ...would be used by the following (non-normative) code sample to
 locate and retrieve a JMS ConnectionFactory called "CONNFACT", and
 JMS Destinations called "REQ_QUEUE" and "RESP_QUEUE", from a file-
 system JNDI context called "c:/JMSAdmin".

 /*
 * Preconditions on URI:
 * - portion <jms-dest> has been parsed into variable "jms_dest"
 * - parameters "jndiConnectionFactoryName",
 * "jndiInitialContextFactory", "replyToName", and "jndiURL" have
 * been parsed into variables of the same name.
 */
 Hashtable environment = new Hashtable();
 environment.put(Context.INITIAL_CONTEXT_FACTORY,
 jndiInitialContextFactory);
 environment.put(Context.PROVIDER_URL, jndiURL);
 /*
 * Create File-System Initial Context
 */
 Context ctx = new InitialContext(environment);
 /*
 * Now get the JMS ConnectionFactory and Destination. These will
 * be used later on in the application to create the JMS
 * Connection and send/receive messages.
 */
 ConnectionFactory jmsConnFact = (ConnectionFactory)
 ctx.lookup(jndiConnectionFactoryName);
 Destination requestDest = (Destination) ctx.lookup(jms_dest);
 Destination replyDest = (Destination) ctx.lookup(replyToName);

 The ConnectionFactory is used to create a Connection, which itself is
 used to create a Session. The Session can then be used to create the
 MessageProducer, which sends messages to the target Destination; and
 the MessageConsumer, which receives messages from the replyToName
 Destination (as shown in the following code extract).

Phillips, et al. Informational [Page 9]

RFC 6167 jms" URI Scheme April 2011

 /*
 * Create a producer to send a message to the request Destination
 * that was specified in the URI, then create the message, setting
 * the replyToName Destination in the message to the one specified
 * in the URI, and send it.
 */
 MessageProducer producer = sess.createProducer(requestDest);
 BytesMessage reqMsg = sess.createBytesMessage();
 reqMsg.setJMSReplyTo(replyDest);
 producer.send(reqMsg);
 /*
 * Create a consumer to get a message from the replyToName
 * Destination using a selector to get the specific response to
 * this request. The responder sets the correlation ID of the
 * response to the message ID of the request message.
 */
 MessageConsumer consumer = sess.createConsumer(replyDest,
 "JMSCorrelationID = ’" + reqMsg.getJMSMessageID() + "’");
 Message respMsg = (Message) consumer.receive(300000);

4.2.2.1. Performing a JNDI Lookup with Custom Parameters

 Any parameters with a prefix of "jndi-" MUST be used to set custom
 properties when establishing a connection to the JNDI provider. The
 name of the custom property is derived by removing the "jndi-" prefix
 from the URI parameter name, and the value of the property is the
 value of the parameter.

 For example, the JMS URI...

 jms:jndi:REQ_QUEUE
 ?jndiURL=file:/C:/JMSAdmin
 &jndiInitialContextFactory
 =com.sun.jndi.fscontext.RefFSContextFactory
 &jndiConnectionFactoryName=CONNFACT
 &jndi-com.example.jndi.someParameter=someValue

 ...instructs the consumer to use the following properties to connect
 to the JNDI provider:

 java.naming.provider.url=file:/C:/JMSAdmin
 java.naming.factory.initial=
 com.sun.jndi.fscontext.RefFSContextFactory
 com.example.jndi.someParameter=someValue

Phillips, et al. Informational [Page 10]

RFC 6167 jms" URI Scheme April 2011

4.3. Vendor Destination Names -- Variants "queue" and "topic"

 The JMS Session object provides a means to directly access Queues and
 Topics. Specifically, it has the methods Session.createQueue(String
 name) and Session.createTopic(String name). These methods can be
 used to "create" the Java representation of an existing JMS Topic or
 Queue.

 Since the Session interface requires external knowledge about whether
 a given name relates to a Queue or Topic, rather than introducing one
 new variant, this section defines two variants. A JMS URI can
 indicate which of these methods to use by specifying the appropriate
 variant -- either "queue" or "topic". For example:

 jms:queue:ExampleQueueName

 to identify a JMS Queue Destination, and

 jms:topic:ExampleTopicName

 to identify a JMS Topic Destination.

 JMS only specifies one way to obtain the names used by these APIs.
 With a JMS Queue or Topic available, an implementation can call
 Queue.getQueueName() or Topic.getTopicName(), respectively, both of
 which return a String object. To create a correct corresponding URI,
 the resulting string MUST use standard URI escape mechanisms so that
 the resulting characters conform to the production <jms-dest>.

4.3.1. Treatment of replyToName Parameter

 When used with the "queue" and "topic" variants, the replyToName
 parameter, specified in Section 4.1.4, always refers to a name of a
 JMS Queue to look up via the Session.createQueue() method, or its
 equivalent. For either variant, if a JMS Topic is instead required
 as a response Destination, a JMS URI can employ the
 "topicReplyToName" parameter. This parameter defines a name to look
 up with the Session.createTopic() method, or its equivalent.

 A JMS URI MUST NOT specify both a "topicReplyToName" and a
 "replyToName" parameter.

4.3.2. Obtaining a Session via JNDI

 Using the Session.createQueue() and Session.createTopic() methods
 assumes that a client program has already obtained a Session object.
 Where does that Session object come from -- how does a client get it?
 One way to get a Session is simply to access vendor-specific APIs.

Phillips, et al. Informational [Page 11]

RFC 6167 jms" URI Scheme April 2011

 Another way to get a Session object is to simply revert to using
 JNDI. That is, if a Session is not available to the client from some
 other context, the "queue" and "topic" variants MAY reuse the URL
 parameters specified in Section 4.2.1, "JNDI Parameters". Via JNDI,
 those parameters will identify a ConnectionFactory, which can then be
 used to obtain a Session object.

 Combining the "queue" and "topic" variants with JNDI lookup for an
 implementation of ConnectionFactory raises an important consideration
 for JMS URI clients. Once clients employ JNDI for one part of
 discovering a Destination, they almost certainly could use a vendor-
 neutral JNDI lookup for a Destination object itself, rather than
 using vendor-specific means. As a result, clients need to carefully
 consider whether it makes sense to use JNDI for one part of this
 problem, without using it for the other.

4.3.3. Limitations of "queue" and "topic"

 The JMS specification clearly identifies the two methods on the
 Session interface as returning vendor-specific names for
 Destinations. Consequently, users of the "jms" URI scheme ought to
 carefully consider when these two variants might be employed. If
 users plan on switching between JMS vendors, they might also need to
 plan on regenerating resources that contain URIs in this vendor-
 specific form.

 A JMS vendor can provide alternate ways to obtain the names that can
 be passed to Session.createQueue() and Session.createTopic(). When
 using names derived from those alternate means, users of this URI
 specification are encouraged to verify that the obtained names work
 as expected in all circumstances.

4.4. Custom Parameters

 The set of parameters is extensible. Any other vendor- or
 application-defined parameter can be supplied, in the URI, by passing
 it as <param-name>=<param-value>, just like the set of well-known
 parameters.

 WARNING: Vendors and applications MUST NOT include sensitive
 information (such as authorization tokens) in a URI. Other means of
 authorization, authentication, and identification ought to be used.
 Also see the security discussion below about properties that might be
 duplicated as JMS message properties.

Phillips, et al. Informational [Page 12]

RFC 6167 jms" URI Scheme April 2011

5. Encoding Considerations

 The "jms" URI scheme distinguishes between <unreserved> characters
 and <pct-encoded> characters, as defined in [RFC3986]. Apart from
 these encoding considerations, the characters "?" and "&" MUST be
 encoded when they appear within the <jms-dest> particle (for example,
 a JNDI name) or in query parameters. The character ":" SHOULD be
 escaped when appearing in the <jms-dest> portion of the syntax.

 Conversions to and from Internationalized Resource Identifiers (IRIs)
 follow the rules of RFC 3987, Sections 3.1 and 3.2. As per
 Sections 1.2-c. and 6.4 of [RFC3987], all parts of the JMS URI MUST
 use the UTF-8 encoding when converting to and from the IRI format.

6. Applications/Protocols That Use the JMS URI

 A variety of vendors provide implementations of the JMS Service
 Provider Interface (SPI). These products interoperate at the API
 level, in the Java programming language.

 Some vendors have provided additional products that interoperate with
 their own SPI implementations. These extensions might also be able
 to make use of this URI scheme.

 The vendors working on this URI scheme are also working on a
 specification for carrying SOAP messages over their respective
 implementations of JMS [SOAP-JMS]. In addition, the Service
 Component Architecture Bindings technical committee (TC) [SCA-TC] at
 OASIS employs the "jms" URI scheme to identify JMS Destinations in
 [SCA-JMS].

7. Interoperability Considerations

 This "jms" URI scheme focuses on identifying a JMS Destination
 object, and some characteristics of communication using that
 Destination, and specifically excludes any notion of describing how
 JMS itself is implemented and how it delivers messages. As a
 consequence of this focus, interoperability concerns are limited to
 how implementations obtain and use a Destination object.

 This scheme definition describes three variants for obtaining a
 Destination. These variants achieve their aims with the use of JNDI
 and JMS APIs, with no new APIs or protocols defined here. As a
 consequence of using JNDI and JMS, interoperability concerns might
 arise if implementations do not conform to the specifications for
 those APIs. Further, the use of Java, and JNDI in particular, means
 that the configuration of the execution environment and the use of
 Java ClassLoaders can affect the interpretation of any given URI.

Phillips, et al. Informational [Page 13]

RFC 6167 jms" URI Scheme April 2011

 Consumers of these URIs are urged to consider the scope and
 consistency of the environment across which these URIs will be
 shared.

 As described in Section 4, others can define additional variants,
 which provide the means to describe how to look up JMS Destination
 objects in a manner specific to some environment. For any new
 variant, the shared parameters defined in Section 4.1 MUST have the
 same meaning in that variant as they do here. That way, tools and
 people can safely copy these parameters between environments. Note
 that while additional variants might seem more flexible, employing
 variants not defined here might make it more difficult to switch to
 an alternate JMS provider.

8. Security Considerations

 Section 7 of [RFC3986] identifies some of the security concerns that
 ought to be addressed by this specification.

8.1. Reliability and Consistency

 This specification identifies only the variant (<jms-variant>) and
 variant-specific details (<jms-dest>) as an essential part of the
 URI. For reliability and consistency purposes, these variants are
 the only part that can reasonably be expected to be stable. Other
 optional JMS configuration and message properties indicated as URI
 parameters, like "timeToLive", can reasonably be determined by the
 sender of a message, without affecting the recipient. Insofar as a
 recipient might wish to dictate certain parameters, such as the
 "jndiConnectionFactoryName", those parameters can be specified.

8.2. Malicious Construction

8.2.1. Recipient Concerns

 A malicious consumer of a service using a JMS URI could send, as part
 of a JMS message, a URI with a parameter such as "timeToLive" with a
 value specified in the URI that differs from the corresponding JMS
 message property ("JMSExpiration" header field, in this example). In
 the case of such messages with such URIs, recipients are strongly
 cautioned to avoid applying processing logic based on particular URI
 parameters. Discrepancies in the message could be used to exploit
 differences in behavior between the selectors that a JMS-based
 application might use to affect which messages it sees, and the
 processing of the rest of the application. As defined in this
 document, the parameters of concern include:

Phillips, et al. Informational [Page 14]

RFC 6167 jms" URI Scheme April 2011

 deliveryMode

 timeToLive

 priority

 Message senders are strongly urged to remove from the URI extra
 parameters like the above in environments where the data will be
 redundant with information specified elsewhere in the JMS message.

 Any use of additional parameters, either as a part of a definition of
 a new variant or for more general use, SHOULD also specify whether
 those parameters ought to be removed by a sender as specified here.
 If a recipient is aware of the "jms" URI scheme, and it receives a
 message containing a JMS URI, it MUST ignore or discard parameters
 that it does not recognize.

8.2.2. Sender Concerns

 A third party could intercept and replace a URI containing any of the
 JMS/JNDI configuration parameters, such as
 "jndiConnectionFactoryName", "jndiInitialContextFactory", or
 "jndiURL". As these parameters can affect how an implementation
 establishes an initial connection, such parameters could be used as a
 means to subvert communications. This could possibly result in
 re-routing communications to third parties, who could then monitor
 sent messages. Clients SHOULD NOT use these URI parameters unless
 assured of their validity in trusted environments.

8.3. Back-End Transcoding

 This specification, in using the URI specification and building
 around the JMS specification, has no particular transcoding issues.
 Any such issues are problems with the underlying implementation of
 Java and the Java Messaging Service being employed.

8.4. Semantic Attacks

 A possible semantic attack on the "jndi" variant could be
 accomplished by replacing characters of the JMS URI from one language
 with equivalent-looking characters from another language, known as an
 "Internationalized Domain Name (IDN) homograph attack" [HOMOGRAPH].
 This kind of attack could occur in a variety of ways. For example,

Phillips, et al. Informational [Page 15]

RFC 6167 jms" URI Scheme April 2011

 if an environment allows for the automatic registration of JNDI
 Destination names, a malicious actor could register and then
 publicize an alternate of an existing Destination name. Such an
 environment ought to prevent the use of homograph equivalents,
 perhaps by restricting allowed characters, so that clients do not
 accidentally send their requests to unintended Destinations.

 The "queue" and "topic" variants are subject to the same concerns as
 the "jndi" variant. In addition, because the Destination names are
 vendor defined, URIs employing these two variants might employ
 special characters that significantly change the meaning of the URI.
 It is possible that the introduction of a single character --
 difficult for a human to notice -- might dramatically change the
 intended meaning of a URI. In situations where this might be an
 issue, users of this URI are urged to strongly consider the "jndi"
 variant instead.

8.5. Other Security Concerns

 This specification does not define or anticipate any use for IP
 addresses as part of the URI, so no issues around IP addresses, rare
 or otherwise, are raised by this specification.

 This specification does not define any characteristics of a "jms"
 scheme URI that contain sensitive information.

9. IANA Considerations

9.1. URI Scheme Registration

 IANA registered the Java Message Service URI scheme described in this
 document, according to the following scheme registration request,
 using the template from [RFC4395]:

 o URI scheme name: jms

 o Status: Provisional

 o URI scheme syntax: See Section 3

 o URI scheme semantics: See Section 4

 o Encoding considerations: See Section 5

 o Applications/protocols that use this URI scheme name: See
 Section 6

 o Interoperability considerations: See Section 7

Phillips, et al. Informational [Page 16]

RFC 6167 jms" URI Scheme April 2011

 o Security considerations: See Section 8

 o Contact: See the Authors’ Addresses section

 o References: See the References section

9.2. "jms" URI Scheme Registries

 Per this URI scheme, IANA has created a registry for possible
 "variants". IANA can reject obviously bogus registrations.

9.2.1. JMS URI Variants

 This registry provides a listing of "jms" URI scheme variants.
 Variant names beginning with "vnd." are reserved for vendor
 extensions. Such variants should follow a pattern of
 vnd.<vendorname>.<label>. The <vendorname> corresponds to the
 iana-vendor-tag production from [RFC6075], and vendor.<vendorname>
 must already be registered in the Application Configuration Access
 Protocol (ACAP) Vendor Subtree. The <label> is chosen by said
 vendor.

 All variant names are to be registered on a first come, first served
 basis.

 Variants must conform to the "jms-variant" production above. Since
 variants occur in URIs, they ought to be short, and MUST NOT be more
 than forty characters in length.

 This document defines the "jndi", "queue", and "topic" variants
 initially included in the registry.

9.2.2. "jms" URI Scheme Variant Registration Template

 This template describes the fields that must be present to register a
 new variant for use in a JMS URI.

 To: iana@iana.org
 Subject: Registration of JMS URI variant name

 JMS URI variant name: Variants must conform to the "jms-variant"
 production above. Since variants occur in URIs, they ought to be
 short, and MUST NOT be more than forty characters in length.

 Description: A description of the purpose of the variant being
 registered.

Phillips, et al. Informational [Page 17]

RFC 6167 jms" URI Scheme April 2011

 Contact Information: Name(s) and email address(es) to contact for
 more information about this registration.

 Description URL: If available, a URL for a document describing the
 details of how the variant works.

 Comments: Any comments the requester thinks are relevant to this
 request.

 Change Controller: Contact information for the person who controls
 further changes to this variant definition.

9.2.3. Change Control

 Once a JMS URI variant registration has been published by IANA, the
 change controller can request a change to its definition. The change
 request follows the same procedure as the registration request.

 The change controller of a JMS URI variant can pass responsibility
 for the JMS URI variant to another person or agency by informing
 IANA; this can be done without discussion or review.

 JMS URI variant registrations MUST NOT be deleted; mechanisms that
 are no longer believed appropriate for use can be marked as obsolete
 in the Comment field.

 In exceptional circumstances, the IESG can reassign responsibility
 for a JMS URI variant.

 The IESG is considered to be the owner of all JMS URI variants that
 are on the IETF Standards Track.

10. Contributors

 The authors gratefully acknowledge the contributions of:

 Phil Adams
 International Business Machines Corporation
 EMail: phil_adams@us.ibm.com

 Glen Daniels
 WSO2
 EMail: glen@wso2.com

 Peter Easton
 Progress Software
 EMail: peaston@progress.com

Phillips, et al. Informational [Page 18]

RFC 6167 jms" URI Scheme April 2011

 Tim Frank
 Software AG.
 EMail: tim.frank@softwareag.com

 Lei Jin
 BEA Systems, Inc. until March 2007

 Eric Johnson
 TIBCO Software Inc.
 EMail: eric@tibco.com

 Vinod Kumar
 BEA Systems, Inc. until May 2007

 Amelia A. Lewis
 TIBCO Software Inc.
 EMail: alewis@tibco.com

 Roland Merrick
 International Business Machines Corporation until June 2009

 Mark Phillips
 International Business Machines Corporation
 EMail: m8philli@uk.ibm.com

 Derek Rokicki
 Software AG.
 EMail: derek.rokicki@softwareag.com

 Stephen Todd
 International Business Machines Corporation until April 2007

 Dongbo Xiao
 Oracle Corp.
 EMail: dongbo.xiao@oracle.com

 Prasad Yendluri
 Software AG.
 EMail: prasad.yendluri@softwareag.com

11. Acknowledgements

 Oracle and Java are registered trademarks of Oracle and/or its
 affiliates. Other names may be trademarks of their respective
 owners.

Phillips, et al. Informational [Page 19]

RFC 6167 jms" URI Scheme April 2011

12. References

12.1. Normative References

 [JLS] Sun Microsystems, Inc., "The Java Language
 Specification, Third Edition", January 2005,
 <http://java.sun.com/docs/books/jls/third_edition/html/
 j3TOC.html>.

 [JMS] Hapner, M., Burridge, R., Sharma, R., Fialli, J., and K.
 Stout, "Java Message Service", April 2002,
 <http://java.sun.com/products/jms/>.

 [JNDI] Sun Microsystems, Inc., "Java Naming and Directory
 Interface Application Programming Interface", July 1999,
 <http://java.sun.com/products/jndi/docs.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, January 2005.

 [RFC4395] Hansen, T., Hardie, T., and L. Masinter, "Guidelines and
 Registration Procedures for New URI Schemes", BCP 35,
 RFC 4395, February 2006.

 [RFC5234] Crocker, D., Ed., and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", STD 68, RFC 5234,
 January 2008.

 [RFC6075] Cridland, D., "The Internet Assigned Number Authority
 (IANA) Application Configuration Access Protocol (ACAP)
 Vendor Subtrees Registry", RFC 6075, December 2010.

Phillips, et al. Informational [Page 20]

RFC 6167 jms" URI Scheme April 2011

12.2. Informative References

 [HOMOGRAPH] "IDN Homograph attack", 2011, <http://en.wikipedia.org/
 w/index.php?title=IDN_homograph_attack&oldid=416746950>.

 [JAVA] Oracle Corporation, "Oracle Technology for Java
 Developers", 2011,
 <http://www.oracle.com/technetwork/java/index.html>.

 [SCA-JMS] Holdsworth, S. and A. Karmarkar, "Service Component
 Architecture JMS Binding Specification Version 1.1",
 November 2010, <http://docs.oasis-open.org/opencsa/
 sca-bindings/sca-jmsbinding-1.1-spec.html>.

 [SCA-TC] "OASIS Service Component Architecture / Bindings (SCA-
 Bindings) TC", <http://www.oasis-open.org/committees/
 tc_home.php?wg_abbrev=sca-bindings>.

 [SOAP-JMS] Adams, P., Easton, P., Johnson, E., Merrick, R., and M.
 Phillips, "SOAP over Java Message Service 1.0",
 October 2010,
 <http://www.w3.org/TR/2010/WD-soapjms-20101026/>.

Phillips, et al. Informational [Page 21]

RFC 6167 jms" URI Scheme April 2011

Authors’ Addresses

 Mark Phillips
 International Business Machines Corporation
 Hursley House, Hursley Park
 Winchester, Hampshire SO21 2JN
 United Kingdom

 EMail: m8philli@uk.ibm.com

 Phil Adams
 International Business Machines Corporation
 11501 Burnet Rd.
 Austin, TX 78758
 United States

 EMail: phil_adams@us.ibm.com

 Derek Rokicki
 Software AG.
 11700 Plaza America Drive
 Reston, VA 20190
 United States

 EMail: derek.rokicki@softwareag.com

 Eric Johnson
 TIBCO Software Inc.
 3303 Hillview Avenue
 Palo Alto, CA 94304
 United States

 EMail: eric@tibco.com

Phillips, et al. Informational [Page 22]

