Net wor k Wor ki ng Group Edward Taft (PARC- MAXC)
Request for Comments: 617 Feb 1974
Nl C #21771

A Note on Socket Number Assignnent 2

I NTRODUCT! ON

In several current and proposed protocols, as well as in a few

ot her docunents, the assunption is nade (or inplied) that a user
process in control of one end of a Tel net connection has free
access to a group of socket nunbers begi nning with or surrounding
the Tel net socket numbers.

For exanple, the File Transfer Protocol (RFC 542, N C #17759)
specifies that the default data transfer sockets are S+2, S+3,
U4, and U+5, where S and U are the server and user sockets
involved in the initial connection (I1CP).

Simlarly, the proposed Network G aphics Protocol (N C #19933)
provi des for a second connection pair for graphics data,
parallel to the Tel net connection, using (at both ends) sockets
n+6 and n+7, where n is the Tel net receive socket.

I would Iike to point out to designers of protocols that the
Host - Host Protocol (N C #8246) quite explicitly places no
interpretations or constraints on host assignnment of socket
numbers, except for the use of the loworder bit to indicate
direction of data flow W should refrain from making further
assunptions (as does the "Socket Nunber List" docunment (RFC 503,
NI C #15747) in stating that the loworder 8 bits are
"user-specified'), lest we inadvertently exclude certain host
software architectures or protocol inplenentations.

AN EXAVPLE

To illustrate the source of ny concern, let ne briefly describe
the user software interface to the network in the PDP-10 NCP

i mpl ementation currently in use at HARV-10, CMJ- 10A, and CMJ 108.
I will then show why the fixed socket nunber requirenents of the
two protocols | nentioned above present inplenentation
difficulties, especially at the server end.

Openi ng a connection at one of these hosts causes the creation of
a "device" (in approximtely the sane nanner as, say, nounting a
di sk pack). As such, an open connection is subject to any one of
a nunber of operations on devices in 10/50, including assignment
of | ogical nanes, opening for data transfer, and reassignment to
anot her j ob.

The NCP allows a (non-privileged) user programto specify the

| ow-order 8 bits of the socket nunber of any connection which it
opens, and to specify that the other 24 bits be assigned in one of
t hree ways:

-- As a function of the job nunber, making a "job-relative"
socket .

-- As a function of the user identification, naking a
"user-relative" socket.

-- As a "guaranteed uni que" nunber, i.e. one assigned by the
NCP such that no other socket nunmber in use has the sane
hi gh-order 24 bits.

A program may al so specify all 32 bits of a |ocal socket numnber
provided the high-order 24 bits are the sane as the correspondi ng
bits in sone other socket already owned by the sane job.

The NCP will, of course, allow assignnent of a socket generated in
any of the above ways only if it is not already in use by the sane
or any other job.

PROBLEMS | N THE FTP SERVER | MPLEMENTATI ON 5

The FTP server is inplenented in a manner that sone readers nmay
find rem niscent of Padlipsky’'s "Unified User Level Protocol" (RFC
451, NI C #14135). Rather than directly executing nost FTP
functions (in particular, systemaccess and file transfer
functions), it nmerely maps FTP commands into | ocal conmands which
it "types" on a pseudo-Tel etype (PTY) to a subjob, and sinmlarly
maps | ocal responses into FTP responses.

Thi s schene makes maxi nrum use of existing software and
mechani sms for user authentication, accounting, and file
access, and elimnates the need for the (privileged) FTP server
to performtheminterpretively. (This conforms to the
"principle of least privilege" described in RFC 501, NIC
#15818.)

In this inplenentation, FTP data transfers are perfornmed by an
entirely different process (with a different user identification)
fromthe one that manages the server end of the Tel net connection
Hence, since server sockets S and S+1 belong to the server
"control" job and sockets S+2 and S+3 are in the sane 256-socket
number range, the latter two sockets are inaccessible to the "data
transfer” subjob.

Those who attended last spring’s FTP neeting may recall that |
obj ected strenuously to the requirenent that the FTP server use
a fixed pair of data sockets relative to its Tel net sockets, as
opposed to the old scheme in which the server has conplete
freedomin the choice of its data sockets. The principa

reason is that it would seemto rule out the "two-process”
schene | have just descri bed.

In fact, in our case there is a way around the problem The
FTP server control job can open the data connections itself,
then "reassign" the created "device" to the data transfer
subj ob. A kludgey solution at best, and one | would rather
have avoi ded! Inter-job socket reassignnment is hardly an
operation one is likely to find available in nost operating
syst ens.

Dl FFI CULTI ES WTH THE GRAPHI CS PROTOCOL

Provi ding a graphics connection parallel (at a fixed socket nunber
di stance) to the Tel net connection mght potentially present the
same difficulty as descri bed above for FTP connections.

In the nost frequently used nodel of Tel net comunication, as
well as in many inplenentations, the server Telnet is a process
quite distinct fromthe "user" process under its control. The
two processes are typically interfaced through the operating
systenis terninal service in such a way that the "user" process
perceives a ,termnal" as opposed to a "network connection”

In Tenex, for exanple, a job controlled froma network
term nal has no handl e whatever on the server Tel net
connection; hence, it has no way of obtaining control of
sockets n+6 and n+7 for a graphics connection

In the Harvard-Carnegie 10/50 inplenmentation, it happens (for

| argely accidental reasons) that a job logged in fromthe

net wor k does have control (i.e. is considered the owner) of the
server Tel net sockets.

However, there is another problem Many operating systens provide
means by whi ch the association between term nals and jobs may be
changed.

To use familiar termnology, a terminal may be "detached" from
one job and "attached" to another, in a manner which does not
destroy any jobs or any network connections.

Hence, it is entirely possible that a user could start up a
program that uses sockets n+6 and n+7 (where n is the server

Tel net receive socket), detach his ternminal fromthat job, attach
it to another, attenpt to run a program using the G aphics
Protocol, and have the attenpted data connection fail because
sockets n+6 and n+7 are already in use (for the same value of n
since we are referring to the same network termnal).

CONCLUSI ON 7

There are, of course, a few network-w de socket nunber conventions
necessary for establishing initial connection

Reserving sockets 0-255 for standard ICP functions is an
exanpl e of one such convention

Additionally, | think that for the purpose of sinplicity it is
reasonabl e to expect any process to be able to gain control of
a small block of "adjacent" sockets, such as an even-odd pair
(as inICP), if it asks for themat the same tine.

However, as the foregoi ng exanpl es have denonstrated, to inpose
further fixed socket nunber requirenents is to risk the danger of
maki ng unwarrant ed assunptions about the nature of protoco

i mpl enentations, the structure of user processes, etc., at

i ndi vi dual hosts.

Once the initial Tel net connection is established, any other
necessary connections shoul d be established by negotiation over
the Tel net connection (e.g. by nmessages of the form"Pl ease
connect to ny socket xxxxxx", "OK, connecting via nmy socket
yyyyyy"). There is absolutely no need for any protocol to specify
fixed socket nunbers, except for the purposes of the initial
connection (1CP).

