Net wor k Wor ki ng Group D. C \Wlden
Request for Comments: 62 BBN I nc.
Super cedes NWH RFC #61 3 August 1970

1

A System for Interprocess Comunication
in a
Resour ce Sharing Conputer Network

I ntroducti on

If you are working to devel op nmet hods of communications within a
conmput er network, you can engage in one of two activities. You can
work with others, actually constructing a conputer network, being

i nfluenced, perhaps influencing your colleagues. O you can
construct an intellectual position of how things should be done in an
i deal network, one better than the one you are hel ping to construct,
and then present this position for the designers of future networks
to study. The author has spent the past two years engaged in the
first activity. This paper results fromrecent engagenent in the
second activity.

"A resource sharing conputer network is defined to be a set of

aut ononous, independent conputer systens, interconnected so as to
pernmit each conputer systemto utilize all of the resources of the
ot her conputer systenms much as it would normally call a subroutine."”
This definition of a network and the desirability of such a network
i s expounded upon by Roberts and Wssler in [9].

The actual act of resource sharing can be performed in two ways: in
an ad hoc manner between all pairs of conputer systems in the
network; or according to a systematic network-wi de standard. This
paper devel ops one possi bl e network-wi de system for resource sharing.

| believe it is natural to think of resources as being associated
with processes<l> and avail able only through comuni cation with these
processes. Therefore, | view the fundanental problem of resource
sharing to be the problem of interprocess comunication. | also
share with Carr, Crocker, and Cerf [2] the view that interprocess
communi cati on over a network is a subcase of general interprocess
communi cation in a nulti-programed environnent.

These views have led ne to performa two-part study. First, a set of
operations enabling interprocess conmunication within a single tinmne-
sharing systemis constructed. This set of operations eschews nmany
of the interprocess comunications techniques currently in use within
ti me-sharing systems -- such as comuni cation through shared nenory
-- and relies instead on techniques that can be easily generalized to

Wal den [Page 1]

RFC 62 | PC for Resource Sharing 3 August 1970

pernmit comuni cation between renote processes. The second part of
the study presents such a generalization. The application of this
generalized systemto the ARPA Conputer Network [9] is al so

di scussed.

The ideas enlarged upon in this paper cane from nany sources.
Particularly influential were -- 1) an early sketch of a Host
protocol for the ARPA Network by S. Crocker of UCLA and W Crow her
of Bolt Beranek and Newran Inc. (BBN); 2) Ackerman and Plummer’s
paper on the MT PDP-1 tine-sharing system[1]; and 3) discussions
with W Crowther and R Kahn of BBN about Host protocol, flow
control, and nessage routing for the ARPA Network. Hopefully, there
are also sone original ideas in this note. | alone amresponsible
for the collection of all of these ideas into the system described
herein, and | amtherefore responsible for any inconsistencies or
bugs in the system

It nust be enphasized that this paper does not represent an officia
BBN position on Host protocol for the ARPA Conputer Network.

2. A Systemfor Interprocess Comuni cation within a Time-Sharing System

This section describes a set of operations enabling interprocess
communi cation within a tine-sharing system Followi ng the notation
of [10], | call this interprocess communication facility an IPC. As
an aid to the presentation of this IPC, a nodel for a tinme-sharing
systemis described; this nodel is then used to illustrate the use of
the interprocess conmuni cati on operations.

The nodel tine-sharing has two pieces: the nonitor and the processes.
The monitor performs such functions as switching control from one
process to another process when a process has used "enough" tine,
fielding hardware interrupts, managi ng core and the swappi ng nedi um
controlling the passing of control fromone process to another (i.e.
protection nechani sns), creating processes, caring for sleeping
processes, and providing to the processes a set of nachi ne extending
operations (often called Supervisor or Munitor Calls). The processes
performthe nornmal user functions (user processes) as well as the
functions usually thought of as being supervisor functions in a

ti me-sharing system (systens processes) but not perfornmed by the
nmonitor in the current nodel. A typical systemprocess is the disc
handl er or the file system System processes is the disc handler or
the file system System processes are probably allowed to execute in
supervi sor nmode, and they actually execute I/O instructions and
perform other privileged operations that user processes are not
allowed to perform |In all other ways, user and system processes are
identical. For reasons of efficiency, it may be useful to think of

Wal den [Page 2]

RFC 62 | PC for Resource Sharing 3 August 1970

system processes as being | ocked in core.

Al though they will be of concern later in this study, protection

consi derations are not my concern here: instead | will assune that
all of the processes are "good" processes which never made any
m stakes. |If the reader needs a protection structure to keep in nind

while he reads this note, the capability system devel oped in
[1113]1[7]1[8] should be satisfying.

O the operations a process can call on the nmonitor to perform six
are of particular interest for providing a capability for
i nt erprocess conmuni cation

RECEI VE. This operation allows a specified process to send a nessage
to the process executing the RECEIVE. The operation has four
paraneters: the port (defined below) awaiting the nmessage -- the
RECEI VE port; the port a nessage will be accepted from-- the SEND
port; a specification of the buffer available to receive the nessage;
and a location to transfer to when the transm ssion is conplete --
the restart |ocation

SEND. This operation sends a nessage fromthe process executing the
SEND to a specified process. It has four paraneters: a port to send
the nmessage to -- the RECEIVE port; the port the nessage is being
sent from-- the SEND port; a specification of the buffer containing
the nmessage to be sent; and the restart |ocation

RECElI VE ANY. This operations allows any process to send a nessage to
the process executing the RECEIVE ANY. The operation has four
paraneters: the port awaiting the nessage -- the RECEI VE port; a
specification of the buffer available to receive the nessage; a
restart location; and a location where the port which sent the
nmessage may be noted.

SEND FROM ANY. This operation allows a process to send a nessage to
a process able to receive a nessage fromany process. |t has the
sanme four paraneters as SEND. (The necessity for this operation wll
be expl ai ned nmuch later).

SLEEP. This operation allows the currently running process to put
itself to sleep pending the conpletion of an event. The operation
has one optional paraneter, an event to be waited for. An exanple
event is the arrival of a hardware interrupt. The nonitor never
unilaterally puts a process to sleep as a result of the process
executing one of the above four operations; however, if a process is
asl eep when one of the above four operations is satisfied, the
process i s awakened.

Wal den [Page 3]

RFC 62 | PC for Resource Sharing 3 August 1970

UNI QUE. This operation obtains a unique nunber fromthe nonitor

A port is a particular data path to a process (a RECEIVE port) or
froma process (a SEND port), and all ports have an associ ated uni que
port nunber which is used to identify the port. Ports are used in
transmitting nmessages fromone process to another in the foll ow ng
manner. Consider two processes, A and B, that w sh to conmunicate.
Process A executes a RECEIVE to port N fromport M Process B
executes a SEND to port N fromport M The nmonitor matches up the
port nunbers and transfers the nessage from process B to process A
As soon as the buffer has been fully transmtted out of process B
process B is restarted at the location specified in the SEND
operation. As soon as the nessage is fully received at process A,
process Ais restarted at the |location specified in the RECEI VE
operation. Just how the processes conme by the correct port numnbers
with which to conmunicate with other processes is not the concern of
the monitor -- this problemis left to the processes.

When a SEND i s executed, nothing happens until a matching RECEI VE is
executed. Somewhere in the nonitor there nust be a table of port
nunbers associated with processes and restart |ocations. The table
entries are cleared after each SENDY RECEI VE match is made. |If a
proper RECEIVE is not executed for sonme time, the SEND is tinmed out
after a while and the SENDi ng process is notified. |If a RECEIVE is
executed but the natching SEND does not happen for a long tine, the
RECEI VE is tined out and the RECEI Ving process is notified.

The mechani sm of timng out "unused" table entries is of little
fundamental inportance, nerely providing a conveni ent nethod of
garbage collecting the table. There is no problemif an entry is
tinmed out prematurely, because the process can always re-execute the
operation. However, the tinmeout interval should be | ong enough so
that continual re-execution of an operation will cause little

over head.

A RECEI VE ANY never tinmes out, but may be taken back using a
supervisor call. A nmessage resultant froma SEND FROM ANY is al ways
sent immediately and will be discarded if a proper receiver does not
exist. An error nmessage is not returned and acknow edgnment, if any,
is up to the processes. |If the table where the SEND and RECEIl VE are
mat ched up ever overflows, a process originating a further SEND and
RECEI VE is notified just as if the SEND or RECElI VE tinmed out.

The restart location is an interrupt entrance associated with a
pseudo interrupt local to the process executing the operation
specifying the restart location. |If the process is running when then
event causing the pseudo interrupt occurs (for exanple, a nmessage
arrives satisfying a pending RECEIVE), the effect is exactly as if

Wal den [Page 4]

RFC 62 | PC for Resource Sharing 3 August 1970

the hardware interrupted the process and transferred control to the
restart location. Enough information is saved for the process to
continue execution at the point it was interrupted after the
interrupt is serviced. |If the process is asleep, it is readied and
the pseudo interrupt is saved until the process runs again and the
interrupt is then allowed. Any RECEIVE or RECEI VE ANY nessage port
may thus be used to provide process interrupts, event channels,
process synchroni zati on, nessage transfers, etc. The user prograns
what he wants.

It is left as an exercise to the reader to convince hinself that the
nmonitor he is saddled with can be nade to provide the six operations
descri bed above -- nobst nonitors can since these are only additiona
supervi sor calls.

An exanpl e. Suppose that our nodel timne-sharing systemis
initialized to have several processes always running. Additionally,

t hese pernmanent processes have sone universally known and pernmanently
assi gned ports<2>. Suppose that two of the pernmanently running
processes are the | ogger-process and the tel etype-scanner-process.
When the tel etype-scanner-process first starts running, it puts
itself to sleep awaiting an interrupt fromthe hardware tel etype
scanner. The |ogger-process initially puts itself to sleep awaiting
a nmessage fromthe tel etype-scanner-process via well-known pernmanent
SEND and RECEI VE ports. The tel eype-scanner-process keeps a table

i ndexed by tel etype nunber, containing in each entry a pair of port
nunbers to use to send characters fromthat teletype to a process and
a pair of port nunbers to use to receive characters for that tel etype
froma process. |If a character arrives (waking up the teletype-
scanner- process) and the process does not have any entry for that
teletype, it gets a pair of unique nunbers fromthe nmonitor (via

UNI QUE) and sends a nessage containing this pair of nunbers to the

| ogger-process using the ports for which the | ogger-process is known
to have a RECEI VE pending. The scanner-process also enters the pair
of numbers in the teletype table, and sends the character and al
future characters fromthis teletype to the port with the first
nunber fromthe port with the second nunber. The scanner-process
nmust al so pass a second pair of unique nunbers to the | ogger-process
for it to use for teletype output and do a RECEl VE using these port
nunbers. \Wen the | ogger-process receives the nmessage fromthe
scanner-process, it starts up a copy of what SDS 940 TSS [6] users
call the executive<3>, and passes the port nunbers to this copy of
the executive, so that this executive-process can also do its inputs
and outputs to the teletype using these ports. |If the |ogger-process
wants to get a job nunber and password fromthe user, it can
tenporarily use the port nunbers to communicate with the user before
it passes themon to the executive. The scanner-process could al ways
use the sane port nunbers for a particular teletype as long as the

Wal den [Page 5]

RFC 62 | PC for Resource Sharing 3 August 1970

nunbers were passed on to only one copy of the executive at a tine.

It is inmportant to distinguish between the act of passing a port from
one process to another and the act of passing a port nunber from one
process to another. 1In the previous exanple, where characters froma
particular teletype are sent either to the | ogger-process or an
executive-process by the tel etype-scanner-process, the SEND port

al ways renmains in the tel etype-scanner-process while the RECElIVE port
noves from the | ogger-process to the executive process. On the other
hand, the SEND port number is passed between the | ogger-process and

t he executive-process to enable the RECEI VE process to do a RECElI VE
fromthe correct SEND port. It is crucial that, once a process
transfers a port to sone other process, the first process no |onger
use the port. W could add a nechanismthat enforces this. The
protected object systemof [9] is one such nechanism Using this
mechani sm a process executing a SEND woul d need a capability for the
SEND port and only one capability for this SEND port would exist in
the systemat any given time. A process executing a RECElIVE woul d be
required to have a capability for the RECEIVE port, and only one
capability for this RECEIVE port would exist at a given tine.

Wt hout such a protection nmechanism a port inplicitly noves from one
process to another by the processes nerely using the port at disjoint
times even if the port’s nunber is never explicitly passed.

O course, if the protected object systemis available to us, there
is really no need for two port nunbers to be specified before a
transm ssion can take place. The fact that a process knows an

exi sting RECElI VE port nunmber could be considered prinma facie evidence
of the process’ right to send to that port. The difference between
RECEI VE and RECEI VE ANY ports then depends solely on the nunber of
copies of a particular port nunber that have been passed out. A
system based on this approach would clearly be preferable to the one
described here if it was possible to assune that all autononous

ti me-sharing systenms in a network woul d adopt this protection
mechanism |If this assunption cannot be nade, it seens nore
practical to require both port nunbers.

Note that in the interprocess conmunication system (1 PC) being
descri bed here, when two processes wi sh to comuni cate they set up
the connection thensel ves, and they are free to do it in a mutually
conveni ent manner. For instance, they can exchange port nunbers or
one process can pick all the port nunbers and instruct the other
process which to use. However, in a particular inplenentation of a
ti me-sharing system the builders of the system nmight choose to
restrict the processes’ execution of SENDs and RECElI VEs and ni ght
forbid arbitrary passing around of ports and port nunbers, requiring
instead that the nonitor be called (or sone other special progranm) to
performthese functions.

Wal den [Page 6]

RFC 62 | PC for Resource Sharing 3 August 1970

Fl ow control is provided in this | PC by the sinple nethod of never
starting data transm ssion resultant froma SEND from one process
until a RECEIVE is executed by the receiver. O course, interprocess
nmessages may al so be sent back and forth suggesting that a process
stop sending or that space be all ocat ed.

Ceneral ly, well-known pernanently-assigned ports are used via RECElI VE
ANY and SEND FROM ANY. The permanent ports will nost often be used
for starting processes and, consequently, little data will be sent
via them |If a process if running (perhaps asleep), and has a
RECEI VE ANY pendi ng, then any process know ng the receive port nunber
can talk to that process wi thout going through |loggers. This is
obviously essential within a local tinme-sharing systemand seens very
useful in a nore general network if the ideal of resource sharing is
to be reached. For instance, in a resource sharing network, the
progranms in the subroutine libraries at all sites might have RECElI VE
ANYs al ways pendi ng over permanently assigned ports with well-known
port nunbers. Thus, to use a particular network resource such as a
mat ri X mani pul ati on hardware, a process runni ng anywhere in the
network can send a nessage to the matrix inversion subroutine
containing the matrix to be inverted and the port nunbers to be used
for returning the results.

An additional exanple denobnstrates the use of the FORTRAN conpil er

We have al ready expl ai ned how a user sits down at his tel etype and
gets connected to an executive. W go on fromthere. The user is
typing in and out of the executive which is doing SENDs and RECEI VEs.
Eventual |y the user types RUN FORTRAN, and executive asks the nonitor
to start up a copy of the FORTRAN conpil er and passes to FORTRAN as
start up paraneters the port nunbers the executive was using to talk
to the teletype. (This, at l|least conceptually, FORTRAN is passed a
port at which to RECElI VE characters fromthe teletype and a port from
which to SEND characters to the teletype.) FORTRAN is, of course
expecting these paraneters and does SENDs and RECEI VEs via the

i ndicated ports to discover fromthe user what input and output files
the user wants to use. FORTRAN types INPUT FILE? to the user, who
responds FO0l1. FORTRAN then sends a nessage to the file-system
process, which is asleep waiting for sonething to do. The nessage is
sent via well-known ports and it asks the file systemto open FOO1
for input. The nessage al so contains a pair of port nunmbers that the
file-system process can use to send its reply. The file-system | ooks
up FO01, opens it for input, nmake sone entries in its open file

tabl es, and sends back to FORTRAN a nessage containing the port
nunbers that FORTRAN can use to read the file. The sane procedure is
followed for the output file. When the conpilation is conplete,
FORTRAN returns the tel etype port nunbers (and the ports) back to the
executive that has been asleep waiting for a nmessage from FORTRAN,
and then FORTRAN halts itself. The file-system process goes back to

Wal den [Page 7]

RFC 62 | PC for Resource Sharing 3 August 1970

sl eep when it has nothing el se to do<4>.

Again, the file-system process can keep a snmall collection of port
nunbers which it uses over and over if it can get file system users
to return the port nunbers when they have finished with them O
course, when this collection of port nunbers has eventually dribbled
away, the file systemcan get sone new uni que nunbers fromthe

noni tor.

3. A Systemfor Interprocess Comunicati on Bet ween Renote Processes

The |1 PC described in the previous section easily generalizes to all ow
i nterprocess conmuni cati on between processes at geographically
different |ocations as, for exanple, within a conputer network.

Consider first a sinple configuration of processes distributed around
the points of a star. At each point of the star there is an

aut ononous operating systenk5>. A rather large, smart conputer
system called the Network Controller, exists at the center of the
star. No processes can run in this center system but rather it
shoul d be thought of as an extension of the monitor of each of the
operating systenms in the network.

If the Network Controller is able to performthe operations SEND
RECEI VE, SEND FROM ANY, RECElI VE ANY, and UNIQUE and if all of the
monitors in all of the tine-sharing systens in the network do not
performthese operations thensel ves but rather ask the Network
Controller to performthese operations for them then the probl em of
i nt erprocess conmuni cati on between renote processes if solved. No
further changes are necessary since the Network Controller can keep
track of which RECElI VEs have been executed and whi ch SENDs have been
executed and match themup just as the nonitor did in the node

ti me-sharing system A networkw de port nunbering schene is al so
possible with the Network Controller know ng where (i.e., at which
site) a particular port is at a particular tine.

Next, consider a nore conplex network in which there is no common
center point, making it necessary to distribute the functions
performed by the Network Controller anong the network nodes. In the
rest of this section |l will showthat it is possible to efficiently
and conveniently distribute the functions perforned by the star

Net work Controll er anmong the nany network sites and still enable
general interprocess conmuni cati on between renote processes.

Some changes nmust be nmade to each of the four SEND/ RECEI VE operations

descri bed above to adapt themfor use in a distributed Network
Controller. To RECEIVE is added a paraneter specifying a site to

Wal den [Page 8]

RFC 62 | PC for Resource Sharing 3 August 1970

which the RECEIVE is to be sent. To the SEND FROM ANY and SEND
nmessages is added a site to send the SEND to although this is
normally the local site. Both RECEIVE and RECEI VE ANY have added the
provi sion for obtaining the source site of any received nessage.
Thus, when a RECEI VE is executed, the RECEIVE is sent to the site
specified, possibly a renpte site. Concurrently a SEND is sent to
the sane site, normally the local site of the process executing the
SEND. At this site, called the rendezvous site, the RECEIVE is

mat ched with the proper SEND and the nessage transmission is allowed
to take place fromthe SEND site to the site fromwhence the RECElI VE
cane.

A RECEI VE ANY never leaves its originating site and therein lies the
necessity for SEND FROM ANY, since it nmust be possible to send a
nmessage to a RECElI VE ANY port and not have the nessage bl ocked
waiting for a RECEIVE at the sending site. It is possible to
construct a system so the SEND/ RECEI VE rendezvous takes place at the
RECEI VE site and elim nates the SEND FROM ANY operation, but in ny
judgnent the ability to block a normal SEND transnission at the
source site nore than nakes up for the added conplexity.

At each site a rendezvous table is kept. This table contains an
entry for each unmatched SEND or RECEI VE received at that site and

al so an entry for all RECElIVE ANYs given at that site. A matching
SENDY RECEI VE pair is cleared fromthe table as soon as the natch
takes place. As in the sinlar table kept in the nodel tine-sharing,
SEND and RECEI VE entries are tinmed out if unmatched for too | ong and
the originator is notified. RECEIVE ANY entries are cleared fromthe
table when a fulfilling nessage arrives.

The final change necessary to distribute the Network Controller
functions is to give each site a portion of the unique nunbers to
distribute via its UNIQUE operation. |’Il discuss this topic further
bel ow.

To make it clear to the reader how the distributed Network Controller
wor ks, an exanple follows. The details of what process picks port
nunbers, etc., are only exenplary and are not a standard specified as
part of the |IPC

Suppose that, for two sites in the network, K and L, process A at

site K wishes to comunicate with process B at site L. Process B has
a RECElI VE ANY pending at port M

Wal den [Page 9]

RFC 62 | PC for Resource Sharing 3 August 1970

SITE K SITE L
/ \ / \
/ \ / \
/ \ / \

/ \ / \
Process A		Process B

\ / \ /

\ / RECEI VE--> port M /
\ / ANY \ /
\ / \ /

Process A, fortunately, knows of the existence of port Mat site L and
sends a nessage using the SEND FROM ANY operation fromport N to port

M The nessage contains two port nunbers and instructions for process
B to SEND nmessages for process Ato port P fromport Q Site Ks site
nunber is appended to this message along with the nessage’s SEND port N

SITE K SITE L
I \ I \
/ \ / \
/ \ / \

/ \ / \
Process A		Process B

\ port N / \ port M/

\ [--->SEND FROM - - - >\ /
\ / ANY \ /

to port M site L
containing KNP, & Q

Process A now executes a RECEIVE at port P fromport Q Process A
specifies the rendezvous site to be site L.

Wal den [Page 10]

RFC 62 | PC for Resource Sharing 3 August 1970

SITE K SITE L
I \ I \
/ \ / \
/ \ Rendezvous/ \

/ \ tabl e \
Process A	A Process B	

\ port P/ | \ /

\ / | \ /
\ /| <--RECEIVE _/ \ /
\ / MESSAGE \ /

to site L

containing P, Q &K

A RECEI VE nessage is sent fromsite Kto site L and is entered in the
rendezvous table at site L. At sonme other time, process B executes a
SEND to port P fromport Q specifying site L as the rendezvous site.

SITE K SITE L
I \ I \
/ \ / \
/ \ Rendezvous/ \

/ \ tabl e \
Process A		Process B

\ port P/ S port Q /

\ / \ /
\ / SEND \ /
\ / _ /

to site L

containing P & Q

A rendezvous is made, the rendezvous table is cleared, and the
transmission to port P at site K takes place. The SEND site nunber
(and conceivably the SEND port nunber) is appended to the nmessages of
the transm ssion for the edification of the receiving process.

Wal den [Page 11]

RFC 62 | PC for Resource Sharing 3 August 1970

SITE K SITE L

/ \ / \

/ \ / \
/ \ / \

/ \ / \
Process A		Process B

\ port P / \ port Q /

\ [<--transni ssi on<- -\ /
\ / \ /
\ / to port P, site K _ /

containing data and L

Process B may sinultaneously wish to execute a RECEIVE fromport N at
port M

Note that there is only one inportant control nmessage in this system
whi ch nmoves between sites, the type of nessage that is called a
Host/ Host protocol message in [2]. This control nmessage is the
RECEI VE nessage. There are two other possible intersite contro
nmessages: an error nessage to the originating site when a RECElI VE or
SEND is timed out, and the SEND nessage in the rare case when the
rendezvous site is not the SEND site. There nust also be a standard
format for nessages between ports. For exanple, the foll ow ng:

Wal den [Page 12]

RFC 62 | PC for Resource Sharing 3 August 1970

| rendezvous site | <6> | destination site | | source site |
EEEEEELIERE e | |- I |
| RECEI VE port | | RECEI VE port | | RECEI VE port |
|- | |- | e |
| SEND por't | | SEND port | | SEND port

| |
| |
| |
| |
| |
| |
dat a | | dat a
| |
| |
| |
| |
| |

dat a
transmtted transmtted recei ved
by SEND by Net wor k by RECEI VE
process Controll er process

In the nodel tinme-sharing systemit was possible to pass a port form
process to process. This is still possible with a distributed Network
Controller.

Remenber that, for a nessage to be sent from one process to another, a
SEND to port Mfromport N and a RECEIVE at port M from port N nust
rendezvous, nornally at the SEND site. Both processes keep track of
where they think the rendezvous site is and supply this site as a
paraneter of appropriate operations. The RECElIVE process thinks it is
the SEND site also. Since once a SEND and a RECEI VE rendezvous the
transm ssion is sent to the source of the RECEIVE and the entry in the
rendezvous table is cleared and nust be set up again for each further
transmission fromNto M it is easy for a RECElIVE port to be noved.

If a process sends both the port nunbers and the rendezvous site
nunber to a new process at sone other site which executes a RECElI VE
usi ng these same old port nunbers and rendezvous site specification
the SENDer never knows the RECElI VEr has noved. It is slightly harder
for a send port to nove. However, if it does, the pair of port
nunbers that has been being used for a SEND and the origina

rendezvous site nunber are passed to the new site. The process at the
new SEND site specifies the old rendezvous site with the first SEND
fromthe new site. The RECElIVE process will also still think the
rendezvous site is the old site, so the SEND and RECEI VE will neet at
the old site. Wen they nmeet, the entry in the table at that site is
cleared, and both the SEND and RECElI VE nessages are sent to the new

Wal den [Page 13]

RFC 62 | PC for Resource Sharing 3 August 1970

SEND site just as if they had been destined for there in the first

pl ace. The SEND and RECEI VE then neet again at the new rendezvous
site and transmi ssion may continue as if the port had never noved.
Since all transm ssions contain the source site nunber, further

RECEI VEs will be sent to the new rendezvous site. It is possible to
di scover that this special manipulation nust take place because a SEND
message is received at a site that did not originate the SEND
message<7>. Note that the SEND port and the RECElIVE port can nove
concurrently.

O course, all of this could have al so been done if the processes had
sent nessages back and forth announci ng any potential noves and the
new site nunbers.

A problemthat may have occurred to the reader is how the SEND and
RECEI VE buffers get matched for size. The easiest solution would be
to require that all buffers have a conmmon size but this is
unacceptable since it does not easily extend to a situation where
processes in autononous operating systens are attenpting to

communi cate. A second solution is for the processes to pass nessages
specifying buffer sizes. |If this solution is adopted, excessive data
sent fromthe SEND process and unable to fix into the RECEl VE buffer
is discarded and the RECEIVE process notified. The solution has great
appeal on account of its sinplicity. A third solution would be for
the RECEI VE buffer size to be passed to the SEND site wth RECElI VE
message and to notify the SEND process when too nuch data is sent or
even to pass the RECElI VE buffer size on to the SEND process. This

| ast nmethod would al so pernmit the Network Controller at the SEND site
to make two or nore SENDs out of one, if that was necessary to match a
smal | er RECEI VE buffer size.

The mai ntenance of unique nunbers is also a problemwhen the processes
are geographically distributed. Three solutions to this problemare
presented here. The first possibility is for the autononous operating
systenms to ask the Network Controller for the unique nunbers
originally and then guarantee the integrity of any uni que nunbers
currently owned by | ocal processes and prograns usi ng whatever mnmeans
are at the operating systenis disposal. 1In this case, the Network
Controll er would provide a nethod for a unique nunber to be sent from
one site to another and would vouch for the nunber’s identity at the
new site. The second nmethod is sinply to give the unique nunbers to
the processes that are using them depending on the non-nalicious
behavi or of the processes to preserve the unique nunbers, or if an
acci dent shoul d happen, the two passwords (SEND and RECEI VE port

nunmbers) that are required to initiate a transmission. |f the unique
nunbers are given out in a non-sequential manner and are reasonably
long (say 32 bits), there is little danger. 1In the final nethod, a

user identification is included in the port nunbers and the individua

Wal den [Page 14]

RFC 62 | PC for Resource Sharing 3 August 1970

operating systens guarantee the integrity of these identification
bits. Thus a process, while not able to be sure that the correct port
is transnmitting to him can be sure that sone port of the correct user
is transmtting. This is the so-called virtual net concept suggested
by W Crowt her [2].<8>

Athird difficult problemarises when renbpte processes wish to

communi cate, the problem of maintaining high bandw dth connecti ons
between the renote processes. The solution to this problemlies in
all owi ng the processes considerable information about the state of an
on-going transm ssion. First, we exam ne a SEND process in detail.
When a process executes a SEND, the local portion of the Network
Control |l er passes the SEND on to the rendezvous site, normally the
local site. Wen a RECEIVE arrives matching a pending SEND, the
Network Controller notifies the SEND process by causing an interrupt
to the specified restart |ocation. Simultaneously the Network
Controller starts shipping the SEND buffer to the RECEIVE site. Wen
transmission is conplete, a flag is set which the SEND process can
test. Wile a transnission is taking place, the process nmay ask the
Networ k Controller to performother operations, including other SENDs.
A second SEND over a pair of ports already in the act of transm ssion
is noted and the SEND becones active as soon as the first transm ssion
is conmplete. A third identical SEND results in an error nessage to
the SENDi ng process. Next, we exam ne a RECElI VE process in detail.
When a process executes a RECEIVE, the RECEIVE is sent to the
rendezvous site. Wien data resultant fromthis RECEIVE starts to
arrive at the RECElIVE site, the RECEIVE process is notified via an
interrupt to the specified restart location. Wen the transnission is
complete, a flag is set which the RECEI VE process can test. A second
RECEI VE over the same port pair is allowed. A third results in an
error nessage to the RECEI VE process. Thus, there is sufficient
machinery to allow a pair of processes always to have both a

transm ssion in progress and the next one pending. Therefore, no
efficiency is lost. On the other hand, each transm ssion nmust be
preceded by a RECEIVE into a specified buffer, thus continuing to
provi de conplete flow control

4. A Potential Application

Only one resource sharing conputer network currently exists, the
ARPA Conputer Network. In this section, | discuss application of the
system described in this paper to the ARPA Network [2][5][9].

The ARPA Network currently incorporates ten sites spread across the
United States. Each site consists of one to three (potentially four)
i ndependent conputer systens called Hosts and one communi cati ons
conputer systemcalled an IMP. Al of the Hosts at a site are

Wal den [Page 15]

RFC 62 | PC for Resource Sharing 3 August 1970

directly connected to the IMP. The | MPs thensel ves are connected

t oget her by 50-kil obit phone lines (rmuch higher rate lines are a
potential), although each IMP is connected to only one to five other

I MPs. The I MPs provide a comuni cations subnet through which the
Hosts conmuni cate. Data is sent through the conmuni cations subnet in
messages of arbitrary size (currently about 8000 bits) called network
messages. Wien a network nessage is received by the | MP at the
destination site, that | MP sends an acknow edgnent, called a RFNM to
the source site.

A system for interprocess comunication for the ARPA Network (let us
call this IPC for ARPA) is currently being designed by the Network
Wor ki ng Group, under the chairmanship of S. Crocker of UCLA. Their
design is somewhat constrained by the comrmuni cati ons subnet [5]<9>.

| would like to conpare point-by-point IPC for ARPA with the one
devel oped in this paper; however, such a conparison would first
require description here, alnost fromscratch, of the current state
of IPC for ARPA since very little up-to-date infornmation about |PC
for ARPA appears in the open literature [2]. Also, IPCfor ARPAis
qui te conpl ex and the working docunents describing it now run to nmany
hundred pages, nmking any description |l engthy and i nappropriate for
this paper.<10> Therefore, | shall nmake only a few scattered

compari sons of the two systenms, the first of which are inplicit in
thi s paragraph.

The interprocess conmuni cati on system bei ng devel oped for the ARPA
Net work cones in several alnost distinct pieces: The Host/ | M
protocol, I MP/IMP protocol, and the Host/Host protocol. The | MPs
have sol e responsibility for correctly transnmitting bits from one
site to another. The Hosts have sole responsibility for making

i nterprocess connections. Both the Host and | MP are concerned and
take a little responsibility for flow control and nessage sequenci ng.
Applications of the interprocess conmuni cation system described in
this paper leads me to make a different allocation of responsibility.
The IMP still continues to nove bits fromon site to another
correctly but the Network Controller also resides in the I MP, and
flow control is conpletely in the hands of the processes running in

t he Hosts, although using the nmechani sns provided by the I MPs.

The | MPs provide the SEND, RECElI VE, SEND FROM ANY, RECElI VE ANY, and
UNI QUE operations in slightly altered forns for the Hosts and al so
mai ntain the rendezvous tables, including noving of SEND ports when
necessary. Putting these operations in the IMP requires the

Host/ Host protocol programto be witten only once, rather than many
times as is currently being done in the ARPA Network. It is perhaps
useful to step through the five operations again.

SEND. The Host gives the | MP a SEND port nunber, a RECElI VE port

Wal den [Page 16]

RFC 62 | PC for Resource Sharing 3 August 1970

nunber, the rendezvous site, and a buffer specification (e.g., start
and end, or beginning and length). The SEND is sent to the
rendezvous site IMP, normally the local I MP. Wen a matchi ng RECEl VE
arrives at the local IMP, the Host is notified of the RECElIVE port of
the just arrived nmessage. This port nunber is sufficient to identify
the SENDi ng process, although a given operating systemmy have to
keep internal tables mapping this port nunber into a useful interna
process identifier. Sinultaneously, the | MP begins to ask the Host
for specific pieces of the SEND buffer, sending these pieces as
networ k messages to the destination site. If a RFNMis not received
for too long, inplying a network message has been lost in the
network, the Host is asked for the sane data again and it is
retransmtted. <11> Except for the |ast piece of a buffer, the I M
requests pieces fromthe Host which are common nultiplies of the word
size of the source Host, |IMP, and destination Host. This avoids

m d-transm ssion word al i gnment probl ens.

RECElI VE. The Host gives the IMP a SEND port, a RECElIVE port, a
rendezvous site, and a buffer description. The RECEIVE nessage is
sent to the rendezvous site. As the network nessages making up a
transm ssion arrive for the RECEI VE port, they are passed to the Host
al ong wi th RECEI VE port number (and perhaps the SEND port nunber),
and an indication to the Host where to put this data in its input
buffer. When the I ast network nessage of the SEND buffer is passed
into the Host, it is marked accordingly and the Host can then detect
this. (It is conceivable that the RECElI VE nessage could al so

all ocate a piece of network bandw dth while making its network
traverse to the rendezvous site.)

RECElI VE ANY. The Host gives the | MP a RECEI VE port and a buffer
descriptor. This works the sane as RECElI VE but assunmes the |oca
site to be the rendezvous site.

SEND FROM ANY. The Host gives the | MP RECEI VE and SEND ports, the
destination site, and a buffer descriptor. The IM requests and
transmits the buffer as fast as possible. A SEND FROM ANY for a
non-exi stent port is discarded at the destination site.

In the ARPA Network, the Hosts are required by the IMPs to physically
break their transm ssions into network nmessages, and successive
messages of a single transm ssion nmust be delayed until the RFNM i s
received for the previous nessage. In the system described here,
since RFNMs are tied to the transnission of a particular piece of
buffer and since the Hosts allow the IMPs to reassenble buffers in
the Hosts by the IMP telling the Host where to put each buffer piece
then pieces of a single buffer can be transmtted in parallel network
messages and several RFNMs can be outstandi ng sinultaneously. This
enabl es The Hosts to deal with transm ssions of nore natural sizes

Wal den [Page 17]

RFC 62 | PC for Resource Sharing 3 August 1970

and hi gher bandwi dth for a single transm ssion

For additional efficiency, the I MP mght know the approximte time it
takes for a RECEIVE to get to a particular other site and warn the
Host to wake up a process shortly before the arrival of a nessage for
that process is inmnent.

5. Concl usi on

Since the system described in this paper has not been inplenented, |
have no clearly denonstrabl e concl usi ons nor any performance reports.
Instead, | conclude with four openly subjective clains.

1) The interprocess comunication system described in Section 2 is
simpl er and nore general than nost existing systens of equival ent
power and is nore powerful than nost intra time-sharing system
conmuni cati on systens currently avail abl e.

2) Time-sharing systens structured |ike the nodel in Section 2 should
be studied by designers of time-sharing systens who nay see a
computer network in their future, as structure seens to enable
joining a conputer network with a mninmumof difficulty.

3) As conputer networks becone nore conmon, renote interprocess
communi cati on systens |ike the one described in Section 3 should be
studied. The systemcurrently being devel oped for ARPA is a step in
the wong direction, being addressed, in nmy opinion, nore to

conmmuni cati on between nonitors than to conmuni cation between
processes and consequently subverting conveni ent resource sharing.

4) The application of the systemas described in Section 4 is much
sinmpler to inplement and nore powerful than the systemcurrently
bei ng constructed for the ARPA Network, and | suggest that

i npl ement ati on of ny met hod be seriously considered for adoption by
t he ARPA Net wor k.

<Foot not es>

1. Alnost any of the common definitions of a process would suit the
needs of this paper

2. O perhaps there is only one permanently known port, which
bel ongs to a directory-process that keeps a table of
per manent - process/ wel | - know port associ ati ons.

3. That programwhich prints file directories, tells who is on other

Wal den [Page 18]

RFC 62 | PC for Resource Sharing 3 August 1970

tel etypes, runs subsystens, etc.

4. The reader should have noticed by now that | do not like to think
of a new process (consisting of a new conceptual copy of a
program being started up each tine another user w shes to use
the program Rather, | like to think of the programas a single
process which knows it is being used sinultaneously by many ot her
processes and consciously nultiplexes anong the users or del ays
service to users until it can get around to them

5. | use operating systemrather than tinme-sharing systemin this
section to point up the fact that the autononous systens at the
networ k nodes may be either full blown tine-sharing systens in
their own right, and individual process in a larger
geographically distributed tinme-sharing system or nerely
aut ononous sites w shing to conmuni cate.

6. For a SEND FROM ANY nessage, the rendezvous site is the
destination site.

7. For readers fanmiliar with the once-proposed re-connection schemne
for the ARPA Network, the above systemis sinple, conparatively,
because there are no permanent connections to break and nove;
that is, connections only exist fleetingly in the system
descri bed here and can therefore be renade between any pair of
processes which at any tine happen to know each other’s port
nunmbers and have sone clue where they each are.

8. Crowther says this is not the virtual net concept.

9. As one of the builders of the ARPA communi cati ons subnet, | am
partially responsi ble for these constraints.

10. The reader having access to the ARPA working docunents may want
to read Specifications for the Interconnection of a Host to
an | VP, BBN Report No. 1822; and ARPA Network Working G oup
Not es #36, 37, 38, 39, 42, 44, 46, 47, 48, 49, 50, 54, 55, 56,
57, 58, 59, 60.

11. This also all ows nmessages to be conpletely thrown away by the | MP
subnet it that should ever be useful

[REFERENCES]
1. Ackerman, W, and Plumrer, W An inplenentation of a

mul ti-processing conputer system Proc. ACM Synp. on
Qperating System Principles, Gatlinsburg, Tenn.

Wal den [Page 19]

RFC 62 | PC for Resource Sharing 3 August 1970

Cct. 1-4, 1967.

2. Carr, C. Crocker, S., and Cerf, V. Host/Host conmunication
protocol in the ARPA network. Proc. AFIPS 1970 Spring
Joint Conput. Conf., Vol. 36, AFIPS Press, Mntvale, NJ.,
pp. 589-597.

3. Dennis, J., and VanHorn, E. Programming semantics for
mul ti programed conputations. Conm ACM9, 3 (March
1966), 143-155.

4. Hansen, P.B. The nucleus of a nultiprogranm ng system Conm
ACM 13, 4 (April, 1970), 238-241, 250.

5. Heart, F., Kahn, R, Onstein, S., Crowther, W, and Wil den, D.
The interface nessage processor for the ARPA conputer
network. Proc. AFIPS 1970 Spring Joint Comput. Conf., Vol
36, AFIPS Press, Mntvale, N J., pp. 551-567.

6. Lanpson, B. SDS 940 Lectures, circulated informally.

7. . An overview of the CAL time-sharing system Conputer
Center, University of California, Berkeley, Calif.

8 . Dynamic protection structures. Proc. AFIPS 1969 Fall
Joint Conput. Conf., Vol. 35, AFIPS Press, Mntvale, N J.,
pp. 27-38.

9. Roberts, L., and Wessler, B. Conmputer network devel opnent to
achive resource sharing. Proc. AFIPS 1970 Spring Joint
Conmput. Conf., Vol. 36, AFIPS Press, Mnvale, N J., pp
543-549.

10. Spier, M, and Organick, E. The MILTICS interprocess

communi cation facility. Proc. ACM Second Synp. on Operating
Systens Principles, Princeton University, COct. 20-22, 1969.

Aut hor’' s Address
D. C. Wl den

Bolt Ber nakek and Newmran, |nc.
Canbri dge, Massachusetts

[This RFC was put into machine readable formfor entry]
[into the online RFC archives by Adam Costello 3/97]

val den [Page 20]

