I nt ernet Engi neering Task Force (I ETF) S. Loreto

Request for Comments: 6202 Eri csson
Cat egory: | nformational P. Saint-Andre
| SSN: 2070-1721 Cisco

S. Sal sano

Uni versity of Rone "Tor Vergata"
G WIKkins

Wbt i de

April 2011

Known | ssues and Best Practices
for the Use of Long Polling and Streanming in Bidirectional HTTP

Abstract

On today's Internet, the Hypertext Transfer Protocol (HTTP) is often
used (some woul d say abused) to enabl e asynchronous, "server-
initiated" conmmunication froma server to a client as well as
comruni cation froma client to a server. This docunent describes
known i ssues and best practices related to such "bidirectional HITP"
applications, focusing on the two nost common nechani sns: HTTP | ong
pol ling and HTTP stream ng

Status of This Meno

This docunment is not an Internet Standards Track specification; it is
published for infornational purposes.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Goup (IESG. Not all docunents
approved by the I ESG are a candi date for any |evel of Internet

St andard; see Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc6202

Loreto, et al. I nf or mat i onal [Page 1]

RFC 6202 Bi di recti onal HTTP

Copyright Notice

April 2011

Copyright (c) 2011 I ETF Trust and the persons identified as the

docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega

Provisions Relating to | ETF Docunents

(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as

described in the Sinplified BSD License.
Tabl e of Contents

1. Introduction . .
2. HITP Long Polllng
2.1. Definition
2.2. HITP Long Polllng Issues
3. HITP Stream ng . .
3.1. Definition . . .
3.2. HITP Stream ng Issues
4. Overview of Technol ogi es
.1. Bayeux .
.2. BCsSH. . .
. 3. Server-Sent Events
5. HITP Best Practices

DD

Pi pel i ned Connecti ons

Pr oxi es . .

HTTP Responses

Ti meout s . . .
| npact on Internedlary Ent|t|es
6. Securlty Consi der ati ons

7. References . . .

.1. Nornative References

.2. Informative References

8. Acknow edgnents

cgooaaoaon
oA WNE

~N~

Loreto, et al. I nf or mat i ona

Limts to the NBX|nun1Nunber of Cbnnectlons

PRRRRPEPRPRRERRRRERER
O~NNNOOUURRNWWWROOON~NUOADW

[Page 2]

RFC 6202 Bi di rectional HTTP April 2011

1

I ntroduction

The Hypertext Transfer Protocol [RFC2616] is a request/response
protocol. HITP defines the following entities: clients, proxies, and
servers. A client establishes connections to a server for the

pur pose of sending HTTP requests. A server accepts connections from
clients in order to service HITP requests by sendi ng back responses.
Proxies are internediate entities that can be involved in the
delivery of requests and responses fromthe client to the server and
Vi ce versa

In the standard HTTP nodel, a server cannot initiate a connection
with a client nor send an unrequested HTTP response to a client;
thus, the server cannot push asynchronous events to clients.
Therefore, in order to receive asynchronous events as soon as

possi ble, the client needs to poll the server periodically for new
content. However, continual polling can consune significant

bandwi dth by forcing a request/response round trip when no data is
available. It can also be inefficient because it reduces the
responsi veness of the application since data is queued until the
server receives the next poll request fromthe client.

In order to inprove this situation, several server-push programing
mechani sns have been inplenented in recent years. These nechani sns,
whi ch are often grouped under the comon | abel "Conet" [COVET],
enable a web server to send updates to clients without waiting for a
pol|l request fromthe client. Such nechanisns can deliver updates to
clients in a nore tinely manner while avoiding the |atency
experienced by client applications due to the frequent opening and

cl osi ng of connections necessary to periodically poll for data.

The two nost common server-push mechani snms are HTTP | ong polling and
HTTP streani ng:

HTTP Long Polling: The server attenpts to "hold open" (not
i Mmediately reply to) each HTTP request, respondi ng only when
there are events to deliver. 1In this way, there is always a
pendi ng request to which the server can reply for the purpose of
delivering events as they occur, thereby minimzing the latency in
message delivery.

HTTP Stream ng: The server keeps a request open indefinitely; that
is, it never terninates the request or closes the connection, even
after it pushes data to the client.

It is possible to define other technol ogies for bidirectional HTTP;
however, such technol ogies typically require changes to HITP itself
(e.g., by defining new HTTP nethods). This docunent focuses only on

Loreto, et al. I nf or mat i onal [Page 3]

RFC 6202 Bi di rectional HTTP April 2011

2.

2.

bi directi onal HTTP technol ogi es that work within the current scope of
HTTP as defined in [RFC2616] (HTTP 1.1) and [RFC1945] (HTTP 1.0).

The aut hors acknow edge that both the HTTP I ong polling and HTTP
stream ng mechani snms stretch the original semantic of HITP and that
the HTTP protocol was not designed for bidirectional comrunication
Thi s docunent neither encourages nor discourages the use of these
mechani sms, and takes no position on whether they provide appropriate
solutions to the problem of providing bidirectional conmunication
between clients and servers. Instead, this docunment nerely
identifies technical issues with these nmechani snms and suggests best
practices for their depl oynent.

The renai nder of this docunment is organized as follows. Section 2
anal yzes the HTTP long polling technique. Section 3 analyzes the
HTTP stream ng techni que. Section 4 provides an overvi ew of the
specific technol ogi es that use the server-push technique. Section 5
lists best practices for bidirectional HITP using existing

t echnol ogi es.

HTTP Long Pol ling
1. Definition

Wth the traditional or "short polling" technique, a client sends
regul ar requests to the server and each request attenpts to "pull"
any avail able events or data. |If there are no events or data

avail abl e, the server returns an enpty response and the client waits
for sone tine before sending another poll request. The polling
frequency depends on the latency that the client can tolerate in
retrieving updated information fromthe server. This nechani sm has

t he drawback that the consunmed resources (server processing and
networ k) strongly depend on the acceptable latency in the delivery of
updates fromserver to client. |If the acceptable latency is |ow
(e.g., on the order of seconds), then the polling frequency can cause
an unaccept abl e burden on the server, the network, or both.

In contrast with such "short polling", "long polling" attenpts to
mnimze both the latency in server-client nessage delivery and the
use of processing/network resources. The server achieves these
efficiencies by responding to a request only when a particular event,
status, or tineout has occurred. Once the server sends a | ong pol
response, typically the client imediately sends a new | ong pol
request. Effectively, this nmeans that at any given time the server
wi Il be holding open a long poll request, to which it replies when
new i nformation is available for the client. As a result, the server
is able to asynchronously "initiate" conmunication

Loreto, et al. I nf or mat i onal [Page 4]

RFC 6202 Bi di rectional HTTP April 2011

The basic life cycle of an application using HTTP long polling is as
fol | ows:

1. The client nakes an initial request and then waits for a
response.

2. The server defers its response until an update is available or
until a particular status or tineout has occurred.

3. Wen an update is available, the server sends a conplete response
to the client.

4. The client typically sends a new | ong poll request, either
i medi ately upon receiving a response or after a pause to allow
an acceptabl e [atency peri od.

The HTTP I ong polling mechani smcan be applied to either persistent
or non-persistent HTTP connections. The use of persistent HITP
connections will avoid the additional overhead of establishing a new
TCP/ I P connection [TCP] for every long poll request.

2.2. HITP Long Polling |ssues
The HTTP I ong polling mechani smintroduces the foll owi ng issues.

Header Overhead: Wth the HTTP long polling technique, every |ong
poll request and |long poll response is a conplete HITP nessage and
thus contains a full set of HTTP headers in the nessage frani ng
For small, infrequent messages, the headers can represent a |arge
percentage of the data transmitted. |If the network MIU (Maxi num
Transmission Unit) allows all the information (including the HITP
header) to fit within a single I P packet, this typically does not
represent a significant increase in the burden for networking
entities. On the other hand, the anobunt of transferred data can
be significantly larger than the real payload carried by HITP, and
this can have a significant inpact (e.g., when vol une-based
charging is in place).

Maxi mal Latency: After a long poll response is sent to a client, the
server needs to wait for the next long poll request before another
message can be sent to the client. This neans that while the
average latency of long polling is close to one network transit,
the maximal latency is over three network transits (long pol
response, next long poll request, long poll response). However,
because HTTP is carried over TCP/IP, packet |oss and
retransm ssion can occur; therefore, maxinmal |atency for any
TCP/ 1P protocol will be nore than three network transits (Il ost

Loreto, et al. I nf or mat i onal [Page 5]

RFC 6202 Bi di rectional HTTP April 2011

packet, next packet, negative ack, retransmt). \Wen HITP
pi pelining (see Section 5.2) is available, the |atency due to the
server waiting for a new request can be avoi ded.

Connection Establishment: A common criticismof both short polling

Al

and long polling is that these nechani sns frequently open TCP/IP
connections and then close them However, both polling nechani sns
work well with persistent HTTP connections that can be reused for
many poll requests. Specifically, the short duration of the pause
between a long poll response and the next |ong poll request avoids
the closing of idle connections.

ocated Resources: (perating systens will allocate resources to
TCP/ I P connections and to HTTP requests outstandi ng on those
connections. The HTTP long polling nmechanismrequires that for
each client both a TCP/IP connection and an HITP request are held
open. Thus, it is inportant to consider the resources related to
both of these when sizing an HITP long polling application
Typically, the resources used per TCP/IP connection are mnininal
and can scal e reasonably. Frequently, the resources allocated to
HTTP requests can be significant, and scaling the total nunber of
requests outstanding can be limted on sone gateways, proxies, and
servers.

Graceful Degradation: A long polling client or server that is under

| oad has a natural tendency to gracefully degrade in perfornmance
at a cost of nessage latency. |f load causes either a client or
server to run slowy, then events to be pushed to the client will
queue (waiting either for the client to send a |long poll request
or for the server to free up CPU cycles that can be used to
process a long poll request that is being held at the server). |If
mul ti pl e messages are queued for a client, they m ght be delivered
in a batch within a single long poll response. This can
significantly reduce the per-message overhead and thus ease the
wor kl oad of the client or server for the given nessage | oad.

Ti meouts: Long poll requests need to renain pending or "hangi ng"

until the server has sonething to send to the client. The tinmeout
i ssues related to these pending requests are discussed in
Section 5.5.

Caching: Caching nechanisns inplenented by internmediate entities can

interfere with long poll requests. This issue is discussed in
Section 5.6.

Loreto, et al. I nf or mat i onal [Page 6]

RFC 6202 Bi di rectional HTTP April 2011

3. HITP Strean ng
3.1. Definition

The HTTP streani ng nechani sm keeps a request open indefinitely. It
never term nates the request or closes the connection, even after the
server pushes data to the client. This nechanismsignificantly
reduces the network | atency because the client and the server do not
need to open and close the connection

The basic life cycle of an application using HITP streaming is as
fol | ows:

1. The client nakes an initial request and then waits for a
response.

2. The server defers the response to a poll request until an update
is available, or until a particular status or tineout has
occurred.

3. Wienever an update is available, the server sends it back to the
client as a part of the response.

4. The data sent by the server does not terminate the request or the
connection. The server returns to step 3.

The HTTP streani ng nechanismis based on the capability of the server
to send several pieces of information in the same response, wthout
termnating the request or the connection. This result can be

achi eved by both HITP/ 1.1 and HTTP/ 1.0 servers

An HTTP response content | ength can be defined using three options:

Content-Length header: This indicates the size of the entity body in
the message, in bytes.

Transf er - Encodi ng header: The 'chunked’ valued in this header
i ndi cates the nmessage will break into chunks of known size if
needed.

End of File (EOF): This is actually the default approach for
HTTP/ 1. 0 where the connections are not persistent. dients do not
need to know the size of the body they are reading; instead they
expect to read the body until the server closes the connection
Al'though with HTTP/ 1.1 the default is for persistent connections,
it is still possible to use EOF by setting the ’'Connection:cl ose
header in either the request or the response, thereby indicating
that the connection is not to be considered 'persistent’ after the

Loreto, et al. I nf or mat i onal [Page 7]

RFC 6202 Bi di rectional HTTP April 2011

current request/response is conplete. The client’s inclusion of
the ' Connection: close’ header field in the request will also
prevent pipelining.

The main issue with EOF is that it is difficult to tell the
di fference between a connection termnated by a fault and one that
is correctly term nated

An HTTP/ 1.0 server can use only EOF as a streaning nmechanism In
contrast, both EOF and "chunked transfer"” are available to an
HTTP/ 1.1 server.

The "chunked transfer" nmechanismis the one typically used by

HTTP/ 1.1 servers for streaming. This is acconplished by including

t he header "Transfer-Encodi ng: chunked" at the beginning of the
response, which enables the server to send the followi ng parts of the
response in different "chunks" over the same connection. Each chunk
starts with the hexadeci mal expression of the length of its data,
followed by CRILF (the end of the response is indicated with a chunk
of size 0).

HTTP/ 1.1 200 K
Content - Type: text/plain
Tr ansf er - Encodi ng: chunked

25
This is the data in the first chunk

1C
and this is the second one

0
Fi gure 1: Transfer-Encodi ng response
To achieve the sane result, an HITP/1.0 server will onit the Content-
Length header in the response. Thus, it will be able to send the
subsequent parts of the response on the sanme connection (in this
case, the different parts of the response are not explicitly
separated by HTTP protocol, and the end of the response is achieved
by cl osing the connection).
3.2. HITP Stream ng | ssues

The HTTP streani ng mechani smintroduces the follow ng issues

Loreto, et al. I nf or mat i onal [Page 8]

RFC 6202 Bi di rectional HTTP April 2011

Network Internediaries: The HITP protocol allows for internediaries

(proxies, transparent proxies, gateways, etc.) to be involved in
the transni ssion of a response fromthe server to the client.
There is no requirenent for an internmediary to i nmediately forward
a partial response, and it is legal for the internmediary to buffer
the entire response before sending any data to the client (e.g.
caching transparent proxies). HITP streanming will not work with
such internediaries

Maxi mal Latency: Theoretically, on a perfect network, an HITP

c

stream ng protocol’s average and maxi mal |atency i s one network
transit. However, in practice, the maxi mal |atency is higher due
to network and browser linitations. The browser techni ques used
to ternminate HTTP streamni ng connections are often associated with
JavaScri pt and/or DOM (Docunent Object Mddel) elenments that will
grow in size for every nmessage received. Thus, in order to avoid
unlimted growth of nenory usage in the client, an HTTP strean ng
i npl enent ati on occasionally needs to termnate the stream ng
response and send a request to initiate a new stream ng response
(which is essentially equivalent to a long poll). Thus, the

maxi mal latency is at |least three network transits. Al so, because
HTTP is carried over TCP/IP, packet |oss and retransm ssion can
occur; therefore maxinmal latency for any TCP/IP protocol wll be
nore than three network transits (|l ost packet, next packet,
negative ack, retransnit).

ent Buffering: There is no requirenent in existing HITP
specifications for a client library to make the data froma
partial HITP response available to the client application. For
exanpl e, if each response chunk contains a statenent of
JavaScript, there is no requirenent in the browser to execute that
JavaScript before the entire response is received. However, in
practice, nost browsers do execute JavaScript received in partia
responses -- although sonme require a buffer overflow to trigger
execution. In nost inplenentations, blocks of white space can be
sent to achieve buffer overfl ow

Fram ng Techni ques: Using HTTP streani ng, several application

nmessages can be sent within a single HTTP response. The
separation of the response streaminto applicati on nessages needs
to be performed at the application | evel and not at the HITP
level. In particular, it is not possible to use the HITP chunks
as application nmessage delimters, since internediate proxies

nm ght "re-chunk" the message stream (for exanple, by conbining
different chunks into a longer one). This issue does not affect
the HTTP I ong polling technique, which provides a canonica
fram ng techni que: each application nmessage can be sent in a

di fferent HTTP response.

Loreto, et al. I nf or mat i onal [Page 9]

RFC 6202 Bi di rectional HTTP April 2011

4. Overview of Technol ogi es

This section provides an overview of existing technol ogi es that
i npl ement HITTP- based server-push nechani sns to asynchronously deliver
messages fromthe server to the client.

4.1. Bayeux

The Bayeux protocol [BAYEUX] was devel oped in 2006-2007 by the Dojo
Foundation. Bayeux can use both the HITP | ong polling and HTTP
stream ng mechani sns.

In order to achieve bidirectional comrunications, a Bayeux client
will use two HTTP connections to a Bayeux server so that both server-
to-client and client-to-server messagi ng can occur asynchronously.

The Bayeux specification requires that inplenentations contro

pi pel i ning of HTTP requests, so that requests are not pipelined

i nappropriately (e.g., a client-to-server nmessage pipelined behind a
I ong poll request).

In practice, for JavaScript clients, such control over pipelining is
not possible in current browsers. Therefore, JavaScri pt

i mpl enent ati ons of Bayeux attenpt to neet this requirenent by
limting thenselves to a maxi num of two outstanding HTTP requests at
any one tinme, so that browser connection linits will not be applied
and the requests will not be queued or pipelined. Wile broadly
effective, this mechani smcan be disrupted if non-Bayeux JavaScri pt
clients simultaneously issue requests to the sane host.

Bayeux connections are negoti ated between client and server with
handshake nmessages that allow the connection type, authentication

nmet hod, and ot her paranmeters to be agreed upon between the client and
the server. Furthernore, during the handshake phase, the client and
the server reveal to each other their acceptable bidirectiona

techni ques, and the client selects one fromthe intersection of those
sets.

For non-browser or sane-donai n Bayeux, clients use HTTP PCST requests
to the server for both the long poll request and the request to send
messages to the server. The Bayeux protocol packets are sent as the
body of the HTTP nessages using the "application/json" Internet nedia
type [RFC4627] .

For browsers that are operating in cross-donmai n node, Bayeux attenpts
to use Cross-Origin Resource Sharing [CORS] checking if the browser

and server support it, so that norrmal HITP POST requests can be used.
If this nechanismfails, Bayeux clients use the "JSONP' nechani sm as

Loreto, et al. I nf or mat i onal [Page 10]

RFC 6202 Bi di rectional HTTP April 2011

described in [JSONP]. In this last case, client-to-server nessages
are sent as encoded JSON on the URL query paraneters, and server-to-
client nmessages are sent as a JavaScript programthat waps the
message JSON with a JavaScript function call to the already | oaded
Bayeux i npl enent ati on.

4.2. BOSH

BOSH, which stands for Bidirectional-streanms Over Synchronous HITP

[BOSH], was devel oped by the XMPP Standards Foundation in 2003-2004.
The purpose of BOSH is to enul ate nornmal TCP connections over HITP
(TCP is the standard connection nechani smused in the Extensible
Messagi ng and Presence Protocol as described in [RFC6120]). BOSH
enpl oys the HTTP | ong polling nechani sm by allow ng the server
(called a "BOSH connection nmanager") to defer its response to a
request until it actually has data to send to the client fromthe
application server itself (typically an XMPP server). As soon as the
client receives a response fromthe connection nanager, it sends
anot her request to the connection nanager, thereby ensuring that the
connection manager is (alnost) always holding a request that it can
use to "push" data to the client.

In sone situations, the client needs to send data to the server while
it is waiting for data to be pushed fromthe connection nmanager. To
prevent data from being pipelined behind the long poll request that
is on hold, the client can send its outbound data in a second HTTP
request over a second TCP connection. BOCSH forces the server to
respond to the request it has been holding on the first connection as
soon as it receives a new request fromthe client, even if it has no

data to send to the client. It does so to nmake sure that the client
can send nore data immediately, if necessary -- even in the case
where the client is not able to pipeline the requests -- while

simul t aneously respecting the two-connection linmit discussed in
Section 5.1.

The nunber of long poll request-response pairs is negotiated during
the first request sent fromthe client to the connection nanager
Typically, BOSH clients and connecti on managers will negotiate the
use of two pairs, although it is possible to use only one pair or
nmore than two pairs.

The roles of the two request-response pairs typically switch whenever
the client sends data to the connection nanager. This neans that
when the client issues a new request, the connection nanager

i mredi ately answers the bl ocked request on the other TCP connection
thus freeing it; in this way, in a scenario where only the client
sends data, the even requests are sent over one connection, and the
odd ones are sent over the other connection

Loreto, et al. I nf or mat i onal [Page 11]

RFC 6202 Bi di rectional HTTP April 2011

BOSH is able to work reliably both when network conditions force
every HTTP request to be made over a different TCP connection and
when it is possible to use HTTP/1.1 and then rely on two persistent
TCP connecti ons.

If the connection manager has no data to send to the client for an
agreed anount of tine (al so negotiated during the first request),
then the connection manager will respond to the request it has been
hol ding with no data, and that response inmediately triggers a fresh
client request. The connection manager does so to ensure that if a
networ k connection is broken then both parties will realize that fact
within a reasonabl e amount of tine.

Mor eover, BOSH defines the negotiation of an "inactivity period"

val ue that specifies the |ongest allowable inactivity period (in
seconds). This enables the client to ensure that the periods with no
requests pending are never too |ong.

BOSH al l ows data to be pushed i medi ately when HTTP pipelining is
avai l able. However, if HTTP pipelining is not avail able and one of
t he endpoi nts has just pushed sone data, BOSH will usually need to
wait for a network round-trip time until the server is able to again
push data to the client.

BOSH uses standard HTTP POST request and response bodi es to encode
all information.

BOSH nornmal |y uses HITP pipelining over a persistent HITP/ 1.1
connection. However, a client can deliver its POST requests in any
way permitted by HTTP 1.0 or HITP 1.1. (Al though the use of HITP
POST with pipelining is discouraged in RFC 2616, BOSH enpl oys vari ous
met hods, such as request identifiers, to ensure that this usage does
not lead to indeterminate results if the transport connection is
term nated prematurely.)

BOSH clients and connection managers are not allowed to use Chunked
Transfer Coding, since internediaries mght buffer each partial HITP
request or response and only forward the full request or response
once it is avail able.

BOSH al | ows the usage of the Accept-Encodi ng and Cont ent - Encodi ng
headers in the request and in the response, respectively, and then
conpresses the response body accordingly.

Each BOSH session can share the HTTP connection(s) it uses with other
HTTP traffic, including other BOSH sessions and HTTP requests and
responses conpletely unrelated to the BOSH protocol (e.g., Wb page
downl oads) .

Loreto, et al. I nf or mat i onal [Page 12]

RFC 6202 Bi di rectional HTTP April 2011

4.

5.

5.

3. Server-Sent Events

WBC Server-Sent Events specification [WD eventsource] defines an API
that enabl es servers to push data to Wb pages over HTTP in the form
of DOM events.

The data is encoded as "text/event-streani content and pushed using
an HTTP streamnmi ng nechanism but the specification suggests disabling
HTTP chunking for serving event streams unless the rate of nessages

i s high enough to avoid the possible negative effects of this

techni que as described in Section 3.2.

However, it is not clear if there are significant benefits to using
EOF rather than chunking with regards to internedi aries, unless they
support only HTTP/ 1. 0.

HTTP Best Practices
1. Limts to the Maxi num Nunber of Connecti ons

HTTP [RFC2616], Section 8.1.4, recommends that a single user client
not maintain nore than two connections to any server or proxy, in
order to prevent the server from being overl oaded and to avoid
unexpect ed side effects in congested networks. Until recently, this
limt was inplenented by nost commonly depl oyed browsers, thus naking
connections a scarce resource that needed to be shared within the
browser. Note that the avail able JavaScript APIs in the browsers

hi de the connections, and the security nodel inhibits the sharing of
any resource between frames. The new HITP specification [HITPBI S
renoves the two-connection limtation, only encouraging clients to be
conservative when opening nultiple connections. |In fact, recent
browsers have increased this linmt to 6 or 8 connections; however, it
is still not possible to discover the local linmit, and usage of
multiple franes and tabs still places 8 connections w thin easy
reach.

Web applications need to linit the nunber of |ong poll requests
initiated, ideally to a single long poll that is shared between
franes, tabs, or windows of the same browser. However, the security
constraints of the browsers make such sharing difficult.

A best practice for a server is to use cookies [COOKIE] to detect
multiple long poll requests fromthe sanme browser and to avoid
deferring both requests since this might cause connection starvation
and/ or pipeline issues.

Loreto, et al. I nf or mat i onal [Page 13]

RFC 6202 Bi di rectional HTTP April 2011

5.2. Pipelined Connections

HTTP [RFC2616] permts optional request pipelining over persistent
connections. Miltiple requests can be enqueued before the responses
arrive.

In the case of HTTP long polling, the use of HITP pipelining can
reduce | atency when nultiple nessages need to be sent by a server to
aclient in a short period of time. Wth HITP pipelining, the server
can receive and enqueue a set of HITP requests. Therefore, the
server does not need to receive a new HITP request fromthe client
after it has sent a nessage to the client within an HTTP response.

In principle, the HTTP pipelining can be applied to HTTP GET and HTTP
POST requests, but using HTTP POST requests is nore critical. In
fact, the use of HITP POST with pipelining is discouraged in RFC 2616
and needs to be handled with special care.

There is an issue regarding the inability to control pipelining.
Nor mal requests can be pipelined behind a long poll, and are thus
del ayed until the long poll conpletes.

Mechani sns for bidirectional HITP that want to exploit HITP

pi pelining need to verify that HITP pipelining is available (e.g.
supported by the client, the internediaries, and the server); if it's
not available, they need to fall back to solutions wi thout HTTP

pi pel i ni ng.
5.3. Proxies

Most proxies work well with HTTP long polling because a conplete HITP
response will be sent either on an event or a tineout. Proxies are
advised to return that response imedi ately to the user agent, which
i mediately acts on it.

The HTTP streani ng nechani smuses partial responses and sends somne
JavaScript in an HITP/ 1.1 chunk as described in Section 3. This
mechani sm can face problens caused by two factors: (1) it relies on
proxies to forward each chunk (even though there is no requirenent
for themto do so, and some caching proxies do not), and (2) it
relies on user agents to execute the chunk of JavaScript as it
arrives (even though there is also no requirenent for themto do so).

A "reverse proxy" basically is a proxy that pretends to be the actua
server (as far as any client or client proxy is concerned), but it
passes on the request to the actual server that is usually sitting
behi nd anot her | ayer of firewalls. Any HITP short polling or HITP

Loreto, et al. I nf or mat i onal [Page 14]

RFC 6202 Bi di rectional HTTP April 2011

long polling solution will work fine with this, as will nost HITP
streami ng solutions. The nmain downside is performance, since nost
proxi es are not designed to hold nmany open connecti ons.

Reverse proxies can come to grief when they try to share connections
to the servers between nmultiple clients. As an exanple, Apache with
nod jk shares a small set of connections (often 8 or 16) between al
clients. |If long polls are sent on those shared connections, then
the proxy can be starved of connections, which nmeans that other
requests (either long poll or normal) can be held up. Thus, Conet
mechani sms currently need to avoid any connection sharing -- either
in the browser or in any internediary -- because the HTTP assunption
is that each request will conplete as fast as possible.

One of the main reasons why both HTTP |l ong polling and HTTP streani ng
are perceived as having a negative inpact on servers and proxies is
that they use a synchronous programi ng nodel for handling requests,
since the resources allocated to each request are held for the
duration of the request. Asynchronous proxies and servers can handl e
long polls using slightly nore resources than nornal HTTP traffic.
Unfortunately sone synchronous proxies do exist (e.g., Apache nod_jk)
and many HTTP application servers al so have a bl ocki ng nodel for
their request handling (e.g., the Java servlet 2.5 specification).

5.4, HITP Responses

In accordance with [RFC2616], the server responds to a request it has
successfully received by sending a 200 OK answer, but only when a
particul ar event, status, or tinmeout has occurred. The 200 OK body
section contains the actual event, status, or tinmeout that occurred.
This "best practice" is sinply standard HTTP.

5.5. Tineouts

The HTTP I ong polling nmechanismallows the server to respond to a
request only when a particular event, status, or tineout has
occurred. In order to mnimze (as nmuch as possible) both latency in
server-client nessage delivery and the processing/ network resources
needed, the long poll request tinmeout ought to be set to a high

val ue.

However, the tinmeout value has to be chosen carefully; indeed,

probl ens can occur if this value is set too high (e.g., the client

m ght receive a 408 Request Tineout answer fromthe server or a 504
Gat eway Ti meout answer froma proxy). The default tinmeout value in a
browser is 300 seconds, but nbst network infrastructures include
proxi es and servers whose tineouts are not that |ong.

Loreto, et al. I nf or mat i onal [Page 15]

RFC 6202 Bi di rectional HTTP April 2011

Several experinents have shown success with tineouts as high as 120
seconds, but generally 30 seconds is a safer value. Therefore,
vendors of network equi pnent wi shing to be conpatible with the HTTP
I ong pol ling nmechani smare advised to inplenment a tineout
substantially greater than 30 seconds (where "substantially" neans
several tinmes nore than the nmediumnetwork transit tine).

5.6. Inpact on Internmediary Entities

There is no way for an end client or host to signal to HITP
internmediaries that long polling is in use; therefore, |ong pol
requests are conpletely transparent for internediary entities and are
handl ed as normal requests. This can have an inpact on internediary
entities that performoperations that are not useful in case of |ong
polling. However, any capabilities that nmight interfere with
bidirectional flow (e.g., caching) can be controlled with standard
headers or cooki es.

As a best practice, caching is always intentionally suppressed in a
long poll request or response, i.e., the "Cache-Control" header is
set to "no-cache"

6. Security Considerations

This docunent is nmeant to describe current usage of HTTP to enabl e
asynchronous or server-initiated communi cation. |t does not propose
any change to the HTTP protocol or to the expected behavi or of HITP
entities. Therefore this docunent does not introduce new security
concerns into existing HITP infrastructure. The considerations
reported hereafter refer to the solutions that are already

i mpl enent ed and depl oyed.

One security concern with cross-domain HTTP long polling is rel ated
to the fact that often the nechanismis inplenented by executing the
JavaScript returned fromthe long poll request. |If the server is
prone to injection attacks, then it could be far easier to trick a
browser into executing the code [CORS].

Anot her security concern is that the nunber of open connections that
needs to be maintained by a server in HITTP long polling and HTTP
streaming could nore easily lead to denial -of-service (DoS) attacks
[RFC4732] .

Loreto, et al. I nf or mat i onal [Page 16]

RFC 6202 Bi di rectional HTTP April 2011

7. References

7.1. Normative References

[RFC1945] Berners-Lee, T., Fielding, R, and H N el sen,
"Hypertext Transfer Protocol -- HTTP/1.0",
RFC 1945, My 1996.

[RFC2616] Fielding, R, Gettys, J., Mgul, J., Frystyk, H,
Masinter, L., Leach, P., and T. Berners-Lee,
"Hypertext Transfer Protocol -- HITP/1.1",

RFC 2616, June 1999.

[RFCAT732] Handl ey, M, Rescorla, E., and | AB, "Internet
Deni al - of - Servi ce Consi derations”, RFC 4732,
Decenber 2006.

7.2. Informative References
[BAYEUX] Russell, A, WIlkins, G, Davis, D, and M
Nesbitt, "Bayeux Protocol -- Bayeux 1.0.0", 2007,

<http://svn.conetd. com trunk/bayeux/bayeux. ht m >.

[BOSH| Paterson, |I., Smith, D., and P. Sai nt-Andre,
"Bi directional -streans Over Synchronous HTTP
(BOSH) ", XSF XEP 0124, February 2007.

[COMVET] Russell, A., "Conet: Low Latency Data for the
Browser", March 2006, <http://infrequently.org/
2006/ 03/ conet - | ow | at ency-dat a-f or-t he-browser/ >.

[COXI E] Barth, A, "HTTP State Managenent Mechani sni', Work
in Progress, March 2011.

[CORS] van Kesteren, A, "Cross-Oigin Resource Sharing",
WBC Wor ki ng Draft WD cors-20100727, |atest version
avai l abl e at <http://ww. w3. org/ TR/ cors/ >,

July 2010,
<http://ww. w3. org/ TR/ 2010/ WD- cor s- 20100727/ >.

[HTTPBI 9] Fielding, R, Ed., Gettys, J., Mgul, J., Nelsen,
H, Msinter, L., Leach, P., Berners-Lee, T.,
Lafon, Y., Ed., and J. Reschke, Ed., "HTTP/ 1.1,
part 1: URl's, Connections, and Message Parsing",
Work in Progress, March 2011.

[JSONP] W ki pedia, "JSON with paddi ng",
<http://en.w ki pedi a. or g/ wi ki / JSONP#JSONP>.

Loreto, et al. I nf or mat i onal [Page 17]

RFC 6202

[RFC4627]

[RFC6120]

[TCP]

[WD- event sour ce]

8. Acknow edgnents

Bi di rectional HTTP April 2011

Crockford, D., "The application/json Media Type for
JavaScript Object Notation (JSON)", RFC 4627,
July 2006.

Sai nt-Andre, P., "Extensible Messaging and Presence
Protocol (XWMPP): Core", RFC 6120, March 2011.

Postel, J., "Transnission Control Protocol", STD 7,
RFC 793, Septenber 1981.

H ckson, 1., "Server-Sent Events", WBC Wbrking
Draft WD-eventsource-20091222, |atest version
avai l abl e at <http://ww. w3. org/ TR/ event source/ >,
Decenber 2009, <http://ww. w3. org/ TR/ 2009/

WD- event sour ce- 20091222/ >.

Thanks to Joe Hildebrand, Julien Laganier, Jack Mdffitt, Subramani an
Moonesany,
Martin Tyler for their feedback.

Loret o,

et al.

Mark Nottingham Julian Reschke, Martin Thomson, and

I nf or mat i onal [Page 18]

RFC 6202 Bi di rectional HTTP April 2011

Aut hors’ Addr esses

Sal vatore Loreto
Eri csson

H rsalantie 11
Jorvas 02420

Fi nl and

EMai |l : sal vatore.l oreto@ricsson.com

Peter Sai nt-Andre

Ci sco

1899 Wknoop Street, Suite 600
Denver, CO 80202

USA

Phone: +1-303-308-3282
EMai | ; psai ntan@i sco. com

St ef ano Sal sano

Uni versity of Rome "Tor Vergata"
Via del Politecnico, 1

Rone 00133

Italy

EMai | : stefano. sal sano@niromm2.it
Geg WIKins
Webt i de

EMai | : gregw@webti de. com

Loreto, et al. I nf or mat i onal [Page 19]

