I nt ernet Engi neering Task Force (I ETF) P. Levis

Request for Comments: 6206 Stanford University
Cat egory: Standards Track T. d ausen
| SSN: 2070- 1721 LI X, Ecol e Pol yt echni que
J. Hui
Arch Rock Corporation

O Gnawal
Stanford University
J. Ko
Johns Hopkins University
March 2011

The Trickle Al gorithm

Abst r act

The Trickle algorithmallow nodes in a |ossy shared nedium (e.g.

| ow power and | ossy networks) to exchange information in a highly
robust, energy efficient, sinple, and scal able manner. Dynamically
adjusting transm ssion wi ndows allows Trickle to spread new
information on the scale of link-layer transnission tines while
sending only a few nessages per hour when infornation does not

change. A sinple suppression nechani smand transni ssion point
selection allow Trickle' s communication rate to scale logarithnmically
with density. This docunment describes the Trickle algorithmand
considerations in its use.

Status of This Meno
This is an Internet Standards Track docunent.

This docunment is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/info/rfc6206

Levis, et al. St andards Track [Page 1]

RFC 6206 Trickle Al gorithm March 2011

Copyright Notice

Copyright (c) 2011 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introducti ON ... 2
2. Term N0l OQY ..ot e 3
3. Trickle Algorithm Overview 3
4. Trickle Algorithm 5
4.1. Parameters and Variables 5
4.2, AlgorithmDescription, 5
5. Using Trickle e 6
6. Operational Considerations, 7
6.1. Msmatched Redundancy Constants iu... 7
6.2. Msmatched Imin 7
6.3. Msmatched I max e e e 8
6.4. Msmatched Definitions i, 8
6.5. Specifying the Constant k 8
6.6. Relationship between k and Imin 8
6.7. Tweaks and I nprovenments to Trickle 9
6.8. Uses of Trickle 9
7. ACknow edgemBnt S 10
8. Security Considerati ONS 10
9. Ref BrenCes 11
9.1. Normative References i, 11
9.2. Informative References i 11
1. Introduction

The Trickle algorithmestablishes a density-aware |ocal conmunication
primtive with an underlying consistency nodel that guides when a
node transnits. Wen a node’s data does not agree with its

nei ghbors, that node conmuni cates quickly to resolve the

i nconsistency (e.g., in mlliseconds). Wen nodes agree, they slow
their conmuni cation rate exponentially, such that nodes send packets
very infrequently (e.g., a few packets per hour). Instead of

Levis, et al. St andards Track [Page 2]

RFC 6206 Trickle Al gorithm March 2011

flooding a network with packets, the algorithmcontrols the send rate
so each node hears a small trickle of packets, just enough to stay
consistent. Furthernore, by relying only on | ocal communication
(e.g., broadcast or local multicast), Trickle handl es network
re-popul ation; is robust to network transi ence, |oss, and

di sconnection; is sinple to inplenent; and requires very little
state. Current inplenentations use 4-11 bytes of RAM and are

50-200 lines of C code [Levis08].

While Trickle was originally designed for reprogranm ng protocols
(where the data is the code of the program being updated), experience
has shown it to be a powerful nechanismthat can be applied to a w de
range of protocol design problens, including control traffic tining
nmul ti cast propagation, and route discovery. This flexibility stemns
frombeing able to define, on a case-by-case basis, what constitutes
"agreenent" or an "inconsistency"; Section 6.8 presents a few
exanpl es of how the al gorithm can be used.

Thi s docunent describes the Trickle algorithmand provides guidelines
for its use. It also states requirenents for protocol specifications
that use Trickle. This document does not provide results regarding
Trickle' s performance or behavior, nor does it explain the
algorithmis design in detail: interested readers should refer to

[Levi s04] and [Levis08].

2. Ternmninol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMMENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in
RFC 2119 [RFC2119].

Additionally, this document introduces the follow ng termn nol ogy:

Trickle comunication rate: the sum of the nunmber of messages sent
or received by the Trickle algorithmin an interval

Trickle transmission rate: the sum of the nunber of nessages sent by
the Trickle algorithmin an interval

3. Trickle Algorithm Overview

Trickle's basic prinitive is sinple: every so often, a node transmts
data unless it hears a few other transni ssions whose data suggest its
own transmi ssion is redundant. Exanples of such data include routing
state, software update versions, and the | ast heard multicast packet.
This primtive allows Trickle to scale to thousand-fold variations in
network density, quickly propagate updates, distribute transm ssion

Levis, et al. St andards Track [Page 3]

RFC 6206 Trickle Al gorithm March 2011

| oad evenly, be robust to transient disconnections, handl e network
re-popul ations, and inpose a very | ow nai ntenance overhead: one
exanpl e use, routing beacons in the Collection Tree Protocol (CTP)

[Ghawal i 09], requires sending on the order of a few packets per hour,
yet CTP can respond to topol ogy changes in mlliseconds.

Trickle sends all nmessages to a |ocal conmunication address. The
exact address used can depend on the underlying |IP protocol as well
as how the higher-layer protocol uses Trickle. |In IPv6, for exanple,
it can be the link-local multicast address or another local nulticast
address, while in IPv4 it can be the broadcast address
(255. 255. 255. 255).

There are two possible results to a Trickle nmessage: either every
node that hears the nessage finds that the nmessage data is consistent
with its own state, or a recipient detects an inconsistency.
Detection can be the result of either an out-of-date node hearing
sonet hi ng new, or an updated node hearing sonething old. As long as
every node communi cates sonehow -- either receives or transmts --
sone node will detect the need for an update.

For exanple, consider a sinple case where "up to date" is defined by
version nunbers (e.g., network configuration). |If node Atransnits
that it has version V, but B has version V+1, then B knows that A
needs an update. Simlarly, if Btransmts that it has version V+1
A knows that it needs an update. |If B broadcasts or nulticasts
updates, then all of its neighbors can receive themw thout having to
advertise their need. Sone of these recipients nmight not have even
heard A's transmission. In this exanple, it does not matter who
first transmits -- A or B; the inconsistency will be detected in

ei ther case.

The fact that Trickle comunication can be either transnission or
reception enables the Trickle algorithmto operate in sparse as wel
as dense networks. A single, disconnected node nust transmit at the
Trickle communication rate. In a |ossless, single-hop network of
size n, the Trickle communication rate at each node equal s the sum of
the Trickle transmi ssion rates across all nodes. The Trickle

al gorithm bal ances the load in such a scenario, as each node’'s
Trickle transmission rate is 1/nth of the Trickle comruni cation rate.
Sparser networks require nore transm ssions per node, but the
utilization of a given broadcast domain (e.g., radi o channel over
space, shared nedium) will not increase. This is an inportant
property in wireless networks and other shared nedia, where the
channel is a valuable shared resource. Additionally, reducing
transm ssions in dense networks conserves system energy.

Levis, et al. St andards Track [Page 4]

RFC 6206 Trickle Al gorithm March 2011

4.

4.

4.

1

2.

Trickle Al gorithm
This section describes the Trickle algorithm
Paranet ers and Vari abl es

A Trickle tinmer runs for a defined interval and has three
configuration paraneters: the minimuminterval size Inmn, the maxi num
interval size Inmax, and a redundancy constant k

0 The mnimuminterval size, Inmn, is defined in units of tine
(e.g., mlliseconds, seconds). For exanple, a protocol m ght
define the minimuminterval as 100 nmilliseconds.

0o The maxi muminterval size, Imax, is described as a nunber of
doublings of the m ninmuminterval size (the base-2 | og(max/nin)).
For exanple, a protocol mght define Imax as 16. |If the m nimum
interval is 100 ns, then the anount of tine specified by Imax is
100 ns * 65,536, i.e., 6,553.6 seconds or approxinately
109 mi nut es.

0 The redundancy constant, k, is a natural nunber (an integer
greater than zero).

In addition to these three paraneters, Trickle naintains three
vari abl es:

o |, the current interval size

o t, atine within the current interval, and

o0 c, a counter

Al gorithm Description

The Trickle algorithmhas six rules:

1. When the algorithmstarts execution, it sets | to a value in the
range of [Inmin, Imax] -- that is, greater than or equal to Inin
and less than or equal to Inmax. The algorithmthen begins the
first interval

2. Wen an interval begins, Trickle resets c to 0 and sets t to a
random point in the interval, taken fromthe range [1/2, |), that

is, values greater than or equal to I1/2 and less than I. The
interval ends at |

Levis, et al. St andards Track [Page 5]

RFC 6206 Trickle Al gorithm March 2011

3. Wenever Trickle hears a transnmission that is "consistent", it
increnents the counter c.

4. At time t, Trickle transmits if and only if the counter c is |less
than the redundancy constant k

5. Wen the interval | expires, Trickle doubles the interval |ength.
If this newinterval |ength would be | onger than the tine
specified by Imax, Trickle sets the interval length | to be the
time specified by | nmax.

6. If Trickle hears a transmission that is "inconsistent”" and | is
greater than Imn, it resets the Trickle tiner. To reset the
timer, Trickle sets | to Imn and starts a newinterval as in
step 2. If | is equal to Imn when Trickle hears an
"inconsistent" transmission, Trickle does nothing. Trickle can
also reset its tiner in response to external "events"”

The terns "consistent”, "inconsistent", and "events" are in quotes
because their meani ng depends on how a protocol uses Trickle.

The only tine the Trickle algorithmtransnmits is at step 4 of the
above algorithm This means there is an inherent delay between
detecting an inconsistency (shrinking I to Imn) and responding to
that inconsistency (transnmitting at timet in the newinterval).
This is intentional. Imediately responding to detecting an

i nconsi stency can cause a broadcast storm where nany nodes respond
at once and in a synchronized fashion. By naking responses follow
the Trickle algorithm (with the mninmal interval size), a protoco
can benefit from Trickle' s suppression nechani smand scal e across a
huge range of node densities.

5. Using Trickle
A protocol specification that uses Trickle MJST specify:

o Default values for Imn, Imax, and k. Because link |layers can
vary widely in their properties, the default value of Imn SHOULD
be specified in terns of the worst-case latency of a link-Iayer
transm ssion. For exanple, a specification should say "the
default value of Imnis 4 times the worst-case |ink-|ayer
| at ency” and should not say "the default value of Iminis
500 nilliseconds". W rst-case latency is approximately the tine
until the first link-layer transmission of the frane, assuming an
i dl e channel (does not include backoff, virtual carrier sense,
etc.).

o What constitutes a "consistent” transm ssion

Levis, et al. St andards Track [Page 6]

RFC 6206 Trickle Al gorithm March 2011

6.

6.

6. 2.

o What constitutes an "inconsistent” transm ssion

o What "events", if any -- besides inconsistent transnissions --
reset the Trickle tiner.

0o Wiat infornmation a node transmits in Trickle nessages.

o What actions outside the algorithmthe protocol takes, if any,
when it detects an inconsistency.

Oper ati onal Consi derations

It is RECOWENDED that a protocol that uses Trickle include
nmechani snms to i nform nodes of configuration parameters at runtine.
However, it is not always possible to do so. |In the cases where

di fferent nodes have different configuration parameters, Trickle may
have uni ntended behaviors. This section outlines sonme of those
behavi ors and operational considerations as educati onal exercises.

M snmat ched Redundancy Constants

I f nodes do not agree on the redundancy constant k, then nodes wth
hi gher values of k will transmt nore often than nodes with | ower

val ues of k. In sone cases, this increased | oad can be independent
of the density. For exanple, consider a network where all nodes but
one have k=1, and this one node has k=2. The different node can end
up transmtting on every interval: it is nmaintaining a Trickle
communi cation rate of 2 with only itself. Hence, the danger of

m smat ched k val ues i s uneven transm ssion |oad that can deplete the
energy of sone nodes in a | ow power network.

M smat ched | nin

I f nodes do not agree on Inin, then some nodes, on hearing

i nconsi stent messages, will transmt sooner than others. These
faster nodes will have their intervals growto a size simlar to that
of the slower nodes within a single slowinterval tinme, but in that
peri od may suppress the slower nodes. However, such suppression wll
end after the first slowinterval, when the nodes generally agree on
the interval size. Hence, nmismatched Imn values are usually not a
significant concern. Note that m smatched I mn val ues and mat chi ng

| max doubling constants will lead to m smatched nmaxi numinterva

| engt hs.

Levis, et al. St andards Track [Page 7]

RFC 6206 Trickle Al gorithm March 2011

6.3. M smatched | max

I f nodes do not agree on Inax, then this can cause |ong-term probl ens

with transm ssion | oad. Nodes with small Imax values will transmit
faster, suppressing those with larger Imax values. The nodes with
| arger | max val ues, always suppressed, will never transnit. |In the

base case, when the network is consistent, this can cause long-term
inequities in energy cost.

6. 4. M smat ched Definitions

I f nodes do not agree on what constitutes a consistent or

i nconsi stent transnission, then Trickle nmay fail to operate properly.
For exanple, if a receiver thinks a transmi ssion is consistent, but
the transnmitter (if in the receiver’s situation) would have thought
it inconsistent, then the receiver will not respond properly and
informthe transmtter. This can |lead the network to not reach a
consistent state. For this reason, unlike the configuration
constants k, Imn, and I max, consistency definitions MIST be clearly
stated in the protocol and SHOULD NOT be configured at runtime.

6.5. Specifying the Constant k

There are sone edge cases where a protocol may wish to use Trickle
with its suppression disabled (k is set to infinity). In general
this approach is highly dangerous and it is NOT RECOMVENDED

Di sabl i ng suppression neans that every node will always send on every
interval; this can lead to congestion in dense networks. This
approach is especially dangerous if many nodes reset their intervals
at the sane tine. |In general, it is nmuch nore desirable to set k to
a high value (e.g., 5 or 10) than infinity. Typical values for k

are 1-5: these achieve a good bal ance between redundancy and | ow cost
[Levi s08] .

Neverthel ess, there are situations where a protocol may wish to turn
of f Trickle suppression. Because k is a natural nunber

(Section 4.1), k=0 has no useful neaning. |If a protocol allows k to
be dynam cally configured, a value of O remmins unused. For ease of
debuggi ng and packet inspection, having the paraneter describe k-1
rather than k can be confusing. Instead, it is RECOVMENDED t hat
protocols that require turning off suppression reserve k=0 to nean
k=infinity.

6.6. Relationship between k and Inin
Finally, a protocol SHOULD set k and Inmin such that Imn is at |east

two to three tinmes as long as it takes to transmt k packets.
QG herwise, if nore than k nodes reset their intervals to Inmn, the

Levis, et al. St andards Track [Page 8]

RFC 6206 Trickle Al gorithm March 2011

resulting comruni cation will | ead to congestion and significant
packet |oss. Experinental results have shown that packet |osses from
congestion reduce Trickle's efficiency [Levis04].

6.7. Tweaks and Inprovenents to Trickle

Trickle is based on a small nunber of sinple, tightly integrated
nmechani sns that are highly robust to chall engi ng network
environnents. In our experiences using Trickle, attenpts to tweak
its behavior are typically not worth the cost. As witten, the
algorithmis already highly efficient: further reductions in

transm ssions or response tine cone at the cost of failures in edge
cases. Based on our experiences, we urge protocol designers to
suppress the instinct to tweak or inprove Trickle w thout a great
deal of experinental evidence that the change does not violate its
assunptions and break the algorithmin edge cases.

Wth this warning in mnd, Trickle is far fromperfect. For exanple,
Trickl e suppression typically | eads sparser nodes to transnit nore
than denser ones; it is far fromthe optinmal conputation of a nininum
cover. However, in dynam c network environnents such as wrel ess and
| ow power, |ossy networks, the coordination needed to conpute the
optimal set of transmissions is typically nmuch greater than the
benefits it provides. One of the benefits of Trickle is that it is
so sinple to inplenent and requires so little state yet operates so
efficiently. Efforts to inprove it should be wei ghed agai nst the
cost of increased conplexity.

6. 8. Uses of Trickle

The Trickle algorithmhas been used in a variety of protocols, in
operational as well as acadenmic settings. Gving a brief overview of
sonme of these uses provides useful exanples of how and when it can be
used. These exanpl es should not be considered exhaustive.

Rel i abl e fl oodi ng/ di ssem nation: A protocol uses Trickle to
periodically advertise the nost recent data it has received,
typically through a version nunber. An inconsistency occurs when a
node hears a newer version nunber or receives new data. A

consi stency occurs when a node hears an ol der or equal version
nunber. \When hearing an ol der version nunber, rather than reset its
own Trickle tiner, the node sends an update. Nodes with old version
nunbers that receive the update will then reset their own tiners,

| eading to fast propagation of the new data. Exanples of this use

i nclude multicast [Hui 08a], network configuration [Lin08] [Dang09],
and installing new application prograns [Hui04] [Levis04].

Levis, et al. St andards Track [Page 9]

RFC 6206 Trickle Al gorithm March 2011

Routing control traffic: A protocol uses Trickle to control when it
sends beacons that contain routing state. An inconsistency occurs
when the routing topology changes in a way that could lead to | oops
or significant stretch: exanples include when the routing |ayer
detects a routing | oop or when a node’s routing cost changes
significantly. Consistency occurs when the routing topology is
operating well and is delivering packets successfully. Using the
Trickle algorithmin this way allows a routing protocol to react very
quickly to problens (Imn is snall) but send very few beacons when
the topology is stable. Exanples of this use include the |IPv6
routing protocol for |ow power and |ossy networks (RPL) [RPL], CTP
[Grawal i 09], and sone current commercial | Pv6 routing | ayers

[Hui 08b] .

7. Acknow edgenents

The authors would like to acknow edge the gui dance and i nput provided
by the ROLL chairs, David Culler and JP Vasseur

The aut hors would also |like to acknow edge the hel pful comments of
Yoav Ben- Yehezkel, Al exandru Petrescu, and U rich Herberg, which
greatly inproved the docunent.

8. Security Considerations

As it is an algorithm Trickle itself does not have any specific
security considerations. However, two security concerns can arise

when Trickle is used in a protocol. The first is that an adversary
can force nodes to send many nore packets than needed by forcing
Trickle timer resets. In |owpower networks, this increase in

traffic can harmsystemlifetime. The second concern is that an
adversary can prevent nodes from reachi ng consi stency.

Protocol s can prevent adversarial Trickle resets by carefully

sel ecti ng what can cause a reset and protecting these events and
messages with proper security nmechanisns. For exanple, if a node can
reset nearby Trickle tiners by sending a certain packet, this packet
shoul d be authenticated such that an adversary cannot forge one.

An adversary can possi bly prevent nodes fromreachi ng consi stency by
suppressing transnmissions with "consistent” nmessages. For exanple,

i magi ne node A detects an inconsistency and resets its Trickle tiner.
If an adversary can prevent A from sendi ng nessages that inform
near by nodes of the inconsistency in order to repair it, then A may
remai n i nconsistent indefinitely. Depending on the security nodel of
the network, authenticated nessages or a transitive notion of

consi stency can prevent this problem For exanple, |let us suppose an
adversary w shes to suppress A fromnotifying neighbors of an

Levis, et al. St andards Track [Page 10]

RFC 6206 Trickle Al gorithm March 2011

i nconsi stency. To do so, it nust send nessages that are consistent
with A. These nessages are by definition inconsistent with those of
A’ s nei ghbors. Correspondingly, an adversary cannot sinultaneously
prevent A from notifying neighbors and not notify the nei ghbors
itself (recall that Trickle operates on shared, broadcast nedia).
Note that this nmeans Trickle should filter unicast nessages.

9. References
9. 1. Nor mati ve Ref erences

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

9.2. Informative References

[Dang09] Dang, T., Bulusu, N, Feng, W, and S. Park, "DHV: A Code
Consi st ency Mai ntenance Protocol for Milti-hop Wreless
Net wor ks", Wrel ess Sensor Networks: 6th European
Conf erence Proceedi ngs EWSN 2009 Cork, February 2009,
<http://portal.acmorg/citation.cfnPi d=1506781>.

[Ghawal i 09]
Gnawal i, O, Fonseca, R, Janmieson, K, Mss, D, and P
Levis, "Collection Tree Protocol", Proceedings of the 7th
ACM Conf erence on Enbedded Networked Sensor
Systens, SenSys 2009, Novenber 2009,
<http://portal.acmorg/citation.cfnPi d=1644038. 1644040>.

[Hui 04] Hui, J. and D. Culler, "The dynanm c behavior of a data
di sseni nati on protocol for network programmng at scal e"
Proceedi ngs of the 2nd ACM Conference on Enbedded
Net wor ked Sensor Systens, SenSys 2004, Novenber 2004,
<http://portal.acmorg/citation.cfnPi d=1031506>.

[Hui 08a] Hui, J., "An Extended Internet Architecture for Low Power
Wrel ess Networks - Design and | nplenentation", UC
Ber kel ey Techni cal Report EECS-2008-116, Septenber 2008,
<htt p: // www. eecs. ber kel ey. edu/ Pubs/ >.

[Hui 08b] Hui, J. and D. Culler, "IP is dead, long live IP for
Wi rel ess sensor networks", Proceedings of the 6th ACM
Conf erence on Enbedded Networ ked Sensor Systens, SenSys
2008, Novenber 2008,
<http://portal.acmorg/citation.cfnPi d=1460412. 1460415>.

Levis, et al. St andards Track [Page 11]

RFC 6206

[Levi s04]

[Levi s08]

[Li n08]

[RPL]

Levi s,

et al.

Trickle Al gorithm March 2011

Levis, P., Patel, N, Culler, D., and S. Shenker,
"Trickle: A Self-Regulating Al gorithmfor Code Propagation
and Mai ntenance in Wrel ess Sensor Networks", Proceedi ngs
of the First USEN X/ ACM Synposi um on Networ ked Systens

Desi gn and | npl enent ati on, NSDI 2004, March 2004,
<http://portal.acmorg/citation.cfnPi d=1251177>.

Levis, P., Brewer, E., Culler, D, Gay, D., Madden, S.,
Patel, N, Polastre, J., Shenker, S., Szewczyk, R, and A
Who, "The Energence of a Networking Primtive in Wrel ess
Sensor Networ ks™, Conmuni cations of the ACM Vol. 51 No.
7, July 2008,

<http://portal.acmorg/citation.cfnPi d=1364804>.

Lin, K and P. Levis, "Data Discovery and D ssem nation
with DI P', Proceedings of the 7th international conference
on Information processing in sensor networks, |PSN 2008,
April 2008,

<http://portal.acmorg/citation.cfnPi d=1371607. 1372753>.

Wnter, T., Ed., Thubert, P., Ed., Brandt, A, d ausen,
T., Hui, J., Kelsey, R, Levis, P., Pister, K, Struik,
R, and JP. Vasseur, "RPL: |IPv6 Routing Protocol for Low
power and Lossy Networks", Work in Progress, March 2011.

St andards Track [Page 12]

RFC 6206 Trickle Al gorithm March 2011

Aut hors’ Addr esses

Philip Levis
Stanford University
358 Gates Hall
Stanford, CA 94305
USA

Phone: +1 650 725 9064
EMai | : pal @s. st anford. edu

Thomas Hei de C ausen
LI X, Ecol e Pol yt echni que

Phone: +33 6 6058 9349
EMai |l : T.d ausen@onput er. org

Jonat han Hui

Arch Rock Corporation
501 2nd St., Suite 410
San Francisco, CA 94107
USA

EMai | . j hui @r chrock. com

Onpr akash Gnawal i

Stanford University

S255 O ark Center, 318 Canpus Drive
Stanford, CA 94305

USA

Phone: +1 650 725 6086
EMai | ;. gnawal i @s. st anford. edu

JeongG | Ko

Johns Hopkins University

3400 N. Charles St., 224 New Engi neering Buil ding
Baltinore, MD 21218

USA

Phone: +1 410 516 4312
EMai | : jgko@s.jhu. edu

Levis, et al. St andards Track [Page 13]

