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Computing TCP's Retransmi ssion Timer
Abstract

Thi s docunent defines the standard al gorithmthat Transm ssion
Control Protocol (TCP) senders are required to use to conpute and
manage their retransnmission timer. |t expands on the discussion in
Section 4.2.3.1 of RFC 1122 and upgrades the requirement of
supporting the algorithmfroma SHOULD to a MJUST. This docunent
obsol etes RFC 2988.

Status of This Meno
This is an Internet Standards Track docunent.

This docunment is a product of the Internet Engi neering Task Force
(ITETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/info/rfc6298
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Copyright (c) 2011 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

1. I nt roducti on

The Transm ssion Control Protocol (TCP) [Pos81] uses a retransm ssion
timer to ensure data delivery in the absence of any feedback fromthe
renote data receiver. The duration of this tiner is referred to as
RTO (retransmi ssion tinmeout). RFC 1122 [Bra89] specifies that the
RTO shoul d be calcul ated as outlined in [Jac88].

This docunent codifies the algorithmfor setting the RTO In
addition, this docunent expands on the discussion in Section 4.2.3.1
of RFC 1122 and upgrades the requirenment of supporting the algorithm
froma SHOULD to a MUST. RFC 5681 [ APB09] outlines the algorithm TCP
uses to begin sending after the RTO expires and a retransnission is
sent. This docunment does not alter the behavior outlined in RFC 5681
[ APB09] .

In sone situations, it may be beneficial for a TCP sender to be nore
conservative than the algorithns detailed in this docunent all ow.
However, a TCP MUST NOT be nore aggressive than the foll ow ng
algorithnms allow. This docunent obsol etes RFC 2988 [ PA0O].

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in [Bra97].

2. The Basic Al gorithm
To conpute the current RTO a TCP sender nmintains two state
vari abl es, SRTT (snoothed round-trip tinme) and RTTVAR (round-trip

time variation). |In addition, we assunme a clock granularity of G
seconds.

Paxson, et al. St andards Track [ Page 2]



RFC 6298 Computing TCP' s Retransm ssion Tiner June 2011

The rul es governing the conputation of SRTT, RTTVAR, and RTO are as
fol | ows:

(2.1) Until a round-trip tinme (RTT) neasurenment has been nade for a
segnment sent between the sender and receiver, the sender SHOULD
set RTO <- 1 second, though the "backing off" on repeated
retransm ssion discussed in (5.5) still applies.

Note that the previous version of this docunment used an initial
RTO of 3 seconds [PAOO]. A TCP inplenentation MAY still use
this value (or any other value > 1 second). This change in the
| ower bound on the initial RTOis discussed in further detai

i n Appendi x A

(2.2) When the first RTT nmeasurenent R is made, the host MJST set

SRTT <- R
RTTVAR <- R/ 2
RTO <- SRTT + max (G K*RTTVAR)

where K = 4.
(2.3) Wien a subsequent RTT neasurenment R is nmade, a host MJIST set

RTTVAR <- (1 - beta) * RTTVAR + beta * |SRTT - R |
SRTT <- (1 - alpha) * SRIT + alpha * R

The value of SRTT used in the update to RTTVAR is its val ue
before updating SRTT itself using the second assignnment. That
is, updating RTTVAR and SRTT MJST be conputed in the above
order.

The above SHOULD be conputed using al pha=1/8 and beta=1/4 (as
suggested in [JK88]).

After the conputation, a host MJST update
RTO <- SRTT + max (G K*RTTVAR)

(2.4) Whenever RTOis conputed, if it is less than 1 second, then the
RTO SHOULD be rounded up to 1 second.

Traditionally, TCP inplenentations use coarse grain clocks to
measure the RTT and trigger the RTO which inposes a |large

m ni mum val ue on the RTO Research suggests that a large

m ni mum RTO i s needed to keep TCP conservative and avoid
spurious retransm ssions [AP99]. Therefore, this specification
requires a large mnimum RTO as a conservative approach, while
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at the sane tine acknow edgi ng that at sonme future point,
research may show that a smaller mninmum RTO is acceptable or
superi or.

(2.5) A maxi num val ue MAY be placed on RTO provided it is at |east 60
seconds.

3. Taking RTT Sanpl es

TCP MJST use Karn’s algorithm|[KP87] for taking RTT sanmples. That
is, RTT sanples MJUST NOT be nade using segnments that were
retransmtted (and thus for which it is anbi guous whether the reply
was for the first instance of the packet or a later instance). The
only case when TCP can safely take RTT sanples fromretransnitted
segments is when the TCP tinestanp option [JBB92] is enployed, since
the tinestanp option renoves the anbiguity regardi ng which instance
of the data segment triggered the acknow edgment.

Traditionally, TCP inplenentations have taken one RTT neasurenent at
atime (typically, once per RTT). However, when using the tinmestanp
option, each ACK can be used as an RTT sanple. RFC 1323 [JBB92]
suggests that TCP connections utilizing |arge congestion w ndows
shoul d take many RTT sanmpl es per wi ndow of data to avoid aliasing
effects in the estimated RTT. A TCP inplenentation MJST take at

| east one RTT neasurenent per RTT (unless that is not possible per
Karn's algorithm.

For fairly nodest congestion w ndow sizes, research suggests that
timng each segnent does not lead to a better RIT estimator [AP99].
Additionally, when nultiple sanples are taken per RTT, the al pha and
beta defined in Section 2 may keep an inadequate RTT history. A

nmet hod for changi ng these constants is currently an open research
qguesti on.

4. Cock Ganularity
There is no requirenent for the clock granularity G used for
computing RTT neasurenents and the different state variables
However, if the K*RTTVAR termin the RTO cal cul ati on equal s zero, the
vari ance term MJUST be rounded to G seconds (i.e., use the equation
given in step 2.3).
RTO <- SRTT + max (G K*RTTVAR)

Experi ence has shown that finer clock granularities (<= 100 nsec)
perform sonewhat better than coarser granularities.
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Note that [Jac88] outlines several clever tricks that can be used to
obtain better precision fromcoarse granularity tiners. These
changes are widely inplemented in current TCP inpl enentations.

5. Managi ng the RTO Ti mer

An i npl enentati on MUST manage the retransmission tinmer(s) in such a
way that a segnent is never retransnitted too early, i.e., less than
one RTO after the previous transnission of that segment.

The following is the RECOMVENDED al gorithm for managi ng the
retransm ssion tiner:

(5.1) Every time a packet containing data is sent (including a
retransmission), if the timer is not running, start it running
so that it will expire after RTO seconds (for the current val ue
of RTO.

(5.2) Wien all outstandi ng data has been acknow edged, turn off the
retransm ssion tiner.

(5.3) Wien an ACK is received that acknow edges new data, restart the
retransm ssion timer so that it will expire after RTO seconds
(for the current value of RTO.

Wien the retransmission timer expires, do the follow ng:

(5.4) Retransmit the earliest segnent that has not been acknow edged
by the TCP receiver

(5.5) The host MUST set RTO <- RTO * 2 ("back off the tiner"). The
maxi mum val ue discussed in (2.5) above may be used to provide
an upper bound to this doubling operation.

(5.6) Start the retransmission tiner, such that it expires after RTO
seconds (for the value of RTO after the doubling operation
outlined in 5.5).

(5.7) If the tiner expires awaiting the ACK of a SYN segnment and the
TCP inplenmentation is using an RTO | ess than 3 seconds, the RTO
MUST be re-initialized to 3 seconds when data transm ssion
begins (i.e., after the three-way handshake conpl etes).

This represents a change fromthe previous version of this
document [PAOO] and is discussed in Appendix A
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Note that after retransmitting, once a new RTT neasurenent is
obt ai ned (which can only happen when new data has been sent and
acknow edged), the conputations outlined in Section 2 are perforned,

i ncluding the conmputation of RTO which may result in "coll apsing"
RTO back down after it has been subject to exponential back off (rule
5.5).

Note that a TCP inpl enentati on MAY cl ear SRTT and RTTVAR after
backing off the timer multiple tines as it is likely that the current
SRTT and RTTVAR are bogus in this situation. Once SRTT and RTTVAR
are cleared, they should be initialized with the next RTT sanple
taken per (2.2) rather than using (2.3).

6. Security Considerations

This docunent requires a TCP to wait for a given interval before
retransmtting an unacknow edged segnent. An attacker could cause a
TCP sender to conpute a |arge value of RTO by adding delay to a tined
packet’s latency, or that of its acknow edgnent. However, the
ability to add delay to a packet’s latency often coincides with the
ability to cause the packet to be lost, so it is difficult to see
what an attacker might gain fromsuch an attack that could cause nore
damage than sinply discarding sone of the TCP connection’s packets.

The Internet, to a considerable degree, relies on the correct

i mpl enentation of the RTO algorithm (as well as those described in
RFC 5681) in order to preserve network stability and avoid congestion
coll apse. An attacker could cause TCP endpoints to respond nore
aggressively in the face of congestion by forging acknow edgnments for
segnments before the receiver has actually received the data, thus
lowering RTOto an unsafe value. But to do so requires spoofing the
acknow edgnents correctly, which is difficult unless the attacker can
nmonitor traffic along the path between the sender and the receiver

In addition, even if the attacker can cause the sender’s RTOto reach
too small a value, it appears the attacker cannot |everage this into
much of an attack (conpared to the other damage they can do if they
can spoof packets belonging to the connection), since the sending TCP
will still back off its timer in the face of an incorrectly
transmitted packet’s |loss due to actual congestion

The security considerations in RFC 5681 [ APB09] are al so applicable
to this docunent.
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7.

9.

9.

9.

Changes from RFC 2988

Thi s docunent reduces the initial RTO fromthe previous 3 seconds

[ PAOO] to 1 second, unless the SYN or the ACK of the SYNis lost, in
whi ch case the default RTOis reverted to 3 seconds before data
transm ssi on begins.

Acknowl edgrent s

The RTO al gorithm described in this meno was origi nated by Van
Jacobson in [Jac88].

Much of the data that notivated changing the initial RTO from3
seconds to 1 second cane from Robert Love, Andre Broido, and M ke
Bel she.
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Appendi x A.  Rationale for Lowering the Initial RTO

Choosing a reasonable initial RTO requires balancing two conpeting
consi derati ons:

1

The initial RTO should be sufficiently large to cover nost of the
end-to-end paths to avoid spurious retransm ssions and their
associ at ed negative performance inpact.

The initial RTO should be small enough to ensure a tinely recovery
from packet |1 oss occurring before an RTT sanmple is taken

Traditionally, TCP has used 3 seconds as the initial RTO [Bra89]
[ PAOO]. This document calls for lowering this value to 1 second
using the follow ng rationale:

Modern networks are sinply faster than the state-of-the-art was at
the time the initial RTO of 3 seconds was defined.

St udi es have found that the round-trip tines of nore than 97. 5% of
t he connections observed in a large scale analysis were less than 1
second [ Chu09], suggesting that 1 second neets criterion 1 above.

In addition, the studies observed retransm ssion rates within the
t hree-way handshake of roughly 2% This shows that reducing the
initial RTO has benefit to a non-negligible set of connections.

However, roughly 2.5% of the connections studied in [Chu09] have an
RTT longer than 1 second. For those connections, a 1 second
initial RTO guarantees a retransni ssion during connection

est abl i shnent (needed or not).

When this happens, this docunment calls for reverting to an initial
RTO of 3 seconds for the data transm ssion phase. Therefore, the

i nplications of the spurious retransm ssion are nodest: (1) an
extra SYNis transnmitted into the network, and (2) according to RFC
5681 [APB09] the initial congestion windowwill be limted to 1
segment. Wiile (2) clearly puts such connections at a

di sadvant age, this docunent at |east resets the RTO such that the

connection will not continually run into problens with a short
timeout. (O course, if the RTT is nore than 3 seconds, the
connection will still encounter difficulties. But that is not a

new i ssue for TCP.)

In addition, we note that when using tinestanps, TCP will be able
to take an RTT sanple even in the presence of a spurious

retransm ssion, facilitating convergence to a correct RTT estimate
when the RTT exceeds 1 second.
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As an additional check on the results presented in [Chu09], we
anal yzed packet traces of client behavior collected at four different
vantage points at different tinmes, as follows:

Nane Dat es Pkt s. Cnns. dnts. Servs.
LBL-1 Cct/ 05-- Mar/ 06 292M 242K 228 74K
LBL-2 Nov/ 09- - Feb/ 10 1.1B 1.2M 1047 38K
ICSl-1 Sep/ 11--18/ 07 137M 2.1M 193 486K

I CSl-2 Sep/ 11--18/08 163M 1.9M 177 277K
ICSl-3 Sep/ 14--21/ 09 334M 3.1M 170 253K
ICSl-4 Sep/ 11--18/10 298M 5M 183 189K
Dartmouth Jan/ 4--21/04 1B 4M 3782 132K

S| GCOwW Aug/ 17--21/08 11.6M 133K 152 29K

The "LBL" data was taken at the Law ence Berkel ey National
Laboratory, the "ICSI" data fromthe International Conmputer Science
Institute, the "SIGCOW' data fromthe wireless network that served
t he attendees of SIGCOWM 2008, and the "Dartnouth" data was col |l ected
fromDartnouth College’s wireless network. The latter two datasets
are available fromthe CRAWAD data repository [HKAO04] [SLS09]. The
table lists the dates of the data collections, the nunber of packets
col l ected, the nunber of TCP connections observed, the nunber of
local clients nmonitored, and the nunber of renote servers contacted.
We consider only connections initiated near the tracing vantage

poi nt .

Anal ysis of these datasets finds the preval ence of retransnitted SYNs
to be between 0.03% (I CSI-4) to roughly 2% (LBL-1 and Dartnouth).

We then anal yzed the data to determ ne the nunber of additional and
spurious retransm ssions that would have been incurred if the initial
RTO was assuned to be 1 second. |In nost of the datasets, the
proportion of connections with spurious retransnits was |ess than
0.1% However, in the Dartnouth dataset, approximately 1.1% of the
connections woul d have sent a spurious retransnit with a | ower
initial RTO W attribute this to the fact that the nonitored
network is wireless and therefore susceptible to additional delays
fromRF effects.

Finally, there are obviously performance benefits fromretransmtting
lost SYNs with a reduced initial RTO Across our datasets, the
percentage of connections that retransnmtted a SYN and woul d reali ze
at least a 10% performance inprovenent by using the smaller initial
RTO specified in this document ranges from43% (LBL-1) to 87%
(ICSl-4). The percentage of connections that would realize at |east
a 50% performance inprovenent ranges from117% (1 CSI-1 and SI GCOW to
73% (1 CSl -4).
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Fromthe data to which we have access, we conclude that the | ower

initial RTOis likely to be beneficial to many connecti ons,

harnful to relatively few
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