
Internet Engineering Task Force (IETF) V. Paxson
Request for Comments: 6298 ICSI/UC Berkeley
Obsoletes: 2988 M. Allman
Updates: 1122 ICSI
Category: Standards Track J. Chu
ISSN: 2070-1721 Google
 M. Sargent
 CWRU
 June 2011

 Computing TCP’s Retransmission Timer

Abstract

 This document defines the standard algorithm that Transmission
 Control Protocol (TCP) senders are required to use to compute and
 manage their retransmission timer. It expands on the discussion in
 Section 4.2.3.1 of RFC 1122 and upgrades the requirement of
 supporting the algorithm from a SHOULD to a MUST. This document
 obsoletes RFC 2988.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6298.

Paxson, et al. Standards Track [Page 1]

RFC 6298 Computing TCP’s Retransmission Timer June 2011

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 The Transmission Control Protocol (TCP) [Pos81] uses a retransmission
 timer to ensure data delivery in the absence of any feedback from the
 remote data receiver. The duration of this timer is referred to as
 RTO (retransmission timeout). RFC 1122 [Bra89] specifies that the
 RTO should be calculated as outlined in [Jac88].

 This document codifies the algorithm for setting the RTO. In
 addition, this document expands on the discussion in Section 4.2.3.1
 of RFC 1122 and upgrades the requirement of supporting the algorithm
 from a SHOULD to a MUST. RFC 5681 [APB09] outlines the algorithm TCP
 uses to begin sending after the RTO expires and a retransmission is
 sent. This document does not alter the behavior outlined in RFC 5681
 [APB09].

 In some situations, it may be beneficial for a TCP sender to be more
 conservative than the algorithms detailed in this document allow.
 However, a TCP MUST NOT be more aggressive than the following
 algorithms allow. This document obsoletes RFC 2988 [PA00].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [Bra97].

2. The Basic Algorithm

 To compute the current RTO, a TCP sender maintains two state
 variables, SRTT (smoothed round-trip time) and RTTVAR (round-trip
 time variation). In addition, we assume a clock granularity of G
 seconds.

Paxson, et al. Standards Track [Page 2]

RFC 6298 Computing TCP’s Retransmission Timer June 2011

 The rules governing the computation of SRTT, RTTVAR, and RTO are as
 follows:

 (2.1) Until a round-trip time (RTT) measurement has been made for a
 segment sent between the sender and receiver, the sender SHOULD
 set RTO <- 1 second, though the "backing off" on repeated
 retransmission discussed in (5.5) still applies.

 Note that the previous version of this document used an initial
 RTO of 3 seconds [PA00]. A TCP implementation MAY still use
 this value (or any other value > 1 second). This change in the
 lower bound on the initial RTO is discussed in further detail
 in Appendix A.

 (2.2) When the first RTT measurement R is made, the host MUST set

 SRTT <- R
 RTTVAR <- R/2
 RTO <- SRTT + max (G, K*RTTVAR)

 where K = 4.

 (2.3) When a subsequent RTT measurement R’ is made, a host MUST set

 RTTVAR <- (1 - beta) * RTTVAR + beta * |SRTT - R’|
 SRTT <- (1 - alpha) * SRTT + alpha * R’

 The value of SRTT used in the update to RTTVAR is its value
 before updating SRTT itself using the second assignment. That
 is, updating RTTVAR and SRTT MUST be computed in the above
 order.

 The above SHOULD be computed using alpha=1/8 and beta=1/4 (as
 suggested in [JK88]).

 After the computation, a host MUST update
 RTO <- SRTT + max (G, K*RTTVAR)

 (2.4) Whenever RTO is computed, if it is less than 1 second, then the
 RTO SHOULD be rounded up to 1 second.

 Traditionally, TCP implementations use coarse grain clocks to
 measure the RTT and trigger the RTO, which imposes a large
 minimum value on the RTO. Research suggests that a large
 minimum RTO is needed to keep TCP conservative and avoid
 spurious retransmissions [AP99]. Therefore, this specification
 requires a large minimum RTO as a conservative approach, while

Paxson, et al. Standards Track [Page 3]

RFC 6298 Computing TCP’s Retransmission Timer June 2011

 at the same time acknowledging that at some future point,
 research may show that a smaller minimum RTO is acceptable or
 superior.

 (2.5) A maximum value MAY be placed on RTO provided it is at least 60
 seconds.

3. Taking RTT Samples

 TCP MUST use Karn’s algorithm [KP87] for taking RTT samples. That
 is, RTT samples MUST NOT be made using segments that were
 retransmitted (and thus for which it is ambiguous whether the reply
 was for the first instance of the packet or a later instance). The
 only case when TCP can safely take RTT samples from retransmitted
 segments is when the TCP timestamp option [JBB92] is employed, since
 the timestamp option removes the ambiguity regarding which instance
 of the data segment triggered the acknowledgment.

 Traditionally, TCP implementations have taken one RTT measurement at
 a time (typically, once per RTT). However, when using the timestamp
 option, each ACK can be used as an RTT sample. RFC 1323 [JBB92]
 suggests that TCP connections utilizing large congestion windows
 should take many RTT samples per window of data to avoid aliasing
 effects in the estimated RTT. A TCP implementation MUST take at
 least one RTT measurement per RTT (unless that is not possible per
 Karn’s algorithm).

 For fairly modest congestion window sizes, research suggests that
 timing each segment does not lead to a better RTT estimator [AP99].
 Additionally, when multiple samples are taken per RTT, the alpha and
 beta defined in Section 2 may keep an inadequate RTT history. A
 method for changing these constants is currently an open research
 question.

4. Clock Granularity

 There is no requirement for the clock granularity G used for
 computing RTT measurements and the different state variables.
 However, if the K*RTTVAR term in the RTO calculation equals zero, the
 variance term MUST be rounded to G seconds (i.e., use the equation
 given in step 2.3).

 RTO <- SRTT + max (G, K*RTTVAR)

 Experience has shown that finer clock granularities (<= 100 msec)
 perform somewhat better than coarser granularities.

Paxson, et al. Standards Track [Page 4]

RFC 6298 Computing TCP’s Retransmission Timer June 2011

 Note that [Jac88] outlines several clever tricks that can be used to
 obtain better precision from coarse granularity timers. These
 changes are widely implemented in current TCP implementations.

5. Managing the RTO Timer

 An implementation MUST manage the retransmission timer(s) in such a
 way that a segment is never retransmitted too early, i.e., less than
 one RTO after the previous transmission of that segment.

 The following is the RECOMMENDED algorithm for managing the
 retransmission timer:

 (5.1) Every time a packet containing data is sent (including a
 retransmission), if the timer is not running, start it running
 so that it will expire after RTO seconds (for the current value
 of RTO).

 (5.2) When all outstanding data has been acknowledged, turn off the
 retransmission timer.

 (5.3) When an ACK is received that acknowledges new data, restart the
 retransmission timer so that it will expire after RTO seconds
 (for the current value of RTO).

 When the retransmission timer expires, do the following:

 (5.4) Retransmit the earliest segment that has not been acknowledged
 by the TCP receiver.

 (5.5) The host MUST set RTO <- RTO * 2 ("back off the timer"). The
 maximum value discussed in (2.5) above may be used to provide
 an upper bound to this doubling operation.

 (5.6) Start the retransmission timer, such that it expires after RTO
 seconds (for the value of RTO after the doubling operation
 outlined in 5.5).

 (5.7) If the timer expires awaiting the ACK of a SYN segment and the
 TCP implementation is using an RTO less than 3 seconds, the RTO
 MUST be re-initialized to 3 seconds when data transmission
 begins (i.e., after the three-way handshake completes).

 This represents a change from the previous version of this
 document [PA00] and is discussed in Appendix A.

Paxson, et al. Standards Track [Page 5]

RFC 6298 Computing TCP’s Retransmission Timer June 2011

 Note that after retransmitting, once a new RTT measurement is
 obtained (which can only happen when new data has been sent and
 acknowledged), the computations outlined in Section 2 are performed,
 including the computation of RTO, which may result in "collapsing"
 RTO back down after it has been subject to exponential back off (rule
 5.5).

 Note that a TCP implementation MAY clear SRTT and RTTVAR after
 backing off the timer multiple times as it is likely that the current
 SRTT and RTTVAR are bogus in this situation. Once SRTT and RTTVAR
 are cleared, they should be initialized with the next RTT sample
 taken per (2.2) rather than using (2.3).

6. Security Considerations

 This document requires a TCP to wait for a given interval before
 retransmitting an unacknowledged segment. An attacker could cause a
 TCP sender to compute a large value of RTO by adding delay to a timed
 packet’s latency, or that of its acknowledgment. However, the
 ability to add delay to a packet’s latency often coincides with the
 ability to cause the packet to be lost, so it is difficult to see
 what an attacker might gain from such an attack that could cause more
 damage than simply discarding some of the TCP connection’s packets.

 The Internet, to a considerable degree, relies on the correct
 implementation of the RTO algorithm (as well as those described in
 RFC 5681) in order to preserve network stability and avoid congestion
 collapse. An attacker could cause TCP endpoints to respond more
 aggressively in the face of congestion by forging acknowledgments for
 segments before the receiver has actually received the data, thus
 lowering RTO to an unsafe value. But to do so requires spoofing the
 acknowledgments correctly, which is difficult unless the attacker can
 monitor traffic along the path between the sender and the receiver.
 In addition, even if the attacker can cause the sender’s RTO to reach
 too small a value, it appears the attacker cannot leverage this into
 much of an attack (compared to the other damage they can do if they
 can spoof packets belonging to the connection), since the sending TCP
 will still back off its timer in the face of an incorrectly
 transmitted packet’s loss due to actual congestion.

 The security considerations in RFC 5681 [APB09] are also applicable
 to this document.

Paxson, et al. Standards Track [Page 6]

RFC 6298 Computing TCP’s Retransmission Timer June 2011

7. Changes from RFC 2988

 This document reduces the initial RTO from the previous 3 seconds
 [PA00] to 1 second, unless the SYN or the ACK of the SYN is lost, in
 which case the default RTO is reverted to 3 seconds before data
 transmission begins.

8. Acknowledgments

 The RTO algorithm described in this memo was originated by Van
 Jacobson in [Jac88].

 Much of the data that motivated changing the initial RTO from 3
 seconds to 1 second came from Robert Love, Andre Broido, and Mike
 Belshe.

9. References

9.1. Normative References

 [APB09] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [Bra89] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [Bra97] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [JBB92] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions for
 High Performance", RFC 1323, May 1992.

 [Pos81] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
 September 1981.

9.2. Informative References

 [AP99] Allman, M. and V. Paxson, "On Estimating End-to-End Network
 Path Properties", SIGCOMM 99.

 [Chu09] Chu, J., "Tuning TCP Parameters for the 21st Century",
 http://www.ietf.org/proceedings/75/slides/tcpm-1.pdf, July
 2009.

 [SLS09] Schulman, A., Levin, D., and Spring, N., "CRAWDAD data set
 umd/sigcomm2008 (v. 2009-03-02)",
 http://crawdad.cs.dartmouth.edu/umd/sigcomm2008, March, 2009.

Paxson, et al. Standards Track [Page 7]

RFC 6298 Computing TCP’s Retransmission Timer June 2011

 [HKA04] Henderson, T., Kotz, D., and Abyzov, I., "CRAWDAD trace
 dartmouth/campus/tcpdump/fall03 (v. 2004-11-09)",
 http://crawdad.cs.dartmouth.edu/dartmouth/campus/
 tcpdump/fall03, November 2004.

 [Jac88] Jacobson, V., "Congestion Avoidance and Control", Computer
 Communication Review, vol. 18, no. 4, pp. 314-329, Aug.
 1988.

 [JK88] Jacobson, V. and M. Karels, "Congestion Avoidance and
 Control", ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.

 [KP87] Karn, P. and C. Partridge, "Improving Round-Trip Time
 Estimates in Reliable Transport Protocols", SIGCOMM 87.

 [PA00] Paxson, V. and M. Allman, "Computing TCP’s Retransmission
 Timer", RFC 2988, November 2000.

Paxson, et al. Standards Track [Page 8]

RFC 6298 Computing TCP’s Retransmission Timer June 2011

Appendix A. Rationale for Lowering the Initial RTO

 Choosing a reasonable initial RTO requires balancing two competing
 considerations:

 1. The initial RTO should be sufficiently large to cover most of the
 end-to-end paths to avoid spurious retransmissions and their
 associated negative performance impact.

 2. The initial RTO should be small enough to ensure a timely recovery
 from packet loss occurring before an RTT sample is taken.

 Traditionally, TCP has used 3 seconds as the initial RTO [Bra89]
 [PA00]. This document calls for lowering this value to 1 second
 using the following rationale:

 - Modern networks are simply faster than the state-of-the-art was at
 the time the initial RTO of 3 seconds was defined.

 - Studies have found that the round-trip times of more than 97.5% of
 the connections observed in a large scale analysis were less than 1
 second [Chu09], suggesting that 1 second meets criterion 1 above.

 - In addition, the studies observed retransmission rates within the
 three-way handshake of roughly 2%. This shows that reducing the
 initial RTO has benefit to a non-negligible set of connections.

 - However, roughly 2.5% of the connections studied in [Chu09] have an
 RTT longer than 1 second. For those connections, a 1 second
 initial RTO guarantees a retransmission during connection
 establishment (needed or not).

 When this happens, this document calls for reverting to an initial
 RTO of 3 seconds for the data transmission phase. Therefore, the
 implications of the spurious retransmission are modest: (1) an
 extra SYN is transmitted into the network, and (2) according to RFC
 5681 [APB09] the initial congestion window will be limited to 1
 segment. While (2) clearly puts such connections at a
 disadvantage, this document at least resets the RTO such that the
 connection will not continually run into problems with a short
 timeout. (Of course, if the RTT is more than 3 seconds, the
 connection will still encounter difficulties. But that is not a
 new issue for TCP.)

 In addition, we note that when using timestamps, TCP will be able
 to take an RTT sample even in the presence of a spurious
 retransmission, facilitating convergence to a correct RTT estimate
 when the RTT exceeds 1 second.

Paxson, et al. Standards Track [Page 9]

RFC 6298 Computing TCP’s Retransmission Timer June 2011

 As an additional check on the results presented in [Chu09], we
 analyzed packet traces of client behavior collected at four different
 vantage points at different times, as follows:

 Name Dates Pkts. Cnns. Clnts. Servs.
 --
 LBL-1 Oct/05--Mar/06 292M 242K 228 74K
 LBL-2 Nov/09--Feb/10 1.1B 1.2M 1047 38K
 ICSI-1 Sep/11--18/07 137M 2.1M 193 486K
 ICSI-2 Sep/11--18/08 163M 1.9M 177 277K
 ICSI-3 Sep/14--21/09 334M 3.1M 170 253K
 ICSI-4 Sep/11--18/10 298M 5M 183 189K
 Dartmouth Jan/4--21/04 1B 4M 3782 132K
 SIGCOMM Aug/17--21/08 11.6M 133K 152 29K

 The "LBL" data was taken at the Lawrence Berkeley National
 Laboratory, the "ICSI" data from the International Computer Science
 Institute, the "SIGCOMM" data from the wireless network that served
 the attendees of SIGCOMM 2008, and the "Dartmouth" data was collected
 from Dartmouth College’s wireless network. The latter two datasets
 are available from the CRAWDAD data repository [HKA04] [SLS09]. The
 table lists the dates of the data collections, the number of packets
 collected, the number of TCP connections observed, the number of
 local clients monitored, and the number of remote servers contacted.
 We consider only connections initiated near the tracing vantage
 point.

 Analysis of these datasets finds the prevalence of retransmitted SYNs
 to be between 0.03% (ICSI-4) to roughly 2% (LBL-1 and Dartmouth).

 We then analyzed the data to determine the number of additional and
 spurious retransmissions that would have been incurred if the initial
 RTO was assumed to be 1 second. In most of the datasets, the
 proportion of connections with spurious retransmits was less than
 0.1%. However, in the Dartmouth dataset, approximately 1.1% of the
 connections would have sent a spurious retransmit with a lower
 initial RTO. We attribute this to the fact that the monitored
 network is wireless and therefore susceptible to additional delays
 from RF effects.

 Finally, there are obviously performance benefits from retransmitting
 lost SYNs with a reduced initial RTO. Across our datasets, the
 percentage of connections that retransmitted a SYN and would realize
 at least a 10% performance improvement by using the smaller initial
 RTO specified in this document ranges from 43% (LBL-1) to 87%
 (ICSI-4). The percentage of connections that would realize at least
 a 50% performance improvement ranges from 17% (ICSI-1 and SIGCOMM) to
 73% (ICSI-4).

Paxson, et al. Standards Track [Page 10]

RFC 6298 Computing TCP’s Retransmission Timer June 2011

 From the data to which we have access, we conclude that the lower
 initial RTO is likely to be beneficial to many connections, and
 harmful to relatively few.

 Authors’ Addresses

 Vern Paxson
 ICSI/UC Berkeley
 1947 Center Street
 Suite 600
 Berkeley, CA 94704-1198

 Phone: 510-666-2882
 EMail: vern@icir.org
 http://www.icir.org/vern/

 Mark Allman
 ICSI
 1947 Center Street
 Suite 600
 Berkeley, CA 94704-1198

 Phone: 440-235-1792
 EMail: mallman@icir.org
 http://www.icir.org/mallman/

 H.K. Jerry Chu
 Google, Inc.
 1600 Amphitheatre Parkway
 Mountain View, CA 94043

 Phone: 650-253-3010
 EMail: hkchu@google.com

 Matt Sargent
 Case Western Reserve University
 Olin Building
 10900 Euclid Avenue
 Room 505
 Cleveland, OH 44106

 Phone: 440-223-5932
 EMail: mts71@case.edu

Paxson, et al. Standards Track [Page 11]

