I nt ernet Engi neering Task Force (I ETF) E. Rescorla

Request for Comments: 6347 RTFM I nc.
bsol etes: 4347 N. Modadugu
Cat egory: Standards Track Googl e, Inc

| SSN: 2070-1721 January 2012

Dat agram Transport Layer Security Version 1.2

Abst r act

Thi s docunent specifies version 1.2 of the Datagram Transport Layer
Security (DTLS) protocol. The DTLS protocol provides conmunications
privacy for datagram protocols. The protocol allows client/server
applications to communicate in a way that is designed to prevent
eavesdroppi ng, tanpering, or nmessage forgery. The DILS protocol is
based on the Transport Layer Security (TLS) protocol and provides
equi val ent security guarantees. Datagram semantics of the underlying
transport are preserved by the DILS protocol. This docunment updates
DILS 1.0 to work with TLS version 1.2.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(ITETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc6347

Rescorl a & Modadugu St andards Track [Page 1]

RFC 6347 DTLS January 2012

Copyright Notice

Copyright (c) 2012 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Thi s docunent may contain material from|ETF Docunents or |ETF
Contributions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sonme of this
material may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Rescorl a & Modadugu St andards Track [Page 2]

RFC 6347 DTLS January 2012

Tabl e of Contents

1.

2.
3.

©CoNo O

Introducti On 4
1.1. Requirenents Termnology 5
Usage Model 5
Overview of DTILS 5
3.1. Loss-Insensitive MeSSaQiNgttt e 6
3.2. Providing Reliability for Handshake 6
3.2.1. Packet LOSS 6
3.2.2. ReOrdering 7
3.2.3. MESSAQE SIZ@ ..o 7
3.3. Replay Detection e 7
Differences from T LS e 7
4.1, Record Layer 8
4.1.1. Transport Layer Mapping, 10
4.1.1.1. PMIU ISSUES ... it e e e 10
4.1.2. Record Payload Protection 12
4.1.2.1. MAC . 12
4.1.2.2. Null or Standard Stream Cipher 13
4.1.2.3. Block Cipher 13
4.1.2.4. AEAD Ciphers 13
4.1.2.5. New Cipher Suites 13
4.1.2.6. Anti-Replay i 13
4.1.2.7. Handling Invalid Records 14
4.2. The DTLS Handshake Protocol 14
4.2.1. Denial-of-Service Counterneasures 15
4.2.2. Handshake Message Format 18
4.2.3. Handshake Message Fragnentation and Reassenbly 19
4.2.4. Timeout and Retransmission 20
4.2.4.1. Timer Values 24
4.2.5. ChangeCGi pherSpec i, 25
4.2.6. CertificateVerify and Finished Messages 25
4.2.7. Alert MeSSageS ... v it 25
4.2.8. Establishing New Associ ations with Existing
Paramet ers 25
4.3, Summary of New Syntax i 26
4.3.1. Record Layer e 26
4.3.2. Handshake Protocol 27
Security Considerati ONS 27
ACKNOW edgmeNnt S 28
IANA Considerati ONS e 28
Changes since DILS 1.0 ... e e e 29
Ref erences 30
9.1. Normative References 30
9.2. Informative References 31

Rescorl a & Modadugu St andards Track [Page 3]

RFC 6347 DTLS January 2012

1. Introduction

TLS [TLS] is the nost widely depl oyed protocol for securing network
traffic. It is widely used for protecting Web traffic and for e-mail
protocol s such as IMAP [I MAP] and POP [POP]. The primary advant age
of TLSis that it provides a transparent connection-oriented channel
Thus, it is easy to secure an application protocol by inserting TLS
bet ween the application layer and the transport |ayer. However, TLS
must run over a reliable transport channel -- typically TCP [TCP]
Therefore, it cannot be used to secure unreliable datagramtraffic.

An increasing nunber of application |layer protocols have been
designed that use UDP transport. |n particular, protocols such as
the Session Initiation Protocol (SIP) [SIP] and el ectroni c gani ng
protocols are increasingly popular. (Note that SIP can run over both
TCP and UDP, but that there are situations in which UDP is
preferable.) Currently, designers of these applications are faced
with a nunber of unsatisfactory choices. First, they can use |Psec

[RFC4301]. However, for a nunber of reasons detailed in [VWHYI PSEC]
this is only suitable for sonme applications. Second, they can design
a custom application layer security protocol. Unfortunately,

al t hough application layer security protocols generally provide
superior security properties (e.g., end-to-end security in the case
of SSMME), they typically require a |large anount of effort to design
-- in contrast to the relatively snmall anount of effort required to
run the protocol over TLS.

In many cases, the nost desirable way to secure client/server
applications would be to use TLS; however, the requirenent for

dat agram semantics automatically prohibits use of TLS. This neno
describes a protocol for this purpose: Datagram Transport Layer
Security (DTLS). DTLS is deliberately designed to be as sinilar to
TLS as possible, both to mininm ze new security invention and to
maxi m ze the amount of code and infrastructure reuse.

DTLS 1.0 [DTLS1] was originally defined as a delta from|[TLS11].
Thi s document introduces a new version of DILS, DTLS 1.2, which is
defined as a series of deltas to TLS 1.2 [TLS12]. There is no DTLS
1.1; that version nunber was skipped in order to harnonize version
nunbers with TLS. This version also clarifies sone confusing points
in the DILS 1.0 specification

| npl enent ati ons that speak both DTLS 1.2 and DTLS 1.0 can
interoperate with those that speak only DTLS 1.0 (using DTLS 1.0 of
course), just as TLS 1.2 inplenentations can interoperate with
previ ous versions of TLS (see Appendix E. 1 of [TLS12] for details),
with the exception that there is no DILS version of SSLv2 or SSLv3
so backward conpatibility issues for those protocols do not apply.

Rescorl a & Modadugu St andards Track [Page 4]

RFC 6347 DTLS January 2012

1.1. Requirenents Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [REQ .

2. Usage Model

The DTLS protocol is designed to secure data between comuni cati ng
applications. It is designed to run in application space, w thout
requiring any kernel nodifications.

Dat agram transport does not require or provide reliable or in-order
delivery of data. The DTLS protocol preserves this property for

payl oad data. Applications such as nedia stream ng, |nternet

t el ephony, and online gam ng use datagram transport for conmunication
due to the delay-sensitive nature of transported data. The behavi or
of such applications is unchanged when the DTLS protocol is used to
secure conmuni cation, since the DILS protocol does not conpensate for
lost or re-ordered data traffic.

3. Overview of DTLS

The basic design phil osophy of DILS is to construct "TLS over
datagramtransport”. The reason that TLS cannot be used directly in
datagram environments is sinply that packets may be | ost or
reordered. TLS has no internal facilities to handle this kind of
unreliability; therefore, TLS inplenmentations break when rehosted on
dat agram transport. The purpose of DILS is to nmake only the m ninma
changes to TLS required to fix this problem To the greatest extent
possible, DILS is identical to TLS. Wenever we need to invent new
mechani sms, we attenpt to do so in such a way that preserves the
style of TLS.

Unreliability creates problenms for TLS at two | evels:

1. TLS does not allow i ndependent decryption of individua
records. Because the integrity check depends on the sequence
nunber, if record Nis not received, then the integrity check
on record N+1 will be based on the wong sequence nunber and
thus will fail. (Note that prior to TLS 1.1, there was no
explicit IV and so decryption would also fail.)

2. The TLS handshake | ayer assunes that handshake nessages are
delivered reliably and breaks if those nessages are |ost.

The rest of this section describes the approach that DILS uses to
sol ve these probl ens.

Rescorl a & Modadugu St andards Track [Page 5]

RFC 6347 DTLS January 2012

3.1. Loss-lInsensitive Messaging

In TLS s traffic encryption layer (called the TLS Record Layer),
records are not independent. There are two kinds of inter-record
dependency:

1. Cryptographic context (stream cipher key strean) is retained
bet ween records.

2. Anti-replay and nessage reordering protection are provided by a
MAC t hat includes a sequence nunber, but the sequence nunbers
are inplicit in the records.

DTLS sol ves the first problem by banning stream ci phers. DTLS sol ves
the second problem by addi ng explicit sequence nunbers.

3.2. Providing Reliability for Handshake

The TLS handshake is a | ockstep cryptographi c handshake. Messages
nmust be transnitted and received in a defined order; any other order
is an error. Cearly, this is inconpatible with reordering and
message | oss. In addition, TLS handshake nmessages are potentially

| arger than any given datagram thus creating the problemof IP
fragmentation. DILS nust provide fixes for both of these problens.

3.2.1. Packet Loss

DTLS uses a sinple retransmission tiner to handl e packet |oss. The
followi ng figure denonstrates the basic concept, using the first
phase of the DTLS handshake:

Cient Ser ver

ClientHello - ----- >

X<-- Hel |l oVeri f yRequest
(lost)

[Ti mer Expires]

dientHello - ----- >
(retransmt)

Once the client has transnitted the ClientHell o nessage, it expects
to see a HelloVerifyRequest fromthe server. However, if the
server’s nessage is lost, the client knows that either the
CientHello or the HelloVerifyRequest has been |l ost and retransmts.
Wien the server receives the retransmission, it knows to retransmt.

Rescorl a & Modadugu St andards Track [Page 6]

RFC 6347 DTLS January 2012

The server also maintains a retransnmission tinmer and retransmts when
that timer expires

Note that timeout and retransnission do not apply to the

Hel | oVeri f yRequest, because this would require creating state on the
server. The HelloVerifyRequest is designed to be snall enough that
it will not itself be fragnmented, thus avoi ding concerns about
interleaving nultiple HelloVerifyRequests.

3.2.2. Reordering
In DILS, each handshake nessage is assigned a specific sequence

nunber within that handshake. Wen a peer receives a handshake
message, it can quickly determni ne whether that nmessage is the next

message it expects. If it is, then it processes it. |If not, it
queues it for future handling once all previous nessages have been
received.

3.2.3. Message Size

TLS and DTLS handshake nessages can be quite large (in theory up to
2"24-1 bytes, in practice many kilobytes). By contrast, UDP
datagrans are often limted to <1500 bytes if IP fragnentation is not
desired. In order to conpensate for this linmtation, each DILS
handshake nessage nay be fragnented over several DTLS records, each
of which is intended to fit in a single |IP datagram Each DTLS
handshake nessage contains both a fragment offset and a fragnent

Il ength. Thus, a recipient in possession of all bytes of a handshake
message can reassenbl e the original unfragmented nessage

3.3. Replay Detection

DTLS optionally supports record replay detection. The technique used
is the same as in I Psec AH ESP, by maintaining a bitmp w ndow of
received records. Records that are too old to fit in the w ndow and
records that have previously been received are silently discarded.
The replay detection feature is optional, since packet duplication is
not always nalicious, but can al so occur due to routing errors.
Appl i cations may concei vably detect duplicate packets and accordingly
nmodi fy their data transnission strategy.

4. Differences fromTLS
As mentioned in Section 3, DILS is intentionally very simlar to TLS
Therefore, instead of presenting DTLS as a new protocol, we present

it as a series of deltas fromTLS 1.2 [TLS12]. Were we do not
explicitly call out differences, DILS is the sane as in [TLS12].

Rescorl a & Modadugu St andards Track [Page 7]

RFC 6347 DTLS January 2012

4.1. Record Layer

The DTLS record layer is extrenely simlar to that of TLS 1.2. The
only change is the inclusion of an explicit sequence nunber in the
record. This sequence nunber allows the recipient to correctly
verify the TLS MAC. The DTLS record format is shown bel ow

struct {

Cont ent Type type;
Pr ot ocol Ver si on versi on;
ui nt 16 epoch; /1 New field
ui nt 48 sequence_nunber; /1 New field
uint16 | ength;
opaque fragment[DTLSPI ai ntext. | ength];

} DTLSPI ai nt ext ;

type
Equivalent to the type field in a TLS 1.2 record

version
The version of the protocol being enployed. This docunent
descri bes DTLS version 1.2, which uses the version { 254, 253 }.
The version value of 254.253 is the 1's conpl ement of DTLS version
1.2. This nmaxi mal spacing between TLS and DTLS version nunbers
ensures that records fromthe two protocols can be easily
di stinguished. It should be noted that future on-the-wire version
nunmbers of DILS are decreasing in value (while the true version
nunber is increasing in value.)

epoch
A counter value that is increnented on every cipher state change.

sequence_nunber
The sequence nunber for this record.

| ength
Identical to the length field in a TLS 1.2 record. As in TLS 1.2,
the I ength should not exceed 2714,

f ragment
Identical to the fragnent field of a TLS 1.2 record

DTLS uses an explicit sequence nunber, rather than an inplicit one,
carried in the sequence_nunber field of the record. Sequence nunbers
are nmai ntai ned separately for each epoch, with each sequence_nunber
initially being O for each epoch. For instance, if a handshake
message fromepoch O is retransnmtted, it mght have a sequence
nunber after a nessage fromepoch 1, even if the nessage from epoch 1

Rescorl a & Modadugu St andards Track [Page 8]

RFC 6347 DTLS January 2012

was transnmitted first. Note that sone care needs to be taken during
t he handshake to ensure that retransnmitted nmessages use the right
epoch and keying material .

I f several handshakes are performed in close succession, there night
be nultiple records on the wire with the sane sequence nunber but
fromdifferent cipher states. The epoch field allows recipients to
di stingui sh such packets. The epoch nunber is initially zero and is
i ncrenented each tinme a ChangeCi pher Spec nessage is sent. In order
to ensure that any given sequence/ epoch pair is unique,

i npl enent ati ons MJST NOT all ow t he same epoch value to be reused
within two tines the TCP nmaxi num segnent lifetine. |In practice, TLS
i mpl enentations rarely rehandshake; therefore, we do not expect this
to be a probl em

Not e that because DTLS records may be reordered, a record from epoch
1 may be received after epoch 2 has begun. In general

i mpl enent ati ons SHOULD di scard packets fromearlier epochs, but if
packet | oss causes noticeable problens they MAY choose to retain
keying material from previous epochs for up to the default MsSL
specified for TCP [TCP] to allow for packet reordering. (Note that
the intention here is that inplenentors use the current guidance from
the 1 ETF for MSL, not that they attenpt to interrogate the MSL that
the system TCP stack is using.) Until the handshake has conpl et ed,

i mpl enent ati ons MJST accept packets fromthe old epoch

Conversely, it is possible for records that are protected by the
newl y negotiated context to be received prior to the conpletion of a
handshake. For instance, the server may send its Finished nessage
and then start transnitting data. |Inplenentations MAY either buffer
or discard such packets, though when DTLS is used over reliable
transports (e.g., SCTP), they SHOULD be buffered and processed once
t he handshake conpletes. Note that TLS s restrictions on when

packets may be sent still apply, and the receiver treats the packets
as if they were sent in the right order. |In particular, it is stil

i mperni ssible to send data prior to conpletion of the first
handshake.

Note that in the special case of a rehandshake on an existing
association, it is safe to process a data packet imediately, even if
t he ChangeC pher Spec or Fini shed nmessages have not yet been received
provi ded that either the rehandshake resunes the existing session or
that it uses exactly the sane security paraneters as the existing
association. In any other case, the inplenmentation MJST wait for the
recei pt of the Finished nessage to prevent downgrade attack

As in TLS, inplenentations MJIST either abandon an association or
rehandshake prior to allowi ng the sequence nunber to wap.

Rescorl a & Modadugu St andards Track [Page 9]

RFC 6347 DTLS January 2012

Simlarly, inplenentations MJST NOT all ow the epoch to wap, but

i nstead MJST establish a new association, ternminating the old

associ ation as described in Section 4.2.8. |In practice,

i npl enment ati ons rarely rehandshake repeatedly on the same channel, so
this is not likely to be an issue.

4.1.1. Transport Layer Mapping

Each DTLS record MJUST fit within a single datagram |In order to
avoid IP fragnmentation, clients of the DTLS record | ayer SHOULD
attenpt to size records so that they fit within any PMIU esti nates
obtained fromthe record | ayer

Note that unlike |IPsec, DTLS records do not contain any association
identifiers. Applications nust arrange to nultiplex between
associations. Wth UDP, this is presumably done with the host/port
numnber .

Mul tiple DTLS records nmay be placed in a single datagram They are

simply encoded consecutively. The DILS record framing is sufficient
to determine the boundaries. Note, however, that the first byte of

t he dat agram payl oad nmust be the beginning of a record. Records may
not span datagrans.

Some transports, such as DCCP [DCCP] provide their own sequence
nunbers. When carried over those transports, both the DTLS and the
transport sequence nunbers will be present. Although this introduces
a small anount of inefficiency, the transport |ayer and DILS sequence
nunbers serve different purposes; therefore, for conceptua
sinmplicity, it is superior to use both sequence nunbers. In the
future, extensions to DTLS nay be specified that all ow the use of
only one set of sequence nunbers for deploynent in constrained

envi ronment s.

Some transports, such as DCCP, provide congestion control for traffic
carried over them |If the congestion windowis sufficiently narrow,
DTLS handshake retransni ssions nmay be held rather than transnitted

i medi ately, potentially leading to tinmeouts and spuri ous

retransm ssion. Wien DILS is used over such transports, care should
be taken not to overrun the |ikely congestion w ndow. [DCCPDTLS]
defines a mapping of DTLS to DCCP that takes these issues into
account .

4.1.1.1. PMIU | ssues
In general, DTLS s philosophy is to | eave PMIU di scovery to the

application. However, DTLS cannot conpletely ignore PMIU for three
reasons:

Rescorl a & Modadugu St andards Track [Page 10]

RFC 6347 DTLS January 2012

- The DTLS record fram ng expands the datagram size, thus |owering
the effective PMIU fromthe application s perspective.

- In sonme inplenentations, the application may not directly talk to
the network, in which case the DILS stack nmay absorb | CWP
[RFC1191] "Datagram Too Bi g" indications or |CVPv6 [RFC4443]
"Packet Too Bi g" indications.

- The DTLS handshake nessages can exceed the PMIU

In order to deal with the first two issues, the DILS record | ayer
SHOULD behave as described bel ow

If PMIU estinmates are available fromthe underlying transport
protocol, they should be nade avail able to upper |ayer protocols. In
particul ar:

- For DTLS over UDP, the upper |ayer protocol SHOULD be allowed to
obtain the PMIU estinmate naintained in the IP |ayer

- For DTLS over DCCP, the upper layer protocol SHOULD be allowed to
obtain the current estimte of the PMIU

- For DTLS over TCP or SCTP, which automatically fragnment and
reassenbl e datagrans, there is no PMIU limtation. However, the
upper layer protocol MJST NOT wite any record that exceeds the
maxi mum record size of 2714 bytes.

The DTLS record | ayer SHOULD al |l ow t he upper |ayer protocol to

di scover the anount of record expansion expected by the DILS
processing. Note that this nunber is only an estinate because of
bl ock paddi ng and the potential use of DTLS conpression

If there is a transport protocol indication (either via ICMP or via a
refusal to send the datagramas in Section 14 of [DCCP]), then the
DTLS record layer MJUST informthe upper |ayer protocol of the error

The DTLS record | ayer SHOULD NOT interfere with upper |ayer protocols
perform ng PMIU di scovery, whether via [RFC1191] or [RFC4821]
mechani sms. I n particul ar:

- \Were allowed by the underlying transport protocol, the upper
| ayer protocol SHOULD be allowed to set the state of the DF bit
(in 1Pv4) or prohibit local fragnentation (in |Pv6).

- |If the underlying transport protocol allows the application to

request PMIU probing (e.g., DCCP), the DILS record |ayer should
honor this request.

Rescorl a & Modadugu St andards Track [Page 11]

RFC 6347 DTLS January 2012

4,

1

The final issue is the DTLS handshake protocol. Fromthe perspective
of the DTLS record layer, this is nerely another upper |ayer
protocol. However, DTLS handshakes occur infrequently and invol ve

only a fewround trips; therefore, the handshake protocol PMIU
handl i ng pl aces a prem umon rapid conpletion over accurate PMIU

di scovery. In order to allow connections under these circunstances,
DTLS i npl enent ati ons SHOULD follow the followi ng rules

- If the DILS record layer informs the DTLS handshake | ayer that a
message is too big, it SHOULD i nmedi ately attenpt to fragnent it,
usi ng any existing information about the PMIU

- |If repeated retransm ssions do not result in a response, and the
PMIU i s unknown, subsequent retransni ssions SHOULD back off to a
smal l er record size, fragnenting the handshake nessage as
appropriate. This standard does not specify an exact nunber of
retransmts to attenpt before backing off, but 2-3 seens
appropri ate.

2. Record Payl oad Protection

Li ke TLS, DILS transmits data as a series of protected records. The
rest of this section describes the details of that fornmat.

4.1.2.1. NAC

The DTLS MAC is the sanme as that of TLS 1.2. However, rather than
using TLS s inplicit sequence nunber, the sequence nunber used to
compute the MAC is the 64-bit value fornmed by concatenating the epoch
and the sequence nunber in the order they appear on the wire. Note
that the DTLS epoch + sequence nunber is the sane length as the TLS
sequence nunber.

TLS MAC cal cul ation is paraneterized on the protocol version nunber,
which, in the case of DILS, is the on-the-wire version, i.e., {254,
253} for DTLS 1. 2.

Note that one inportant difference between DTLS and TLS MAC handl i ng
is that in TLS, MAC errors nust result in connection termination. In
DTLS, the receiving inplenentati on MAY sinply discard the of fending
record and continue with the connection. This change is possible
because DTLS records are not dependent on each other in the way that
TLS records are.

In general, DTLS inplenmentations SHOULD silently discard records with
bad MACs or that are otherwise invalid. They MAY log an error. |If a
DTLS i npl enent ati on chooses to generate an alert when it receives a
message with an invalid MAC, it MJST generate a bad record mac al ert

Rescorl a & Modadugu St andards Track [Page 12]

RFC 6347 DTLS January 2012

with level fatal and terminate its connection state. Note that
because errors do not cause connection term nation, DTLS stacks are
nore efficient error type oracles than TLS stacks. Thus, it is
especially inportant that the advice in Section 6.2.3.2 of [TLS12] be
f ol | oned.

4.1.2.2. Null or Standard Stream G pher
The DTLS NULL cipher is perforned exactly as the TLS 1.2 NULL ci pher.

The only stream ci pher described in TLS 1.2 is RC4, which cannot be
randony accessed. RC4 MJST NOT be used with DILS.

4.1.2.3. Block G pher

DTLS bl ock ci pher encryption and decryption are performed exactly as
with TLS 1. 2.

4.1.2.4. AEAD G phers

TLS 1.2 introduced authenticated encryption with additional data
(AEAD) cipher suites. The existing AEAD ci pher suites, defined in
[ECCGCM and [RSAGCM, can be used with DTLS exactly as with TLS 1. 2.

4.1.2.5. New Cipher Suites

Upon registration, new TLS ci pher suites MJST indi cate whether they
are suitable for DILS usage and what, if any, adaptations nmust be
made (see Section 7 for | ANA considerations).

4.1.2.6. Anti-Replay

DTLS records contain a sequence nunber to provide replay protection
Sequence nunber verification SHOULD be perforned using the foll ow ng
sliding wi ndow procedure, borrowed from Section 3.4.3 of [ESP].

The recei ver packet counter for this session MJUST be initialized to
zero when the session is established. For each received record, the
receiver MIUST verify that the record contains a sequence nunber that
does not duplicate the sequence nunber of any other record received
during the life of this session. This SHOULD be the first check
applied to a packet after it has been matched to a session, to speed
rejection of duplicate records.

Duplicates are rejected through the use of a sliding receive w ndow.
(How the window is inplenmented is a local matter, but the foll ow ng
text describes the functionality that the inplenentation nust
exhibit.) A mininmw ndow size of 32 MJST be supported, but a

Rescorl a & Modadugu St andards Track [Page 13]

RFC 6347 DTLS January 2012

wi ndow size of 64 is preferred and SHOULD be enpl oyed as the default.
Anot her wi ndow size (larger than the m ni num) MAY be chosen by the
receiver. (The receiver does not notify the sender of the w ndow

si ze.)

The "right" edge of the wi ndow represents the highest validated
sequence nunber val ue received on this session. Records that contain
sequence nunbers lower than the "left" edge of the w ndow are
rejected. Packets falling within the wi ndow are checked agai nst a
list of received packets within the window An efficient nmeans for
performng this check, based on the use of a bit mask, is described
in Section 3.4.3 of [ESP].

If the received record falls within the window and is new, or if the
packet is to the right of the wi ndow, then the receiver proceeds to
MAC verification. |If the MAC validation fails, the receiver MJST

di scard the received record as invalid. The receive wi ndow is
updated only if the MAC verification succeeds.

4.1.2.7. Handling Invalid Records

Unli ke TLS, DTLS is resilient in the face of invalid records (e.g.,
invalid formatting, length, MAC, etc.). 1In general, invalid records
SHOULD be silently discarded, thus preserving the association;
however, an error MAY be | ogged for diagnostic purposes.

| mpl enent ati ons whi ch choose to generate an alert instead, MJST
generate fatal level alerts to avoid attacks where the attacker
repeatedly probes the inplenentation to see howit responds to
various types of error. Note that if DILS is run over UDP, then any
i mpl enent ati on which does this will be extrenely susceptible to

deni al -of -service (DoS) attacks because UDP forgery is so easy.

Thus, this practice is NOT RECOWENDED for such transports.

If DILS is being carried over a transport that is resistant to
forgery (e.g., SCTP with SCTP-AUTH), then it is safer to send alerts
because an attacker will have difficulty forging a datagramthat will
not be rejected by the transport |ayer.

4.2. The DTLS Handshake Protocol

DTLS uses all of the sane handshake nessages and flows as TLS, wth
three principal changes:

1. A stateless cookie exchange has been added to prevent denial -
of -service attacks.

Rescorl a & Modadugu St andards Track [Page 14]

RFC 6347 DTLS January 2012

2. Modifications to the handshake header to handl e nessage | oss,
reordering, and DTLS nmessage fragnentation (in order to avoid
| P fragment ation).

3. Retransmission tinmers to handl e nessage | oss.

Wth these exceptions, the DILS nessage fornmats, flows, and logic are
the sane as those of TLS 1.2.

4.2. 1. Deni al - of - Servi ce Count er neasur es

Dat agram security protocols are extrenely susceptible to a variety of
DoS attacks. Two attacks are of particular concern

1. An attacker can consume excessive resources on the server by
transmitting a series of handshake initiation requests, causing
the server to allocate state and potentially to perform
expensi ve cryptographi c operations.

2. An attacker can use the server as an anplifier by sending
connection initiation nessages with a forged source of the
victim The server then sends its next nessage (in DILS, a
Certificate message, which can be quite large) to the victim
machi ne, thus flooding it.

In order to counter both of these attacks, DTLS borrows the stateless
cooki e techni que used by Photuris [PHOTURI S] and I KE [I KEv2]. When
the client sends its OientHello nessage to the server, the server
MAY respond with a Hell oVerifyRequest nmessage. This message contains
a statel ess cookie generated using the technique of [PHOTURI S]. The
client MUST retransnit the ClientHello with the cooki e added. The
server then verifies the cookie and proceeds with the handshake only
if it is valid. This mechanismforces the attacker/client to be able
to receive the cookie, which nmakes DoS attacks with spoofed IP
addresses difficult. This nechani sm does not provide any defense
agai nst DoS attacks nounted fromvalid | P addresses.

Rescorl a & Modadugu St andards Track [Page 15]

RFC 6347 DTLS January 2012

The exchange i s shown bel ow

Cient Server

CientHello —----- >

<----- Hel | oVeri f yRequest
(contai ns cookie)

CientHello ------ >
(with cookie)

[Rest of handshake]

DTLS therefore nodifies the ClientHello nessage to add the cookie
val ue.

struct {
Pr ot ocol Version client_version;
Random r andom
Sessi onl D session_id;
opaque cooki e<0..2"8-1>; Il New field
Ci pher Sui te ci pher_suites<2..2"16-1>;
Conpr essi onMet hod conpressi on_net hods<1. . 2"8- 1>;
} dientHell o;

Wien sending the first ClientHello, the client does not have a cookie
yet; in this case, the Cookie field is left enpty (zero length).

The definition of HelloVerifyRequest is as follows:

struct {
Pr ot ocol Ver si on server_version;
opaque cooki e<0..2"8-1>;

} Hell oVerifyRequest;

The Hel |l oVeri fyRequest nessage type is hello_verify request(3).

The server_version field has the same syntax as in TLS. However, in
order to avoid the requirenment to do version negotiation in the
initial handshake, DTLS 1.2 server inplenentations SHOULD use DTLS
version 1.0 regardl ess of the version of TLS that is expected to be
negotiated. DTLS 1.2 and 1.0 clients MJST use the version solely to
i ndi cate packet formatting (which is the sane in both DTLS 1.2 and
1.0) and not as part of version negotiation. |In particular, DILS 1.2
clients MUST NOT assune that because the server uses version 1.0 in
the Hell oVerifyRequest that the server is not DILS 1.2 or that it

will eventually negotiate DILS 1.0 rather than DITLS 1.2

Rescorl a & Modadugu St andards Track [Page 16]

RFC 6347 DTLS January 2012

When responding to a HelloVerifyRequest, the client MJST use the same
paraneter values (version, random session_id, cipher_suites,
conpression_nethod) as it did in the original ClientHello. The
server SHOULD use those values to generate its cookie and verify that
they are correct upon cookie receipt. The server MJST use the sane
versi on nunber in the HelloVerifyRequest that it would use when
sending a ServerHello. Upon receipt of the ServerHello, the client
MJUST verify that the server version values match. |In order to avoid
sequence nunmber duplication in case of multiple HelloVerifyRequests,
the server MUST use the record sequence nunber in the CientHello as
the record sequence nunber in the Hell oVerifyRequest.

Note: This specification increases the cookie size linit to 255 bytes
for greater future flexibility. The limt remains 32 for previous
versi ons of DTLS

The DTLS server SHOULD generate cookies in such a way that they can
be verified without retaining any per-client state on the server
One technique is to have a randomy generated secret and generate
cooki es as:

Cooki e = HVAC(Secret, dient-1P, Cient-Paraneters)

When the second dientHello is received, the server can verify that
the Cookie is valid and that the client can receive packets at the
given I P address. In order to avoid sequence nunber duplication in
case of multiple cookie exchanges, the server MJST use the record
sequence nunber in the CientHello as the record sequence nunber in
its initial ServerHello. Subsequent ServerHellos will only be sent
after the server has created state and MJUST i ncrenment nornally.

One potential attack on this schene is for the attacker to collect a
nurmber of cookies fromdifferent addresses and then reuse themto
attack the server. The server can defend against this attack by
changi ng the Secret value frequently, thus invalidating those
cookies. If the server wishes that legitimate clients be able to
handshake t hrough the transition (e.g., they received a cookie with
Secret 1 and then sent the second CientHello after the server has
changed to Secret 2), the server can have a linited wi ndow during
which it accepts both secrets. [IKEv2] suggests adding a version
nunber to cookies to detect this case. An alternative approach is
simply to try verifying with both secrets.

DTLS servers SHOULD perform a cooki e exchange whenever a new
handshake is being performed. |If the server is being operated in an
environment where anplification is not a problem the server MAY be
configured not to performa cookie exchange. The default SHOULD be
that the exchange is perforned, however. |In addition, the server MAY

Rescorl a & Modadugu St andards Track [Page 17]

RFC 6347 DTLS January 2012

choose not to do a cooki e exchange when a session is resuned.
Clients MIUST be prepared to do a cooki e exchange with every
handshake.

If HelloVerifyRequest is used, the initial dientHello and
Hel | oVeri fyRequest are not included in the calculation of the
handshake nessages (for the CertificateVerify nessage) and
verify_data (for the Finished nmessage).

If a server receives a ClientHello with an invalid cookie, it SHOULD
treat it the same as a CientHello with no cookie. This avoids
race/ deadl ock conditions if the client sonehow gets a bad cookie
(e.g., because the server changes its cookie signing key).

Note to inplenentors: This may result in clients receiving multiple
Hel | oVeri f yRequest nessages with different cookies. Cients SHOULD
handl e this by sending a new ClientHello with a cookie in response to
the new Hel | oVeri f yRequest.

4.2.2. Handshake Message For nat

In order to support nmessage |oss, reordering, and nessage
fragmentation, DTLS nodifies the TLS 1.2 handshake header

struct {
HandshakeType nsg _type
ui nt 24 | engt h;

ui nt 16 nessage_seq; /'l New field
ui nt 24 fragment _of f set; /1 New field
ui nt 24 fragnment | engt h; /1 New field

sel ect (HandshakeType) {
case hello_request: Hell oRequest;
case client_hello: dientHello;
case hello_verify_request: HelloVerifyRequest; // New type
case server_hello: ServerHello;
case certificate: Certificate;
case server_key exchange: Server KeyExchange
case certificate request: CertificateRequest;
case server_hel |l o_done: Server Hel | oDone;
case certificate verify: CertificateVerify;
case client_key exchange: dientKeyExchange;
case finished: Finished;

} body;

} Handshake;

The first nmessage each side transmts in each handshake al ways has

message_seq = 0. Wenever each new nessage is generated, the
message_seq value is increnented by one. Note that in the case of a

Rescorl a & Modadugu St andards Track [Page 18]

RFC 6347 DTLS January 2012

rehandshake, this inplies that the Hell oRequest will have nessage_seq
= 0 and the ServerHello will have nessage seq = 1. Wen a nessage is
retransmtted, the sanme nessage_seq value is used. For exanple:

dient Server
CientHello (seq=0) ------ >
X<-- HelloVerifyRequest (seq=0)
(lost)
[Ti mer Expires]
CientHello (seq=0) ------ >
(retransnmit)
<------ Hel | oVeri f yRequest (seq=0)
CientHello (seq=1) ------ >
(with cooki e)
S ServerHell o (seq=1)
<-mmmm- Certificate (seq=2)
<------ Server Hel | oDone (seq=3)

[Rest of handshake]

Not e, however, that fromthe perspective of the DTLS record | ayer,
the retransm ssion is a newrecord. This record will have a new
DTLSPI ai nt ext. sequence_nunber val ue.

DTLS i npl enentations naintain (at |east notionally) a

next _receive_seq counter. This counter is initially set to zero.
When a nessage is received, if its sequence nunber matches

next _receive_seq, next_receive_seq is increnmented and the nmessage is
processed. |If the sequence nunber is |ess than next _receive_seq, the
message MJST be discarded. |If the sequence nunber is greater than
next _receive_seq, the inplenentati on SHOULD queue the message but MAY
discard it. (This is a sinple space/bandw dth tradeoff).

4.2.3. Handshake Message Fragnentati on and Reassenbly

As noted in Section 4.1.1, each DILS nessage MJUST fit within a single
transport | ayer datagram However, handshake messages are
potentially bigger than the nmaxi mumrecord size. Therefore, DTLS
provi des a mechani sm for fragmenti ng a handshake nessage over a
nunber of records, each of which can be transmtted separately, thus
avoiding I P fragnentation.

Rescorl a & Modadugu St andards Track [Page 19]

RFC 6347 DTLS January 2012

When transnmitting the handshake nessage, the sender divides the
message into a series of N contiguous data ranges. These ranges MJST
NOT be | arger than the maxi rum handshake fragnent size and MJST
jointly contain the entire handshake nmessage. The ranges SHOULD NOT
overlap. The sender then creates N handshake nessages, all with the
sanme nessage_seq val ue as the original handshake nessage. Each new
message is labeled with the fragnent of fset (the nunber of bytes
contained in previous fragnents) and the fragnent_length (the [ength
of this fragment). The length field in all nmessages is the sane as
the length field of the original nmessage. An unfragmented nmessage is
a degenerate case with fragnent_offset=0 and fragment _I engt h=Il engt h.

When a DTLS inplenmentation recei ves a handshake nessage fragnent, it
MJUST buffer it until it has the entire handshake nessage. DTLS

i mpl erent ati ons MUST be able to handl e overl appi ng fragnent ranges.
This allows senders to retransmt handshake nmessages with smaller
fragment sizes if the PMIU estimate changes

Note that as with TLS, nultiple handshake nessages nmay be placed in
the sane DTLS record, provided that there is roomand that they are
part of the same flight. Thus, there are two acceptabl e ways to pack
two DTLS nessages into the sane datagram in the same record or in
separate records

4.2.4. Timeout and Retransni ssion
DTLS nessages are grouped into a series of nmessage flights, according
to the diagranms bel ow. Although each flight of nmessages may consi st

of a nunber of nessages, they should be viewed as nonolithic for the
pur pose of timeout and retransm ssion

Rescorl a & Modadugu St andards Track [Page 20]

RFC 6347 DTLS January 2012

Cient Server
CientHello -------- > Flight 1
<------ Hel | oVeri f yRequest Flight 2
CientHello -------- > Flight 3
ServerHell o \
Certificate* \
Ser ver KeyExchange* Flight 4
Certificat eRequest* /
R Server Hel | oDone /
Certificate* \
d i ent KeyExchange \
CertificateVerify* Flight 5
[ChangeCi pher Spec] /
Finished -------- > /

[ChangeCGi pher Spec] \ Flight 6
S Fi ni shed /

Figure 1. Message Flights for Full Handshake

Cient Server
CdientHello -------- > Flight 1
ServerHel |l o \
[ChangeCGi pher Spec] Flight 2
R Fi ni shed /
[ChangeCi pher Spec] \Flight 3
Finished -------- > /

Figure 2. Message Flights for Session-Resuni ng Handshake
(No Cooki e Exchange)

DTLS uses a sinple tineout and retransm ssion schene with the

followi ng state machi ne. Because DTLS clients send the first message
(CientHello), they start in the PREPARI NG state. DILS servers start
in the WAITING state, but with enpty buffers and no retransmt tiner.

Rescorl a & Modadugu St andards Track [Page 21]

RFC 6347 DTLS January 2012

| |
| |
| |
| |
| |
| \|/ |
| TS + |
| |
| | SENDING |[<------------------ +
| | | | | Send
| e + | | HelloRequest
Recei ve | | |]
next | | Send flight | | or
flight | +-------- + |
| | Set retransmit tinmer | | Receive
| \ |/ | | Hell oRequest
|] +--m-ee---- + | | Send
[| | CientHello
+-)-- VAITING |[--------------"---- +
			Ti mer expires	
	A +			
	R +			
	Read retransm t			
Recei ve				
last				
flight				
\SRANNi				
S + I				
FINNSHED	---------mmmmm e e oo +			
e +				
7]\				
+---+

Read retransnit
Retransmit last flight

Figure 3. DILS Tineout and Retransnission State Machine

Rescorl a & Modadugu St andards Track [Page 22]

RFC 6347 DTLS January 2012

The state machi ne has three basic states.

In the PREPARI NG state, the inplenentation does whatever conputations
are necessary to prepare the next flight of messages. It then
buffers themup for transm ssion (enptying the buffer first) and
enters the SENDI NG state.

In the SENDING state, the inplenentation transnmits the buffered
flight of nmessages. Once the nmessages have been sent, the

i npl ementation then enters the FINISHED state if this is the |ast
flight in the handshake. O, if the inplenentation expects to
receive nore nessages, it sets a retransmt tiner and then enters the
VWAI TI NG st at e.

There are three ways to exit the WAITING state:

1. The retransnmit tiner expires: the inplementation transitions to
the SENDI NG state, where it retransnits the flight, resets the
retransmit timer, and returns to the WAITI NG st ate.

2. The inplenentation reads a retransmtted flight fromthe peer: the
i npl ementation transitions to the SENDI NG state, where it
retransmts the flight, resets the retransmt tinmer, and returns
to the WAITING state. The rationale here is that the receipt of a
duplicate nessage is the likely result of timer expiry on the peer
and t herefore suggests that part of one's previous flight was
| ost.

3. The inplenentation receives the next flight of messages: if this
is the final flight of nessages, the inplenentation transitions to
FINISHED. |If the inplenentation needs to send a new flight, it
transitions to the PREPARI NG state. Partial reads (whether
partial messages or only sonme of the nmessages in the flight) do
not cause state transitions or timer resets.

Because DILS clients send the first nessage (ClientHello), they start
in the PREPARI NG state. DTLS servers start in the WAITING state, but
with enpty buffers and no retransnit tiner.

When the server desires a rehandshake, it transitions fromthe

FI NI SHED state to the PREPARI NG state to transnit the Hell oRequest.
When the client receives a Hell oRequest, it transitions from FI Nl SHED
to PREPARING to transmit the CientHello.

In addition, for at least twice the default MSL defined for [TCP]
when in the FIN SHED state, the node that transmits the last flight
(the server in an ordinary handshake or the client in a resuned
handshake) MJST respond to a retransnit of the peer’s last flight

Rescorl a & Modadugu St andards Track [Page 23]

RFC 6347 DTLS January 2012

with a retransnit of the last flight. This avoids deadl ock
conditions if the last flight gets lost. This requirement applies to
DTLS 1.0 as well, and though not explicit in [DTLS1], it was al ways
required for the state nmachine to function correctly. To see why
this is necessary, consider what happens in an ordinary handshake if
the server’s Finished nessage is |lost: the server believes the
handshake is conplete but it actually is not. As the client is

wai ting for the Finished nessage, the client’s retransnmit tiner wll
fire and it will retransmit the client’s Finished message. This wll
cause the server to respond with its own Finished nmessage, conpleting
t he handshake. The same | ogic applies on the server side for the
resunmed handshake.

Not e that because of packet loss, it is possible for one side to be
sendi ng application data even though the other side has not received
the first side’s Finished nmessage. |nplenmentations MJST either
discard or buffer all application data packets for the new epoch
until they have received the Finished nessage for that epoch

| mpl enent ati ons MAY treat receipt of application data with a new
epoch prior to receipt of the correspondi ng Fi ni shed nessage as

evi dence of reordering or packet loss and retransnit their fina
flight imrediately, shortcutting the retransm ssion timer.

4.2.4.1. Tinmer Val ues

Though tiner values are the choice of the inplementation, nishandling
of the tiner can lead to serious congestion problens; for exanple, if
many instances of a DILS tinme out early and retransmt too quickly on
a congested link. [Inplenmentations SHOULD use an initial tiner value
of 1 second (the m nimum defined in RFC 6298 [RFC6298]) and doubl e
the value at each retransnission, up to no |l ess than the RFC 6298
maxi nrum of 60 seconds. Note that we reconmend a 1-second timer
rather than the 3-second RFC 6298 default in order to inprove |atency
for tine-sensitive applications. Because DILS only uses

retransm ssion for handshake and not dataflow, the effect on
congestion should be m ni nal

| mpl enent ati ons SHOULD retain the current tinmer value until a

transm ssion without |oss occurs, at which tine the value nay be
reset to the initial value. After a long period of idleness, no |less
than 10 tinmes the current tinmer value, inplenentations may reset the
timer to the initial value. One situation where this mght occur is
when a rehandshake is used after substantial data transfer

Rescorl a & Modadugu St andards Track [Page 24]

RFC 6347 DTLS January 2012

4.2.5. ChangeCi pher Spec

As with TLS, the ChangeC pher Spec nessage is not technically a
handshake nessage but MJST be treated as part of the same flight as
the associ ated Fi ni shed nessage for the purposes of tinmeout and
retransm ssion. This creates a potential anbiguity because the order
of the ChangeC pher Spec cannot be established unanbi guously with
respect to the handshake nessages in case of nessage | o0ss.

This is not a problemw th any current TLS node because the expected
set of handshake nessages | ogically preceeding the ChangeC pher Spec
is predictable fromthe rest of the handshake state. However, future
nodes MJUST take care to avoid creating anbiguity.

4.2.6. CertificateVerify and Fi ni shed Messages

CertificateVerify and Fini shed messages have the sane format as in
TLS. Hash cal culations include entire handshake nessages, including
DTLS-specific fields: nessage_seq, fragnent offset, and
fragment _| ength. However, in order to renove sensitivity to
handshake message fragmentation, the Finished MAC MUST be conputed as
i f each handshake nmessage had been sent as a single fragnent. Note
that in cases where the cookie exchange is used, the initia
CientHello and Hel |l oVeri fyRequest MUST NOT be included in the
CertificateVerify or Finished MAC conputations.

4.2.7. Aert Messages

Note that Alert nessages are not retransmtted at all, even when they
occur in the context of a handshake. However, a DTLS inplenentation
whi ch would ordinarily issue an alert SHOULD generate a new al ert
message if the offending record is received again (e.g., as a
retransm tted handshake nmessage). |nplenentations SHOULD det ect when
a peer is persistently sending bad nessages and terninate the |oca
connection state after such m sbehavior is detected.

4.2.8. Establishing New Associations with Existing Paraneters

If a DILS client-server pair is configured in such a way that
repeat ed connecti ons happen on the same host/port quartet, then it is
possible that a client will silently abandon one connection and then
initiate another with the sane paraneters (e.g., after a reboot).
This will appear to the server as a new handshake with epoch=0. In
cases where a server believes it has an existing association on a

gi ven host/port quartet and it receives an epoch=0 CientHello, it
SHOULD proceed with a new handshake but MJST NOT destroy the existing
association until the client has denonstrated reachability either by
conpl eting a cookie exchange or by conpleting a conpl ete handshake

Rescorl a & Modadugu St andards Track [Page 25]

RFC 6347 DTLS January 2012

i ncluding delivering a verifiable Finished nessage. After a correct
Fi ni shed nessage is received, the server MJUST abandon the previous
associ ation to avoid confusion between two valid associations with
over | appi ng epochs. The reachability requirenment prevents

of f-path/blind attackers from destroyi ng associ ati ons nerely by
sendi ng forged CientHell os.

4.3. Summary of New Synt ax

This section includes specifications for the data structures that
have changed between TLS 1.2 and DTLS 1.2. See [TLS12] for the
definition of this syntax.

4.3.1. Record Layer

struct {

Cont ent Type type;
Pr ot ocol Versi on versi on;
ui nt 16 epoch; /1 New field
ui nt 48 sequence_nunber; Il New field
uint16 | ength;
opaque fragment [DTLSPI ai nt ext. | engt h];

} DTLSPI ai nt ext ;

struct {
Cont ent Type type;
Pr ot ocol Versi on version;
ui nt 16 epoch; /'l New field
ui nt 48 sequence_nunber; /1 New field
uint16 | ength;
opaque fragment [DTLSConpressed. | engt h];

} DTLSConpressed;

struct {
Cont ent Type type;
Pr ot ocol Ver si on versi on;
ui nt 16 epoch; /1 New field
ui nt 48 sequence_nunber; Il New field
uint16 | ength;
sel ect (G pher Spec. ci pher_type) {
case bl ock: GenericBl ockG pher;
case aead: Gener i cAEADC pher ; /1 New field
} fragnent;
} DTLSC phertext;

Rescorl a & Modadugu St andards Track [Page 26]

RFC 6347

DTLS

4.3.2. Handshake Protoco

enum {

hell o_request (0), client_hello(1l), server_hello(2),
hell o_verify_request(3),

certificate(1ll), server_key exchange (12),
certificate request(13), server_hell o _done(14),
certificate_verify(15), client_key_exchange(16),
finished(20), (255) } HandshakeType;

struct {

HandshakeType nsg _type

ui nt 24
ui nt 16
ui nt 24
ui nt 24
sel ect
case
case
case
case
case
case
case
case
case
case
case

} body;

struct {

| engt h;
nessage_sed;
fragment _of f set;
fragment _| engt h;
(HandshakeType) {
hel | o_request: Hel |l oRequest;
client_hello: dientHello;
server_hello: ServerHello;
hel l o_verify_request: HelloVerifyRequest;
certificate:Certificate;
server _key_exchange: Server KeyExchange;
certificate request: CertificateRequest;
server _hel |l o_done: Server Hel | oDone;
certificate verify: CertificateVerify;
client_key_exchange: dientKeyExchange;
fini shed: Finished;

} Handshake;

Pr ot ocol Version client_version;
Random r andom
Sessionl D session_id;

opaque

cooki e<0. . 2"8- 1>;

Ci pher Sui te ci pher_suites<2..2"16-1>;
Conpr essi onMet hod conpressi on_net hods<1..2"8- 1>;

struct {

Pr ot ocol Versi on server_version;

opaque

cooki e<0..278-1>; } HelloVerifyRequest;

5. Security Considerations

Thi s docunent describes a variant of TLS 1.2;

I

11
/11

11

January 2012

New field

New field
New field
New field

New field

/1 New field

} dientHell o;

t herefore, npbst of the

security considerations are the sane as those of TLS 1.2 [TLS12],
described in Appendices D, E, and F.

Rescorl a & Modadugu St andards Track

[Page 27]

RFC 6347 DTLS January 2012

The prinmary additional security consideration raised by DTILS is that
of denial of service. DTLS includes a cookie exchange designed to
protect against denial of service. However, inplenentations that do
not use this cookie exchange are still vulnerable to DoS. In
particul ar, DTLS servers that do not use the cookie exchange may be
used as attack anplifiers even if they thensel ves are not
experiencing DoS. Therefore, DILS servers SHOULD use the cookie
exchange unl ess there is good reason to believe that anplification is
not a threat in their environment. Cdients MIST be prepared to do a
cooki e exchange with every handshake.

Unli ke TLS i npl enentations, DTLS inplenentati ons SHOULD NOT respond
to invalid records by terninating the connection. See Section
4.1.2.7 for details on this.

6. Acknow edgnents

The authors would like to thank Dan Boneh, Eu-Jin Goh, Russ Housl ey,
Const anti ne Sapunt zaki s, and Hovav Shacham for di scussi ons and
comments on the design of DILS. Thanks to the anonynous NDSS
reviewers of our original NDSS paper on DITLS [DTLS] for their
comrents. Also, thanks to Steve Kent for feedback that hel ped
clarify many points. The section on PMIU was cri bbed from the DCCP
specification [DCCP]. Pasi Eronen provided a detailed review of this
specification. Peter Saint-Andre provided the list of changes in
Section 8. Hel pful coments on the docunent were also received from
Mark Al man, Jari Arkko, Mhaned Badra, M chael D Errico, Adrian
Farrell, Joel Hal pern, Ted Hardie, Charlia Kaufnan, Pekka Savol a,
Al'l'i son Mankin, N kos Mavrogi annopoul os, Al exey Ml ni kov, Robin
Seggel mann, M chael Tuexen, Juho Vaha-Herttua, and Fl orian Wi ner.

7. | ANA Consi derations

Thi s docunent uses the same identifier space as TLS [TLS12], so no
new | ANA registries are required. When new identifiers are assigned
for TLS, authors MJST specify whether they are suitable for DILS.

| ANA has nodified all TLS paraneter registries to add a DILS- K fl ag,
i ndi cating whether the specification nmay be used with DILS. At the
time of publication, all of the [TLS12] registrations except the
following are suitable for DILS. The full table of registrations is
avail abl e at [I ANA].

From the TLS G pher Suite Registry:

0x00, 0x03 TLS_RSA EXPORT W TH_RC4_40_MD5 [RFC4346]
0x00, 0x04 TLS_RSA W TH RC4_128 MD5 [RFC5246]
0x00, 0x05 TLS_RSA_W TH_RC4_128_SHA [RFC5246]

0x00, 0x17 TLS_DH_anon_EXPORT_W TH_RC4_40_MD5 [RFC4346]

Rescorl a & Modadugu St andards Track [Page 28]

RFC 6347 DTLS January 2012
0x00, 0x18 TLS DH anon W TH RC4_ 128 MD5 [RFC5246]
0x00, 0x20 TLS KRB5_ W TH _RC4_ 128 SHA [RFC2712]
0x00, 0x24 TLS_KRB5_W TH_RC4_128 NMD5 [RFC2712]
0x00, 0x28 TLS KRB5_EXPORT_W TH RC4_40_SHA [RFC2712]
0x00, 0x2B TLS_KRB5_EXPORT_W TH_RC4_40_MD5 [RFC2712]
0x00, OX8A TLS PSK W TH_RC4_128_SHA [RFC4279]
0x00, OX8E TLS DHE PSK W TH_RC4_128_SHA [RFC4279]
0x00, 0x92 TLS _RSA PSK W TH RC4_128 SHA [RFC4279]
0xC0, 0x02 TLS_ECDH ECDSA W TH _RC4_128_SHA [RFC4492]
0xQ0, Ox07 TLS ECDHE ECDSA W TH RC4_128 SHA [RFC4492]
0xC0, Ox0C TLS _ECDH RSA W TH RC4_128 SHA [RFC4492]
0x(Q0, Ox11 TLS ECDHE _RSA W TH RC4_128_SHA [RFC4492]
0xC0, 0x16 TLS ECDH anon W TH RC4 128 SHA [RFC4492]
0xCO0, 0x33 TLS_ECDHE PSK W TH_RC4_128_ SHA [RFC5489]

From the TLS Exporter Label Registry:
client EAP encryption [RFC5216]
ttls keyi ng materi al [RFC5281]
ttls chal | enge [RFC5281]

Thi s docunent defines a new handshake nmessage, hello_verify_request,
whose val ue has been allocated fromthe TLS HandshakeType registry
defined in [TLS12]. The value "3" has been assigned by the | ANA

8. Changes since DTLS 1.0

This docunent reflects the foll owi ng changes since DILS 1.0 [DTLS1].

- Updated to match TLS 1.2 [TLS12].

- Addition of AEAD Ciphers in Section 4.1.2.3 (tracking changes in
TLS 1. 2.

- Carifications regardi ng sequence nunbers and epochs in Section
4.1 and a clear procedure for dealing with state loss in Section
4.2.8.

- Carifications and nore detailed rules regarding Path MIU i ssues
in Section 4.1.1.1. darification of the fragnentation text
t hr oughout .

- Cdarifications regarding handling of invalid records in Section
4.1.2.7.

- A new paragraph describing handling of invalid cookies at the end

of Section 4.2.1.

Rescorl a & Modadugu St andards Track [Page 29]

RFC 6347

DTLS January 2012

- Sonme new text describing howto avoid handshake deadl ock
conditions at the end of Section 4.2.4.

- Some new text about CertificateVerify messages in Section 4.2.6.

- A prohibition on epoch wapping in Section 4.1.

- Carification of the 1 ANA requirements and the explicit
requi renent for a new | ANA registration flag for each paraneter.

- Added a record sequence nunber mrroring technique for handling
repeated dientHell o nessages.

- Reconmend a fixed version nunber for HelloVerifyRequest.

- Numerous editorial changes.

9. References

9.1. Normmtive References

[REQ

[RFC1191]

[RFC4301]

[RFC4443]

[RFC4821]

[RFC6298]

[RSAGCM

[TCP]

Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

Mogul, J. and S. Deering, "Path MIU di scovery", RFC 1191,
Novenber 1990.

Kent, S. and K Seo, "Security Architecture for the
Internet Protocol", RFC 4301, Decenber 2005.

Conta, A, Deering, S., and M Gupta, Ed., "Internet
Control Message Protocol (I1Cwv6) for the I|Internet
Protocol Version 6 (lIPv6) Specification", RFC 4443, March
2006.

Mathis, M and J. Heffner, "Packetization Layer Path MIuU
Di scovery", RFC 4821, March 2007.

Paxson, V., Allman, M, Chu, J., and M Sargent,
"Computing TCP's Retransmi ssion Tinmer", RFC 6298, June
2011.

Sal owey, J., Choudhury, A, and D. McGew, "AES Galois
Counter Mdde (GCM G pher Suites for TLS', RFC 5288,
August 2008.

Postel, J., "Transm ssion Control Protocol", STD 7, RFC
793, Septenber 1981.

Rescorl a & Modadugu St andards Track [Page 30]

RFC 6347

9.

2.

[TLS12]

I nformati

[DCCP]

[DCCPDTLS]

[DTLS]

[DTLS1]

[ECCGCM

[ESP]

[1 ANA]

[KEv2]

[1 MAP]

[PHOTUR! S]

[POP]

[SI P]

DTLS January 2012

Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

ve References

Kohler, E., Handley, M, and S. Floyd, "Datagram
Congestion Control Protocol (DCCP)", RFC 4340, March
2006.

Phel an, T., "Datagram Transport Layer Security (DTLS)
over the Datagram Congestion Control Protocol (DCCP)",
RFC 5238, My 2008.

Modadugu, N. and E. Rescorla, "The Design and
| mpl enent ati on of Datagram TLS", Proceedi ngs of | SOC NDSS
2004, February 2004.

Rescorla, E. and N. Mddadugu, "Datagram Transport Layer
Security", RFC 4347, April 2006.

Rescorla, E., "TLS Elliptic Curve C pher Suites with
SHA- 256/ 384 and AES Gal oi s Counter Mdde (GCM", RFC 5289,
August 2008.

Kent, S., "IP Encapsul ating Security Payload (ESP)", RFC
4303, Decenber 2005.

| ANA, "Transport Layer Security (TLS) Paraneters",
http://ww. i ana. org/ assi gnnments/tl s-paraneters.

Kauf man, C., Hoffman, P., Nr, Y., and P. Eronen,
"I nternet Key Exchange Protocol Version 2 (I1KEv2)", RFC
5996, Septenber 2010.

Crispin, M, "INTERNET MESSAGE ACCESS PROTOCOL - VERSI ON
4revl", RFC 3501, March 2003.

Karn, P. and W Sinpson, "Photuris: Session-Key
Managenent Protocol", RFC 2522, March 1999.

Myers, J. and M Rose, "Post Ofice Protocol - Version
3", STD 53, RFC 1939, My 1996.

Rosenberg, J., Schul zrinne, H, Canarillo, G, Johnston,
A., Peterson, J., Sparks, R, Handley, M, and E

School er, "SIP: Session Initiation Protocol", RFC 3261,
June 2002.

Rescorl a & Modadugu St andards Track [Page 31]

RFC 6347 DTLS January 2012
[TLS] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

[TLS11] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.1", RFC 4346, April 2006.

[WHYI PSEC] Bellovin, S., "Quidelines for Specifying the Use of |Psec
Version 2", BCP 146, RFC 5406, February 2009.

Aut hors’ Addresses
Eric Rescorla
RTFM I nc.
2064 Edgewood Drive
Palo Alto, CA 94303
EMail: ekr@tfmcom
Nagendra Modadugu
Googl e, Inc.

EMai | : nagendra@s. st anf ord. edu

Rescorl a & Modadugu St andards Track [Page 32]

