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Abstract

Overload occurs in Session Initiation Protocol (SIP) networks when
SI P servers have insufficient resources to handle all SIP nessages
they receive. Even though the SIP protocol provides a limted
overl oad control nechanismthrough its 503 (Service Unavail abl e)
response code, SIP servers are still vulnerable to overload. This
docunent di scusses nodel s and design considerations for a SIP
overl oad control mechani sm

Status of This Meno

This docunment is not an Internet Standards Track specification; it is
published for infornational purposes.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Goup (IESG. Not all docunents
approved by the I ESG are a candi date for any |evel of Internet

St andard; see Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc6357
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1

I ntroduction

As with any network elenment, a Session Initiation Protocol (SIP)

[ RFC3261] server can suffer from overl oad when the nunber of SIP
messages it receives exceeds the nunmber of nessages it can process.
Overl oad occurs if a SIP server does not have sufficient resources to
process all incomng SIP nessages. These resources nay include CPU
nmenory, input/output, or disk resources.

Overl oad can pose a serious problemfor a network of SIP servers
During periods of overload, the throughput of SIP nmessages in a
network of SIP servers can be significantly degraded. In fact,
overload in a SIP server nay lead to a situation in which the
overload is anplified by retransm ssions of SIP nessages causing the
t hroughput to drop down to a very small fraction of the origina
processing capacity. This is often called congestion coll apse.

An overl oad control nechani smenables a SIP server to process SIP
messages close to its capacity limt during tines of overl oad.
Overload control is used by a SIP server if it is unable to process
all SIP requests due to resource constraints. There are other
failure cases in which a SIP server can successfully process incom ng
requests but has to reject themfor other reasons. For exanple, a
Public Switched Tel ephone Network (PSTN) gateway that runs out of
trunk lines but still has plenty of capacity to process SIP nessages
shoul d reject incomng INVITEs using a response such as 488 (Not
Acceptabl e Here), as described in [RFC4412]. Sinmilarly, a SIP
registrar that has |lost connectivity to its registration database but
is still capable of processing SIP nmessages should reject REG STER
requests with a 500 (Server Error) response [ RFC3261]. Overload
control nechani sms do not apply in these cases and SIP provides
appropriate response codes for them

There are cases in which a SIP server runs other services that do not
i nvol ve the processing of SIP nessages (e.g., processing of RTP
packets, database queries, software updates, and event handling).
These services nmay, or nmay not, be correlated with the SIP nessage
vol unme. These services can use up a substantial share of resources
avail abl e on the server (e.g., CPU cycles) and |l eave the server in a
condition where it is unable to process all incomng SIP requests.

In these cases, the SIP server applies SIP overload contro

mechani sns to avoi d congestion collapse on the SIP signaling plane.
However, controlling the nunber of SIP requests may not significantly
reduce the load on the server if the resource shortage was created by
anot her service. |In these cases, it is to be expected that the
server uses appropriate methods of controlling the resource usage of
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other services. The specifics of controlling the resource usage of
ot her services and their coordination is out of scope for this
docunent .

The SIP protocol provides a limted nmechani smfor overload contro
through its 503 (Service Unavail abl e) response code and the

Retry- After header. However, this nmechani sm cannot prevent overl oad
of a SIP server and it cannot prevent congestion collapse. |In fact,
it may cause traffic to oscillate and to shift between SIP servers
and t hereby worsen an overload condition. A detailed discussion of
the SIP overl oad problem the problens with the 503 (Service
Unavai |l abl e) response code and the Retry-After header, and the
requirenents for a SIP overload control nechani smcan be found in
[RFC5390]. In addition, 503 is used for other situations, not just
SI P server overload. A SIP overload control process based on 503
woul d have to specify exactly which cause values trigger the overl oad
control

Thi s docunent di scusses the nodels, assunptions, and design
considerations for a SIP overload control nechanism The docunent
originated in the SIP overload control design team and has been
further devel oped by the SIP Overload Control (SOC) working group

2. SIP Overload Probl em

A key contributor to SIP congestion collapse [ RFC5390] is the
regenerative behavior of overload in the SIP protocol. Wen SIPis
runni ng over the UDP protocol, it will retransmt nessages that were
dropped or excessively delayed by a SIP server due to overload and
thereby increase the offered | oad for the al ready overl oaded server
This increase in | oad worsens the severity of the overload condition
and, in turn, causes nore nessages to be dropped. A congestion
col l apse can occur [Hilt] [Noel] [Shen] [Abdelal].

Regener ati ve behavi or under overload should ideally be avoided by any
protocol as this would | ead to unstabl e operation under overl oad.
However, this is often difficult to achieve in practice. For
exanpl e, changing the SIP retransmi ssion tiner nechani sns can reduce
the degree of regeneration during overload but will inpact the
ability of SIP to recover from nmessage | osses. Wthout any

retransm ssion, each nmessage that is dropped due to SIP server
overload will eventually lead to a failed transaction

For a SIP INVITE transaction to be successful, a mninmmof three
nmessages need to be forwarded by a SIP server. Oten an INVITE
transaction consists of five or nore SIP nessages. |If a SIP server
under overload randomy di scards nessages w t hout evaluating them
the chances that all nessages belonging to a transaction are
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successfully forwarded will decrease as the | oad increases. Thus,

t he nunber of transactions that conplete successfully will decrease
even if the nessage throughput of a server remains up and assuning
the overl oad behavior is fully non-regenerative. A SIP server ni ght
(partially) parse incomng nessages to determine if it is a new
request or a nessage belonging to an existing transaction.

Di scarding a SIP nessage after spending the resources to parse it is
expensi ve. The nunber of successful transactions will therefore
decline with an increase in |load as fewer resources can be spent on
forwardi ng nessages and nore resources are consuned by inspecting
messages that will eventually be dropped. The rate of the decline
depends on the anmount of resources spent to inspect each nmessage.

Anot her challenge for SIP overload control is controlling the rate of
the true traffic source. Overload is often caused by a | arge nunber
of user agents (UAs), each of which creates only a single nessage.
However, the sumof their traffic can overload a SIP server. The
overl oad nechani sns suitable for controlling a SIP server (e.g., rate
control) may not be effective for individual UAs. In sone cases,
there are other non-SIP mechanisms for limting the load fromthe
UAs. These may operate independently from or in conjunction wth,
the SIP overl oad nmechani snms described here. In either case, they are
out of scope for this docunent.

3. Explicit vs. Inplicit Overload Contro

The main difference between explicit and inplicit overload control is
the way overload is signaled froma SIP server that is reaching
overload condition to its upstream nei ghbors.

In an explicit overload control mechanism a SIP server uses an
explicit overload signal to indicate that it is reaching its capacity
limt. Upstream neighbors receiving this signal can adjust their
transm ssion rate according to the overload signal to a level that is
acceptable to the downstream server. The overload signal enables a
SIP server to steer the load it is receiving to a rate at which it
can perform at naxi mum capacity.

Implicit overload control uses the absence of responses and packet

| oss as an indication of overload. A SIP server that is sensing such
a condition reduces the load it is forwarding to a downstream

nei ghbor. Since there is no explicit overload signal, this nmechani sm
is robust, as it does not depend on actions taken by the SIP server
runni ng i nto overl oad.

The ideas of explicit and inplicit overload control are in fact

conpl enentary. By considering inplicit overload indications, a
server can avoi d overl oadi ng an unresponsi ve downstream nei ghbor. An

Hilt I nf or mat i onal [ Page 5]



RFC 6357 Overl oad Control Design August 2011

explicit overload signal enables a SIP server to actively steer the
inconing load to a desired |evel

4. System Mdel

The nodel shown in Figure 1 identifies fundanental conponents of an
explicit SIP overload control nechani sm

SIP Processor: The SIP Processor processes SIP nessages and is the
component that is protected by overload control

Monitor: The Monitor neasures the current |oad of the SIP Processor
on the receiving entity. It inplenents the nechani sns needed to
determi ne the current usage of resources relevant for the SIP
Processor and reports | oad sanples (S) to the Control Function.

Control Function: The Control Function inplenents the overload
control algorithm The Control Function uses the |oad sanples (S
and determines if overload has occurred and a throttle (T) needs
to be set to adjust the |oad sent to the SIP Processor on the
receiving entity. The Control Function on the receiving entity
sends | oad feedback (F) to the sending entity.

Actuator: The Actuator inplenents the algorithns needed to act on
the throttles (T) and ensures that the anount of traffic forwarded
to the receiving entity neets the criteria of the throttle. For
exanple, a throttle may instruct the Actuator to not forward nore
than 100 I NVI TE nessages per second. The Actuator inplenments the
algorithnms to achieve this objective, e.g., using nessage gappi ng.
It also inplenents algorithns to select the nessages that will be
af fected and deterni ne whether they are rejected or redirected.

The type of feedback (F) conveyed fromthe receiving to the sending
entity depends on the overload control nethod used (i.e., |oss-based,
rat e- based, w ndow based, or signal -based overload control; see
Section 9), the overload control algorithm (see Section 11), as well
as ot her design paraneters. The feedback (F) enables the sending
entity to adjust the anpbunt of traffic forwarded to the receiving
entity to a level that is acceptable to the receiving entity without
causi ng overl oad.

Figure 1 depicts a general system nodel for overload control. In
this diagram one instance of the control function is on the sending
entity (i.e., associated with the actuator) and one is on the
receiving entity (i.e., associated with the Mnitor). However, a
speci fic nechanismmay not require both elenents. In this case, one
of two control function elenents can be enpty and sinply passes al ong
feedback. For exanple, if (F) is defined as a loss-rate (e.qg.
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reduce traffic by 10%, there is no need for a control function on
the sending entity as the content of (F) can be copied directly into

(7).

The nodel in Figure 1 shows a scenario with one sending and one
receiving entity. In a nore realistic scenario, a receiving entity
will receive traffic frommultiple sending entities and vice versa
(see Section 6). The feedback generated by a Monitor will therefore
often be distributed across nultiple Actuators. A Mnitor needs to
be able to split the load it can process across multiple sending
entities and generate feedback that correctly adjusts the | oad each
sending entity is allowed to send. Sinmilarly, an Actuator needs to
be prepared to receive different |evels of feedback fromdifferent
receiving entities and throttle traffic to these entities
accordingly.

In a realistic deploynent, SIP nessages will flowin both directions,
fromserver Bto server A as well as server Ato server B. The

overl| oad control mechanisnms in each direction can be considered

i ndependently. For nessages flowing fromserver Ato server B, the
sending entity is server A and the receiving entity is server B, and
vice versa. The control loops in both directions operate

i ndependent | y.

Sendi ng Recei vi ng
Entity Entity
T + T +
| Server A | | Server B
| 4 + | 4 + | -+
| | Control | | F | | Control | | |
| | Function |<-+------ +--| Function | |
| + | + |
| T | | | A | | Overload
| % | | | S | | Contro
| A + | | Ao + | |
| | Actuator | | | | Monitor | |
| + | + |
| | | | : |-
| v | | | -
| + | + |
<-+--| SI P | ] | SIP | ] | SIP
--+->| Processor |--+------ +->| Processor |--+-> | System
R + R + |
S + S + -+

Figure 1: System Moddel for Explicit Overload Contro
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5. Degree of Cooperation

A SIP request is usually processed by nore than one SIP server on its
path to the destination. Thus, a design choice for an explicit
overload control nechanismis where to place the conponents of
overload control along the path of a request and, in particul ar
where to place the Monitor and Actuator. This design choice
determ nes the degree of cooperation between the SIP servers on the
path. Overload control can be inplenented hop-by-hop with the
Monitor on one server and the Actuator on its direct upstream

nei ghbor. Overload control can be inplenented end-to-end with
Monitors on all SIP servers along the path of a request and an
Actuator on the sender. In this case, the Control Functions

associ ated with each Monitor have to cooperate to jointly determ ne
the overall feedback for this path. Finally, overload control can be
i npl emented locally on a SIP server if the Mnitor and Actuator
reside on the same server. |In this case, the sending entity and
receiving entity are the sane SIP server, and the Actuator and

Moni tor operate on the sane SIP Processor (although, the Actuator
typically operates on a pre-processing stage in |ocal overload
control). Local overload control is an internal overload contro
mechani sm as the control loop is inplenmented internally on one
server. Hop-by-hop and end-to-end are external overload contro
mechani sns. All three configurations are shown in Figure 2.
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v
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\\=>| D |
+---+
"
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(c) loca

==> SI P request fl ow

(b) end-to-end

Hilt I nf or mat i ona

<-- Overload feedback | oop

Fi gure 2: Degree of Cooperation between Servers
. 1. Hop-by- Hop

The i dea of hop-by-hop overload control is to instantiate a separate
control |oop between all neighboring SIP servers that directly
exchange traffic. That is, the Actuator is |ocated on the SIP server
that is the direct upstream nei ghbor of the SIP server that has the
correspondi ng Monitor. Each control |oop between two servers is
compl etely i ndependent of the control |oop between other servers
further up- or downstream |In the exanple in Figure 2(a), three

i ndependent overl oad control |oops are instantiated: A- B, B - C
and B - D. Each loop only controls a single hop. Overload feedback
recei ved froma downstream nei ghbor is not forwarded further
upstream Instead, a SIP server acts on this feedback, for exanple,
by rejecting SIP nessages if needed. |If the upstream nei ghbor of a
server al so becones overloaded, it will report this problemto its
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upstream nei ghbors, which again take action based on the reported
feedback. Thus, in hop-by-hop overload control, overload is always
resol ved by the direct upstream nei ghbors of the overl oaded server
wi thout the need to involve entities that are located nmultiple SIP
hops away.

Hop- by- hop overl oad control reduces the inpact of overload on a SIP
network and can avoid congestion collapse. 1t is sinple and scal es
well to networks with many SIP entities. An advantage is that it
does not require feedback to be transmitted across nultipl e-hops,
possi bly crossing nultiple trust domains. Feedback is sent to the
next hop only. Furthernore, it does not require a SIP entity to
aggregate a large nunber of overload status val ues or keep track of
the overload status of SIP servers it is not communicating wth.

5. 2. End-t o- End

End-to-end overl oad control inplenents an overload control |oop al ong
the entire path of a SIP request, fromuser agent client (UAC) to
user agent server (UAS). An end-to-end overload control nechani sm
consol i dates overload information fromall SIP servers on the way
(including all proxies and the UAS) and uses this information to
throttle traffic as far upstreamas possible. An end-to-end overl oad
control nechanismhas to be able to frequently collect the overl oad
status of all servers on the potential path(s) to a destination and
conbine this data into neani ngful overl oad feedback.

A UA or SIP server only throttles requests if it knows that these
requests will eventually be forwarded to an overl oaded server. For
exanple, if Dis overloaded in Figure 2(b), A should only throttle
requests it forwards to B when it knows that they will be forwarded
to D. It should not throttle requests that will eventually be
forwarded to C, since server Cis not overloaded. |In many cases, it
is difficult for Ato determi ne which requests will be routed to C
and D, since this depends on the local routing decision nade by B
These routing decisions can be highly variable and, for exanple,
depend on call-routing policies configured by the user, services

i nvoked on a call, |oad-balancing policies, etc. A previous nessage
to a target that has been routed through an overl oaded server does
not necessarily mean that the next nmessage to this target will also

be routed through the sanme server.

The main probl em of end-to-end overload control is its inherent

compl exity, since UAC or SIP servers need to nonitor all potential
paths to a destination in order to determine which requests should be
throttled and which requests may be sent. Even if this information
is available, it is not clear which path a specific request wll

t ake.
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A variant of end-to-end overload control is to inplenent a contro

| oop between a set of well-known SIP servers along the path of a SIP
request. For exanple, an overload control |oop can be instantiated
between a server that only has one downstream nei ghbor or a set of
closely coupled SIP servers. A control |oop spanning nultiple hops
can be used if the sending entity has full know edge about the SIP
servers on the path of a SIP nessage

Overload control for SIP servers is different fromend-to-end
congestion control used by transport protocols such as TCP. The
traffic exchanged between SIP servers consists of many individual SIP
messages. Each SIP nessage is created by a SIP UA to achieve a
specific goal (e.g., to start setting up a call). Al nessages have
their own source and destination addresses. Even SIP nessages
containing identical SIP URIs (e.g., a SUBSCRIBE and an | NVI TE
nmessage to the same SIP URI) can be routed to different destinations.
This is different from TCP, where the traffic exchanged between
routers consists of packets belonging to a usually |onger flow of
messages exchanged between a source and a destination (e.g., to
transmit a file). |f congestion occurs, the sources can detect this
condition and adjust the rate at which the next packets are
transmtted

5.3. Local Overload Contro

The idea of |ocal overload control (see Figure 2(c)) is to run the
Moni tor and Actuator on the sanme server. This enables the server to
nmoni tor the current resource usage and to reject nessages that can't
be processed wi thout overusing |ocal resources. The fundamenta
assunption behind | ocal overload control is that it is |less resource
consunming for a server to reject nessages than to process them A
server can therefore reject the excess nessages it cannot process to
stop all retransm ssions of these nessages. Since rejecting nessages
does consune resources on a SIP server, |local overload control alone
cannot prevent a congestion coll apse.

Local overload control can be used in conjunction with other overl oad
control mechani sms and provides an additional |ayer of protection
agai nst overload. It is fully inplemented within a SIP server and
does not require cooperation between servers. |n general, SIP
servers should apply other overload control techniques to contro

| oad before a |l ocal overload control nmechanismis activated as a
nmechani sm of |ast resort.
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6.

Topol ogi es

The foll owi ng topol ogi es describe four generic SIP server
configurations. These topologies illustrate specific challenges for
an overload control nmechanism An actual SIP server topology is
likely to consist of conbinations of these generic scenarios.

In the "l oad bal ancer" configuration shown in Figure 3(a), a set of
SIP servers (D, E, and F) receives traffic froma single source A A
| oad bal ancer is a typical exanple for such a configuration. |In this
configuration, overload control needs to prevent server A (i.e., the

| oad bal ancer) from sending too nuch traffic to any of its downstream

nei ghbors D, E, and F. |If one of the downstream nei ghbors becones
overl oaded, A can direct traffic to the servers that still have
capacity. |If one of the servers acts as a backup, it can be

activated once one of the primary servers reaches overl oad.

If Acan reliably determine that Db E, and F are its only downstream
nei ghbors and all of themare in overload, it nmay choose to report
overl oad upstreamon behalf of D, E, and F. However, if the set of
downstream nei ghbors is not fixed or only some of themare in
overload, then A should not activate an overload control since A can
still forward the requests destined to non-overl oaded downstream

nei ghbors. These requests would be throttled as well if A would use
overload control towards its upstream nei ghbors.

In sone cases, the servers D, E, and F are in a server farmand are
configured to appear as a single server to their upstream nei ghbors.
In this case, server A can report overload on behalf of the server
farm |If the load balancer is not a SIP entity, servers D, E, and F
can report the overall |oad of the server farm(i.e., the load of the
virtual server) in their nessages. As an alternative, one of the
servers (e.g., server E) can report overload on behalf of the server
farm In this case, not all nessages contain overload contro

i nformati on, and all upstream nei ghbors need to be served by server E
periodically to ensure that updated infornmation is received.

In the "nultiple sources" configuration shown in Figure 3(b), a SIP
server D receives traffic frommultiple upstreamsources A, B, and C
Each of these sources can contribute a different amount of traffic,
whi ch can vary over tinme. The set of active upstream nei ghbors of D
can change as servers nmay becone inactive, and previously inactive
servers may start contributing traffic to D

If D beconmes overloaded, it needs to generate feedback to reduce the
anount of traffic it receives fromits upstream nei ghbors. D needs
to decide by how much each upstream nei ghbor should reduce traffic.
This decision can require the consideration of the anbunt of traffic
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sent by each upstream nei ghbor and it nay need to be re-adjusted as
the traffic contributed by each upstream nei ghbor varies over tine.
Server D can use a local fairness policy to determ ne how nuch
traffic it accepts from each upstream nei ghbor.

In many configurations, SIP servers forma "nesh" as shown in Figure
3(c). Here, multiple upstreamservers A, B, and C forward traffic to
multiple alternative servers D and E. This configuration is a

conbi nation of the "load bal ancer” and "mnultiple sources" scenario.

+- - -+ +- - -+
/-> D | | A-\
/ +---+ +---+ \

/ \ +---+
+- - -4/ +---+ +---+ \->|
| Al------ >| E| | Bl------ >| D|
+- - - +-\ +-- -+ +-- -+ /->] |

\ / +-- -+

\ +---+ +---+ |/
\->| F | | C|-/
+-- -+ +-- -+
(a) | oad bal ancer (b) multiple sources
+- - -+
| A]---\ a--\
e N YT g \

\[----- > D | b--\ \--->+---+
Fo--t--/\ -+ \---->] |
| B | \/ C-------- > D
E O W 2 W S | |

I\---->] E | . [--->4+---+
+--- -/ [-->+---+ /
| C|----- / z--/
+- - -+
(c) nesh (d) edge proxy

Fi gure 3: Topol ogi es

Overload control that is based on reducing the nunmber of messages a
sender is allowed to send is not suited for servers that receive
requests froma very |l arge popul ati on of senders, each of which only
sends a very small nunber of requests. This scenario is shown in
Figure 3(d). An edge proxy that is connected to many UAs is a

typi cal exanple for such a configuration. Since each UA typically

i nfrequently sends requests, which are often related to the sane
session, it can't decrease its nessage rate to resolve the overl oad.
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A SIP server that receives traffic from nany sources, which each
contribute only a small nunber of requests, can resort to |oca
overload control by rejecting a percentage of the requests it
receives with 503 (Service Unavail abl e) responses. Since it has many
upstream nei ghbors, it can send 503 (Service Unavailable) to a
fraction of themto gradually reduce |oad without entirely stopping
all incoming traffic. The Retry-After header can be used in 503
(Service Unavail abl €) responses to ask upstream nei ghbors to wait a
gi ven nunber of seconds before trying the request again. Using 503
(Service Unavail abl €) can, however, not prevent overload if a large
nunber of sources create requests (e.g., to place calls) at the sane
tinme.

Note: The requirenents of the "edge proxy" topology are different
fromthe ones of the other topol ogies, which may require a different
nmet hod for overload control

7. Fairness

There are many different ways to define fairness between multiple
upstream nei ghbors of a SIP server. |In the context of SIP server
overload, it is helpful to describe two categories of fairness: basic
fairness and custom zed fairness. Wth basic fairness, a SIP server
treats all requests equally and ensures that each request has the
sanme chance of succeeding. Wth custonized fairness, the server

al | ocates resources according to different priorities. An exanple
application of the basic fairness criteria is the "Third caller
receives free tickets" scenario, where each call attenpt should have
an equal success probability in connecting through an overl oaded SIP
server, irrespective of the service provider in which the call was
initiated. An exanple of custonized fairness would be a server that
assigns different resource allocations to its upstream nei ghbors
(e.qg., service providers) as defined in a service |evel agreenent
(SLA).

8. Performance Metrics

The performance of an overload control mechani smcan be neasured
using different nmetrics.

A key performance indicator is the goodput of a SIP server under
overload. Ideally, a SIP server will be enabled to performat its
maxi mum capacity during periods of overload. For exanple, if a SIP
server has a processing capacity of 140 INVITE transacti ons per
second, then an overload control mechani smshould enable it to
process 140 INVI TEs per second even if the offered load is nuch

hi gher. The delay introduced by a SIP server is another inportant

i ndicator. An overload control mechani smshould ensure that the
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del ay encountered by a SIP nessage is not increased significantly
during periods of overload. Significantly increased delay can |ead
to time-outs and retransm ssion of SIP nessages, meking the overl oad
Wor se.

Responsi veness and stability are other inportant perfornance

i ndi cators. An overload control nechani sm should quickly react to an
overl oad occurrence and ensure that a SIP server does not becone
over| oaded, even during sudden peaks of load. Simlarly, an overl oad
control mechani sm should quickly stop rejecting requests if the

overl|l oad di sappears. Stability is another inportant criteria. An
overl oad control nechani sm shoul d not cause significant oscillations
of load on a SIP server. The performance of SIP overload contro
nmechani sns is discussed in [Noel], [Shen], [Hilt], and [Abdelal].

In addition to the above netrics, there are other indicators that are
rel evant for the eval uation of an overload control nechani sm

Fai rness: Wich type of fairness does the overload control nechanism
i mpl enent ?

Self-limting: |Is the overload control self-limting if a SIP server
becones unresponsi ve?

Changes in neighbor set: How does the nechani smadapt to a changing
set of sending entities?

Data points to monitor: Wich and how many data points does an
overl oad control mechani smneed to nonitor?

Conputational load: Wiat is the (CPU) |oad created by the overl oad
"Monitor" and "Actuator"?

9. Explicit Overload Control Feedback

Explicit overload control feedback enables a receiver to indicate how
much traffic it wants to receive. Explicit overload contro
nmechani snms can be differentiated based on the type of information
conveyed in the overload control feedback and whether the contro
function is in the receiving or sending entity (receiver- vs. sender-
based overload control), or both.

9.1. Rate-Based Overload Contro
The key idea of rate-based overload control is to limt the request

rate at which an upstreamelenment is allowed to forward traffic to
t he downstream nei ghbor. [If overload occurs, a SIP server instructs
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each upstream nei ghbor to send, at npbst, X requests per second. Each
upstream nei ghbor can be assigned a different rate cap

An exanpl e algorithmfor an Actuator in the sending entity is request
gapping. After transmitting a request to a downstream nei ghbor, a
server waits for 1/ X seconds before it transmts the next request to
the sane nei ghbor. Requests that arrive during the waiting period
are not forwarded and are either redirected, rejected, or buffered.
Request gapping only affects requests that are targeted by overl oad
control (e.g., requests that initiate a transaction and not

retransm ssions in an ongoi ng transaction).

The rate cap ensures that the nunber of requests received by a SIP
server never increases beyond the sumof all rate caps granted to
upstream nei ghbors. Rate-based overload control protects a SIP
server against overload, even during |oad spikes assumng there are
no new upstream nei ghbors that start sending traffic. New upstream
nei ghbors need to be considered in the rate caps assigned to al
upstream nei ghbors. The rate assigned to upstream nei ghbors needs to
be adj usted when new nei ghbors join. During periods when new

nei ghbors are joining, overload can occur in extrene cases until the
rate caps of all servers are adjusted to again match the overall rate
cap of the server. The overall rate cap of a SIP server is

determ ned by an overload control algorithm e.g., based on system

| oad.

Rat e- based overload control requires a SIP server to assign a rate
cap to each of its upstream neighbors while it is activated.

Ef fectively, a server needs to assign a share of its overall capacity
to each upstream nei ghbor. A server needs to ensure that the sum of
all rate caps assigned to upstream nei ghbors does not substantially
oversubscribe its actual processing capacity. This requires a SIP
server to keep track of the set of upstream nei ghbors and to adj ust
the rate cap if a new upstream nei ghbor appears or an existing

nei ghbor stops transmtting. For exanple, if the capacity of the
server is X and this server is receiving traffic fromtwo upstream
nei ghbors, it can assign a rate of X/2 to each of them If a third

sender appears, the rate for each sender is lowered to X/3. |If the
overall rate cap is too high, a server may experience overload. |If
the cap is too low, the upstream neighbors will reject requests even

t hough they could be processed by the server

An approach for estinmating a rate cap for each upstream nei ghbor is
using a fixed proportion of a control variable, X where Xis
initially equal to the capacity of the SIP server. The server then
i ncreases or decreases X until the workload arrival rate matches the
actual server capacity. Usually, this will mean that the sum of the
rate caps sent out by the server (=X) exceeds its actual capacity,
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but enabl es upstream nei ghbors who are not generating nore than their
fair share of the work to be effectively unrestricted. 1In this
approach, the server only has to nmeasure the aggregate arrival rate.
However, since the overall rate cap is usually higher than the actua
capacity, brief periods of overload may occur

9.2. Loss-Based Overload Contro

A | oss percentage enables a SIP server to ask an upstream nei ghbor to
reduce the nunber of requests it would normally forward to this
server by X% For exanple, a SIP server can ask an upstream nei ghbor
to reduce the nunber of requests this neighbor would normally send by
10% The upstream nei ghbor then redirects or rejects 10% of the
traffic that is destined for this server

To inmplenent a | oss percentage, the sending entity may enploy an
algorithmto draw a random nunber between 1 and 100 for each request
to be forwarded. The request is not forwarded to the server if the
random nunmber is less than or equal to X

An advant age of | oss-based overload control is that the receiving
entity does not need to track the set of upstream nei ghbors or the
request rate it receives fromeach upstream nei ghbor. It is
sufficient to nonitor the overall systemutilization. To reduce

| oad, a server can ask its upstream nei ghbors to lower the traffic
forwarded by a certain percentage. The server calculates this
percentage by conbining the | oss percentage that is currently in use
(i.e., the loss percentage the upstream nei ghbors are currently using
when forwarding traffic), the current systemutilization, and the
desired systemutilization. For exanple, if the server |oad
approaches 90% and the current | oss percentage is set to a 50%
traffic reduction, then the server can decide to increase the |oss
percentage to 55%in order to get to a systemutilization of 80%
Simlarly, the server can |lower the | oss percentage if permtted by
the systemutilization

Loss-based overload control requires that the throttle percentage be
adjusted to the current overall nunber of requests received by the
server. This is particularly inmportant if the nunber of requests
received fluctuates quickly. For exanple, if a SIP server sets a
throttle value of 10%at tinme t1 and the nunmber of requests increases
by 20% between tine t1 and t2 (t1<t2), then the server will see an
increase in traffic by 10% between tine t1 and t2. This is even

t hough all upstream nei ghbors have reduced traffic by 10% Thus,
percentage throttling requires an adjustnment of the throttling
percentage in response to the traffic received and may not al ways be
able to prevent a server fromencountering brief periods of overload
in extrene cases.
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9.3. Wndow Based Overl oad Contro

The key idea of w ndow based overload control is to allow an entity
to transmit a certain nunber of nessages before it needs to receive a
confirmation for the nessages in transit. Each sender maintains an
overload wi ndow that limts the nunber of nessages that can be in
transit wi thout being confirnmed. W ndow based overload control is

i nspired by TCP [ RFC0793].

Each sender nmintains an unconfirmed nessage counter for each
downstream nei ghbor it is communicating with. For each nessage sent
to the downstream nei ghbor, the counter is increased. For each
confirmation received, the counter is decreased. The sender stops
transmtting nessages to the downstream nei ghbor when the unconfirned
nmessage counter has reached the current w ndow size

A crucial paraneter for the performance of w ndow based overl| oad
control is the window size. Each sender has an initial w ndow size
it uses when first sending a request. This w ndow size can be
changed based on the feedback it receives fromthe receiver

The sender adjusts its wi ndow size as soon as it receives the
correspondi ng feedback fromthe receiver. |If the new wi ndow size is
smal l er than the current unconfirmed nessage counter, the sender
stops transmitting nessages until nore nessages are confirned and the
current unconfirmed nmessage counter is |less than the wi ndow size

Note that the reception of a 100 (Trying) response does not provide a
confirmation for the successful processing of a nessage. 100
(Trying) responses are often created by a SIP server very early in
processing and do not indicate that a nessage has been successfully

processed and cleared fromthe input buffer. |[If the downstream
nei ghbor is a stateless proxy, it will not create 100 (Trying)
responses at all and will instead pass through 100 (Trying) responses

created by the next stateful server. Also, 100 (Trying) responses
are typically only created for I NVITE requests. Explicit nessage
confirmations do not have these probl ens.

W ndow- based overload control is sinilar to rate-based overl oad
control in that the total available receiver buffer space needs to be
di vided anong all upstream nei ghbors. However, unlike rate-based
overload control, w ndow based overload control is self-limting and
can ensure that the receiver buffer does not overflow under normal
conditions. The transm ssion of nessages by senders is clocked by
nmessage confirmations received fromthe receiver. A buffer overfl ow
can occur in extreme cases when a | arge nunber of new upstream
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9.

9.

4,

5.

nei ghbors arrives at the sane tinme. However, senders will eventually
stop transmitting new requests once their initial sending wi ndowis
cl osed.

In wi ndow based overl oad control, the nunber of nmessages a sender is
all owed to send can frequently be set to zero. |In this state, the
sender needs to be informed when it is allowed to send agai n and when
the recei ver wi ndow has opened up. However, since the sender is not
allowed to transnmit messages, the receiver cannot convey the new

wi ndow si ze by piggybacking it in a response to another nessage.
Instead, it needs to informthe sender through another nechani sm
e.g., by sending a nessage that contains the new w ndow si ze.

Overl oad Signal -Based Overl oad Contro

The key idea of overload signal -based overload control is to use the
transm ssion of a 503 (Service Unavail abl e) response as a signal for
overload in the downstream nei ghbor. After receiving a 503 (Service
Unavai |l abl e) response, the sender reduces the |load forwarded to the
downstream nei ghbor to avoid triggering nore 503 (Service
Unavai | abl e) responses. The sender keeps reducing the load if nore
503 (Service Unavail abl e) responses are received. Note that this
schene is based on the use of 503 (Service Unavail abl e) responses

wi thout the Retry-After header, as the Retry-After header woul d
require a sender to entirely stop forwardi ng requests. |t should

al so be noted that 503 responses can be generated for reasons other
than overload (e.g., server maintenance).

A sender that has not received 503 (Service Unavail abl e) responses
for a while but is still throttling traffic can start to increase the
offered load. By slowy increasing the traffic forwarded, a sender
can detect that overload in the downstream nei ghbor has been resol ved
and nore | oad can be forwarded. The load is increased until the
sender receives another 503 (Service Unavail abl e) response or is
forwarding all requests it has. A possible algorithmfor adjusting
traffic is additive increase/nultiplicative decrease (Al M)

Overl oad signal - based overl oad control is a sender-based overl oad
control mechani sm

On-/ O f Overload Control

On-/of f overload control feedback enables a SIP server to turn the
traffic it is receiving either on or off. The 503 (Service
Unavail abl e) response with a Retry-After header inplenments on-/off
overload control. On-/off overload control is less effective in
controlling load than the fine grained control nethods above. All of
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10.

11.

t he above nethods can realize on-/off overload control, e.g., by
setting the allowed rate to either zero or unlinited.

Implicit Overload Contro

Inmplicit overload control ensures that the transm ssion of a SIP
server is self-linmting. It slows down the transnission rate of a
sender when there is an indication that the receiving entity is
experiencing overload. Such an indication can be that the receiving
entity is not responding within the expected tinmeframe or is not

responding at all. The idea of inplicit overload control is that
senders should try to sense overload of a downstream nei ghbor even if
there is no explicit overload control feedback. It avoids an

over| oaded server, which has becone unable to generate overl oad
control feedback, from being overwhel med with requests.

W ndow based overl oad control is inherently self-limting since a
sender cannot continue to pass nessages Ww thout receiving
confirmations. All other explicit overload control schenes described
above do not have this property and require additional inplicit
controls to limt transmissions in case an overl oaded downstream

nei ghbor does not generate explicit feedback

Overload Control Algorithns

An inportant aspect of the design of an overload control nechanismis
the overload control algorithm The control algorithm deternines
when the amount of traffic to a SIP server needs to be decreased and
when it can be increased. 1In terns of the nodel described in Section
4, the control algorithmtakes (S) as an input value and generates
(T) as a result.

Overload control algorithms have been studied to a | arge extent and
many different overload control algorithms exist. Wth many
different overload control algorithns available, it seens reasonable
to suggest a baseline algorithmin a specification for a SIP overl oad
control nechanismand allow the use of other algorithns if they

provi de the same protocol semantics. This will also allow the

devel opnent of future algorithns, which may |lead to better
performance. Conversely, the overl oad control mechani sm should all ow
the use of different algorithns if they adhere to the defined

protocol senantics.
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13.

Message Prioritization

Overload control can require a SIP server to prioritize requests and
sel ect requests to be rejected or redirected. The selection is
largely a matter of |ocal policy of the SIP server, the overal
network, and the services the SIP server provides.

Wiile there are many factors that can affect the prioritization of
SIP requests, the Resource-Priority Header (RPH) field [RFC4412] is a
prime candidate for marking the prioritization of SIP requests.
Dependi ng on the particular network and the services it offers, a
particul ar namespace and priority value in the RPH could indicate i)
a high priority request, which should be preserved if possible during
overload, ii) a low priority request, which should be dropped during
overload, or iii) a label, which has no i npact on nessage
prioritization in this network.

For a nunber of reasons, responses should not be targeted in order to
reduce SIP server |oad. Responses cannot be rejected and woul d have
to be dropped. This triggers the retransmni ssion of the request plus
the response, leading to even nore load. In addition, the request
associated with a response has al ready been processed and dropping
the response will waste the efforts that have been spent on the
request. Most inportantly, rejecting a request effectively also
renoves the request and the response. |If no requests are passed
along, there will be no responses coning back in return

Overl oad control does not change the retransm ssion behavior of SIP
Retransmi ssions are triggered using procedures defined in RFC 3261
[ RFC3261] and are not subject to throttling.

Oper ational Consi derations

In addition to the design considerations di scussed above,

i npl ementations of a SIP overload control mechanismneed to take the
foll owi ng operational aspects into consideration. These aspects,
while inportant, are out of scope for this docunent and are left for
further discussion in other documents.

Sel ection of feedback type: A SIP overload control mechani smcan
support one or multiple types of explicit overload contro
feedback. Using a single type of feedback (e.g., |oss-based
f eedback) has the advantage of sinplifying the protocol and
i mpl enentations. Supporting nmultiple types of feedback (e.qg.
| o0ss- and rate-based feedback) provides nore flexibility; however,
it requires a way to select the feedback type used between two
servers.
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Event reporting: Overload is a serious condition for any network of
SIP servers, even if it is handled properly by an overload contro
mechani sm  Overl oad events should therefore be reported by a SIP
server, e.g., through a |l ogging or nanagenent interface.

Security Considerations

Thi s docunent presents an overvi ew of several overload contro

f eedback nechani sns. These mechani sns and desi gn consideration are
presented as input to other docunments that will specify a particul ar
f eedback mechanism Specific security measures pertinent to a
particul ar overload feedback nmechanismw || be discussed in the
context of a docunent specifying that security nmechanism However,
there are common security considerations that nust be taken into
account regardl ess of the choice of a final mechani sm

First, the rate-based mechani sm surveyed in Section 9.1 allocates a
fixed portion of the total inbound traffic of a server to each of its
upstream nei ghbors. Consequently, an attacker can introduce a new
upstream server for a short duration, causing the overl oaded server
to lower the proportional traffic rate to all other existing servers.
I ntroduci ng many such short-lived servers will cause the aggregate
rate arriving at the overl oaded server to decrease substantially,
thereby affecting a reduction in the service offered by the server
under attack and leading to a denial-of-service attack [ RFC4732].

The sane problemexists in the w ndows-based nechani sm di scussed in
Section 9.3; however, because of the w ndow acknow edgnments sent by
the overl oaded server, the effect is not as drastic (an attacker will
have to expend resources by constantly sending traffic to keep the
recei ver wi ndow full).

Al'l mechani sms assune that the upstream nei ghbors of an overl oaded
server follow the feedback received. 1In the rate- and w ndow based
mechani snms, a server can directly verify if upstream nei ghbors foll ow
the requested policies. As the |oss-based nechani sm described in
Section 9.2 requires upstream nei ghbors to reduce traffic by a
fraction and the current offered |oad in the upstream nei ghbor is
unknown, a server cannot directly verify the conpliance of upstream
nei ghbors, except when traffic reduction is set to 100% |In this
case, a server has to rely on heuristics to identify upstream

nei ghbors that try to gain an advantage by not reducing |oad or not
reducing it at the requested loss-rate. A policing nmechani smcan be
used to throttle or block traffic fromunfair or malicious upstream
nei ghbors. Barring such a wi despread policing nmechanism the

communi cation |ink between the upstream nei ghbors and the overl oaded
server should be such that the identity of both the servers at the
end of each link can be established and | ogged. The use of Transport
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Layer Security (TLS) and nutual authentication of upstream nei ghbors
[ RFC3261] [ RFC5922] can be used for this purpose.

If an attacker controls a server, he or she may maliciously advertise
overl oad feedback to all of the neighbors of the server, even if the
server is not experiencing overload. This will have the effect of
forcing all of the upstream neighbors to reject or queue nessages
arriving to them and destined for the apparently overl oaded server
(this, in essence, is dinminishing the serving capacity of the
upstream nei ghbors since they now have to deal with their normal
traffic in addition to rejecting or quarantining the traffic destined
to the overloaded server). Al nechanisns allow the attacker to
advertise a capacity of 0, effectively disabling all traffic destined
to the server pretending to be in overload and forcing all the
upstream nei ghbors to expend resources dealing with this condition

As before, a renmedy for this is to use a comrunication |ink such that
the identity of the servers at both ends of the link is established
and | ogged. The use of TLS and nutual authentication of neighbors

[ RFC3261] [ RFC5922] can be used for this purpose.

If an attacker controls several servers of a |oad-bal anced cluster,
he or she may naliciously advertise overl oad feedback fromthese
servers to all senders. Senders with the policy to redirect traffic
that cannot be processed by an overloaded server will start to
redirect this traffic to the servers that have not reported overl oad.
This attack can be used to create a denial -of-service attack on these
servers. |If these servers are conprom sed, the attack can be used to
i ncrease the anmount of traffic that is passed through the conprom sed
servers. This attack is ineffective if servers reject traffic based
on overl oad feedback instead of redirecting it.
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