
Internet Engineering Task Force (IETF) A. Barth
Request for Comments: 6454 Google, Inc.
Category: Standards Track December 2011
ISSN: 2070-1721

 The Web Origin Concept

Abstract

 This document defines the concept of an "origin", which is often used
 as the scope of authority or privilege by user agents. Typically,
 user agents isolate content retrieved from different origins to
 prevent malicious web site operators from interfering with the
 operation of benign web sites. In addition to outlining the
 principles that underlie the concept of origin, this document details
 how to determine the origin of a URI and how to serialize an origin
 into a string. It also defines an HTTP header field, named "Origin",
 that indicates which origins are associated with an HTTP request.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6454.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Barth Standards Track [Page 1]

RFC 6454 The Web Origin Concept December 2011

Table of Contents

 1. Introduction . 3
 2. Conventions . 3
 2.1. Conformance Criteria 3
 2.2. Syntax Notation . 4
 2.3. Terminology . 4
 3. Principles of the Same-Origin Policy 4
 3.1. Trust . 5
 3.1.1. Pitfalls . 5
 3.2. Origin . 6
 3.2.1. Examples . 7
 3.3. Authority . 7
 3.3.1. Pitfalls . 8
 3.4. Policy . 8
 3.4.1. Object Access . 8
 3.4.2. Network Access . 9
 3.4.3. Pitfalls . 9
 3.5. Conclusion . 10
 4. Origin of a URI . 10
 5. Comparing Origins . 11
 6. Serializing Origins . 11
 6.1. Unicode Serialization of an Origin 12
 6.2. ASCII Serialization of an Origin 12
 7. The HTTP Origin Header Field 13
 7.1. Syntax . 13
 7.2. Semantics . 13
 7.3. User Agent Requirements 14
 8. Security Considerations 14
 8.1. Reliance on DNS . 15
 8.2. Divergent Units of Isolation 15
 8.3. Ambient Authority . 16
 8.4. IDNA Dependency and Migration 16
 9. IANA Considerations . 17
 10. References . 17
 10.1. Normative References 17
 10.2. Informative References 18
 Appendix A. Acknowledgements 20

Barth Standards Track [Page 2]

RFC 6454 The Web Origin Concept December 2011

1. Introduction

 User agents interact with content created by a large number of
 authors. Although many of those authors are well-meaning, some
 authors might be malicious. To the extent that user agents undertake
 actions based on content they process, user agent implementors might
 wish to restrict the ability of malicious authors to disrupt the
 confidentiality or integrity of other content or servers.

 As an example, consider an HTTP user agent that renders HTML content
 retrieved from various servers. If the user agent executes scripts
 contained in those documents, the user agent implementor might wish
 to prevent scripts retrieved from a malicious server from reading
 documents stored on an honest server, which might, for example, be
 behind a firewall.

 Traditionally, user agents have divided content according to its
 "origin". More specifically, user agents allow content retrieved
 from one origin to interact freely with other content retrieved from
 that origin, but user agents restrict how that content can interact
 with content from another origin.

 This document describes the principles behind the so-called same-
 origin policy as well as the "nuts and bolts" of comparing and
 serializing origins. This document does not describe all the facets
 of the same-origin policy, the details of which are left to other
 specifications, such as HTML [HTML] and WebSockets [RFC6455], because
 the details are often application-specific.

2. Conventions

2.1. Conformance Criteria

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Requirements phrased in the imperative as part of algorithms (such as
 "strip any leading space characters" or "return false and abort these
 steps") are to be interpreted with the meaning of the key word
 ("MUST", "SHOULD", "MAY", etc.) used in introducing the algorithm.

 Conformance requirements phrased as algorithms or specific steps can
 be implemented in any manner, so long as the end result is
 equivalent. In particular, the algorithms defined in this
 specification are intended to be easy to understand and are not
 intended to be performant.

Barth Standards Track [Page 3]

RFC 6454 The Web Origin Concept December 2011

2.2. Syntax Notation

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234].

 The following core rules are included by reference, as defined in
 [RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF
 (CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),
 HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line feed), OCTET (any 8-bit
 sequence of data), SP (space), HTAB (horizontal tab), CHAR (any US-
 ASCII character), VCHAR (any visible US-ASCII character), and WSP
 (whitespace).

 The OWS rule is used where zero or more linear whitespace octets
 might appear. OWS SHOULD either not be produced or be produced as a
 single SP. Multiple OWS octets that occur within field-content
 SHOULD either be replaced with a single SP or transformed to all SP
 octets (each octet other than SP replaced with SP) before
 interpreting the field value or forwarding the message downstream.

 OWS = *(SP / HTAB / obs-fold)
 ; "optional" whitespace
 obs-fold = CRLF (SP / HTAB)
 ; obsolete line folding

2.3. Terminology

 The terms "user agent", "client", "server", "proxy", and "origin
 server" have the same meaning as in the HTTP/1.1 specification
 ([RFC2616], Section 1.3).

 A globally unique identifier is a value that is different from all
 other previously existing values. For example, a sufficiently long
 random string is likely to be a globally unique identifier. If the
 origin value never leaves the user agent, a monotonically increasing
 counter local to the user agent can also serve as a globally unique
 identifier.

3. Principles of the Same-Origin Policy

 Many user agents undertake actions on behalf of remote parties. For
 example, HTTP user agents follow redirects, which are instructions
 from remote servers, and HTML user agents expose rich Document Object
 Model (DOM) interfaces to scripts retrieved from remote servers.

 Without any security model, user agents might undertake actions
 detrimental to the user or to other parties. Over time, many web-
 related technologies have converged towards a common security model,

Barth Standards Track [Page 4]

RFC 6454 The Web Origin Concept December 2011

 known colloquially as the "same-origin policy". Although this
 security model evolved largely organically, the same-origin policy
 can be understood in terms of a handful of key concepts. This
 section presents those concepts and provides advice about how to use
 these concepts securely.

3.1. Trust

 The same-origin policy specifies trust by URI. For example, HTML
 documents designate which script to run with a URI:

 <script src="https://example.com/library.js"></script>

 When a user agent processes this element, the user agent will fetch
 the script at the designated URI and execute the script with the
 privileges of the document. In this way, the document grants all the
 privileges it has to the resource designated by the URI. In essence,
 the document declares that it trusts the integrity of information
 retrieved from that URI.

 In addition to importing libraries from URIs, user agents also send
 information to remote parties designated by URI. For example,
 consider the HTML form element:

 <form method="POST" action="https://example.com/login">
 ... <input type="password"> ...
 </form>

 When the user enters his or her password and submits the form, the
 user agent sends the password to the network endpoint designated by
 the URI. In this way, the document exports its secret data to that
 URI, in essence declaring that it trusts the confidentiality of
 information sent to that URI.

3.1.1. Pitfalls

 When designing new protocols that use the same-origin policy, make
 sure that important trust distinctions are visible in URIs. For
 example, if both Transport Layer Security (TLS) and non-TLS protected
 resources use the "http" URI scheme (as in [RFC2817]), a document
 would be unable to specify that it wishes to retrieve a script only
 over TLS. By using the "https" URI scheme, documents are able to
 indicate that they wish to interact with resources that are protected
 from active network attackers.

Barth Standards Track [Page 5]

RFC 6454 The Web Origin Concept December 2011

3.2. Origin

 In principle, user agents could treat every URI as a separate
 protection domain and require explicit consent for content retrieved
 from one URI to interact with another URI. Unfortunately, this
 design is cumbersome for developers because web applications often
 consist of a number of resources acting in concert.

 Instead, user agents group URIs together into protection domains
 called "origins". Roughly speaking, two URIs are part of the same
 origin (i.e., represent the same principal) if they have the same
 scheme, host, and port. (See Section 4 for full details.)

 Q: Why not just use the host?

 A: Including the scheme in the origin tuple is essential for
 security. If user agents did not include the scheme, there would be
 no isolation between http://example.com and https://example.com
 because the two have the same host. However, without this isolation,
 an active network attacker could corrupt content retrieved from
 http://example.com and have that content instruct the user agent to
 compromise the confidentiality and integrity of content retrieved
 from https://example.com, bypassing the protections afforded by TLS
 [RFC5246].

 Q: Why use the fully qualified host name instead of just the "top-
 level" domain?

 A: Although the DNS has hierarchical delegation, the trust
 relationships between host names vary by deployment. For example, at
 many educational institutions, students can host content at
 https://example.edu/˜student/, but that does not mean a document
 authored by a student should be part of the same origin (i.e.,
 inhabit the same protection domain) as a web application for managing
 grades hosted at https://grades.example.edu/.

 The example.edu deployment illustrates that grouping resources by
 origin does not always align perfectly with every deployment
 scenario. In this deployment, every student’s web site inhabits the
 same origin, which might not be desirable. In some sense, the origin
 granularity is a historical artifact of how the security model
 evolved.

Barth Standards Track [Page 6]

RFC 6454 The Web Origin Concept December 2011

3.2.1. Examples

 All of the following resources have the same origin:

 http://example.com/
 http://example.com:80/
 http://example.com/path/file

 Each of the URIs has the same scheme, host, and port components.

 Each of the following resources has a different origin from the
 others.

 http://example.com/
 http://example.com:8080/
 http://www.example.com/
 https://example.com:80/
 https://example.com/
 http://example.org/
 http://ietf.org/

 In each case, at least one of the scheme, host, and port component
 will differ from the others in the list.

3.3. Authority

 Although user agents group URIs into origins, not every resource in
 an origin carries the same authority (in the security sense of the
 word "authority", not in the [RFC3986] sense). For example, an image
 is passive content and, therefore, carries no authority, meaning the
 image has no access to the objects and resources available to its
 origin. By contrast, an HTML document carries the full authority of
 its origin, and scripts within (or imported into) the document can
 access every resource in its origin.

 User agents determine how much authority to grant a resource by
 examining its media type. For example, resources with a media type
 of image/png are treated as images, and resources with a media type
 of text/html are treated as HTML documents.

 When hosting untrusted content (such as user-generated content), web
 applications can limit that content’s authority by restricting its
 media type. For example, serving user-generated content as image/png
 is less risky than serving user-generated content as text/html. Of
 course, many web applications incorporate untrusted content in their
 HTML documents. If not done carefully, these applications risk
 leaking their origin’s authority to the untrusted content, a
 vulnerability commonly known as cross-site scripting.

Barth Standards Track [Page 7]

RFC 6454 The Web Origin Concept December 2011

3.3.1. Pitfalls

 When designing new pieces of the web platform, be careful not to
 grant authority to resources irrespective of media type. Many web
 applications serve untrusted content with restricted media types. A
 new web platform feature that grants authority to these pieces of
 content risks introducing vulnerabilities into existing applications.
 Instead, prefer to grant authority to media types that already
 possess the origin’s full authority or to new media types designed
 specifically to carry the new authority.

 In order to remain compatible with servers that supply incorrect
 media types, some user agents employ "content sniffing" and treat
 content as if it had a different media type than the media type
 supplied by the server. If not done carefully, content sniffing can
 lead to security vulnerabilities because user agents might grant low-
 authority media types, such as images, the privileges of high-
 authority media types, such as HTML documents [SNIFF].

3.4. Policy

 Generally speaking, user agents isolate different origins and permit
 controlled communication between origins. The details of how user
 agents provide isolation and communication vary depending on several
 factors.

3.4.1. Object Access

 Most objects (also known as application programming interfaces or
 APIs) exposed by the user agent are available only to the same
 origin. Specifically, content retrieved from one URI can access
 objects associated with content retrieved from another URI if, and
 only if, the two URIs belong to the same origin, e.g., have the same
 scheme, host, and port.

 There are some exceptions to this general rule. For example, some
 parts of HTML’s Location interface are available across origins
 (e.g., to allow for navigating other browsing contexts). As another
 example, HTML’s postMessage interface is visible across origins
 explicitly to facilitate cross-origin communication. Exposing
 objects to foreign origins is dangerous and should be done only with
 great care because doing so exposes these objects to potential
 attackers.

Barth Standards Track [Page 8]

RFC 6454 The Web Origin Concept December 2011

3.4.2. Network Access

 Access to network resources varies depending on whether the resources
 are in the same origin as the content attempting to access them.

 Generally, reading information from another origin is forbidden.
 However, an origin is permitted to use some kinds of resources
 retrieved from other origins. For example, an origin is permitted to
 execute script, render images, and apply style sheets from any
 origin. Likewise, an origin can display content from another origin,
 such as an HTML document in an HTML frame. Network resources can
 also opt into letting other origins read their information, for
 example, using Cross-Origin Resource Sharing [CORS]. In these cases,
 access is typically granted on a per-origin basis.

 Sending information to another origin is permitted. However, sending
 information over the network in arbitrary formats is dangerous. For
 this reason, user agents restrict documents to sending information
 using particular protocols, such as in an HTTP request without custom
 headers. Expanding the set of allowed protocols, for example, by
 adding support for WebSockets, must be done carefully to avoid
 introducing vulnerabilities [RFC6455].

3.4.3. Pitfalls

 Whenever user agents allow one origin to interact with resources from
 another origin, they invite security issues. For example, the
 ability to display images from another origin leaks their height and
 width. Similarly, the ability to send network requests to another
 origin gives rise to cross-site request forgery vulnerabilities
 [CSRF]. However, user agent implementors often balance these risks
 against the benefits of allowing the cross-origin interaction. For
 example, an HTML user agent that blocked cross-origin network
 requests would prevent its users from following hyperlinks, a core
 feature of the web.

 When adding new functionality to the web platform, it can be tempting
 to grant a privilege to one resource but to withhold that privilege
 from another resource in the same origin. However, withholding
 privileges in this way is ineffective because the resource without
 the privilege can usually obtain the privilege anyway because user
 agents do not isolate resources within an origin. Instead,
 privileges should be granted or withheld from origins as a whole
 (rather than discriminating between individual resources within an
 origin) [BOFGO].

Barth Standards Track [Page 9]

RFC 6454 The Web Origin Concept December 2011

3.5. Conclusion

 The same-origin policy uses URIs to designate trust relationships.
 URIs are grouped together into origins, which represent protection
 domains. Some resources in an origin (e.g., active content) are
 granted the origin’s full authority, whereas other resources in the
 origin (e.g., passive content) are not granted the origin’s
 authority. Content that carries its origin’s authority is granted
 access to objects and network resources within its own origin. This
 content is also granted limited access to objects and network
 resources of other origins, but these cross-origin privileges must be
 designed carefully to avoid security vulnerabilities.

4. Origin of a URI

 The origin of a URI is the value computed by the following algorithm:

 1. If the URI does not use a hierarchical element as a naming
 authority (see [RFC3986], Section 3.2) or if the URI is not an
 absolute URI, then generate a fresh globally unique identifier
 and return that value.

 NOTE: Running this algorithm multiple times for the same URI
 can produce different values each time. Typically, user
 agents compute the origin of, for example, an HTML document
 once and use that origin for subsequent security checks rather
 than recomputing the origin for each security check.

 2. Let uri-scheme be the scheme component of the URI, converted to
 lowercase.

 3. If the implementation doesn’t support the protocol given by uri-
 scheme, then generate a fresh globally unique identifier and
 return that value.

 4. If uri-scheme is "file", the implementation MAY return an
 implementation-defined value.

 NOTE: Historically, user agents have granted content from the
 file scheme a tremendous amount of privilege. However,
 granting all local files such wide privileges can lead to
 privilege escalation attacks. Some user agents have had
 success granting local files directory-based privileges, but
 this approach has not been widely adopted. Other user agents
 use globally unique identifiers for each file URI, which is
 the most secure option.

Barth Standards Track [Page 10]

RFC 6454 The Web Origin Concept December 2011

 5. Let uri-host be the host component of the URI, converted to lower
 case (using the i;ascii-casemap collation defined in [RFC4790]).

 NOTE: This document assumes that the user agent performs
 Internationalizing Domain Names in Applications (IDNA)
 processing and validation when constructing the URI. In
 particular, this document assumes the uri-host will contain
 only LDH labels because the user agent will have already
 converted any non-ASCII labels to their corresponding A-labels
 (see [RFC5890]). For this reason, origin-based security
 policies are sensitive to the IDNA algorithm employed by the
 user agent. See Section 8.4 for further discussion.

 6. If there is no port component of the URI:

 1. Let uri-port be the default port for the protocol given by
 uri-scheme.

 Otherwise:

 2. Let uri-port be the port component of the URI.

 7. Return the triple (uri-scheme, uri-host, uri-port).

5. Comparing Origins

 Two origins are "the same" if, and only if, they are identical. In
 particular:

 o If the two origins are scheme/host/port triples, the two origins
 are the same if, and only if, they have identical schemes, hosts,
 and ports.

 o An origin that is a globally unique identifier cannot be the same
 as an origin that is a scheme/host/port triple.

 Two URIs are same-origin if their origins are the same.

 NOTE: A URI is not necessarily same-origin with itself. For
 example, a data URI [RFC2397] is not same-origin with itself
 because data URIs do not use a server-based naming authority and
 therefore have globally unique identifiers as origins.

6. Serializing Origins

 This section defines how to serialize an origin to a unicode
 [Unicode6] string and to an ASCII [RFC20] string.

Barth Standards Track [Page 11]

RFC 6454 The Web Origin Concept December 2011

6.1. Unicode Serialization of an Origin

 The unicode-serialization of an origin is the value returned by the
 following algorithm:

 1. If the origin is not a scheme/host/port triple, then return the
 string

 null

 (i.e., the code point sequence U+006E, U+0075, U+006C, U+006C)
 and abort these steps.

 2. Otherwise, let result be the scheme part of the origin triple.

 3. Append the string "://" to result.

 4. Append each component of the host part of the origin triple
 (converted as follows) to the result, separated by U+002E FULL
 STOP code points ("."):

 1. If the component is an A-label, use the corresponding U-label
 instead (see [RFC5890] and [RFC5891]).

 2. Otherwise, use the component verbatim.

 5. If the port part of the origin triple is different from the
 default port for the protocol given by the scheme part of the
 origin triple:

 1. Append a U+003A COLON code point (":") and the given port, in
 base ten, to result.

 6. Return result.

6.2. ASCII Serialization of an Origin

 The ascii-serialization of an origin is the value returned by the
 following algorithm:

 1. If the origin is not a scheme/host/port triple, then return the
 string

 null

 (i.e., the code point sequence U+006E, U+0075, U+006C, U+006C)
 and abort these steps.

Barth Standards Track [Page 12]

RFC 6454 The Web Origin Concept December 2011

 2. Otherwise, let result be the scheme part of the origin triple.

 3. Append the string "://" to result.

 4. Append the host part of the origin triple to result.

 5. If the port part of the origin triple is different from the
 default port for the protocol given by the scheme part of the
 origin triple:

 1. Append a U+003A COLON code point (":") and the given port, in
 base ten, to result.

 6. Return result.

7. The HTTP Origin Header Field

 This section defines the HTTP Origin header field.

7.1. Syntax

 The Origin header field has the following syntax:

 origin = "Origin:" OWS origin-list-or-null OWS
 origin-list-or-null = %x6E %x75 %x6C %x6C / origin-list
 origin-list = serialized-origin *(SP serialized-origin)
 serialized-origin = scheme "://" host [":" port]
 ; <scheme>, <host>, <port> from RFC 3986

7.2. Semantics

 When included in an HTTP request, the Origin header field indicates
 the origin(s) that "caused" the user agent to issue the request, as
 defined by the API that triggered the user agent to issue the
 request.

 For example, consider a user agent that executes scripts on behalf of
 origins. If one of those scripts causes the user agent to issue an
 HTTP request, the user agent MAY use the Origin header field to
 inform the server of the security context in which the script was
 executing when it caused the user agent to issue the request.

 In some cases, a number of origins contribute to causing the user
 agents to issue an HTTP request. In those cases, the user agent MAY
 list all the origins in the Origin header field. For example, if the
 HTTP request was initially issued by one origin but then later

Barth Standards Track [Page 13]

RFC 6454 The Web Origin Concept December 2011

 redirected by another origin, the user agent MAY inform the server
 that two origins were involved in causing the user agent to issue the
 request.

7.3. User Agent Requirements

 The user agent MAY include an Origin header field in any HTTP
 request.

 The user agent MUST NOT include more than one Origin header field in
 any HTTP request.

 Whenever a user agent issues an HTTP request from a "privacy-
 sensitive" context, the user agent MUST send the value "null" in the
 Origin header field.

 NOTE: This document does not define the notion of a privacy-
 sensitive context. Applications that generate HTTP requests can
 designate contexts as privacy-sensitive to impose restrictions on
 how user agents generate Origin header fields.

 When generating an Origin header field, the user agent MUST meet the
 following requirements:

 o Each of the serialized-origin productions in the grammar MUST be
 the ascii-serialization of an origin.

 o No two consecutive serialized-origin productions in the grammar
 can be identical. In particular, if the user agent would generate
 two consecutive serialized-origins, the user agent MUST NOT
 generate the second one.

8. Security Considerations

 The same-origin policy is one of the cornerstones of security for
 many user agents, including web browsers. Historically, some user
 agents tried other security models, including taint tracking and
 exfiltration prevention, but those models proved difficult to
 implement at the time (although there has been recent interest in
 reviving some of these ideas).

 Evaluating the security of the same-origin policy is difficult
 because the origin concept itself plays such a central role in the
 security landscape. The notional origin itself is just a unit of
 isolation, imperfect as are most one-size-fits-all notions. That
 said, there are some systemic weaknesses, discussed below.

Barth Standards Track [Page 14]

RFC 6454 The Web Origin Concept December 2011

8.1. Reliance on DNS

 In practice, the same-origin policy relies upon the Domain Name
 System (DNS) for security because many commonly used URI schemes,
 such as http, use DNS-based naming authorities. If the DNS is
 partially or fully compromised, the same-origin policy might fail to
 provide the security properties required by applications.

 Some URI schemes, such as https, are more resistant to DNS compromise
 because user agents employ other mechanisms, such as certificates, to
 verify the source of content retrieved from these URIs. Other URI
 schemes, such as the chrome-extension URI scheme (see Section 4.3 of
 [CRX]), use a public-key-based naming authority and are fully secure
 against DNS compromise.

 The web origin concept isolates content retrieved from different URI
 schemes; this is essential to containing the effects of DNS
 compromise.

8.2. Divergent Units of Isolation

 Over time, a number of technologies have converged on the web origin
 concept as a convenient unit of isolation. However, many
 technologies in use today, such as cookies [RFC6265], pre-date the
 modern web origin concept. These technologies often have different
 isolation units, leading to vulnerabilities.

 One alternative is to use only the "registry-controlled" domain
 rather than the fully qualified domain name as the unit of isolation
 (e.g., "example.com" instead of "www.example.com"). This practice is
 problematic for a number of reasons and is NOT RECOMMENDED:

 1. The notion of a "registry-controlled" domain is a function of
 human practice surrounding the DNS rather than a property of the
 DNS itself. For example, many municipalities in Japan run public
 registries quite deep in the DNS hierarchy. There are widely
 used "public suffix lists", but these lists are difficult to keep
 up to date and vary between implementations.

 2. This practice is incompatible with URI schemes that do not use a
 DNS-based naming authority. For example, if a given URI scheme
 uses public keys as naming authorities, the notion of a
 "registry-controlled" public key is somewhat incoherent. Worse,
 some URI schemes, such as nntp, use dotted delegation in the
 opposite direction from DNS (e.g., alt.usenet.kooks), and others
 use the DNS but present the labels in the reverse of the usual
 order (e.g., com.example.www).

Barth Standards Track [Page 15]

RFC 6454 The Web Origin Concept December 2011

 At best, using "registry-controlled" domains is URI-scheme- and
 implementation-specific. At worst, differences between URI schemes
 and implementations can lead to vulnerabilities.

8.3. Ambient Authority

 When using the same-origin policy, user agents grant authority to
 content based on its URI rather than based on which objects the
 content can designate. This disentangling of designation from
 authority is an example of ambient authority and can lead to
 vulnerabilities.

 Consider, for example, cross-site scripting in HTML documents. If an
 attacker can inject script content into an HTML document, those
 scripts will run with the authority of the document’s origin, perhaps
 allowing the script access to sensitive information, such as the
 user’s medical records. If, however, the script’s authority were
 limited to those objects that the script could designate, the
 attacker would not gain any advantage by injecting the script into an
 HTML document hosted by a third party.

8.4. IDNA Dependency and Migration

 The security properties of the same-origin policy can depend
 crucially on details of the IDNA algorithm employed by the user
 agent. In particular, a user agent might map some international
 domain names (for example, those involving the U+00DF character) to
 different ASCII representations depending on whether the user agent
 uses IDNA2003 [RFC3490] or IDNA2008 [RFC5890].

 Migrating from one IDNA algorithm to another might redraw a number of
 security boundaries, potentially erecting new security boundaries or,
 worse, tearing down security boundaries between two mutually
 distrusting entities. Changing security boundaries is risky because
 combining two mutually distrusting entities into the same origin
 might allow one to attack the other.

Barth Standards Track [Page 16]

RFC 6454 The Web Origin Concept December 2011

9. IANA Considerations

 The permanent message header field registry (see [RFC3864]) has been
 updated with the following registration:

 Header field name: Origin

 Applicable protocol: http

 Status: standard

 Author/Change controller: IETF

 Specification document: this specification (Section 7)

10. References

10.1. Normative References

 [RFC20] Cerf, V., "ASCII format for network interchange", RFC 20,
 October 1969.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 September 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC4790] Newman, C., Duerst, M., and A. Gulbrandsen, "Internet
 Application Protocol Collation Registry", RFC 4790,
 March 2007.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", STD 68, RFC 5234,
 January 2008.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
 RFC 5890, August 2010.

Barth Standards Track [Page 17]

RFC 6454 The Web Origin Concept December 2011

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891, August 2010.

 [Unicode6] The Unicode Consortium, "The Unicode Standard, Version
 6.0.0", 2011,
 <http://www.unicode.org/versions/Unicode6.0.0/>.

10.2. Informative References

 [BOFGO] Jackson, C. and A. Barth, "Beware of Finer-Grained
 Origins", 2008,
 <http://w2spconf.com/2008/papers/s2p1.pdf>.

 [CORS] van Kesteren, A., "Cross-Origin Resource Sharing", W3C
 Working Draft WD-cors-20100727, July 2010,
 <http://www.w3.org/TR/2010/WD-cors-20100727/>.

 Latest version available at <http://www.w3.org/TR/cors/>.

 [CRX] Barth, A., Felt, A., Saxena, P., and A. Boodman,
 "Protecting Browsers from Extension Vulnerabilities",
 2010, <http://www.isoc.org/isoc/conferences/ndss/10/pdf/
 04.pdf>.

 [CSRF] Barth, A., Jackson, C., and J. Mitchell, "Robust Defenses
 for Cross-Site Request Forgery", 2008,
 <http://portal.acm.org/citation.cfm?id=1455770.1455782>.

 [HTML] Hickson, I., "HTML5", W3C Working Draft WD-html5-
 20110525, May 2011,
 <http://www.w3.org/TR/2011/WD-html5-20110525/>.

 Latest version available at
 <http://www.w3.org/TR/html5/>.

 [RFC2397] Masinter, L., "The "data" URL scheme", RFC 2397,
 August 1998.

 [RFC2817] Khare, R. and S. Lawrence, "Upgrading to TLS Within
 HTTP/1.1", RFC 2817, May 2000.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",
 RFC 3490, March 2003.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

Barth Standards Track [Page 18]

RFC 6454 The Web Origin Concept December 2011

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 April 2011.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
 RFC 6455, December 2011.

 [SNIFF] Barth, A. and I. Hickson, "Media Type Sniffing", Work
 in Progress, May 2011.

Barth Standards Track [Page 19]

RFC 6454 The Web Origin Concept December 2011

Appendix A. Acknowledgements

 We would like to thank Lucas Adamski, Stephen Farrell, Miguel A.
 Garcia, Tobias Gondrom, Ian Hickson, Anne van Kesteren, Jeff Hodges,
 Collin Jackson, Larry Masinter, Alexey Melnikov, Mark Nottingham,
 Julian Reschke, Peter Saint-Andre, Jonas Sicking, Sid Stamm, Daniel
 Veditz, and Chris Weber for their valuable feedback on this document.

Author’s Address

 Adam Barth
 Google, Inc.

 EMail: ietf@adambarth.com
 URI: http://www.adambarth.com/

Barth Standards Track [Page 20]

