I nt ernet Engi neering Task Force (I ETF) |. Fette

Request for Comments: 6455 Googl e, Inc.
Cat egory: Standards Track A. Mel ni kov
| SSN: 2070-1721 | sode Ltd.

Decenber 2011

The WebSocket Protoco

Abst r act

The WebSocket Protocol enables two-way comunication between a client
runni ng untrusted code in a controlled environment to a renote host
that has opted-in to comunications fromthat code. The security
nodel used for this is the origin-based security nodel commonly used
by web browsers. The protocol consists of an openi ng handshake

foll owed by basic nessage frami ng, |ayered over TCP. The goal of
this technology is to provide a mechani smfor browser-based
applications that need two-way conmuni cation with servers that does
not rely on opening nultiple HITP connections (e.g., using
XMLHt t pRequest or <iframe>s and | ong polling).

Status of This Meno
This is an Internet Standards Track docunent.

This docunment is a product of the Internet Engi neering Task Force
(ITETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/infol/rfc6455

Copyright Notice

Copyright (c) 2011 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust

Fette & Mel ni kov St andards Track [Page 1]

RFC 6455 The WebSocket Prot ocol Decenber 2011

include Sinplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided wi thout warranty as

described in the Sinplified BSD License.

Tabl e of Contents

1.

PRPPRPRPRRERERE

N

s

NNNNNPANPEHARININNOARONEDSWORANE

agoaoaan

aoo

I ntroduction .

1 Background .

2 Prot ocol Overview

3 Openi ng Handshake

4. dosing Handshake

5. Design Phil osophy

6 Security Mdel . .

7 Rel ationship to TCP and HTTP

8 Establ i shing a Connection . .

9. Subprotocols Using the V\ébSocket Pr ot ocol
Conf or mance Requirenents . S

.1. Ternminology and O her Conventl ons

WebSocket URIs . .

Openi ng Handshake

dient Requirenents

Server-Si de Requirenments . .
.1. Reading the dient’s Openl ng Handshake .
.2. Sending the Server’s Openi ng Handshake .

NN

Supporting Miultiple Versions of WbSocket Protocol
taFramng...................
Overvi ew .
Base Frani ng Prot ocol
dient-to-Server Msking .
Fragnent ati on .o
Control Franes .
.1. dose
.2. Ping .
.3. Pong .
Dat a Franes
Exanples . . .
Extensibility .
end| ng and Recei ving Data .
Sendi ng Data .
Recei ving Data .
osi ng the Connection .
Definitions . . .
Cl ose the WebSocket Oonnectl on .o
Start the WebSocket C osing Handshake .
The WebSocket C osing Handshake is Started .
The WebSocket Connection is C osed .
The WebSocket Connection d ose Code

o1 o1 o

il
ghwNE

Col | ected ABNF for New Header Fields Used in i—laﬁdshake

CoOoouh~Db

10

11
12
12
13
14
14
14
20
21
22

26
27
27
28
32
33

36
37
37

38
39

39
40
41
41
41
42
42
42
42

Fette & Mel ni kov St andards Track [Page 2]

43
43
44
44
44
44
45
45
45
47
48
48
48
48
50
50
50
50
51
52
53
53
53
54
54
54
54
55
56
57
57
58
58
59
60
61
61
62
64
65
66
66
67
68
68
69

RFC 6455 The WebSocket Protocol Decenber 2011
7.1.6. The WebSocket Connection C ose Reason
7.1.7. Fail the WbSocket Connection

7.2. Abnormal C osures .

7.2.1. dient-lnitiated Closure.
7.2.2. Server-lnitiated Cl osure . S
7.2.3. Recovering from Abnormal C osure .
7.3. Normal O osure of Connections
7.4 Status Codeso
7.4.1. Defined Status dees Co
7.4.2. Reserved Status Code Ranges
8. FError Handling .

8.1. Handling Errors |n UTF 8 Encoded Eata
9. Extensions . e

9.1. Negotiating ExtenS|ons

9.2. Known Extensions
10. Security Considerations

10.1. Non-Browser Clients

10.2. Oigin Considerations .

10.3. Attacks On Infrastructure (Nhsklng)

10. 4. Inplenentation-Specific Lints

10. 5. WebSocket Cient Authentication . .

10. 6. Connection Confidentiality and Integrlty .

10. 7. Handling of Invalid Data . . .

10.8. Use of SHA-1 by the WebSocket Fﬁndshake
11. 1 ANA Consi derations . Coe

11.1. Registration of New URI Schenes

11.1.1. Registration of "ws" Schene

11.1.2. Registration of "wss" Scheme . . .
11.2. Registration of the "WbSocket" HITP Upgrade Keymord .
11.3. Registration of New HTTP Header Fields . .

11.3.1. Sec-WbSocket-Key

11. 3. 2. Sec- WbSocket - Ext ensi ons

11. 3. 3. Sec-WebSocket - Accept .

11. 3. 4. Sec-WebSocket - Prot oco

11. 3. 5. Sec-WebSocket - Ver si on .

11. 4. WebSocket Extension Nane Reglstry

11.5. WebSocket Subprotocol Nane Registry

11.6. WebSocket Version Number Registry .

11.7. WebSocket C ose Code Number Registry .

11.8. WebSocket Opcode Registry . .

11.9. WebSocket Frami ng Header Bits Reglstry . . .
12. Using the WebSocket Protocol from O her SpeC|f|cat|ons
13. Acknow edgenents . C e e e e e
14. References . . .

14.1. Normative References

14. 2. Informative References

Fette & Mel ni kov St andards Track

[Page 3]

RFC 6455 The WebSocket Prot ocol Decenber 2011

1. Introduction
1.1. Background
_This section is non-normative. _

Hi storically, creating web applications that need bidirectiona
communi cati on between a client and a server (e.g., instant messagi ng
and gam ng applications) has required an abuse of HTTP to poll the
server for updates while sending upstreamnotifications as distinct
HTTP cal | s [RFC6202] .

This results in a variety of problens:

0 The server is forced to use a nunber of different underlying TCP
connections for each client: one for sending information to the
client and a new one for each incom ng nessage.

o0 The wire protocol has a high overhead, with each client-to-server
message havi ng an HTTP header.

0o The client-side script is forced to maintain a mapping fromthe
out goi ng connections to the incom ng connection to track replies.

A sinmpler solution would be to use a single TCP connection for
traffic in both directions. This is what the WbSocket Protoco

provi des. Conbined with the WebSocket API [WBAPI], it provides an
alternative to HITP polling for two-way comuni cation froma web page
to a renote server.

The sane technique can be used for a variety of web applications:
games, stock tickers, nultiuser applications with sinultaneous
editing, user interfaces exposing server-side services in real ting,
etc.

The WebSocket Protocol is designed to supersede existing

bi di recti onal conmuni cation technol ogi es that use HTTP as a transport
| ayer to benefit fromexisting infrastructure (proxies, filtering,

aut hentication). Such technol ogies were inplenented as trade-offs
between efficiency and reliability because HTTP was not initially
meant to be used for bidirectional communication (see [RFC6202] for
further discussion). The WbSocket Protocol attenpts to address the
goal s of existing bidirectional HTTP technol ogies in the context of
the existing HTTP infrastructure; as such, it is designed to work
over HTTP ports 80 and 443 as well as to support HITP proxi es and
internediaries, even if this inplies some conplexity specific to the
current environment. However, the design does not Iimt WbSocket to
HTTP, and future inplenentations could use a sinpler handshake over a

Fette & Mel ni kov St andards Track [Page 4]

RFC 6455 The WebSocket Prot ocol Decenber 2011

dedi cated port w thout reinventing the entire protocol. This |ast
point is inmportant because the traffic patterns of interactive
nmessagi ng do not closely match standard HTTP traffic and can i nduce
unusual | oads on sone conponents.

1.2. Protocol Overview
_This section is non-nornative. _
The protocol has two parts: a handshake and the data transfer.
The handshake fromthe client |ooks as follows:

GET /chat HTTP/ 1.1

Host: server. exanpl e. com

Upgr ade: websocket

Connecti on: Upgrade

Sec- WebSocket - Key: dGhl | HNhbXBsZSBub25j ZQ==
Oigin: http://exanple.com

Sec- WebSocket - Prot ocol : chat, superchat
Sec- WebSocket - Ver si on: 13

The handshake fromthe server |ooks as foll ows:

HTTP/ 1.1 101 Switching Protocols

Upgr ade: websocket

Connection: Upgrade

Sec- WbSocket - Accept : s3pPLMBi Txa@kYGzzhZRbK+x Qo=
Sec- WbSocket - Prot ocol : chat

The leading line fromthe client follows the Request-Line fornat.
The leading line fromthe server follows the Status-Line format. The
Request - Li ne and St atus-Line productions are defined in [RFC2616] .

An unordered set of header fields cones after the leading line in
both cases. The neaning of these header fields is specified in
Section 4 of this docunent. Additional header fields nmay al so be
present, such as cookies [RFC6265]. The fornmat and parsing of
headers is as defined in [RFC2616] .

Once the client and server have both sent their handshakes, and if
t he handshake was successful, then the data transfer part starts.
This is a two-way conmuni cati on channel where each side can

i ndependently fromthe other, send data at will.

After a successful handshake, clients and servers transfer data back

and forth in conceptual units referred to in this specification as
"messages”". On the wire, a nessage is conposed of one or nore

Fette & Mel ni kov St andards Track [Page 5]

RFC 6455 The WebSocket Prot ocol Decenber 2011

franmes. The WebSocket nessage does not necessarily correspond to a
particul ar network layer fram ng, as a fragnmented nessage nmay be
coal esced or split by an internediary.

A frame has an associated type. Each franme belonging to the sane
message contains the sane type of data. Broadly speaking, there are
types for textual data (which is interpreted as UTF-8 [RFC3629]
text), binary data (whose interpretation is left up to the
application), and control franmes (which are not intended to carry
data for the application but instead for protocol-Ievel signaling,
such as to signal that the connection should be closed). This
versi on of the protocol defines six frane types and | eaves ten
reserved for future use

1.3. Openi ng Handshake
_This section is non-normative. _

The openi ng handshake is intended to be conpatible with HTTP-based
server-side software and internediaries, so that a single port can be
used by both HTTP clients talking to that server and WbSocket
clients talking to that server. To this end, the WbSocket client’s
handshake is an HTTP Upgrade request:

GET /chat HTTP/ 1.1

Host: server. exanpl e.com

Upgr ade: websocket

Connecti on: Upgrade

Sec- WbSocket - Key: dGhl | HNnbXBsZSBub25j ZQ==
Oigin: http://exanple.com

Sec- WbSocket - Prot ocol : chat, superchat
Sec- WebSocket - Ver si on: 13

In conpliance with [RFC2616], header fields in the handshake may be
sent by the client in any order, so the order in which different
header fields are received is not significant.

The "Request-URI" of the GET nethod [RFC2616] is used to identify the
endpoi nt of the WebSocket connection, both to allow nultiple domains
to be served fromone IP address and to allow multiple WbSocket
endpoints to be served by a single server

The client includes the hostnane in the | Host| header field of its

handshake as per [RFC2616], so that both the client and the server
can verify that they agree on which host is in use.

Fette & Mel ni kov St andards Track [Page 6]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Addi tional header fields are used to select options in the WbSocket
Protocol. Typical options available in this version are the

subprot ocol sel ector (| Sec-WbSocket-Protocol|), list of extensions
support by the client (| Sec-WbSocket-Extensions|), |Oigin| header
field, etc. The | Sec-WbSocket-Protocol| request-header field can be
used to indicate what subprotocols (application-level protocols

| ayered over the WbSocket Protocol) are acceptable to the client.
The server selects one or none of the acceptable protocols and echoes
that value in its handshake to indicate that it has selected that

pr ot ocol

Sec- WebSocket - Prot ocol : chat

The | Origin| header field [RFC6454] is used to protect against

unaut hori zed cross-origin use of a WbSocket server by scripts using
the WebSocket APl in a web browser. The server is infornmed of the
script origin generating the WebSocket connection request. |If the
server does not wish to accept connections fromthis origin, it can
choose to reject the connection by sending an appropriate HTTP error
code. This header field is sent by browser clients; for non-browser
clients, this header field may be sent if it nmakes sense in the
context of those clients.

Finally, the server has to prove to the client that it received the
client’s WbSocket handshake, so that the server doesn't accept
connections that are not WbSocket connections. This prevents an
attacker fromtricking a WbSocket server by sending it carefully
crafted packets using XM_HttpRequest [XM.HttpRequest] or a form
submni ssi on.

To prove that the handshake was received, the server has to take two
pi eces of information and conbine themto forma response. The first
pi ece of information cones fromthe | Sec- WbSocket - Key| header field
in the client handshake:

Sec- WebSocket - Key: dGhl | HNhbXBsZSBub25j ZQ==

For this header field, the server has to take the value (as present
in the header field, e.g., the base64-encoded [RFC4648] version m nus
any leading and trailing whitespace) and concatenate this with the

G obally Unique lIdentifier (GQU D, [RFC4122]) "258EAFAS- E914- 47DA-
95CA- C5ABODC85B11" in string form which is unlikely to be used by
net wor k endpoi nts that do not understand the WebSocket Protocol. A
SHA-1 hash (160 bits) [FIPS. 180-3], base64-encoded (see Section 4 of
[RFC4648]), of this concatenation is then returned in the server’s
handshake.

Fette & Mel ni kov St andards Track [Page 7]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Concretely, if as in the exanpl e above, the | Sec- WbSocket - Key|
header field had the val ue "dGnl | HNhbXBsZSBub25j ZzQ==", the server
woul d concatenate the string "258EAFA5- E914- 47DA- 95CA- C5ABODC85B11"
to formthe string "dGhl | HNhbXBsZSBub25j ZQ==258EAFA5- E914- 47 DA- 95CA-
C5ABODC85B11". The server would then take the SHA-1 hash of this,
giving the value 0xb3 Ox7a Ox4f 0x2c OxcO 0x62 0x4f 0x16 0x90 Oxf6
0x46 0x06 Oxcf 0x38 0x59 0x45 Oxb2 Oxbe Oxc4 Oxea. This value is

t hen base64-encoded (see Section 4 of [RFC4648]), to give the val ue
"s3pPLMBi Txa@kYG&GzhZRbK+x0o=". This value woul d then be echoed in
t he | Sec- WbSocket - Accept| header fi el d.

The handshake fromthe server is nmuch sinpler than the client
handshake. The first line is an HTTP Status-Line, with the status
code 101:

HTTP/ 1.1 101 Switchi ng Protocols

Any status code other than 101 indicates that the WbSocket handshake
has not conpleted and that the semantics of HITP still apply. The
headers follow the status code

The | Connection| and | Upgrade| header fields conplete the HITP
Upgrade. The | Sec- WebSocket - Accept| header field indicates whether
the server is willing to accept the connection. |If present, this
header field nmust include a hash of the client’s nonce sent in

| Sec- WebSocket - Key| along with a predefined GUD. Any other val ue
must not be interpreted as an acceptance of the connection by the
server.

HTTP/ 1.1 101 Switching Protocols

Upgr ade: websocket

Connection: Upgrade

Sec- WbSocket - Accept: s3pPLMBi Txa@kYGzzhZRbK+x Qo=

These fields are checked by the WebSocket client for scripted pages.

I f the | Sec- WbSocket - Accept| val ue does not match the expected
value, if the header field is mssing, or if the HTTP status code is
not 101, the connection will not be established, and WebSocket franes

will not be sent.
Option fields can also be included. 1In this version of the protocol
the main option field is | Sec- WbSocket - Protocol |, which indicates

the subprotocol that the server has selected. WhbSocket clients
verify that the server included one of the values that was specified
in the WbSocket client’s handshake. A server that speaks nultiple
subprotocols has to make sure it selects one based on the client’s
handshake and specifies it in its handshake.

Fette & Mel ni kov St andards Track [Page 8]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Sec- WebSocket - Prot ocol : chat

The server can al so set cookie-related option fields to _set_
cooki es, as described in [RFC6265].

1.4. dosing Handshake
_This section is non-nornative. _
The cl osi ng handshake is far sinpler than the openi ng handshake.

Ei ther peer can send a control frane with data containing a specified
control sequence to begin the closing handshake (detailed in

Section 5.5.1). Upon receiving such a frame, the other peer sends a
Close frame in response, if it hasn’'t already sent one. Upon
receiving _that_ control frane, the first peer then closes the
connection, safe in the know edge that no further data is
forthconi ng.

After sending a control frame indicating the connection should be
cl osed, a peer does not send any further data; after receiving a

control frame indicating the connection should be closed, a peer

di scards any further data received.

It is safe for both peers to initiate this handshake sinultaneously.

The cl osi ng handshake is intended to conplenment the TCP cl osi ng
handshake (FI N ACK), on the basis that the TCP cl osi ng handshake is
not always reliable end-to-end, especially in the presence of

i ntercepting proxies and other internediaries.

By sending a Close frame and waiting for a Close frane in response,
certain cases are avoi ded where data may be unnecessarily lost. For
i nstance, on sone platforns, if a socket is closed with data in the
recei ve queue, a RST packet is sent, which will then cause recv() to
fail for the party that received the RST, even if there was data

wai ting to be read.

1.5. Design Phil osophy
_This section is non-normative. _
The WebSocket Protocol is designed on the principle that there should
be minimal framing (the only framng that exists is to nmake the
protocol frane-based instead of stream based and to support a

di stinction between Unicode text and binary franes). It is expected
that nmetadata woul d be | ayered on top of WebSocket by the application

Fette & Mel ni kov St andards Track [Page 9]

RFC 6455 The WebSocket Prot ocol Decenber 2011

layer, in the sane way that netadata is |layered on top of TCP by the
application layer (e.g., HITP)

Conceptual |y, WebSocket is really just a layer on top of TCP that
does the foll ow ng:

0 adds a web origin-based security nodel for browsers

0 adds an addressing and protocol nam ng mechani smto support
mul tiple services on one port and multiple host names on one |IP
addr ess

o layers a fram ng nmechanismon top of TCP to get back to the IP
packet nechanismthat TCP is built on, but without length lints

o includes an additional closing handshake in-band that is designed
to work in the presence of proxies and other internediaries

O her than that, WbSocket adds nothing. Basically it is intended to
be as close to just exposing raw TCP to script as possible given the
constraints of the Web. 1t’s also designed in such a way that its
servers can share a port with HTTP servers, by having its handshake
be a valid HTTP Upgrade request. One could conceptually use other
protocols to establish client-server nessaging, but the intent of
WebSockets is to provide a relatively sinple protocol that can
coexist with HTTP and depl oyed HTTP i nfrastructure (such as proxies)
and that is as close to TCP as is safe for use with such
infrastructure given security considerations, with targeted additions
to sinplify usage and keep sinple things sinple (such as the addition
of message senmantics).

The protocol is intended to be extensible; future versions wll
likely introduce additional concepts such as nultiplexing.

1.6. Security Mde
_This section is non-nornative. _

The WebSocket Protocol uses the origin nodel used by web browsers to
restrict which web pages can contact a WebSocket server when the
WebSocket Protocol is used froma web page. Naturally, when the
WebSocket Protocol is used by a dedicated client directly (i.e., not
froma web page through a web browser), the origin nodel is not
useful, as the client can provide any arbitrary origin string.

This protocol is intended to fail to establish a connection with

servers of pre-existing protocols |like SMIP [RFC5321] and HTTP, while
all owi ng HTTP servers to opt-in to supporting this protocol if

Fette & Mel ni kov St andards Track [Page 10]

RFC 6455 The WebSocket Prot ocol Decenber 2011

desired. This is achieved by having a strict and el aborate handshake
and by limting the data that can be inserted into the connection

bef ore the handshake is finished (thus linmiting how nmuch the server
can be influenced).

It is sinmlarly intended to fail to establish a connection when data
fromother protocols, especially HITP, is sent to a WbSocket server
for exanple, as might happen if an HTM. "form' were subnmitted to a
WebSocket server. This is primarily achieved by requiring that the
server prove that it read the handshake, which it can only do if the
handshake contains the appropriate parts, which can only be sent by a
WebSocket client. In particular, at the time of witing of this
specification, fields starting with | Sec-| cannot be set by an
attacker froma web browser using only HTM. and JavaScript APlIs such
as XM.Htt pRequest [XM_HttpRequest].

1.7. Relationship to TCP and HTTP
_This section is non-nornative. _

The WebSocket Protocol is an independent TCP-based protocol. Its
only relationship to HTTP is that its handshake is interpreted by
HTTP servers as an Upgrade request.

By default, the WebSocket Protocol uses port 80 for regular WbSocket
connections and port 443 for WbSocket connections tunnel ed over
Transport Layer Security (TLS) [RFC2818].

1.8. Establishing a Connection
_This section is non-nornative. _

Wien a connection is to be made to a port that is shared by an HITP
server (a situation that is quite likely to occur with traffic to
ports 80 and 443), the connection will appear to the HITP server to
be a regular GET request with an Upgrade offer. In relatively sinple
setups with just one | P address and a single server for all traffic
to a single hostname, this night allow a practical way for systens
based on the WebSocket Protocol to be deployed. In nore el aborate
setups (e.g., with load balancers and nultiple servers), a dedicated
set of hosts for WebSocket connections separate fromthe HITP servers
is probably easier to manage. At the tine of witing of this
specification, it should be noted that connections on ports 80 and
443 have significantly different success rates, with connections on
port 443 being significantly nore likely to succeed, though this may
change with tine.

Fette & Mel ni kov St andards Track [Page 11]

RFC 6455 The WebSocket Prot ocol Decenber 2011

1.9. Subprotocols Using the WebSocket Protoco
_This section is non-nornative. _

The client can request that the server use a specific subprotocol by
i ncluding the | Sec- WbSocket-Protocol| field in its handshake. If it
is specified, the server needs to include the sane field and one of
the sel ected subprotocol values in its response for the connection to
be establ i shed.

These subprotocol names should be registered as per Section 11.5. To
avoid potential collisions, it is reconmended to use nanes that
contain the ASCI| version of the domain nane of the subprotocol’s
originator. For exanple, if Exanple Corporation were to create a
Chat subprotocol to be inplenented by nany servers around the Wb
they could name it "chat.exanple.conf. |If the Exanple Organization
called their conpeting subprotocol "chat.exanmple.org", then the two
subprotocol s could be inplenented by servers sinmultaneously, with the
server dynamically selecting which subprotocol to use based on the
val ue sent by the client.

Subprot ocol s can be versioned in backward-inconpatible ways by
changi ng the subprotocol nane, e.g., going from
"booki ngs. exanpl e. net" to "v2. booki ngs. exanpl e.net". These
subprotocol s woul d be consi dered conpletely separate by WbSocket
clients. Backward-conpatible versioning can be inplenented by
reusi ng the same subprotocol string but carefully designing the
actual subprotocol to support this kind of extensibility.

2. Conformance Requirenents

Al'l diagranms, exanples, and notes in this specification are non-
normative, as are all sections explicitly marked non-nornmative.
Everything else in this specification is nornmative.

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

Requi rements phrased in the inperative as part of algorithms (such as
"strip any | eading space characters” or "return false and abort these
steps") are to be interpreted with the neaning of the key word
("MUST", "SHOULD', "MAY", etc.) used in introducing the algorithm

Fette & Mel ni kov St andards Track [Page 12]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Conf ormance requirenents phrased as al gorithnms or specific steps MAY
be i nplemented in any manner, so long as the end result is
equivalent. (In particular, the algorithms defined in this
specification are intended to be easy to follow and not intended to
be performant.)

2.1. Termnology and G her Conventions

_ASCI I _ shall mean the character-encodi ng scheme defined in
[ANSI . X3-4.1986].

Thi s docunent nekes reference to UTF-8 val ues and uses UTF-8
notational formats as defined in STD 63 [RFC3629].

Key terms such as named algorithnms or definitions are indicated like
this.

Nanmes of header fields or variables are indicated |ike |this|
Variabl e values are indicated like /this/.

Thi s docunent references the procedure to _Fail the WbSocket
Connection_. This procedure is defined in Section 7.1.7.

Converting a string to ASCII | owercase nmeans replacing all
characters in the range U+0041 to WOO5A (i.e., LATIN CAPITAL LETTER
A to LATIN CAPI TAL LETTER Z) with the correspondi ng characters in the
range U+0061 to U+007A (i.e., LATIN SVMALL LETTER A to LATI N SMALL
LETTER 2).

Conparing two strings in an _ASClI| case-insensitive_ manner neans
conparing them exactly, code point for code point, except that the
characters in the range U+0041 to WOO5A (i.e., LATIN CAPITAL LETTER
A to LATIN CAPI TAL LETTER Z) and the correspondi ng characters in the
range W+0061 to U+OO7A (i.e., LATIN SMALL LETTER A to LATIN SMALL
LETTER Z) are considered to al so match.

The term"URI" is used in this docunent as defined in [RFC3986].

When an inplenentation is required to _send_ data as part of the
WebSocket Protocol, the inplenentation MAY del ay the actua
transmission arbitrarily, e.g., buffering data so as to send fewer IP
packets.

Note that this docunent uses both [RFC5234] and [RFC2616] variants of
ABNF in different sections.

Fette & Mel ni kov St andards Track [Page 13]

RFC 6455 The WebSocket Prot ocol Decenber 2011

3.

4.

4.

WebSocket URI s

This specification defines two URI schenes, using the ABNF syntax
defined in RFC 5234 [RFC5234], and terninol ogy and ABNF productions
defined by the URI specification RFC 3986 [RFC3986].

ws-URI = "ws:" "//" host [":" port] path ["?" query]
wss-URI = "wss:" "//" host [":" port] path ["?" query]
host <host, defined in [RFC3986], Section 3.2.2>

port <port, defined in [RFC3986], Section 3.2.3>
pat h <pat h- abenpty, defined in [RFC3986], Section 3.3>
query = <query, defined in [RFC3986], Section 3.4>

The port conponent is OPTIONAL; the default for "ws" is port 80,
while the default for "wss" is port 443.

The URI is called "secure" (and it is said that "the secure flag is
set") if the schene conponent natches "wss" case-insensitively.

The "resource-nanme" (also known as /resource name/ in Section 4.1)
can be constructed by concatenating the foll ow ng:

o "/" if the path conponent is enpty

o the path conponent

o "?" if the query conponent is non-enpty
o the query conponent

Fragnent identifiers are neaningless in the context of WbSocket URIs
and MUST NOT be used on these URIs. As with any URI schene, the
character "#", when not indicating the start of a fragnent, MJST be
escaped as %@3.

Openi ng Handshake
1. dient Requirenents

To _Establish a WbSocket Connection_, a client opens a connection
and sends a handshake as defined in this section. A connection is
defined to initially be in a CONNECTING state. A client will need to
supply a /host/, /port/, /resource nane/, and a /secure/ flag, which
are the components of a WebSocket URI as discussed in Section 3,
along with a list of /protocols/ and /extensions/ to be used.
Additionally, if the client is a web browser, it supplies /origin/.

Fette & Mel ni kov St andards Track [Page 14]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Cients running in controlled environnents, e.g., browsers on nobile
handsets tied to specific carriers, MAY offload the nanagenment of the
connection to another agent on the network. In such a situation, the
client for the purposes of this specification is considered to

i ncl ude both the handset software and any such agents.

When the client is to _Establish a WebSocket Connection_ given a set
of (/host/, /port/, /resource nane/, and /secure/ flag), along with a
list of /protocols/ and /extensions/ to be used, and an /origin/ in
the case of web browsers, it MJST open a connection, send an opening
handshake, and read the server’s handshake in response. The exact
requi renents of how the connection should be opened, what shoul d be
sent in the openi ng handshake, and how the server’'s response shoul d
be interpreted are as follows in this section. 1In the follow ng
text, we will use terns from Section 3, such as "/host/" and
"/secure/ flag" as defined in that section.

1. The conponents of the WbSocket URI passed into this algorithm
(/host/, /port/, /resource nanme/, and /secure/ flag) MJIST be
valid according to the specification of WbSocket URIs specified
in Section 3. If any of the conponents are invalid, the client
MUST _Fail the WebSocket Connection_ and abort these steps.

2. If the client already has a WbSocket connection to the renote
host (I P address) identified by /host/ and port /port/ pair, even
if the remote host is known by another nane, the client MJST wait
until that connection has been established or for that connection
to have failed. There MJUST be no nore than one connection in a
CONNECTI NG state. If nultiple connections to the same | P address
are attenpted sinmultaneously, the client MJST serialize them so
that there is no nore than one connection at a tinme running
t hrough the follow ng steps.

If the client cannot determine the |IP address of the renote host
(for example, because all conmunication is being done through a
proxy server that perforns DNS queries itself), then the client
MUST assune for the purposes of this step that each host nane
refers to a distinct renote host, and instead the client SHOULD
limt the total nunber of sinultaneous pending connections to a
reasonably | ow nunber (e.g., the client might allow sinultaneous
pendi ng connections to a.exanple.comand b. exanple.com but if
thirty sinultaneous connections to a single host are requested,
that may not be allowed). For exanple, in a web browser context,
the client needs to consider the nunber of tabs the user has open
in setting alimt to the nunber of sinultaneous pending

connecti ons.

Fette & Mel ni kov St andards Track [Page 15]

RFC 6455 The WebSocket Prot ocol Decenber 2011

NOTE: This nakes it harder for a script to performa denial -of-
service attack by just opening a | arge nunber of WebSocket
connections to a renote host. A server can further reduce the
| oad on itself when attacked by pausing before closing the
connection, as that will reduce the rate at which the client
reconnects.

NOTE: There is no linmt to the nunber of established WebSocket
connections a client can have with a single renpte host. Servers
can refuse to accept connections from hosts/|P addresses with an
excessi ve nunber of existing connections or di sconnect resource-
hoggi ng connecti ons when suffering high | oad.

3. _Proxy Usage : If the client is configured to use a proxy when
usi ng the WebSocket Protocol to connect to host /host/ and port
/port/, then the client SHOULD connect to that proxy and ask it
to open a TCP connection to the host given by /host/ and the port
given by /port/.

EXAMPLE: For exanple, if the client uses an HTTP proxy for al
traffic, then if it was to try to connect to port 80 on server
exanple.com it mght send the following Iines to the proxy
server:

CONNECT exanpl e.com 80 HTTP/ 1.1
Host: exanpl e.com

If there was a password, the connection might |ook |ike:

CONNECT exanpl e.com 80 HTTP/ 1.1
Host: exanpl e. com
Proxy-aut hori zation: Basic ZWRuYWLvZGU6bnBj YXBI cyE=

If the client is not configured to use a proxy, then a direct TCP
connecti on SHOULD be opened to the host given by /host/ and the
port given by /port/.

NOTE: | nplenentations that do not expose explicit U for

sel ecting a proxy for WbSocket connections separate from ot her
proxi es are encouraged to use a SOCKS5 [RFC1928] proxy for
WebSocket connections, if available, or failing that, to prefer
the proxy configured for HTTPS connecti ons over the proxy
configured for HTTP connecti ons.

For the purpose of proxy autoconfiguration scripts, the URl to
pass the function MJUST be constructed from/host/, /port/,
/resource nane/, and the /secure/ flag using the definition of a
WebSocket URI as given in Section 3.

Fette & Mel ni kov St andards Track [Page 16]

RFC 6455 The WebSocket Prot ocol Decenber 2011

NOTE: The WebSocket Protocol can be identified in proxy
aut oconfiguration scripts fromthe schene ("ws" for unencrypted
connections and "wss" for encrypted connections).

4. If the connection could not be opened, either because a direct
connection failed or because any proxy used returned an error,
then the client MUST Fail the WbSocket Connection_ and abort
t he connection attenpt.

5. If /secure/ is true, the client MJUST performa TLS handshake over
the connection after opening the connection and before sending
t he handshake data [RFC2818]. |If this fails (e.g., the server’'s
certificate could not be verified), then the client MUST Fai
t he WebSocket Connection_ and abort the connection. O herw se,
all further communication on this channel MJST run through the
encrypted tunnel [RFC5246].

Clients MIST use the Server Nane |Indication extension in the TLS
handshake [RFC6066] .

Once a connection to the server has been established (including a
connection via a proxy or over a TLS-encrypted tunnel), the client
MUST send an openi ng handshake to the server. The handshake consists
of an HTTP Upgrade request, along with a list of required and
optional header fields. The requirenents for this handshake are as
fol | ows.

1. The handshake MJUST be a valid HITP request as specified by
[RFC2616] .

2. The met hod of the request MJUST be GET, and the HTTP versi on MJST
be at least 1.1.

For exanple, if the WbSocket URI is "ws://exanple.confchat",
the first Iine sent should be "GET /chat HITP/1.1".

3. The "Request-URI" part of the request MJST natch the /resource
nane/ defined in Section 3 (a relative URI) or be an absolute
http/ https URI that, when parsed, has a /resource nane/, /host/,
and /port/ that match the correspondi ng ws/wss URI

4. The request MJST contain a | Host| header field whose val ue
contains /host/ plus optionally ":" followed by /port/ (when not
using the default port).

5. The request MJST contain an | Upgrade| header field whose val ue
MUST i ncl ude the "websocket"” keyword.

Fette & Mel ni kov St andards Track [Page 17]

RFC 6455

10.

The WebSocket Prot ocol Decenber 2011

The request MJST contain a | Connection| header field whose val ue
MUST i ncl ude the "Upgrade" token

The request MJST include a header field with the name

| Sec- WebSocket - Key| . The value of this header field MIST be a
nonce consisting of a randonmly sel ected 16-byte val ue that has
been base64-encoded (see Section 4 of [RFC4648]). The nonce
MUST be sel ected randomly for each connection

NOTE: As an exanple, if the randomy selected value was the
sequence of bytes 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09
Ox0a Ox0b 0xOc 0x0d OxOe 0OxOf 0x10, the value of the header
field woul d be "AQ DBAUGBwgJCgs MDQUPEC=="

The request MJST include a header field with the name | Oigin|

[RFC6454] if the request is coming froma browser client. |If
the connection is froma non-browser client, the request NMNAY
include this header field if the semantics of that client match
t he use-case described here for browser clients. The value of
this header field is the ASCII serialization of origin of the
context in which the code establishing the connection is

runni ng. See [RFC6454] for the details of how this header field
val ue i s constructed.

As an exanple, if code downl oaded from www. exanpl e.com attenpts
to establish a connection to ww2. exanpl e.com the value of the
header field would be "http://ww. exanpl e. coni.

The request MJST include a header field with the name
| Sec- WebSocket - Version|. The value of this header field MJUST be
13.

NOTE: Al t hough draft versions of this docunment (-09, -10, -11
and -12) were posted (they were nostly conprised of editoria
changes and clarifications and not changes to the wire
protocol), values 9, 10, 11, and 12 were not used as valid

val ues for Sec-WbSocket-Version. These values were reserved in
the ANA registry but were not and will not be used.

The request MAY include a header field with the nane

| Sec- WebSocket - Protocol |. If present, this value indicates one
or nore conma-separ ated subprotocol the client wi shes to speak
ordered by preference. The elenments that conprise this val ue
MUST be non-enpty strings with characters in the range U+0021 to
W007E not including separator characters as defined in

[RFC2616] and MJST all be unique strings. The ABNF for the

val ue of this header field is 1#token, where the definitions of
constructs and rules are as given in [RFC2616] .

Fette & Mel ni kov St andards Track [Page 18]

RFC 6455 The WebSocket Prot ocol Decenber 2011

11.

12.

The request MAY include a header field with the nane

| Sec- WbSocket - Extensions|. |If present, this value indicates
the protocol -1evel extension(s) the client wishes to speak. The
interpretation and format of this header field is described in
Section 9. 1.

The request MAY include any other header fields, for exanple,
cooki es [RFC6265] and/or authentication-rel ated header fields
such as the | Aut hori zation| header field [RFC2616], which are
processed according to docunents that define them

Once the client’s opening handshake has been sent, the client MJST
wait for a response fromthe server before sending any further data.
The client MJUST validate the server’s response as foll ows:

1

If the status code received fromthe server is not 101, the
client handl es the response per HITP [RFC2616] procedures. In
particular, the client mght performauthentication if it
receives a 401 status code; the server night redirect the client
using a 3xx status code (but clients are not required to foll ow
thenm), etc. O herw se, proceed as foll ows.

If the response lacks an | Upgrade| header field or the | Upgrade
header field contains a value that is not an ASCI| case-
insensitive match for the val ue "websocket”, the client MJST
Fail the WebSocket Connection.

If the response | acks a | Connection| header field or the

| Connection| header field doesn’t contain a token that is an
ASCI | case-insensitive match for the val ue "Upgrade", the client
MUST Fail the WbSocket Connection_.

If the response | acks a | Sec- WbSocket - Accept| header field or

t he | Sec- WebSocket - Accept| contains a value other than the
base64- encoded SHA-1 of the concatenation of the | Sec-WbSocket -
Key| (as a string, not base64-decoded) with the string "258EAFA5-
E914- 47DA- 95CA- C5ABODC85B11" but ignoring any | eading and
trailing whitespace, the client MUST _Fail the WebSocket
Connection_.

If the response includes a | Sec- WebSocket - Ext ensi ons| header
field and this header field indicates the use of an extension
that was not present in the client’s handshake (the server has
i ndi cated an extension not requested by the client), the client
MJUST _Fail the WebSocket Connection_. (The parsing of this
header field to determ ne which extensions are requested is

di scussed in Section 9.1.)

Fette & Mel ni kov St andards Track [Page 19]

RFC 6455 The WebSocket Prot ocol Decenber 2011

6. |If the response includes a | Sec- WbSocket - Prot ocol | header field
and this header field indicates the use of a subprotocol that was
not present in the client’s handshake (the server has indicated a
subprotocol not requested by the client), the client MIST _Fail
the WebSocket Connection_.

If the server’s response does not conformto the requirenents for the
server’s handshake as defined in this section and in Section 4.2.2,
the client MUST _Fail the WebSocket Connection_.

Pl ease note that according to [RFC2616], all header field nanes in
both HTTP requests and HITP responses are case-insensitive.

If the server’s response is validated as provided for above, it is
said that _The WebSocket Connection is Established_ and that the
WebSocket Connection is in the OPEN state. The Extensions In Use_
is defined to be a (possibly enpty) string, the value of which is
equal to the value of the | Sec- WbSocket - Ext ensi ons| header field
supplied by the server’s handshake or the null value if that header
field was not present in the server’s handshake. The _Subprotocol In
Use_is defined to be the value of the | Sec- WbSocket - Prot ocol

header field in the server’s handshake or the null value if that
header field was not present in the server’s handshake.

Additionally, if any header fields in the server’s handshake indicate
that cooki es should be set (as defined by [RFC6265]), these cookies
are referred to as _Cookies Set During the Server’s Opening
Handshake_.

4.2. Server-Side Requirenents

Servers MAY of fl oad t he managenent of the connection to other agents
on the network, for exanple, |oad balancers and reverse proxies. In
such a situation, the server for the purposes of this specification

is considered to include all parts of the server-side infrastructure
fromthe first device to termnate the TCP connection all the way to
the server that processes requests and sends responses.

EXAMPLE: A data center mght have a server that responds to WbSocket
requests with an appropri ate handshake and then passes the connection
to another server to actually process the data franes. For the

pur poses of this specification, the "server"” is the conbination of
bot h conput ers.

Fette & Mel ni kov St andards Track [Page 20]

RFC 6455 The WebSocket Prot ocol Decenber 2011

4.2.1. Reading the dient’s Openi ng Handshake

When a client starts a WebSocket connection, it sends its part of the
openi ng handshake. The server must parse at |least part of this
handshake in order to obtain the necessary information to generate
the server part of the handshake.

The client’s opening handshake consists of the followi ng parts. |If
the server, while reading the handshake, finds that the client did
not send a handshake that matches the description below (note that as
per [RFC2616], the order of the header fields is not inportant),
including but not Iimted to any violations of the ABNF grammar
specified for the conponents of the handshake, the server MJST stop
processing the client’s handshake and return an HTTP response with an
appropriate error code (such as 400 Bad Request).

1. An HTTP/ 1.1 or higher GET request, including a "Request-UR"
[RFC2616] that should be interpreted as a /resource nane/
defined in Section 3 (or an absolute HTTP/HTTPS URI contai ni ng
the /resource nane/).

2. A | Host| header field containing the server’s authority.

3. An | Upgrade| header field containing the value "websocket",
treated as an ASCI| case-insensitive val ue.

4. A | Connection| header field that includes the token "Upgrade"
treated as an ASClI| case-insensitive val ue.

5. A | Sec- WebSocket - Key| header field with a base64-encoded (see
Section 4 of [RFC4648]) value that, when decoded, is 16 bytes in
| engt h.

6. A | Sec- WbSocket - Ver si on| header field, with a value of 13.

7. Optionally, an |Oigin| header field. This header field is sent
by all browser clients. A connection attenpt |lacking this
header field SHOULD NOT be interpreted as coning froma browser
client.

8. Optionally, a | Sec- WbSocket-Protocol| header field, with a |ist
of val ues indicating which protocols the client would like to
speak, ordered by preference.

9. Optionally, a | Sec- WbSocket - Ext ensi ons| header field, with a
list of values indicating which extensions the client would Iike
to speak. The interpretation of this header field is discussed
in Section 9.1.

Fette & Mel ni kov St andards Track [Page 21]

RFC 6455 The WebSocket Prot ocol Decenber 2011

4.

Fette & Mel ni kov

1

2.

0.

2.

Optionally, other header fields, such as those used to send
cooki es or request authentication to a server. Unknown header
fields are ignored, as per [RFC2616].

Sendi ng the Server’s (Openi ng Handshake

Wien a client establishes a WbSocket connection to a server, the
server MJST conplete the followi ng steps to accept the connection and
send the server’s openi ng handshake.

1

If the connection is happening on an HTTPS (HTTP-over-TLS) port,
performa TLS handshake over the connection. |If this fails
(e.g., the client indicated a host nane in the extended client
hell o "server_nanme" extension that the server does not host),
then cl ose the connection; otherw se, all further comunication
for the connection (including the server’s handshake) MJST run
t hrough the encrypted tunnel [RFC5246].

The server can performadditional client authentication, for
exanpl e, by returning a 401 status code with the corresponding
| WAM Aut hent i cate| header field as described in [RFC2616]

The server MAY redirect the client using a 3xx status code
[RFC2616]. Note that this step can happen together wth, before,
or after the optional authentication step described above.

Establish the follow ng infornmation:

/origin/
The | Origin|] header field in the client’s handshake indicates
the origin of the script establishing the connection. The
originis serialized to ASCIlI and converted to | owercase. The
server MAY use this information as part of a determ nation of
whet her to accept the inconming connection. |If the server does
not validate the origin, it will accept connections from
anywhere. |f the server does not wish to accept this
connection, it MJST return an appropriate HTTP error code
(e.g., 403 Forbidden) and abort the WbSocket handshake

described in this section. For npre detail, refer to
Section 10.
/ key/

The | Sec- WebSocket - Key| header field in the client’s handshake
i ncl udes a base64-encoded value that, if decoded, is 16 bytes
in length. This (encoded) value is used in the creation of
the server’s handshake to indicate an acceptance of the
connection. It is not necessary for the server to base64-
decode the | Sec- WebSocket - Key| val ue.

St andards Track [Page 22]

RFC 6455 The WebSocket Prot ocol Decenber 2011

/version/
The | Sec- WebSocket - Versi on| header field in the client’s
handshake i ncludes the version of the WbSocket Protocol wth
which the client is attenpting to comunicate. If this
versi on does not match a version understood by the server, the
server MUST abort the WebSocket handshake described in this
section and instead send an appropriate HTTP error code (such
as 426 Upgrade Required) and a | Sec- WebSocket - Ver si on| header
field indicating the version(s) the server is capable of
under st andi ng.

/ resour ce nane/
An identifier for the service provided by the server. |[If the
server provides nultiple services, then the value should be
derived fromthe resource name given in the client’s handshake
in the "Request-URI" [RFC2616] of the GET method. |If the
requested service is not available, the server MIJST send an
appropriate HITP error code (such as 404 Not Found) and abort
t he WebSocket handshake.

/ subpr ot ocol /
Either a single value representing the subprotocol the server
is ready to use or null. The value chosen MJST be derived
fromthe client’s handshake, specifically by selecting one of
the values fromthe | Sec- WbSocket-Protocol| field that the
server is willing to use for this connection (if any). |If the
client’s handshake did not contain such a header field or if
the server does not agree to any of the client’s requested
subprotocols, the only acceptable value is null. The absence
of such a field is equivalent to the null value (neaning that
if the server does not wish to agree to one of the suggested
subprotocols, it MJUST NOT send back a | Sec- WbSocket - Pr ot ocol
header field in its response). The enpty string is not the
same as the null value for these purposes and is not a |l ega
value for this field. The ABNF for the value of this header
field is (token), where the definitions of constructs and
rules are as given in [RFC2616] .

/ ext ensi ons/
A (possibly enpty) list representing the protocol-I|eve
extensions the server is ready to use. |If the server supports
nmul ti pl e extensions, then the value MJUST be derived fromthe
client’s handshake, specifically by selecting one or nore of
the values fromthe | Sec- WbhSocket - Extensions| field. The
absence of such a field is equivalent to the null value. The
enpty string is not the sanme as the null value for these

Fette & Mel ni kov St andards Track [Page 23]

RFC 6455 The WebSocket Prot ocol Decenber 2011

purposes. Extensions not listed by the client MJUST NOT be
listed. The nmethod by which these val ues shoul d be sel ected
and interpreted is discussed in Section 9.1.

5. If the server chooses to accept the incom ng connection, it MJST
reply with a valid HTTP response indicating the foll ow ng.

1. A Status-Line with a 101 response code as per RFC 2616
[RFC2616]. Such a response could look |ike "HTTP/1.1 101
Swi t chi ng Protocol s"

2. An | Upgrade| header field with value "websocket" as per RFC
2616 [RFC2616].

3. A | Connection| header field with val ue "Upgrade"

4. A | Sec- WbSocket - Accept| header field. The value of this
header field is constructed by concatenating /key/, defined
above in step 4 in Section 4.2.2, with the string "258EAFAS5-
E914- 47DA- 95CA- C5ABODC85B11", taking the SHA-1 hash of this
concatenated value to obtain a 20-byte val ue and base64-
encodi ng (see Section 4 of [RFC4648]) this 20-byte hash

The ABNF [RFC2616] of this header field is defined as
fol | ows:

Sec- WbSocket - Accept = base64-val ue- non-enpty
base64- val ue-non-enpty = (1*base64-data [base64-padding])
base64- paddi ng

base64- dat a 4baseb64- char act er

base64- paddi ng (2base64- character "==")
(3base64-character "=")
base64-character = ALPHA | DIGT | "+" | "/"

NOTE: As an exanple, if the value of the | Sec- WbSocket - Key| header
field in the client’s handshake were "dGChl | HNhbXBsZSBub25j ZQ==", the
server woul d append the string "258EAFA5- E914- 47DA- 95CA- C5ABODC85B11"
to formthe string "dGhl | HNhbXBsZSBub25j ZQ==258EAFA5- E914- 47DA- 95CA-
C5ABODC85B11". The server would then take the SHA-1 hash of this
string, giving the value O0xb3 0Ox7a 0x4f O0x2c OxcO 0x62 Ox4f 0x16 0x90
Oxf 6 0x46 0x06 Oxcf 0x38 0x59 0x45 Oxb2 Oxbe Oxc4 Oxea. This value
is then base64-encoded, to give the val ue

"s3pPLMBI Txa@@kYG&zzhZRbK+xCQo=", which would be returned in the

| Sec- WebSocket - Accept| header field.

5. Optionally, a | Sec-WebSocket -Protocol| header field, with a
val ue /subprotocol/ as defined in step 4 in Section 4.2.2.

Fette & Mel ni kov St andards Track [Page 24]

RFC 6455 The WebSocket Prot ocol Decenber 2011

6. Optionally, a | Sec-WbSocket - Ext ensi ons| header field, with a
val ue /extensions/ as defined in step 4 in Section 4.2.2. |If
mul tiple extensions are to be used, they can all be listed in
a single | Sec- WwbSocket - Ext ensi ons| header field or split
between multiple instances of the | Sec- WbSocket - Ext ensi ons
header field.

This conpl etes the server’s handshake. |f the server finishes these
steps without aborting the WebSocket handshake, the server considers
t he WebSocket connection to be established and that the WbSocket
connection is in the OPEN state. At this point, the server may begin
sendi ng (and receiving) data.

4.3. Collected ABNF for New Header Fields Used in Handshake

This section is using ABNF syntax/rules from Section 2.1 of
[RFC2616], including the "inplied *LW5 rul e"

Note that the follow ng ABNF conventions are used in this section
Sone nanmes of the rules correspond to nanmes of the correspondi ng
header fields. Such rules express values of the correspondi ng header
fields, for exanple, the Sec-WbSocket-Key ABNF rul e describes syntax
of the | Sec- WbSocket - Key| header field value. ABNF rules with the
"-Client" suffix in the nane are only used in requests sent by the
client to the server; ABNF rules with the "-Server" suffix in the
nane are only used in responses sent by the server to the client.

For exanple, the ABNF rul e Sec- WbSocket - Protocol -Cient describes
syntax of the | Sec- WbSocket-Protocol| header field value sent by the
client to the server

The foll owi ng new header fields can be sent during the handshake from
the client to the server

Sec- WbSocket - Key = base64-val ue- non-enpty
Sec- WbSocket - Ext ensi ons = extension-|i st
Sec- WbSocket - Prot ocol -Cl i ent = 1#t oken
Sec- WebSocket - Versi on-C i ent = version

base64- val ue-non-enpty = (1*base64-data [base64-padding])
base64- paddi ng

base64- dat a 4baseb4- char act er

base64- paddi ng (2base64- character "==")
(3base64-character "=")
base64-character = ALPHA | DIGT | "+" | "/"

extension-list = 1#extension

ext ensi on = extension-token *(";
ext ensi on-t oken = regi st ered-token
regi stered-token = token

ext ensi on- param)

Fette & Mel ni kov St andards Track [Page 25]

RFC 6455 The WebSocket Prot ocol Decenber 2011

4.4,

Fet

extension-param = token ["=" (token | quoted-string)]
; When using the quoted-string syntax variant, the val ue
; after quoted-string unescapi ng MIST conformto the

;. 'token’ ABNF.
NZDIGA T = "1 | "2"] "3 | "4"] "5" | "e"
VA I - S

version = DIGT | (NZDGAT DAT)
("1" DDATDGET) | ("2 DDATDGAT
; Limted to 0-255 range, with no | eading zeros

The foll owi ng new header fields can be sent during the handshake from
the server to the client:

Sec- WebSocket - Ext ensi ons = extension-|i st

Sec- WbSocket - Accept = base64-val ue- non-enpty
Sec- WbSocket - Prot ocol - Server = token

Sec- WbSocket - Ver si on- Server = 1#version

Supporting Multiple Versions of WbSocket Protoco

This section provides sone guidance on supporting nultiple versions
of the WebSocket Protocol in clients and servers.

Usi ng the WebSocket version advertisenent capability (the
| Sec- WebSocket - Versi on| header field), a client can initially request
the version of the WbSocket Protocol that it prefers (which doesn't

necessarily have to be the latest supported by the client). |If the
server supports the requested version and the handshake nessage is
otherwi se valid, the server will accept that version. |If the server

doesn’t support the requested version, it MJST respond with a

| Sec- WebSocket - Versi on| header field (or multiple

| Sec- WebSocket - Versi on| header fields) containing all versions it is
willing to use. At this point, if the client supports one of the
advertised versions, it can repeat the WbSocket handshake using a
new versi on val ue.

The foll owi ng exanpl e denbnstrates version negotiati on descri bed
above:

GET /chat HTTP/ 1.1

Host: server. exanpl e. com
Upgr ade: websocket
Connection: Upgrade

Séé-VEbSocket-VErsion: 25

te & Mel ni kov St andards Track [Page 26]

RFC 6455 The WebSocket Prot ocol Decenber 2011

The response fromthe server m ght ook as foll ows:
HTTP/ 1.1 400 Bad Request
ééé—VEbSocket—Vérsion: 13, 8, 7

Note that the |ast response fromthe server m ght also | ook I|ike:
HTTP/ 1.1 400 Bad Request

ééé—VEbSocket—Vérsion: 13
Sec- WbSocket - Version: 8, 7

The client now repeats the handshake that confornms to version 13:

GET /chat HTTP/ 1.1

Host: server. exanpl e. com
Upgr ade: websocket
Connection: Upgrade

Séé-VEbSocket-VErsion: 13
5. Data Fram ng
5.1. Overview

In the WbSocket Protocol, data is transmitted using a sequence of
franes. To avoid confusing network intermediaries (such as

i ntercepting proxies) and for security reasons that are further

di scussed in Section 10.3, a client MJST mask all frames that it
sends to the server (see Section 5.3 for further details). (Note

t hat masking is done whether or not the WbSocket Protocol is running
over TLS.) The server MJST cl ose the connection upon receiving a
frane that is not masked. 1In this case, a server MAY send a C ose
frane with a status code of 1002 (protocol error) as defined in
Section 7.4.1. A server MJST NOT nask any franes that it sends to
the client. A client MIUST close a connection if it detects a nasked
frane. In this case, it MAY use the status code 1002 (protoco

error) as defined in Section 7.4.1. (These rules nmight be relaxed in
a future specification.)

The base frami ng protocol defines a frame type with an opcode, a
payl oad | ength, and designated | ocations for "Extension data" and
"Application data", which together define the "Payl oad data"
Certain bits and opcodes are reserved for future expansion of the
pr ot ocol

Fette & Mel ni kov St andards Track [Page 27]

RFC 6455 The WebSocket Prot ocol Decenber 2011

A data frame MAY be transnitted by either the client or the server at
any tine after opening handshake conpl eti on and before that endpoint
has sent a Cose frame (Section 5.5.1).

5.2. Base Framing Protoco

This wire format for the data transfer part is described by the ABNF
[RFC5234] given in detail in this section. (Note that, unlike in

ot her sections of this docunment, the ABNF in this section is
operating on groups of bits. The length of each group of bits is
indicated in a coment. Wen encoded on the wire, the nost
significant bit is the leftnost in the ABNF). A high-level overview
of the framing is given in the following figure. In a case of
conflict between the figure below and the ABNF specified later in
this section, the figure is authoritative.

0 1 2 3
01234567890123456789012345678901
B i B S o m e e e e e eae oo +

| FIRI R R opcode|M Payload |len | Ext ended payl oad | ength
[1]SIs s (4 [|A (7) | _ (16/64) |
| N V| V]| V| | S| | (if payload | en==126/127)

| 11]2]3] | K] | |
R S S i U [T e
| Ext ended payl oad |l ength continued, if payload len == 127
e +
| | Maski ng-key, if MASK set to 1 |
Fom e m e e e e e e e e e e e Fom e m e e e e e e e e e e e +
| Maski ng-key (continued) | Payl oad Dat a

o e e e e e e e e e e e e oo e
: Payl oad Data continued ..
e
| Payl oad Data continued ..

o mmm emao o +

FIN. 1 bit

Indicates that this is the final fragnment in a message. The first
fragment MAY al so be the final fragnent.

RSV1, RSV2, RSV3: 1 bit each

MUST be 0 unless an extension is negotiated that defines neanings
for non-zero values. |If a nonzero value is received and none of
the negoti ated extensions defines the neaning of such a nonzero
val ue, the receiving endpoint MUST _Fail the WebSocket

Connecti on_.

Fette & Mel ni kov St andards Track [Page 28]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Opcode: 4 bits

Defines the interpretation of the "Payload data". |[|f an unknown
opcode is received, the receiving endpoint MUST _Fail the
WebSocket Connection_. The follow ng val ues are defi ned.

* OO0 denotes a continuation frane

* Ox1 denotes a text frane

* Ox2 denotes a binary frane

* Ox3-7 are reserved for further non-control franes

* o8 denotes a connection close

* Ox9 denotes a ping

* OxA denotes a pong

* OxB-F are reserved for further control franes
Mask: 1 bit

Defi nes whet her the "Payload data" is nmasked. |If set to 1, a
maski ng key is present in masking-key, and this is used to unmask
the "Payl oad data" as per Section 5.3. Al frames sent from
client to server have this bit set to 1

Payl oad I ength: 7 bits, 7+16 bits, or 7+64 bits

The length of the "Payload data", in bytes: if 0-125, that is the
payl oad length. [If 126, the following 2 bytes interpreted as a
16-bit unsigned integer are the payload length. |[If 127, the
following 8 bytes interpreted as a 64-bit unsigned integer (the
nost significant bit MJST be 0) are the payload length. Miltibyte
I ength quantities are expressed in network byte order. Note that
in all cases, the niniml nunber of bytes MJST be used to encode
the length, for exanple, the length of a 124-byte-long string
can’t be encoded as the sequence 126, 0, 124. The payload | ength
is the length of the "Extension data" + the Iength of the
"Application data". The length of the "Extension data" nay be
zero, in which case the payload length is the Iength of the
"Application data"

Fette & Mel ni kov St andards Track [Page 29]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Maski ng-key: 0 or 4 bytes

Al'l frames sent fromthe client to the server are nasked by a
32-bit value that is contained within the frane. This field is
present if the nmask bit is set to 1 and is absent if the mask bit
is set to 0. See Section 5.3 for further information on client-
t o-server naski ng.

Payl oad data: (x+y) bytes

The "Payl oad data" is defined as "Extension data" concatenated
with "Application data".

Extensi on data: x bytes

The "Extension data" is O bytes unless an extension has been
negoti ated. Any extension MJST specify the I ength of the
"Extension data", or how that length may be cal cul ated, and how

t he extension use MJST be negotiated during the openi ng handshake.
If present, the "Extension data" is included in the total payl oad
| engt h.

Application data: y bytes

Arbitrary "Application data", taking up the renmi nder of the frame
after any "Extension data". The length of the "Application data"
is equal to the payload length nminus the | ength of the "Extension
data".

The base framing protocol is fornally defined by the foll owi ng ABNF
[RFC5234]. It is inportant to note that the representation of this
data is binary, not ASCI| characters. As such, a field with a Iength
of 1 bit that takes values %0 / %1 is represented as a single bit
whose value is 0 or 1, not a full byte (octet) that stands for the
characters "0" or "1" in the ASCIl1 encoding. A field with a length
of 4 bits with values between %O0-F again is represented by 4 bits,
again NOT by an ASCI| character or full byte (octet) with these

val ues. [RFC5234] does not specify a character encoding: "Rules
resolve into a string of terminal values, sonetines called

characters. |In ABNF, a character is nerely a non-negative integer.
In certain contexts, a specific mapping (encoding) of values into a
character set (such as ASCII) will be specified." Here, the

specified encoding is a binary encodi ng where each ternmnal value is
encoded in the specified nunber of bits, which varies for each field.

Fette & Mel ni kov St andards Track [Page 30]

RFC 6455 The WebSocket Prot ocol Decenber 2011

ws-frame

frame-fin

frame-rsvil

frame-rsv2

frame-rsv3

franme- opcode

franme- opcode- cont

frane- opcode- non-contro

frane- opcode-contro

Fette & Mel ni kov

~

/
/

frame-fin ; 1 bit in length
frame-rsvl ; 1 bit in length
franme-rsv2 ; 1 bit in length
franme-rsv3 ; 1 bit in length
frane- opcode ; 4 bits in length
franme- nasked ; 1 bit in length
frane- payl oad- | ength ; either 7, 7+16,
; or 7+64 bits in
; length
[frame-masking-key] ; 32 bits in length
frane- payl oad- dat a ; N*8 bits in
; length, where
;o n>=0

%0 ; nore franes of this nessage follow
1 ; final frame of this nmessage
; 1 bit in length

"0 / 1
; 1 bit in length, MJST be O unless
; negotiated otherw se

o0 / 1
; 1 bit in length, MIUST be O unless
; hegotiated otherw se

"0 / 1
; 1 bit in length, MJST be O unl ess
; negotiated otherw se

frane- opcode- non-control /
frane- opcode-control /
frane- opcode- cont

%0 ; frame continuation

o1 ; text frane

%2 ; binary frame

Ux3-7

4 bits in length,

reserved for further non-control franes

%8 ; connection close

%9 ; ping

%A ; pong

%B-F ; reserved for further contro
; frames

; 4 bits in length

St andards Track [Page 31]

RFC 6455 The WebSocket Prot ocol Decenber 2011

%0

franme is not masked, no frane-naski ng-key
%1

frane is masked, framne-masking-key present
1 bit in length

f rame- masked

-~

frane- payl oad- | ength (%00-7D)

(%T7E frane-payl oad-1ength-16)
(%7F frane-payl oad-1ength-63)
7, 7+16, or 7+64 bits in |ength,

; respectively

-~

frane- payl oad- | engt h- 16 %0000- FFFF ; 16 bits in length

%0000000000000000- 7FFFFFFFFFFFFFFF
; 64 bits in length

frame- payl oad- | engt h- 63

f rame- naski ng- key = 4(%O00-FF)
; present only if frane-nmasked is 1
; 32 bits in length

frane- payl oad- dat a = (franme- nasked- ext ensi on-dat a
franme- masked- appl i cati on-dat a)
; when franme-masked is 1
!/ (frame-unnmasked- ext ensi on-dat a
franme- unmasked- appl i cati on- dat a)
; when frame-masked is O

frane- masked- ext ensi on- dat a = *(%O00-FF)
; reserved for future extensibility
; n*8 bits in length, where n >= 0

frane- nasked- application-data = *(%O00-FF)
; n*8 bits in length, where n >= 0

franme- unnmasked- ext ensi on-data = *(9%O00-FF)
; reserved for future extensibility
; n*8 bits in length, where n >= 0

franme- unmasked- application-data = *(%O00- FF)
; n*8 bits in length, where n >= 0

5.3. dient-to-Server Masking

A masked franme MJUST have the field franme-nmasked set to 1, as defined
in Section 5.2.

Fette & Mel ni kov St andards Track [Page 32]

RFC 6455 The WebSocket Prot ocol Decenber 2011

The masking key is contained conpletely within the frame, as defined
in Section 5.2 as frame-nmasking-key. It is used to nask the "Payl oad
data" defined in the same section as frane-payl oad-data, which

i ncl udes "Extension data" and "Application data"

The masking key is a 32-bit value chosen at random by the client.
When preparing a nmasked frane, the client MJST pick a fresh masking
key fromthe set of allowed 32-bit values. The masking key needs to
be unpredictable; thus, the nasking key MJST be derived froma strong
source of entropy, and the masking key for a given franme MJST NOT
make it sinple for a server/proxy to predict the nmasking key for a
subsequent frane. The unpredictability of the nmasking key is
essential to prevent authors of nalicious applications fromselecting
the bytes that appear on the wire. RFC 4086 [RFC4086] di scusses what
entails a suitable source of entropy for security-sensitive
applications.

The maski ng does not affect the I ength of the "Payload data". To
convert masked data into unnmasked data, or vice versa, the foll ow ng
algorithmis applied. The sane algorithm applies regardl ess of the
direction of the translation, e.g., the sane steps are applied to
mask the data as to unmask the data.

Cctet i of the transfornmed data ("transfornmed-octet-i") is the XOR of
octet i of the original data ("original-octet-i") with octet at index
i nodul o 4 of the nmasking key ("nmasking-key-octet-j"):

i MOD 4
original-octet-i XOR maski ng-key-octet-j

j =

transforned-octet-i =
The payload length, indicated in the franm ng as frane-payl oad-1ength,
does NOT include the length of the masking key. It is the Iength of

the "Payl oad data", e.g., the nunber of bytes follow ng the masking
key.

5.4. Fragnentation

The primary purpose of fragnentation is to allow sending a nessage
that is of unknown size when the nmessage is started w thout having to
buffer that nessage. |f nessages couldn’'t be fragnmented, then an
endpoi nt would have to buffer the entire nmessage so its length could
be counted before the first byte is sent. Wth fragnentation, a
server or intermediary may choose a reasonabl e size buffer and, when
the buffer is full, wite a fragnent to the network.

A secondary use-case for fragnentation is for multiplexing, where it

is not desirable for a | arge message on one |ogical channel to
nonopol i ze the output channel, so the nultiplexing needs to be free

Fette & Mel ni kov St andards Track [Page 33]

RFC 6455 The WebSocket Prot ocol Decenber 2011

to split the nmessage into snaller fragnments to better share the
out put channel. (Note that the nultiplexing extension is not
described in this docunent.)

Unl ess specified otherwi se by an extension, franes have no semantic
meani ng. An internediary m ght coal esce and/or split frames, if no
ext ensi ons were negotiated by the client and the server or if sone
extensions were negotiated, but the internmediary understood all the
extensi ons negotiated and knows how to coal esce and/or split frames
in the presence of these extensions. One inplication of this is that
i n absence of extensions, senders and receivers nust not depend on
the presence of specific frane boundari es.

The following rules apply to fragnentation

0 An unfragnented nessage consists of a single frane with the FIN
bit set (Section 5.2) and an opcode other than O.

o A fragnented nmessage consists of a single frane with the FIN bit
clear and an opcode other than 0, followed by zero or nore franes
with the FIN bit clear and the opcode set to 0, and terni nated by
a single frame with the FIN bit set and an opcode of 0. A
fragment ed nessage i s conceptually equivalent to a single |arger
nmessage whose payload is equal to the concatenation of the
payl oads of the fragnents in order; however, in the presence of
extensions, this nay not hold true as the extension defines the
interpretation of the "Extension data" present. For instance,
"Extension data" may only be present at the beginning of the first
fragment and apply to subsequent fragnents, or there may be
"Extension data" present in each of the fragnents that applies
only to that particular fragnment. |In the absence of "Extension
data", the follow ng exanpl e denonstrates how fragnentati on works

EXAMPLE: For a text nmessage sent as three fragnments, the first
fragment woul d have an opcode of Ox1 and a FIN bit clear, the
second fragnment woul d have an opcode of 0x0 and a FIN bit clear,
and the third fragnent woul d have an opcode of 0x0 and a FIN bit
that is set.

0 Control franes (see Section 5.5) MAY be injected in the niddle of
a fragnented nessage. Control franmes thensel ves MUST NOT be
fragment ed.

0 Message fragnents MJUST be delivered to the recipient in the order
sent by the sender.

Fette & Mel ni kov St andards Track [Page 34]

RFC 6455 The WebSocket Prot ocol Decenber 2011

o The fragnments of one nmessage MJUST NOT be interleaved between the
fragments of another nessage unl ess an extension has been
negotiated that can interpret the interl eaving.

0 An endpoi nt MJST be capabl e of handling control frames in the
m ddl e of a fragmented nessage.

0 A sender MAY create fragnments of any size for non-contro
nmessages.

o Cients and servers MJST support receiving both fragnmented and
unf ragnent ed nessages.

o As control frames cannot be fragnented, an intermediary MJUST NOT
attenpt to change the fragmentation of a control frame

0 An internmediary MIST NOT change the fragnentation of a nessage if
any reserved bit values are used and the neani ng of these val ues
is not known to the internediary.

0 An internmediary MJST NOT change the fragnentation of any nmessage
in the context of a connection where extensions have been
negotiated and the intermediary is not aware of the semantics of
the negotiated extensions. Simlarly, an internediary that didn't
see the WbSocket handshake (and wasn't notified about its
content) that resulted in a WebSocket connecti on MUST NOT change
the fragnentation of any message of such connection

0 As a consequence of these rules, all fragments of a nessage are of
the sane type, as set by the first fragnment’s opcode. Since
control frames cannot be fragnented, the type for all fragnments in
a nmessage MJST be either text, binary, or one of the reserved
opcodes.

NOTE: If control frames could not be interjected, the latency of a
ping, for exanple, would be very long if behind a | arge nessage.
Hence, the requirenent of handling control franes in the mddle of a
fragment ed nessage

| MPLEMENTATI ON NOTE: In the absence of any extension, a receiver
doesn’t have to buffer the whole frame in order to process it. For
exanple, if a streaming APl is used, a part of a frame can be
delivered to the application. However, note that this assunption
m ght not hold true for all future WbSocket extensions.

Fette & Mel ni kov St andards Track [Page 35]

RFC 6455 The WebSocket Prot ocol Decenber 2011

5.5. Control Franes

Control frames are identified by opcodes where the nost significant
bit of the opcode is 1. Currently defined opcodes for control franes
i nclude 0x8 (Cl ose), 0x9 (Ping), and OxA (Pong). Opcodes 0xB-O0xF are
reserved for further control franes yet to be defined

Control franes are used to conmuni cate state about the WebSocket .
Control frames can be interjected in the nmiddle of a fragmented
nessage

Al'l control franmes MUST have a payload length of 125 bytes or |ess
and MUST NOT be fragnent ed.

5.5.1. dose
The C ose frane contains an opcode of 0x8.

The Close frame MAY contain a body (the "Application data" portion of
the franme) that indicates a reason for closing, such as an endpoint
shutting down, an endpoint having received a frane too large, or an
endpoi nt having received a frane that does not conformto the fornmat
expected by the endpoint. |If there is a body, the first two bytes of
the body MJUST be a 2-byte unsigned integer (in network byte order)
representing a status code with value /code/ defined in Section 7.4.
Foll owi ng the 2-byte integer, the body MAY contain UTF-8-encoded data
with value /reason/, the interpretation of which is not defined by
this specification. This data is not necessarily human readabl e but
may be useful for debugging or passing information relevant to the
script that opened the connection. As the data is not guaranteed to
be human readable, clients MIST NOT show it to end users.

Close frames sent fromclient to server nust be masked as per
Section 5. 3.

The application MIST NOT send any nore data frames after sending a
Cl ose frane.

If an endpoint receives a Cose frame and did not previously send a
O ose frane, the endpoint MJST send a Close franme in response. (Wen
sending a Close frane in response, the endpoint typically echos the
status code it received.) It SHOULD do so as soon as practical. An
endpoi nt MAY delay sending a Close frane until its current nessage is
sent (for instance, if the majority of a fragnmented nessage is

al ready sent, an endpoint MAY send the remaining fragments before
sending a Close frane). However, there is no guarantee that the
endpoi nt that has already sent a Close frane will continue to process
dat a.

Fette & Mel ni kov St andards Track [Page 36]

RFC 6455 The WebSocket Prot ocol Decenber 2011

After both sending and receiving a C ose nessage, an endpoi nt

consi ders the WebSocket connection closed and MJST cl ose the
underlying TCP connection. The server MJST cl ose the underlying TCP
connection inmedi ately; the client SHOULD wait for the server to

cl ose the connection but MAY cl ose the connection at any tine after
sendi ng and receiving a Cose nessage, e.g., if it has not received a
TCP Close fromthe server in a reasonable tine period.

If a client and server both send a C ose nessage at the sane tine,
both endpoints will have sent and received a O ose nessage and shoul d
consi der the WebSocket connection closed and cl ose the underlying TCP
connecti on.

5.5.2. Ping
The Ping frame contains an opcode of 0x9.
A Ping frame MAY include "Application data"
Upon receipt of a Ping frane, an endpoint MJST send a Pong franme in
response, unless it already received a Close frame. |t SHOULD
respond with Pong frame as soon as is practical. Pong frames are
di scussed in Section 5.5.3.
An endpoi nt MAY send a Ping frane any tine after the connection is
establ i shed and before the connection is closed.
NOTE: A Ping frame may serve either as a keepalive or as a nmeans to
verify that the renote endpoint is still responsive.

5.5.3. Pong

The Pong frame contai ns an opcode of OxA.

Section 5.5.2 details requirenents that apply to both Ping and Pong
franes.

A Pong frame sent in response to a Ping frame nmust have identica
"Application data" as found in the nessage body of the Ping frame
being replied to.

I f an endpoint receives a Ping frane and has not yet sent Pong
frane(s) in response to previous Ping franme(s), the endpoint MAY
elect to send a Pong frame for only the nost recently processed Ping
frane.

Fette & Mel ni kov St andards Track [Page 37]

RFC 6455 The WebSocket Prot ocol Decenber 2011

5. 6.

Fet

A Pong frame MAY be sent unsolicited. This serves as a
unidirectional heartbeat. A response to an unsolicited Pong frame is
not expected.

Dat a Franes

Data franes (e.g., non-control franes) are identified by opcodes
where the nost significant bit of the opcode is 0. Currently defined
opcodes for data frames include Ox1 (Text), 0x2 (Binary). Opcodes
0x3-0x7 are reserved for further non-control franes yet to be

defi ned.

Data franes carry application-layer and/or extension-layer data. The
opcode deternines the interpretation of the data:

Text
The "Payload data" is text data encoded as UTF-8. Note that a
particular text franme might include a partial UTF-8 sequence;
however, the whol e nessage MJUST contain valid UTF-8. Invalid
UTF-8 in reassenbl ed nessages is handled as described in
Section 8.1.

Bi nary

The "Payl oad data" is arbitrary binary data whose interpretation
is solely up to the application |ayer

Exanpl es
o0 A single-frame unnasked text nessage

* 0x81 0x05 0x48 0x65 Ox6c Ox6¢C Ox6f (contains "Hello")
o A single-frame masked text nessage

* 0x81 0x85 0x37 Oxfa 0x21 Ox3d Ox7f Ox9f 0Ox4d 0x51 0x58
(contains "Hello")

o A fragnented unmasked text nessage
* 0x01 0x03 0x48 0x65 0x6¢c (contains "Hel")

* 0x80 0x02 Ox6¢c Ox6f (contains "lo")

te & Mel ni kov St andards Track [Page 38]

RFC 6455 The WebSocket Prot ocol Decenber 2011

o Unnmasked Ping request and masked Ping response

* 0x89 0x05 0x48 0x65 Ox6c Ox6¢c Ox6f (contains a body of "Hello"
but the contents of the body are arbitrary)

* Ox8a 0x85 0x37 Oxfa 0x21 0x3d Ox7f 0Ox9f 0Ox4d Ox51 0x58
(contains a body of "Hello", matching the body of the ping)

0 256 bytes binary nessage in a single unmasked frame

* 0x82 Ox7E 0x0100 [256 bytes of binary data]
0 64Ki B binary nmessage in a single unnasked frane

* 0x82 Ox7F 0x0000000000010000 [65536 bytes of binary data]

5.8. Extensibility

The protocol is designed to allow for extensions, which will add
capabilities to the base protocol. The endpoints of a connection
MJUST negotiate the use of any extensions during the opening
handshake. This specification provides opcodes 0x3 through 0x7 and
0xB t hrough OxF, the "Extension data" field, and the frane-rsvl
frame-rsv2, and frane-rsv3 bits of the frane header for use by
extensions. The negotiation of extensions is discussed in further
detail in Section 9.1. Below are sonme antici pated uses of
extensions. This list is neither conplete nor prescriptive.

0 "Extension data" may be placed in the "Payl oad data" before the
"Application data"

0 Reserved bits can be allocated for per-frane needs.
0 Reserved opcode val ues can be defi ned.

0 Reserved bits can be allocated to the opcode field if nore opcode
val ues are needed.

0 A reserved bit or an "extension" opcode can be defined that
al l ocates additional bits out of the "Payload data" to define
| arger opcodes or nore per-franme bits.
6. Sending and Receiving Data
6.1. Sending Data

To _Send a WebSocket Message_ conprising of /data/ over a WebSocket
connection, an endpoint MJST performthe foll owi ng steps.

Fette & Mel ni kov St andards Track [Page 39]

RFC 6455 The WebSocket Prot ocol Decenber 2011

1. The endpoint MJST ensure the WbSocket connection is in the OPEN
state (cf. Sections 4.1 and 4.2.2.) |If at any point the state of
t he WebSocket connection changes, the endpoint MJST abort the
foll owi ng steps.

2. An endpoint MJST encapsul ate the /data/ in a WebSocket frame as
defined in Section 5.2. If the data to be sent is large or if
the data is not available in its entirety at the point the
endpoi nt wi shes to begin sending the data, the endpoint MAY
alternately encapsulate the data in a series of franes as defined
in Section 5.4.

3. The opcode (frane-opcode) of the first frame containing the data
MUST be set to the appropriate value from Section 5.2 for data
that is to be interpreted by the recipient as text or binary
dat a.

4. The FIN bit (franme-fin) of the last frame containing the data
MJUST be set to 1 as defined in Section 5. 2.

5. If the data is being sent by the client, the frame(s) MJST be
masked as defined in Section 5. 3.

6. |If any extensions (Section 9) have been negotiated for the
WebSocket connection, additional considerations nay apply as per
the definition of those extensions.

7. The frame(s) that have been forned MJST be transmitted over the
under | yi ng network connection

6.2. Receiving Data

To receive WebSocket data, an endpoint |istens on the underlying
networ k connection. Incom ng data MJST be parsed as WebSocket franes
as defined in Section 5.2. If a control frame (Section 5.5) is

recei ved, the frane MUST be handl ed as defined by Section 5.5. Upon
receiving a data frane (Section 5.6), the endpoint MJST note the
/typel/ of the data as defined by the opcode (franme-opcode) from
Section 5.2. The "Application data" fromthis frame is defined as

the /data/ of the message. |If the frame conprises an unfragmented
message (Section 5.4), it is said that _A WebSocket Message Has Been
Received_ with type /type/ and data /data/. |If the frane is part of

a fragnented nessage, the "Application data" of the subsequent data
frames is concatenated to formthe /data/. Wen the last fragnent is
received as indicated by the FIN bit (frame-fin), it is said that _A
WebSocket Message Has Been Received_ with data /data/ (conprised of
the concatenation of the "Application data"” of the fragnents) and

Fette & Mel ni kov St andards Track [Page 40]

RFC 6455 The WebSocket Prot ocol Decenber 2011

7.

7.

7.

type /typel/ (noted fromthe first frane of the fragnmented nessage).
Subsequent data frames MUST be interpreted as belonging to a new
WebSocket nessage.

Ext ensi ons (Section 9) MAY change the semantics of how data is read
specifically including what conprises a nessage boundary.
Extensions, in addition to adding "Extension data" before the
"Application data" in a payload, MAY also nodify the "Application
data" (such as by conpressing it).

A server MJIST renove masking for data frames received froma client
as described in Section 5.3.

O osing the Connection
1. Definitions
1.1. dose the WbSocket Connection

To _Close the WbSocket Connection_, an endpoint closes the
under|lying TCP connection. An endpoint SHOULD use a mnethod that
cleanly closes the TCP connection, as well as the TLS session, if
applicabl e, discarding any trailing bytes that may have been
received. An endpoint MAY close the connection via any nmeans
avai | abl e when necessary, such as when under attack

The underlying TCP connection, in nost normal cases, SHOULD be cl osed
first by the server, so that it holds the TIME WAIT state and not the
client (as this would prevent it fromre-opening the connection for 2
maxi mum segnent lifetinmes (2MsL), while there is no correspondi ng
server inpact as a TIME_ WAIT connection is imediately reopened upon
a new SYN with a higher seq nunber). In abnornmal cases (such as not
havi ng received a TCP Close fromthe server after a reasonabl e anmount
of time) a client MAY initiate the TCP C ose. As such, when a server
is instructed to _C ose the WbSocket Connection_ it SHOULD initiate
a TCP Cose imediately, and when a client is instructed to do the
sane, it SHOULD wait for a TCP Close fromthe server

As an exanple of how to obtain a clean closure in C using Berkel ey
sockets, one would call shutdown() with SHUT_WR on the socket, cal
recv() until obtaining a return value of O indicating that the peer
has al so perforned an orderly shutdown, and finally call close() on
t he socket.

Fette & Mel ni kov St andards Track [Page 41]

RFC 6455 The WebSocket Prot ocol Decenber 2011

7.1.2. Start the WebSocket C osi ng Handshake

To _Start the WebSocket d osing Handshake_with a status code
(Section 7.4) /code/ and an optional close reason (Section 7.1.6)
/reason/, an endpoint MJST send a Cl ose control franme, as described
in Section 5.5.1, whose status code is set to /code/ and whose cl ose
reason is set to /reason/. Once an endpoint has both sent and
received a dose control frame, that endpoint SHOULD _C ose the
WebSocket Connection_ as defined in Section 7.1.1.

7.1.3. The WebSocket C osing Handshake is Started

Upon either sending or receiving a Cose control frane, it is said
that _The WebSocket C osing Handshake is Started_ and that the
WebSocket connection is in the CLOSING state.

7.1.4. The WbSocket Connection is C osed

When t he underlying TCP connection is closed, it is said that _The
WebSocket Connection is Cosed and that the WbSocket connection is
in the CLOSED state. |If the TCP connection was cl osed after the
WebSocket cl osi ng handshake was conpl eted, the WbSocket connection
is said to have been closed _cleanly_.

If the WebSocket connection could not be established, it is also said
that _The WebSocket Connection is C osed_, but not _cleanly_.

7.1.5. The WbSocket Connection C ose Code

As defined in Sections 5.5.1 and 7.4, a Close control frame may
contain a status code indicating a reason for closure. A closing of
t he WebSocket connection may be initiated by either endpoint,
potentially simultaneously. _The WbSocket Connection C ose Code_is
defined as the status code (Section 7.4) contained in the first C ose
control frame received by the application inplenmenting this protocol
If this Close control frane contains no status code, _The WbSocket
Connection Close Code_is considered to be 1005. |[|f _The WbSocket
Connection is Cosed_ and no Cose control frane was received by the
endpoi nt (such as could occur if the underlying transport connection
is lost), _The WebSocket Connection Close Code_ is considered to be
1006.

NOTE: Two endpoi nts may not agree on the value of _The WbSocket
Connection Close Code . As an exanple, if the renpte endpoint sent a
C ose frane but the local application has not yet read the data
containing the Close frame fromits socket’s receive buffer, and the
| ocal application independently decided to close the connection and
send a Close frane, both endpoints will have sent and received a

Fette & Mel ni kov St andards Track [Page 42]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Cose frane and will not send further Cose franes. Each endpoint
will see the status code sent by the other end as _The WbSocket
Connection Close Code_. As such, it is possible that the two
endpoi nts may not agree on the value of _The WbSocket Connection
Cl ose Code_ in the case that both endpoints _Start the WbSocket
d osi ng Handshake_ i ndependently and at roughly the sanme tine.

7.1.6. The WebSocket Connection Cl ose Reason

As defined in Sections 5.5.1 and 7.4, a Close control frame may
contain a status code indicating a reason for closure, followed by
UTF- 8- encoded data, the interpretation of said data being left to the
endpoi nts and not defined by this protocol. A closing of the
WebSocket connection may be initiated by either endpoint, potentially
si nul taneously. _The WbSocket Connection C ose Reason_ is defined as
t he UTF-8-encoded data follow ng the status code (Section 7.4)
contained in the first Cose control frane received by the
application inplenenting this protocol. |If there is no such data in
the Close control frane, _The WebSocket Connection C ose Reason_ is
the enpty string.

NOTE: Following the same logic as noted in Section 7.1.5, two
endpoi nts may not agree on _The WebSocket Connection C ose Reason_.

7.1.7. Fail the WebSocket Connection

Certain algorithnms and specifications require an endpoint to _Fai
the WebSocket Connection_. To do so, the client MUST C ose the
WebSocket Connection_, and MAY report the problemto the user (which
woul d be especially useful for devel opers) in an appropriate nmanner
Simlarly, to do so, the server MIUST _C ose the WbSocket
Connection_, and SHOULD | og t he probl em

If _The WebSocket Connection is Established_ prior to the point where
the endpoint is required to _Fail the WbSocket Connection_, the
endpoi nt SHOULD send a Close frame with an appropriate status code
(Section 7.4) before proceeding to _C ose the WbSocket Connection_.
An endpoint MAY onit sending a Close frame if it believes the other
side is unlikely to be able to receive and process the Cl ose frane,
due to the nature of the error that | ed the WebSocket connection to
fail in the first place. An endpoint MJST NOT continue to attenpt to
process data (including a responding Cose frane) fromthe renote
endpoi nt after being instructed to Fail the WbSocket Connection_.

Except as indicated above or as specified by the application |ayer

(e.g., a script using the WebSocket APlI), clients SHOULD NOT cl ose
t he connecti on.

Fette & Mel ni kov St andards Track [Page 43]

RFC 6455 The WebSocket Prot ocol Decenber 2011

7.2. Abnornmal d osures
7.2.1. dient-Initiated d osure

Certain algorithnms, in particular during the openi ng handshake,
require the client to Fail the WbSocket Connection_. To do so, the
client MUST Fail the WbSocket Connection_ as defined in

Section 7.1.7.

If at any point the underlying transport |ayer connection is
unexpectedly lost, the client MIST _Fail the WbSocket Connection_.

Except as indicated above or as specified by the application |ayer
(e.g., a script using the WbSocket API), clients SHOULD NOT cl ose
t he connecti on.

7.2.2. Server-Initiated d osure

Certain algorithms require or recormend that the server _Abort the
WebSocket Connection_ during the opening handshake. To do so, the
server MUST sinply _Cl ose the WebSocket Connection_ (Section 7.1.1).

7.2.3. Recovering from Abnorrmal Cl osure

Abnormal cl osures may be caused by any nunber of reasons. Such
closures could be the result of a transient error, in which case
reconnecting may lead to a good connection and a resunption of norna
operations. Such closures may al so be the result of a nontransient
problem in which case if each depl oyed client experiences an
abnornmal closure and i medi ately and persistently tries to reconnect,
the server nmay experience what anpbunts to a denial -of-service attack
by a large nunber of clients trying to reconnect. The end result of
such a scenario could be that the service is unable to recover in a
timely manner or recovery is made much nore difficult.

To prevent this, clients SHOULD use sone form of backoff when trying
to reconnect after abnormal closures as described in this section

The first reconnect attenpt SHOULD be del ayed by a random anount of
time. The paraneters by which this randomdelay is chosen are |eft
to the client to decide; a value chosen randomy between 0 and 5
seconds is a reasonable initial delay though clients MAY choose a
different interval fromwhich to select a delay | ength based on

i mpl enent ati on experience and particul ar application.

Shoul d the first reconnect attenpt fail, subsequent reconnect

attenpts SHOULD be del ayed by increasingly | onger anobunts of tine,
using a nmethod such as truncated bi nary exponential backoff.

Fette & Mel ni kov St andards Track [Page 44]

RFC 6455 The WebSocket Prot ocol Decenber 2011

7.3. Normal d osure of Connections

Servers MAY cl ose the WebSocket connection whenever desired. dients
SHOULD NOT cl ose the WebSocket connection arbitrarily. In either
case, an endpoint initiates a closure by follow ng the procedures to
_Start the WebSocket C osing Handshake (Section 7.1.2).

7.4. Status Codes

When cl osing an established connection (e.g., when sending a C ose
frane, after the opening handshake has conpl eted), an endpoi nt MAY
indicate a reason for closure. The interpretation of this reason by
an endpoint, and the action an endpoint should take given this
reason, are |left undefined by this specification. This specification
defines a set of pre-defined status codes and specifies which ranges
may be used by extensions, frameworks, and end applications. The
status code and any associ ated textual message are optiona

conponents of a C ose frane.

7.4.1. Defined Status Codes

Endpoi nts MAY use the follow ng pre-defined status codes when sending
a Cose frane.

1000

1000 indi cates a normal closure, neaning that the purpose for
whi ch the connection was established has been fulfill ed.

1001

1001 indicates that an endpoint is "going away", such as a server
goi ng down or a browser having navi gated away from a page.

1002

1002 indicates that an endpoint is term nating the connection due
to a protocol error.

1003
1003 indicates that an endpoint is term nating the connection
because it has received a type of data it cannot accept (e.g., an

endpoi nt that understands only text data MAY send this if it
receives a binary nessage).

Fette & Mel ni kov St andards Track [Page 45]

RFC 6455 The WebSocket Prot ocol Decenber 2011

1004
Reserved. The specific neaning night be defined in the future.
1005

1005 is a reserved value and MUST NOT be set as a status code in a
C ose control frane by an endpoint. It is designated for use in
applications expecting a status code to indicate that no status
code was actually present.

1006

1006 is a reserved value and MJUST NOT be set as a status code in a
C ose control frane by an endpoint. It is designated for use in
applications expecting a status code to indicate that the
connection was cl osed abnormally, e.g., w thout sending or
receiving a O ose control frane.

1007

1007 indicates that an endpoint is term nating the connection
because it has received data within a nessage that was not
consistent with the type of the nessage (e.g., non-UTF-8 [RFC3629]
data within a text nessage).

1008

1008 indicates that an endpoint is term nating the connection
because it has received a nessage that violates its policy. This
is a generic status code that can be returned when there is no
other nore suitable status code (e.g., 1003 or 1009) or if there
is a need to hide specific details about the policy.

1009

1009 indicates that an endpoint is term nating the connection
because it has received a nessage that is too big for it to
pr ocess.

1010
1010 indicates that an endpoint (client) is ternmnating the
connection because it has expected the server to negotiate one or

nore extension, but the server didn't return themin the response
message of the WebSocket handshake. The list of extensions that

Fette & Mel ni kov St andards Track [Page 46]

RFC 6455 The WebSocket Prot ocol Decenber 2011

are needed SHOULD appear in the /reason/ part of the Cose frane.
Note that this status code is not used by the server, because it
can fail the WbSocket handshake i nstead.

1011

1011 indicates that a server is termnating the connection because
it encountered an unexpected condition that prevented it from
fulfilling the request.

1015

1015 is a reserved value and MUST NOT be set as a status code in a
Cl ose control frane by an endpoint. It is designated for use in
applications expecting a status code to indicate that the
connection was closed due to a failure to performa TLS handshake
(e.g., the server certificate can’t be verified).

7.4.2. Reserved Status Code Ranges

0-999
Status codes in the range 0-999 are not used.

1000- 2999
Status codes in the range 1000-2999 are reserved for definition by
this protocol, its future revisions, and extensions specified in a
per manent and readily avail able public specification

3000- 3999
Status codes in the range 3000-3999 are reserved for use by
libraries, frameworks, and applications. These status codes are
registered directly with ANA. The interpretation of these codes
i s undefined by this protocol

4000- 4999
Status codes in the range 4000-4999 are reserved for private use
and thus can't be registered. Such codes can be used by prior

agreenents between WebSocket applications. The interpretation of
t hese codes is undefined by this protocol

Fette & Mel ni kov St andards Track [Page 47]

RFC 6455 The WebSocket Prot ocol Decenber 2011

8. Error Handling
8.1. Handling Errors in UTF-8-Encoded Data

When an endpoint is to interpret a byte streamas UTF-8 but finds
that the byte streamis not, in fact, a valid UTF-8 stream that
endpoi nt MUST Fail the WbSocket Connection_. This rule applies
bot h during the openi ng handshake and during subsequent data
exchange.

9. Ext ensi ons

WebSocket clients MAY request extensions to this specification, and
WebSocket servers MAY accept some or all extensions requested by the
client. A server MJST NOT respond with any extension not requested
by the client. |If extension paraneters are included in negotiations
between the client and the server, those paraneters MJST be chosen in
accordance with the specification of the extension to which the
paraneters apply.

9.1. Negotiating Extensions

A client requests extensions by including a | Sec- WbSocket -

Ext ensi ons| header field, which follows the normal rules for HITP
header fields (see [RFC2616], Section 4.2) and the value of the
header field is defined by the foll owing ABNF [RFC2616]. Note that
this section is using ABNF syntax/rules from[RFC2616], including the
"inmplied *LW5 rule". |If a value is received by either the client or
the server during negotiation that does not conformto the ABNF

bel ow, the recipient of such nalformed data MIUST i medi ately _Fai

t he WebSocket Connection_.

Sec- WebSocket - Ext ensi ons = extension-|i st
ext ensi on-1ist = l1#extension
ext ensi on = extension-token *(";
ext ensi on-token = regi stered-token
regi stered-token = token
ext ensi on-param = token ["=" (token | quoted-string)]
; When using the quoted-string syntax variant, the val ue
;after quoted-string unescapi ng MUST conformto the
;" token’ ABNF.

ext ensi on- param)

Fette & Mel ni kov St andards Track [Page 48]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Note that |ike other HTTP header fields, this header field MAY be
split or conbined across multiple lines. Ergo, the following are
equi val ent :

Sec- WbSocket - Ext ensi ons: f oo
Sec- WbSocket - Ext ensi ons: bar; baz=2

is exactly equivalent to
Sec- WbSocket - Ext ensi ons: foo, bar; baz=2

Any extension-token used MJUST be a registered token (see

Section 11.4). The paraneters supplied with any given extension MJST
be defined for that extension. Note that the client is only offering
to use any advertised extensions and MJUST NOT use them unl ess the
server indicates that it wi shes to use the extension

Note that the order of extensions is significant. Any interactions
between multiple extensions MAY be defined in the docunents defining
the extensions. In the absence of such definitions, the
interpretation is that the header fields listed by the client inits
request represent a preference of the header fields it w shes to use,
with the first options listed being nost preferable. The extensions
listed by the server in response represent the extensions actually in
use for the connection. Should the extensions nodify the data and/ or
fram ng, the order of operations on the data should be assumed to be
the same as the order in which the extensions are listed in the
server’s response in the openi ng handshake.

For exanple, if there are two extensions "foo" and "bar" and if the
header field | Sec- WbSocket - Ext ensi ons| sent by the server has the
val ue "foo, bar", then operations on the data will be nade as

bar (foo(data)), be those changes to the data itself (such as
conpression) or changes to the fram ng that may "stack"

Non- normati ve exanpl es of acceptabl e extension header fields (note
that long lines are folded for readability):

Sec- WebSocket - Ext ensi ons: defl at e- st ream

Sec- WbSocket - Ext ensi ons: nux; nmax-channel s=4; fl ow control
def | at e- st ream

Sec- WebSocket - Ext ensi ons: pri vat e- ext ensi on

A server accepts one or nore extensions by including a

| Sec- WebSocket - Ext ensi ons| header field containing one or nore
extensions that were requested by the client. The interpretation of

Fette & Mel ni kov St andards Track [Page 49]

RFC 6455 The WebSocket Prot ocol Decenber 2011

any extension paraneters, and what constitutes a valid response by a
server to a requested set of paraneters by a client, will be defined
by each such extension

9. 2. Known Ext ensi ons

Ext ensi ons provi de a nechanismfor inplementations to opt-into
additional protocol features. This docunent doesn’'t define any
extension, but inplenmentations MAY use extensions defined separately.

10. Security Considerations

This section describes some security considerations applicable to the
WebSocket Protocol. Specific security considerations are descri bed
in subsections of this section.

10. 1. Non- Browser Clients

The WebSocket Protocol protects against nalicious JavaScript running
inside a trusted application such as a web browser, for exanple, by
checking of the |Origin| header field (see below). See Section 1.6
for additional details. Such assunptions don’t hold true in the case
of a nore-capable client.

While this protocol is intended to be used by scripts in web pages,

it can also be used directly by hosts. Such hosts are acting on
their own behalf and can therefore send fake | Origin| header fields,
m sl eadi ng the server. Servers should therefore be careful about
assuming that they are talking directly to scripts fromknown origins
and nust consider that they m ght be accessed in unexpected ways. In
particular, a server should not trust that any input is valid.

EXAMPLE: |f the server uses input as part of SQ queries, all input
text should be escaped before being passed to the SQ server, |est
the server be susceptible to SQ injection

10.2. Oigin Considerations

Servers that are not intended to process input fromany web page but
only for certain sites SHOULD verify the |Origin| field is an origin
they expect. |If the origin indicated is unacceptable to the server
then it SHOULD respond to the WebSocket handshake with a reply
contai ni ng HTTP 403 For bi dden status code.

The | Origin|] header field protects fromthe attack cases when the

untrusted party is typically the author of a JavaScript application
that is executing in the context of the trusted client. The client
itself can contact the server and, via the nechanismof the | Oigin|

Fette & Mel ni kov St andards Track [Page 50]

RFC 6455 The WebSocket Prot ocol Decenber 2011

10.

header field, determ ne whether to extend those conmunication
privileges to the JavaScript application. The intent is not to
prevent non-browsers from establishing connections but rather to
ensure that trusted browsers under the control of potentially
mal i ci ous JavaScri pt cannot fake a WebSocket handshake.

3. Attacks On Infrastructure (Masking)

In addition to endpoints being the target of attacks via WbSockets,
other parts of web infrastructure, such as proxies, may be the
subj ect of an attack.

As this protocol was being devel oped, an experinment was conducted to
denonstrate a class of attacks on proxies that led to the poisoning
of caching proxies deployed in the wild [TALKING. The general form
of the attack was to establish a connection to a server under the
"attacker’s" control, performan UPGRADE on the HTTP connection
simlar to what the WebSocket Protocol does to establish a
connection, and subsequently send data over that UPGRADEd connection
that | ooked like a GET request for a specific known resource (which
in an attack would likely be sonething Iike a wi dely depl oyed script
for tracking hits or a resource on an ad-serving network). The
renote server would respond with sonething that | ooked Iike a
response to the fake GET request, and this response woul d be cached
by a nonzero percentage of deployed internediaries, thus poisoning
the cache. The net effect of this attack would be that if a user
could be convinced to visit a website the attacker controlled, the
attacker could potentially poison the cache for that user and other
users behind the sanme cache and run nalicious script on other
origins, conprom sing the web security nodel.

To avoid such attacks on deployed internmediaries, it is not
sufficient to prefix application-supplied data with franing that is
not conpliant with HITP, as it is not possible to exhaustively

di scover and test that each nonconformant intermedi ary does not skip
such non-HTTP frami ng and act incorrectly on the frane payl oad.

Thus, the defense adopted is to nask all data fromthe client to the
server, so that the renote script (attacker) does not have contro
over how the data being sent appears on the wire and thus cannot
construct a nessage that could be misinterpreted by an internedi ary
as an HTTP request.

dients MJST choose a new nasking key for each franme, using an

al gorithmthat cannot be predicted by end applications that provide
data. For exanple, each nasking could be drawn froma
cryptographically strong random nunber generator. |If the sanme key is
used or a deci pherable pattern exists for how the next key is chosen
the attacker can send a nessage that, when nasked, coul d appear to be

Fette & Mel ni kov St andards Track [Page 51]

RFC 6455 The WebSocket Prot ocol Decenber 2011

10.

an HTTP request (by taking the nessage the attacker w shes to see on
the wire and masking it with the next masking key to be used, the
maski ng key will effectively unmask the data when the client applies

it).

It is also necessary that once the transm ssion of a frane froma
client has begun, the payload (application-supplied data) of that
frame nust not be capabl e of being nodified by the application

O herwi se, an attacker could send a long frame where the initial data
was a known val ue (such as all zeros), conmpute the masking key being
used upon receipt of the first part of the data, and then nodify the
data that is yet to be sent in the frane to appear as an HTTP request
when masked. (This is essentially the sane problem described in the
previ ous paragraph with using a known or predictable masking key.)

If additional data is to be sent or data to be sent is sonehow
changed, that new or changed data nust be sent in a new frane and
thus with a new maski ng key. 1In short, once transm ssion of a frane
begi ns, the contents nust not be nodifiable by the renote script
(application).

The threat nodel being protected against is one in which the client
sends data that appears to be an HITP request. As such, the channe
that needs to be masked is the data fromthe client to the server
The data fromthe server to the client can be nade to ook like a
response, but to acconmplish this request, the client nust al so be
able to forge a request. As such, it was not deenmed necessary to
mask data in both directions (the data fromthe server to the client
i s not nmasked).

Despite the protection provided by nmasking, non-conpliant HITP
proxies will still be vulnerable to poisoning attacks of this type by
clients and servers that do not apply nasking.

4. Inplementation-Specific Limts

| npl enent ati ons that have inplenentation- and/or platformspecific
limtations regarding the franme size or total nessage size after
reassenbly frommnultiple franes MJST protect thensel ves agai nst
exceeding those linmts. (For exanple, a malicious endpoint can try
to exhaust its peer’s nenory or nount a denial-of-service attack by
sending either a single big frame (e.g., of size 2**60) or by sending
a long streamof snmall franes that are a part of a fragnmented
message.) Such an inplenentation SHOULD i npose a linit on frane
sizes and the total nessage size after reassenbly frommultiple
frames.

Fette & Mel ni kov St andards Track [Page 52]

RFC 6455 The WebSocket Prot ocol Decenber 2011

10.

10.

10.

5. WebSocket Cient Authentication

This protocol doesn’t prescribe any particular way that servers can
aut henticate clients during the WebSocket handshake. The WebSocket
server can use any client authentication nmechanismavailable to a
generic HTTP server, such as cookies, HITP authentication, or TLS
aut henti cati on.

6. Connection Confidentiality and Integrity

Connection confidentiality and integrity is provided by running the
WebSocket Protocol over TLS (wss URIs). WbSocket inpl enentations

MUST support TLS and SHOULD enploy it when communicating with their
peers.

For connections using TLS, the anmount of benefit provided by TLS
depends greatly on the strength of the algorithnms negotiated during
the TLS handshake. For exanple, sone TLS ci pher nechani sns don’'t
provi de connection confidentiality. To achieve reasonable |evels of
protection, clients should use only Strong TLS algorithms. "Wb
Security Context: User Interface Quidelines"

[WBC. REC-wsc- ui - 20100812] di scusses what constitutes Strong TLS

al gorithnms. [RFC5246] provides additional guidance in Appendix A 5
and Appendi x D. 3.

7. Handling of Invalid Data

I ncom ng data MJST al ways be validated by both clients and servers.
If, at any tine, an endpoint is faced with data that it does not
understand or that violates sone criteria by which the endpoint
determi nes safety of input, or when the endpoi nt sees an opening
handshake that does not correspond to the values it is expecting
(e.g., incorrect path or originin the client request), the endpoint
MAY drop the TCP connection. |If the invalid data was received after
a successful WebSocket handshake, the endpoint SHOULD send a O ose
frame with an appropriate status code (Section 7.4) before proceeding
to Close the WbSocket Connection_. Use of a Close frane with an
appropriate status code can help in diagnosing the problem |If the
invalid data is sent during the WbSocket handshake, the server
SHOULD return an appropriate HITP [RFC2616] status code.

A common cl ass of security problens arises when sending text data
using the wong encoding. This protocol specifies that nmessages with
a Text data type (as opposed to Binary or other types) contain UTF- 8-
encoded data. Although the Iength is still indicated and
applications inplementing this protocol should use the length to
determ ne where the frame actually ends, sending data in an inproper

Fette & Mel ni kov St andards Track [Page 53]

RFC 6455 The WebSocket Prot ocol Decenber 2011

10.

11.

11.

11.

encodi ng may still break assunptions that applications built on top
of this protocol nay neke, |eading to anything frommnisinterpretation
of data to loss of data or potential security bugs.

8. Use of SHA-1 by the WebSocket Handshake

The WebSocket handshake described in this docunment doesn’t depend on
any security properties of SHA-1, such as collision resistance or
resi stance to the second pre-imge attack (as described in

[RFC4270]) .

| ANA Consi derati ons
1. Registration of New URl Schenes
1.1. Registration of "ws" Schene
A |ws| URI identifies a WbSocket server and resource nane.

URI schene nane
ws

St at us
Per manent

URI schene synt ax
Using the ABNF [RFC5234] syntax and ABNF terminals fromthe UR
speci fication [RFC3986] :

ws:" "//" authority path-abenpty ["?" query]

The <pat h-abenpty> and <query> [RFC3986] conponents formthe resource
nane sent to the server to identify the kind of service desired

O her conponents have the meani ngs described in [RFC3986] .

URI schene senantics
The only operation for this schene is to open a connection using
t he WebSocket Prot ocol

Encodi ng consi derati ons
Characters in the host conponent that are excluded by the syntax
defined above MUST be converted from Unicode to ASCI| as specified
in [RFC3987] or its replacenment. For the purposes of schene-based
normal i zation, Internationalized Domain Nanme (IDN) forns of the
host conponent and their conversions to punycode are considered
equi val ent (see Section 5.3.3 of [RFC3987]).

Fette & Mel ni kov St andards Track [Page 54]

RFC 6455 The WebSocket Prot ocol Decenber 2011

11.

Characters in other conponents that are excluded by the syntax
defi ned above MJUST be converted from Unicode to ASCII by first
encodi ng the characters as UTF-8 and then repl acing the
correspondi ng bytes using their percent-encoded formas defined in
the URI [RFC3986] and Internationalized Resource ldentifier (IRl)

[RFC3987] specifications.

Applications/protocols that use this URl schene nane
WebSocket Protocol

Interoperability considerations
Use of WebSocket requires use of HTTP version 1.1 or higher.

Security considerations
See "Security Considerations" section.

Cont act
HYBI WG <hybi @etf. org>

Aut hor/ Change controller
| ETF <iesg@etf.org>

Ref er ences
RFC 6455

1.2. Registration of "wss" Schene

A |wss| URI identifies a WebSocket server and resource name and
indicates that traffic over that connection is to be protected via
TLS (including standard benefits of TLS such as data confidentiality
and integrity and endpoi nt authentication).

URI schene nane
WSS

St at us
Per manent

URI schene synt ax
Usi ng the ABNF [RFC5234] syntax and ABNF terminals fromthe UR
speci ficati on [RFC3986]:

wss:" "//" authority path-abenpty ["?" query]

The <pat h- abenpty> and <query> conponents formthe resource nane sent
to the server to identify the kind of service desired. O her
components have the neani ngs described in [RFC3986].

Fette & Mel ni kov St andards Track [Page 55]

RFC 6455 The WebSocket Prot ocol Decenber 2011

11.

URI schene senantics
The only operation for this scheme is to open a connection using
t he WebSocket Protocol, encrypted using TLS.

Encodi ng consi derati ons
Characters in the host conponent that are excluded by the syntax
defined above MJUST be converted from Uni code to ASCI| as specified
in [RFC3987] or its replacenent. For the purposes of schemne-based
normalization IDN fornms of the host conmponent and their
conversions to punycode are consi dered equival ent (see Section
5.3.3 of [RFC3987]).

Characters in other conponents that are excluded by the syntax
defi ned above MJUST be converted from Unicode to ASCII by first
encodi ng the characters as UTF-8 and then repl acing the
correspondi ng bytes using their percent-encoded formas defined in
the URI [RFC3986] and IRl [RFC3987] specifications.

Appli cations/protocols that use this URl schene nane
WebSocket Protocol over TLS

Interoperability considerations
Use of WebSocket requires use of HITP version 1.1 or higher

Security considerations
See "Security Considerations" section

Cont act
HYBI W5 <hybi @etf. org>

Aut hor/ Change controller
| ETF <iesg@etf.org>

Ref er ences
RFC 6455

2. Registration of the "WbSocket" HTTP Upgrade Keyword

This section defines a keyword registered in the HTTP Upgrade Tokens
Regi stry as per RFC 2817 [RFC2817].

Nanme of token
WebSocket

Aut hor/ Change controller
| ETF <i esg@etf.org>

Fette & Mel ni kov St andards Track [Page 56]

RFC 6455 The WebSocket Prot ocol Decenber 2011

11.

11.

Cont act
HYBI <hybi @etf.org>

Ref er ences
RFC 6455

3. Registration of New HTTP Header Fields
3.1. Sec-WbSocket - Key

This section describes a header field registered in the Permanent
Message Header Field Nanes registry [RFC3864].

Header field nane
Sec- WbSocket - Key

Appl i cabl e protoco
http

St at us
st andard

Aut hor / Change controller
| ETF

Speci fication document (s)
RFC 6455

Rel ated i nformation
This header field is only used for WbSocket openi ng handshake.

The | Sec- WebSocket - Key| header field is used in the WbSocket opening
handshake. It is sent fromthe client to the server to provide part
of the information used by the server to prove that it received a
valid WebSocket openi ng handshake. This hel ps ensure that the server
does not accept connections from non-WbSocket clients (e.g., HITP
clients) that are being abused to send data to unsuspecting WbSocket
servers.

The | Sec- WebSocket - Key| header field MJUST NOT appear nore than once
in an HTTP request.

Fette & Mel ni kov St andards Track [Page 57]

RFC 6455 The WebSocket Prot ocol Decenber 2011

11.3.2. Sec-WbSocket - Ext ensi ons

11.

This section describes a header field for registration in the
Per manent Message Header Field Nanes registry [RFC3864].

Header field nane
Sec- WebSocket - Ext ensi ons

Appl i cabl e protoco
http

St at us
st andar d

Aut hor/ Change controller
| ETF

Speci fication docunment (s)
RFC 6455

Rel ated i nformation
This header field is only used for WbSocket openi ng handshake.

The | Sec- WebSocket - Ext ensi ons| header field is used in the WbSocket
openi ng handshake. It is initially sent fromthe client to the
server, and then subsequently sent fromthe server to the client, to
agree on a set of protocol-level extensions to use for the duration
of the connection.

The | Sec- WebSocket - Ext ensi ons| header field MAY appear multiple tines
in an HTTP request (which is logically the sane as a single

| Sec- WebSocket - Ext ensi ons| header field that contains all val ues.
However, the | Sec-WbSocket - Ext ensi ons| header field MJUST NOT appear
nmore than once in an HITP response.

3.3. Sec-WbSocket - Accept

This section describes a header field registered in the Pernmanent
Message Header Field Names registry [RFC3864].

Header field nane
Sec- WebSocket - Accept

Appl i cabl e protoco
http

St at us
st andar d

Fette & Mel ni kov St andards Track [Page 58]

RFC 6455 The WebSocket Prot ocol Decenber 2011

11.

Aut hor/ Change controller
| ETF

Speci ficati on docunent (s)
RFC 6455

Rel ated i nformation
This header field is only used for the WbSocket opening
handshake.

The | Sec- WebSocket - Accept| header field is used in the WbSocket
openi ng handshake. It is sent fromthe server to the client to
confirmthat the server is willing to initiate the WbSocket
connecti on.

The | Sec- WebSocket - Accept| header MJST NOT appear nore than once in
an HITP response.

3.4. Sec-WbSocket - Prot ocol

This section describes a header field registered in the Permanent
Message Header Field Nanes registry [RFC3864].

Header field nane
Sec- WebSocket - Pr ot ocol

Appl i cabl e protoco
http

St at us
st andar d

Aut hor/ Change controller
| ETF

Speci fication docunment(s)
RFC 6455

Rel ated i nformation
This header field is only used for the WbSocket opening
handshake.

The | Sec- WebSocket - Prot ocol | header field is used in the WbSocket
openi ng handshake. It is sent fromthe client to the server and back
fromthe server to the client to confirmthe subprotocol of the
connection. This enables scripts to both select a subprotocol and be
sure that the server agreed to serve that subprotocol

Fette & Mel ni kov St andards Track [Page 59]

RFC 6455 The WebSocket Prot ocol Decenber 2011

11.

The | Sec- WebSocket - Prot ocol | header field MAY appear nultiple tines
in an HTTP request (which is logically the same as a single

| Sec- WbSocket - Prot ocol | header field that contains all val ues).
However, the | Sec-WbSocket-Protocol| header field MJST NOT appear
nmore than once in an HITP response.

3.5. Sec-WbSocket - Ver si on

This section describes a header field registered in the Permanent
Message Header Field Nanes registry [RFC3864].

Header field nane
Sec- WebSocket - Ver si on

Appl i cabl e protoco
http

St at us
st andar d

Aut hor/ Change controller
| ETF

Speci fication docunment(s)
RFC 6455

Rel ated i nformation
This header field is only used for the WbSocket opening
handshake.

The | Sec- WebSocket - Versi on| header field is used in the WbSocket
openi ng handshake. It is sent fromthe client to the server to

i ndi cate the protocol version of the connection. This enables
servers to correctly interpret the openi ng handshake and subsequent
data being sent fromthe data, and close the connection if the server
cannot interpret that data in a safe manner. The | Sec-WbSocket -
Version| header field is also sent fromthe server to the client on
WebSocket handshake error, when the version received fromthe client
does not match a version understood by the server. |n such a case,
the header field includes the protocol version(s) supported by the
server.

Note that there is no expectation that higher version nunbers are
necessarily backward conpatible with | ower version nunbers.

Fette & Mel ni kov St andards Track [Page 60]

RFC 6455 The WebSocket Prot ocol Decenber 2011

11.

11.

The | Sec- WebSocket - Ver si on| header field MAY appear nultiple tines in
an HTTP response (which is logically the sane as a single

| Sec- WebSocket - Versi on| header field that contains all val ues).
However, the | Sec-WebSocket - Version| header field MJUST NOT appear
nmore than once in an HITP request.

4. WebSocket Extension Nane Registry

This specification creates a new | ANA registry for WbSocket
Ext ensi on nanes to be used with the WbSocket Protocol in accordance
with the principles set out in RFC 5226 [RFC5226].

As part of this registry, IANA naintains the follow ng information:

Extensi on Identifier
The identifier of the extension, as will be used in the
| Sec- WebSocket - Ext ensi ons| header field registered in
Section 11.3.2 of this specification. The value nust conformto
the requirenents for an extension-token as defined in Section 9.1
of this specification

Ext ensi on Comrmon Name
The nane of the extension, as the extension is generally referred
to.

Ext ensi on Definition
A reference to the docunent in which the extension being used with
the WebSocket Protocol is defined.

Known | nconpati bl e Extensi ons
A list of extension identifiers with which this extension is known
to be inconpatible.

WebSocket Extension nanmes are to be subject to the "First Cone First
Served” | ANA registration policy [RFC5226].

There are no initial values in this registry.
5. WebSocket Subprotocol Nanme Registry
This specification creates a new | ANA registry for WbSocket

Subprotocol nanes to be used with the WbSocket Protocol in
accordance with the principles set out in RFC 5226 [RFC5226].

Fette & Mel ni kov St andards Track [Page 61]

RFC 6455 The WebSocket Prot ocol Decenber 2011

11.

As part of this registry, IANA naintains the follow ng information:

Subprotocol Identifier
The identifier of the subprotocol, as will be used in the
| Sec- WebSocket - Prot ocol | header field registered in Section 11.3.4
of this specification. The value nust conformto the requirenents
given in item 10 of Section 4.1 of this specification -- nanely,
the val ue nust be a token as defined by RFC 2616 [RFC2616] .

Subpr ot ocol Conmon Nane
The nane of the subprotocol, as the subprotocol is generally
referred to.

Subprot ocol Definition
A reference to the docunment in which the subprotocol being used
with the WbSocket Protocol is defined

WebSocket Subprotocol nanes are to be subject to the "First Cone
First Served" |ANA registration policy [RFC5226].

6. WebSocket Version Nunmber Registry

This specification creates a new | ANA registry for WbSocket Version
Nunbers to be used with the WbSocket Protocol in accordance with the
principles set out in RFC 5226 [RFC5226].

As part of this registry, IANA rmaintains the follow ng information:

Ver si on Nunber
The version nunber to be used in the | Sec- WbSocket-Version| is
specified in Section 4.1 of this specification. The value nust be
a non-negative integer in the range between 0 and 255 (i nclusive).

Ref er ence
The RFC requesting a new version nunber or a draft nane with
versi on nunber (see bel ow).

St at us
Either "Interinf or "Standard". See below for description

A version nunber is designated as either "Interint or "Standard"

A "Standard" version nunber is docunented in an RFC and used to
identify a major, stable version of the WbSocket protocol, such as
the version defined by this RFC. "Standard" version nunbers are
subject to the "I ETF Review' | ANA registration policy [RFC5226].

Fette & Mel ni kov St andards Track [Page 62]

RFC 6455 The WebSocket Prot ocol Decenber 2011

An "Interini version nunber is docunented in an Internet-Draft and
used to help inplenentors identify and interoperate with depl oyed
versi ons of the WebSocket protocol, such as versions devel oped before
the publication of this RFC. "Interin' version nunbers are subject
to the "Expert Review' |ANA registration policy [RFC5226], with the
chairs of the HYBI Working Goup (or, if the working group closes,
the Area Directors for the I ETF Applications Area) being the initia
Desi gnat ed Experts.

| ANA has added initial values to the registry as foll ows.

Fom e oo - o mm e e e e e e e e e e e e e e e e e e Fomm e - +
| Version | Ref er ence | Status

| Nurber | | |
oo e N T +
| O + draft-ietf-hybi-thewebsocketprotocol-00 | Interim |
Fom e e e - o e Fom e e - +
| 1 + draft-ietf-hybi-thewebsocketprotocol-01 | Interim |
. S N N +
| 2 + draft-ietf-hybi-thewebsocketprotocol-02 | Interim |
oo I e N T +
| 3 + draft-ietf-hybi-thewebsocketprotocol-03 | Interim |
Fom e e e - o e Fom e e - +
| 4 + draft-ietf-hybi-thewebsocketprotocol-04 | Interim |
. S N N +
| 5 + draft-ietf-hybi-thewebsocketprotocol-05| Interim |
oo I e N T +
| 6 + draft-ietf-hybi-thewebsocketprotocol-06 | Interim |
Fom e e e - o e Fom e e - +
| 7 + draft-ietf-hybi-thewebsocketprotocol-07 | Interim |
. S N N +
| 8 + draft-ietf-hybi-thewebsocketprotocol-08 | Interim |
oo I e N T +
| 9 + Reserved | |
Fom e e e - o e Fom e e - +
| 10 + Reserved |

. S N N +
| 11 + Reserved | |
oo I e N T +
| 12 + Reserved | |
Fom e e e - o e Fom e e - +
| 13 + RFC 6455 | Standard
. S N N +

Fette & Mel ni kov St andards Track [Page 63]

RFC 6455 The WebSocket Prot ocol Decenber 2011

11.

7. WebSocket C ose Code Nunmber Registry

This specification creates a new | ANA registry for WbSocket
Connection Cl ose Code Numbers in accordance with the principles set
out in RFC 5226 [RFC5226] .

As part of this registry, IANA naintains the follow ng information:

St at us Code
The Status Code denotes a reason for a WebSocket connection
cl osure as per Section 7.4 of this document. The status code is
an integer nunber between 1000 and 4999 (i ncl usive).

Meani ng
The meani ng of the status code. Each status code has to have a
uni que neani ng.

Cont act
A contact for the entity reserving the status code.

Ref erence
The stabl e docunment requesting the status codes and defining their
meaning. This is required for status codes in the range 1000-2999
and recommended for status codes in the range 3000-3999.

WebSocket C ose Code Nunbers are subject to different registration
requi renents depending on their range. Requests for status codes for
use by this protocol and its subsequent versions or extensions are
subject to any one of the "Standards Action"”, "Specification
Required" (which inplies "Designated Expert"), or "IESG Review' | ANA
regi stration policies and should be granted in the range 1000-2999.
Requests for status codes for use by libraries, frameworks, and
applications are subject to the "First Conme First Served" | ANA
registration policy and should be granted in the range 3000- 3999.
The range of status codes from 4000-4999 is designated for Private
Use. Requests should indicate whether they are requesting status
codes for use by the WbSocket Protocol (or a future version of the
protocol), by extensions, or by libraries/frameworks/applications.

Fette & Mel ni kov St andards Track [Page 64]

RFC 6455 The WebSocket Prot ocol Decenber 2011

| ANA has added initial values to the registry as foll ows.

| Status Code | Meani ng | Contact | Reference |
mdm e e e e oo - B Fom e e e e e oo oo S
| 1000 | Normal Closure | hybi@etf.org | RFC 6455 |
S S S S |
| 1001 | Going Away | hybi @etf.org | RFC 6455 |
R T ey dmmm e e e ae e B - e |
| 1002 | Protocol error | hybi@etf.org | RFC 6455 |
e e e e e o - B T TS |
| 1003 | Unsupported Data| hybi @etf.org | RFC 6455 |
S S S S |
| 1004 | ---Reserved---- | hybi@etf.org | RFC 6455 |
R T ey dmmm e e e ae e B - e |
| 1005 | No Status Rcvd | hybi @etf.org | RFC 6455 |
e e e e e o - B T TS |
| 1006 | Abnormal C osure| hybi @etf.org | RFC 6455 |
S S S S |
| 1007 | I'nvalid frane | hybi @etf.org | RFC 6455 |
| | payl oad data | | |
R Ty tmmmmmm e mm e aeeaaa - - |
| 1008 | Policy Violation| hybi @etf.org | RFC 6455 |
Y S S [S |
| 1009 | Message Too Big | hybi @etf.org | RFC 6455 |
R N RpU - S U S e |
| 1010 | Mandatory Ext. | hybi @etf.org | RFC 6455 |
R Ty tmmmmmm e mm e aeeaaa - - |
| 1011 | I'nternal Server | hybi @etf.org | RFC 6455 |
| | Error | | |
S S S S |
| 1015 | TLS handshake | hybi @etf.org | RFC 6455 |
R T ey dmmm e e e ae e B - e |

11.8. WebSocket Opcode Registry

This specification creates a new | ANA registry for WebSocket Opcodes
in accordance with the principles set out in RFC 5226 [RFC5226].

As part of this registry, IANA rmaintains the follow ng information:
Opcode
The opcode denotes the frame type of the WebSocket frame, as
defined in Section 5.2. The opcode is an integer nunber between 0
and 15, inclusive.

Meani ng
The meani ng of the opcode val ue.

Fette & Mel ni kov St andards Track [Page 65]

RFC 6455 The WebSocket Protocol Decenber 2011
Ref er ence
The specification requesting the opcode.

WebSocket Opcode nunbers are subject to the "Standards Action" | ANA
registration policy [RFC5226].

| ANA has added initial values to the registry as foll ows.

| Opcode | Meani ng | Reference |
S e e e o - i TS
| O | Continuation Frane | RFC 6455 |
N I i T Fomm o |
| 1 | Text Frane | RFC 6455 |
I pep I YYNs e
| 2 | Binary Frane | RFC 6455 |
S e e e o - i TS |
| 8 | Connection O ose Frame | RFC 6455 |
S o e e m e e e e e e e e e e e e e e e e o - S |
| 9 | Ping Frane | RFC 6455 |
I pep I YYNs e
| 10 | Pong Frane | RFC 6455 |
S e e e o - i TS |

11.9. WbSocket Fram ng Header Bits Registry
This specification creates a new | ANA registry for WbSocket Franing
Header Bits in accordance with the principles set out in RFC 5226
[RFC5226]. This registry controls assignnent of the bits marked
RSV1, RSV2, and RSV3 in Section 5.2.

These bits are reserved for future versions or extensions of this
speci fication.

WebSocket Fram ng Header Bits assignnments are subject to the
"Standards Action" | ANA registration policy [RFC5226].

12. Using the WbSocket Protocol from O her Specifications
The WebSocket Protocol is intended to be used by anot her
specification to provide a generic nechani smfor dynam ¢ aut hor-

defined content, e.g., in a specification defining a scripted API.

Such a specification first needs to Establish a WbSocket
Connection_, providing that algorithmwith:

o The destination, consisting of a /host/ and a /port/.

Fette & Mel ni kov St andards Track [Page 66]

RFC 6455 The WebSocket Prot ocol Decenber 2011

13.

0o A /resource nane/, which allows for nmultiple services to be
identified at one host and port.

0o A /secure/ flag, which is true if the connection is to be
encrypted and fal se otherw se.

0 An ASCI| serialization of an origin [RFC6454] that is being nade
responsi ble for the connection

0o Optionally, a string identifying a protocol that is to be |ayered
over the WebSocket connection

The /host/, /port/, /resource nane/, and /secure/ flag are usually
obtained froma URI using the steps to parse a WbSocket URI's
conponents. These steps fail if the URI does not specify a
WebSocket .

If at any tinme the connection is to be closed, then the specification
needs to use the _Close the WbSocket Connection_ algorithm
(Section 7.1.1).

Section 7.1.4 defines when _The WbSocket Connection is C osed._.

Wil e a connection is open, the specification will need to handle the
cases when _A WbSocket Message Has Been Received_(Section 6.2).

To send sone data /data/ to an open connection, the specification
needs to _Send a WebSocket Message_ (Section 6.1).

Acknowl edgenent s

Speci al thanks are due to lan Hi ckson, who was the original author
and editor of this protocol. The initial design of this
specification benefitted fromthe participation of many people in the
WHATWG and WHATWG nmai ling list. Contributions to that specification
are not tracked by section, but a list of all who contributed to that
specification is given in the WHATWG HTM. specification at
http://whatwg. org/ htn 5.

Speci al thanks also to John Tanplin for providing a significant
anmount of text for the "Data Fram ng" section of this specification.

Speci al thanks also to Adam Barth for providing a significant anmount
of text and background research for the "Data Msking" section of
this specification.

Fette & Mel ni kov St andards Track [Page 67]

RFC 6455 The WebSocket Prot ocol Decenber 2011

14.

14.

Special thanks to Lisa Dusseault for the Apps Area review (and for
hel ping to start this work), Richard Barnes for the Gen-Art review,
and Magnus Westerlund for the Transport Area Review Special thanks
to HYBI W5 past and present WG chairs who tirel essly worked behi nd
the scene to nove this work toward conpl etion: Joe Hil debrand,

Sal vatore Loreto, and Gabriel Mntenegro. And |last but not |east,
special thank you to the responsible Area Director Peter Saint-Andre.

Thank you to the follow ng people who participated in di scussions on
the HYBI W mailing list and contributed i deas and/or provided
detailed reviews (the list is likely to be inconplete): Geg WIKkins,
John Tanplin, WIIly Tarreau, Maciej Stachow ak, Jami e Lokier, Scott
Fer guson, Bjoern Hoehrmann, Julian Reschke, Dave Cridland, Andy
Green, Eric Rescorla, Inaki Baz Castillo, Martin Thomson, Roberto
Peon, Patrick McManus, Zhong Yu, Bruce Atherton, Takeshi Yoshino,
Martin J. Duerst, James Graham Sinon Pieters, Roy T. Fielding,
Mykyta Yevstifeyev, Len Hol gate, Paul Coloniets, Piotr Kulaga, Brian
Raynor, Jan Koehl er, Joonas Lehtol ahti, Sylvain Hellegouarch, Stephen
Farrell, Sean Turner, Pete Resnick, Peter Thorson, Joe Mason, John
Fal | ows, and Al exander Philippou. Note that people |isted above
didn't necessarily endorse the end result of this work.

Ref er ences
1. Nornmtive References

[ANSI . X3-4.1986]
Anerican National Standards Institute, "Coded Character
Set - 7-bit Anerican Standard Code for Information
I nterchange”, ANSI X3.4, 1986.

[FI PS. 180- 3]
National Institute of Standards and Technol ogy, "Secure
Hash Standard", FIPS PUB 180-3, COctober 2008,
<http://csrc.nist.gov/publications/fips/fipsl80-3/
fi ps180-3 final. pdf>.

[RFC1928] Leech, M, Ganis, M, Lee, Y., Kuris, R, Koblas, D., and
L. Jones, "SOCKS Protocol Version 5", RFC 1928,
March 1996.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

[RFC2616] Fielding, R, GCettys, J., Mgul, J., Frystyk, H,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HITP/1.1", RFC 2616, June 1999.

Fette & Mel ni kov St andards Track [Page 68]

RFC 6455 The WebSocket Prot ocol Decenber 2011

[RFC2817] Khare, R and S. Lawence, "Upgrading to TLS Wthin
HTTP/ 1.1", RFC 2817, May 2000.

[RFC2818] Rescorla, E., "HTTP Over TLS', RFC 2818, May 2000.

[RFC3629] VYergeau, F., "UTF-8, a transformation format of |SO
10646", STD 63, RFC 3629, Novenber 2003.

[RFC3864] Klyne, G, Nottingham M, and J. Mgul, "Registration
Procedures for Message Header Fields", BCP 90, RFC 3864,
Sept ember 2004.

[RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66,
RFC 3986, January 2005.

[RFC3987] Duerst, M and M Suignard, "lInternationalized Resource
Identifiers (IRIs)", RFC 3987, January 2005.

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomess
Requirements for Security", BCP 106, RFC 4086, June 2005.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, Cctober 2006.

[RFC5226] Narten, T. and H. Alvestrand, "Cuidelines for Witing an
| ANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.

[RFC5234] Crocker, D. and P. Overell, "Augnented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234, January 2008.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
Ext ensi on Definitions", RFC 6066, January 2011.

[RFC6454] Barth, A, "The Web Origin Concept", RFC 6454,
Decenber 2011.

14.2. Informative References
[RFC4122] Leach, P., Mealling, M, and R Salz, "A Universally

Uni que I Dentifier (UUI D) URN Nanmespace", RFC 4122,
July 2005.

Fette & Mel ni kov St andards Track [Page 69]

RFC 6455

[RFC4270]

[RFC5321]

[RFC6202]

[RFC6265]

[TALKI NG

The WebSocket Prot ocol Decenber 2011

Hof fman, P. and B. Schneier, "Attacks on Cryptographic
Hashes in Internet Protocols", RFC 4270, Novenber 2005.

Klensin, J., "Sinple Mail Transfer Protocol", RFC 5321,
COct ober 2008.

Loreto, S., Saint-Andre, P., Salsano, S., and G WIKins,
"Known |ssues and Best Practices for the Use of Long
Polling and Streaning in Bidirectional HTTP', RFC 6202,
April 2011.

Barth, A, "HTTP State Managenent Mechani sni, RFC 6265,
April 2011.

Huang, L-S., Chen, E., Barth, A, Rescorla, E., and C
Jackson, "Talking to Yourself for Fun and Profit", 2010,
<htt p: //w2spconf. com 2011/ paper s/ websocket . pdf >.

[WBC. REC- wsc- ui - 20100812]

[WBAPI]

Roessler, T. and A Sal dhana, "Wb Security Context: User
Interface Guidelines", Wrld Wde Wb Consortium
Recomendati on REC-wsc- ui - 20100812, August 2010,
<http://wwv. wW3. or g/ TR/ 2010/ REC- wsc- ui - 20100812/ >.

Latest version avail abl e at
<http://ww. w3. org/ TR/ wsc-ui/>.

H ckson, 1., "The WebSocket API", WBC Working Draft WD
websocket s- 20110929, Septenber 2011,
<http://ww. w3. org/ TR/ 2011/ WD- websocket s- 20110929/ >.

Latest version avail abl e at
<htt p: //ww. W3. or g/ TR websocket s/ >.

[XMLHt t pRequest]

van Kesteren, A, Ed., "XM.HttpRequest", WBC Candi date
Recommendati on CR- XMLHt t pRequest - 20100803, August 2010,
<http://ww. w3. or g/ TR/ 2010/ CR- XMLHt t pRequest - 20100803/ >.

Lat est version avail able at
<htt p://ww. w3. or g/ TR/ XM_Ht t pRequest / >.

Fette & Mel ni kov St andards Track [Page 70]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Aut hors’ Addr esses

lan Fette

Googl e, Inc.

EMail: ifette+ietf@oogle.com
URI : http://ww. ianfette. com

Al exey Mel ni kov

| sode Ltd.

5 Castl e Business Village

36 Station Road

Hanpton, M ddl esex TW2 2BX
UK

EMai | : Al exey. Mel ni kov@ sode. com

Fette & Mel ni kov St andards Track [Page 71]

