I nt ernet Engi neering Task Force (I ETF) R Stewart

Request for Comments: 6458 Adar a Net wor ks
Cat egory: | nformational M Tuexen
| SSN: 2070- 1721 Muenster Univ. of Appl. Sciences
K. Poon

O acl e Corporation

P. Lei

Ci sco Systens, Inc.
V. Yasevich

HP

Decenmber 2011

Sockets APl Extensions
for the Stream Control Transm ssion Protocol (SCTP)

Abst r act

Thi s docunent describes a mapping of the Stream Control Transm ssion
Protocol (SCTP) into a sockets API. The benefits of this mapping

i nclude conpatibility for TCP applications, access to new SCTP
features, and a consolidated error and event notification schene.

Status of This Meno

This docunent is not an Internet Standards Track specification; it is
published for informational purposes.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Not all docunents
approved by the I ESG are a candidate for any |evel of Internet

St andard; see Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/info/rfc6458

Stewart, et al. I nf or mat i onal [Page 1]

RFC 6458 SCTP Sockets API Decenber 2011

Copyright Notice

Copyright (c) 2011 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Thi s docunent may contain material from|ETF Docunents or |ETF
Contributions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sonme of this
material may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Stewart, et al. I nf or mat i onal [Page 2]

RFC 6458

SCTP Sockets API Decenber 2011

Tabl e of Contents

1. IntroduCti On 6
2. DAt a TYPES .ot 8
3. One-to-Many Style Interface i, 8
3.1, BasicC OperatiOn ... e 8
3.1, 1. socket () ..o 9
3.1.2. bind() ... 10
3,13 Listen() ... 11
3.1.4. sendnmsg() and recvnsg() ... 12
3.1 5. CloSe() t v 14
3.1.6. connect () ... 14
3.2. Non-Blocking Mode i 15
3.3. Special Considerations i, 16
4. One-to-One Style Interface i 18
4.1. Basic Operati On 18
4.1.1. socKet () ... 19
4.1.2. bind() .. 19
4.0.3. Listen() ... e 21
4. 1.4, ACCePt () ot 21
4.1.5. CONNECEL () vttt 22
4.1.6. CloSe() .. e 23
4.1.7. shutdown() 23
4.1.8. sendnsg() and recviBg() 24
4.1.9. getpeernNanmB()t e 24
B, Data SLrUCTLUNES ... e e e e e 25
5.1. The msghdr and cnmsghdr Structures 25
5.2. Ancillary Data Considerations and Semantics 26
5.2.1. Multiple Items and Ordering 27
5.2.2. Accessing and Manipulating Ancillary Data 27
5.2.3. Control Message Buffer Sizing 28
5.3. SCTP nmeg control Structures 28
5.3.1. SCTP Initiation Structure (SCTP_INIT) 29
5.3.2. SCTP Header Information Structure

(SCTP_SNDRCV) - DEPRECATED 30

5.3.3. Extended SCTP Header |nformation Structure
(SCTP_EXTRCV) - DEPRECATED 33

.4. SCTP Send Information Structure (SCTP_SNDI NFO 35
. SCTP Receive Information Structure (SCTP_RCVI NFO ..37
.6. SCTP Next Receive Information Structure

(SCTP_NXTINFO) ..ttt e e e 38

o1 o1 o
w W w
o1

5.3.7. SCTP PR-SCTP Information Structure (SCTP_PRINFO) ...39
5.3.8. SCTP AUTH Information Structure (SCTP_AUTH NFO40
5.3.9. SCTP Destination |Pv4 Address Structure
(SCTP_DSTADDRVA) . .ttt e e e e e e 41
5.3.10. SCTP Destination |IPv6 Address Structure
(SCTP_DSTADDRVE) . .ttt et et et e 41

Stewart, et al. I nf or mat i onal [Page 3]

RFC 6458 SCTP Sockets API Decenber 2011

6. SCTP Events and Notifications 41
6.1. SCTP Notification Structure 42
6.1.1. SCTP_ASSOC CHANGEttt 43
6.1.2. SCTP_PEER ADDR CHANGEttt 45
6.1.3. SCTP_REMOTE_ERROR ittt e 46
6.1.4. SCTP_SEND FAILED - DEPRECATED, 47
6.1.5. SCTP_SHUTDOAN EVENT i 48
6.1.6. SCTP_ADAPTATION INDI CATION i 49
6.1.7. SCTP_PARTIAL DELIVERY EVENT 49
6.1.8. SCTP_AUTHENTI CATION EVENTt 50
6.1.9. SCTP_SENDER DRY_EVENTt 51
6.1.10. SCTP_NOTI FI CATI ONS_STOPPED EVENT 52
6.1.11. SCTP_SEND FAILED EVENT 52
6.2. Notification Interest Options, 54
6.2.1. SCTP_EVENTS Option - DEPRECATED 54
6.2.2. SCTP_EVENT Optionttt 56
7. Common Qperations for Both Styles 57
7.1. send(), recv(), sendto(), and recvfrom() 57
7.2. setsockopt() and getsockopt() 59
7.3. read() and write() ... 60
7.4, getsockname() 60
7.5. Inplicit Association Setup 61
8. Socket OPLiONS 61
8.1. Read/Wite Qptions e e 63
8.1.1. Retransmi ssion Tinmeout Paraneters (SCTP_RTO NFO) ...63
8.1.2. Association Parameters (SCTP_ASSOCINFO 64
8.1.3. Initialization Paraneters (SCTP_INNTMSG 66
8.1.4. SO LINGER e 66
8.1.5. SCTP_NODELAY . ..t e 66
8.1.6. SO RCVBUF e 67
8.1.7. SO SNDBUFt 67
8.1.8. Automatic C ose of Associations (SCTP_AUTOCLOSE) ...67
8.1.9. Set Primary Address (SCTP_PRIMARY_ADDR) 68
8.1.10. Set Adaptation Layer |ndicator
(SCTP_ADAPTATI ON_LAYER) i 68
8.1.11. Enabl e/ D sabl e Message Fragnentation
(SCTP_DI SABLE_ FRAGMVENTS)o 68
8.1.12. Peer Address Paraneters (SCTP_PEER ADDR PARAMS) ... 69
8.1.13. Set Default Send Paraneters
(SCTP_DEFAULT_SEND PARAM) - DEPRECATED 71
8.1.14. Set Notification and Ancillary Events
(SCTP_EVENTS) - DEPRECATEDciiuin... 72
8.1.15. Set/C ear |Pv4d Mapped Addresses
(SCTP_I _WANT _MAPPED V4 ADDR)ovvinnnnnn... 72
8.1.16. CGet or Set the Maxi num Fragnentation Size
(SCTP_IMAXSEG) ..ttt e e e 72
8.1.17. CGet or Set the List of Supported HVAC
Identifiers (SCTP_HMAC IDENT) 73

Stewart, et al. I nf or mat i onal [Page 4]

RFC 6458

8. 3.

Stewart,

SCTP Sockets API Decenber 2011
8.1.18. CGet or Set the Active Shared Key
(SCTP_AUTH ACTIVE_KEY) ..t 74
8.1.19. Cet or Set Delayed SACK Ti mer
(SCTP_DELAYED SACK) ...ttt e e e e 74
8.1.20. CGet or Set Fragmented Interleave
(SCTP_FRAGMVENT_INTERLEAVE)ciiiiin... 75
8.1.21. Set or Get the SCTP Partial Delivery Point
(SCTP_PARTIAL DELIVERY PONT)c.ovnien.... 77
8.1.22. Set or Get the Use of Extended Receive Info
(SCTP_USE_EXT_RCVINFO) - DEPRECATED 77
8.1.23. Set or Get the Auto ASCONF Fl ag
(SCTP_AUTO ASCONF) . vttt e e e e e e 77
8.1.24. Set or Get the Maxi mum Burst (SCTP_MAX BURST) 78
8.1.25. Set or Get the Default Context (SCTP_CONTEXT) 78
8.1.26. Enable or Disable Explicit EOR Marking
(SCTP_EXPLICIT EOR) ...ttt e e 79
8.1.27. Enable SCTP Port Reusage (SCTP_REUSE PORT) 79
8.1.28. Set Notification Event (SCTP_EVENT) 79
8.1.29. Enable or Disable the Delivery of SCTP_RCVI NFO
as Ancillary Data (SCTP_RECVRCVINFO) 79
8.1.30. Enable or Disable the Delivery of SCTP_NXTI NFO
as Ancillary Data (SCTP_RECYNXTINFO 80
8.1.31. Set Default Send Paraneters
(SCTP_DEFAULT_SNDINFO)ttt 80
8.1.32. Set Default PR-SCTP Paraneters
(SCTP_DEFAULT PRINFO) ...t it e 80
Read-Only OpLiONS ... o 81
8.2.1. Association Status (SCTP_STATUS) 81
8.2.2. Peer Address Information
(SCTP_CGET_PEER _ADDR INFO)t 82
8.2.3. Get the List of Chunks the Peer Requires to
Be Aut henticated (SCTP_PEER AUTH CHUNKS) 84
8.2.4. Get the List of Chunks the Local Endpoint Requires
to Be Authenticated (SCTP_LOCAL_AUTH CHUNKS) 84
8.2.5. Get the Current Nunber of Associations
(SCTP_CGET_ASSOC NUMBER)t 85
8.2.6. Get the Current Identifiers of Associations
(SCTP_GET _ASSOC ID LIST) ..ot 85
Wite-Only OpLioNnS ... 85
8.3.1. Set Peer Primary Address
(SCTP_SET_PEER PRIMARY_ADDR)ttt 86
8.3.2. Add a Chunk That Must Be Authenticated
(SCTP_AUTH CHUNK) e e e 86
8.3.3. Set a Shared Key (SCTP_AUTH KEY) 86
8.3.4. Deactivate a Shared Key
(SCTP_AUTH DEACTI VATE KEY)t 87
8.3.5. Delete a Shared Key (SCTP_AUTH DELETE KEY) 88
et al. I nf or mat i onal [Page 5]

RFC 6458 SCTP Sockets API Decenber 2011

9. New FUNCLI ONS ... e e 88
9.1, sctp_bindX() ... 88
9.2. sctp_peel of f() ... 90
9.3. sctp_getpaddrs() 91
9.4, sctp_freepaddrs() 92
9.5. sctp_getladdrs() 92
9.6. sctp freeladdrs() 93
9.7. sctp_sendnsg() - DEPRECATED 93
9.8. sctp_recvnsg() - DEPRECATED 94
9.9, SCELP_CONNECEX() « v ittt 95
9.10. sctp_send() - DEPRECATED i 96
9.11. sctp_sendx() - DEPRECATED 97
9.12. sCtp_SendV() ...t 98
9. 13, SCEP_FECVV() ottt 101

10. Security Considerations, 103

11. Acknow edgment S 103

12, ReferenCes 104
12.1. Normative References 104
12.2. Informative References 104

Appendi x A, Exanple Using One-to-One Style Sockets 106

Appendi x B. Exanpl e Using One-to-Many Style Sockets 109

1. Introduction

The sockets APl has provided a standard nappi ng of the Internet
Protocol suite to nmany operating systens. Both TCP [RFC0793] and UDP
[RFC0768] have benefited fromthis standard representation and access
met hod across many diverse platforms. SCTP is a new protocol that
provi des many of the characteristics of TCP but also incorporates
semantics nore akin to UDP. This docunent defines a nethod to map
the existing sockets APl for use with SCTP, providing both a base for
access to new features and conpatibility so that nost existing TCP
applications can be mgrated to SCTP with few (if any) changes.

There are three basic design objectives:

1. Mintain consistency with existing sockets APlIs: W define a
sockets mapping for SCTP that is consistent with other sockets
APl protocol mappings (for instance UDP, TCP, |Pv4, and |Pv6).

2. Support a one-to-many style interface: This set of semantics is
simlar to that defined for connectionless protocols, such as
UDP. A one-to-many style SCTP socket should be able to contro
nmul ti pl e SCTP associations. This is sinmlar to a UDP socket,
whi ch can comuni cate with many peer endpoints. Each of these
associations is assigned an association identifier so that an

Stewart, et al. I nf or mat i onal [Page 6]

RFC 6458 SCTP Sockets API Decenber 2011

application can use the IDto differentiate them Note that SCTP
is connection-oriented in nature, and it does not support
broadcast or nulticast comruni cations, as UDP does.

3. Support a one-to-one style interface: This interface supports a
simlar semantics as sockets for connection-oriented protocols,
such as TCP. A one-to-one style SCTP socket should only contro
one SCTP association. One purpose of defining this interface is
to allow existing applications built on other connection-oriented
protocols to be ported to use SCTP with very little effort.

Devel opers famliar with these semantics can easily adapt to
SCTP. Another purpose is to nmake sure that existing nechanisns
in nost operating systens that support sockets, such as select(),
shoul d continue to work with this style of socket. Extensions
are added to this mapping to provide nmechani sms to exploit new
features of SCTP.

Goals 2 and 3 are not conpatible, so this docunent defines two nodes
of mappi ng, nanely the one-to-nany style nmapping and the one-to-one
style mappi ng. These two nodes share sone comobn data structures and
operations, but will require the use of two different application
programm ng styles. Note that all new SCTP features can be used wth
both styles of socket. The decision on which one to use depends

mai nly on the nature of the applications.

A nmechanismis defined to extract an SCTP associ ation froma one-to-
many style socket into a one-to-one style socket.

Some of the SCTP nechani snms cannot be adequately mapped to an

exi sting socket interface. 1In sone cases, it is nore desirable to
have a new interface instead of using existing socket calls.
Section 9 of this docunent describes these new interfaces.

Pl ease note that some el enments of the SCTP sockets APl are decl ared
as deprecated. During the evolution of this docunent, elenents of
the APl were introduced, inplenented, and | ater on replaced by other
el ements. These replaced el enents are declared as deprecated, since
they are still available in some inplenentations and the repl acenent
functions are not. This applies especially to older versions of
operating systens supporting SCTP. New SCTP socket inplenmentations
must i npl enent at |east the non-deprecated el enents. Inplenentations
intending interoperability with ol der versions of the APl should al so
i nclude the deprecated functions.

Stewart, et al. I nf or mat i onal [Page 7]

RFC 6458 SCTP Sockets API Decenber 2011

2. Data Types
Whenever possible, Portable Operating SystemInterface (POSIX) data
types defined in [| EEE-1003. 1-2008] are used: uintN_t nmeans an
unsi gned integer of exactly N bits (e.g., uintl6_t). This docunent
al so assunes the argunent data types from PCSI X when possible (e.g.
the final argunent to setsockopt() is a socklen_t value). Wenever
buf fer sizes are specified, the POSI X size t data type is used

3. One-to-Many Style Interface

In the one-to-nmany style interface, there is a one-to-nmany
rel ati onshi p between sockets and associ ati ons.

3.1. Basic Operation

A typical server in this style uses the follow ng socket calls in
sequence to prepare an endpoint for servicing requests:

0 socket()
o bind()

o listen()
o recvnsg()

0 sendnsg()

o

cl ose()

A typical client uses the following calls in sequence to set up an
association with a server to request services:

0 socket ()

o sendnsg()

o recvnsg()

o close()

In this style, by default, all of the associations connected to the
endpoint are represented with a single socket. Each association is
assigned an association identifier (the type is sctp_assoc_t) so that
an application can use it to differentiate anong them In sone

i npl enent ati ons, the peer endpoints’ addresses can also be used for
this purpose. But this is not required for perfornance reasons. |If

Stewart, et al. I nf or mat i onal [Page 8]

RFC 6458 SCTP Sockets API Decenber 2011

an inplenentation does not support using addresses to differentiate
bet ween di fferent associations, the sendto() call can only be used to

set up an association inplicitly. It cannot be used to send data to
an established association, as the association identifier cannot be
speci fi ed.

Once an association identifier is assigned to an SCTP associ ation
that identifier will not be reused until the application explicitly
term nates the use of the association. The resources belonging to
that association will not be freed until that happens. This is
simlar to the close() operation on a normal socket. The only
exception is when the SCTP_AUTOCLCSE option (Section 8.1.8) is set.
In this case, after the association is ternmnated gracefully and
automatically, the association identifier assigned to it can be
reused. Al applications using this option should be aware of this
to avoid the possible problemof sending data to an incorrect peer
endpoi nt .

If the server or client wishes to branch an existing association off
to a separate socket, it is required to call sctp peeloff() and to
specify the association identifier. The sctp_peeloff() call wll
return a new one-to-one style socket that can then be used with
recv() and send() functions for nessage passing. See Section 9.2 for
nore on branched-of f associ ati ons.

Once an association is branched off to a separate socket, it becones
compl etely separated fromthe original socket. Al subsequent
control and data operations to that association nust be done through
the new socket. For exanple, the close() operation on the origina
socket will not term nate any associations that have been branched
off to a different socket.

One-to-many style socket calls are discussed in nore detail in the
foll owi ng subsecti ons.

3.1.1. socket()

Applications use socket() to create a socket descriptor to represent
an SCTP endpoi nt.

The function prototype is
i nt socket(int domain,

int type,

i nt protocol);

and one uses PF_INET or PF_INET6 as the domain, SOCK SEQPACKET as the
type, and | PPROTO SCTP as the protocol

Stewart, et al. I nf or mat i onal [Page 9]

RFC 6458 SCTP Sockets API Decenber 2011

Here, SOCK SEQPACKET i ndicates the creation of a one-to-nmany style
socket .
The function returns a socket descriptor, or -1 in case of an error.
Using the PF_INET domain indicates the creation of an endpoint that
can use only | Pv4d addresses, while PF_INET6 creates an endpoi nt that
can use both IPv6 and | Pv4 addresses.

3.1.2. bind()

Applications use bind() to specify with which |Iocal address and port
t he SCTP endpoi nt shoul d associate itself.

An SCTP endpoi nt can be associated with nmultiple addresses. To do
this, sctp_bindx() is introduced in Section 9.1 to help applications
do the job of associating multiple addresses. But note that an
endpoi nt can only be associated with one local port.

These addresses associated with a socket are the eligible transport
addresses for the endpoint to send and receive data. The endpoint
will also present these addresses to its peers during the association
initialization process; see [RFC4960].
After calling bind(), if the endpoint w shes to accept new
associ ations on the socket, it must call listen() (see
Section 3.1.3).
The function prototype of bind() is
int bind(int sd,
struct sockaddr *addr,
sockl en_t addrlen);
and the argunents are
sd: The socket descriptor returned by socket().

addr: The address structure (struct sockaddr_in for an | Pv4 address
or struct sockaddr_in6 for an | Pv6 address; see [RFC3493]).

addrlen: The size of the address structure.
bind() returns 0 on success and -1 in case of an error
If sd is an | Pv4 socket, the address passed nust be an | Pv4 address.

If the sd is an I Pv6 socket, the address passed can either be an | Pv4
or an | Pv6 address.

Stewart, et al. I nf or mat i onal [Page 10]

RFC 6458 SCTP Sockets API Decenber 2011

Applications cannot call bind() nultiple tinmes to associate multiple
addresses to an endpoint. After the first call to bind(), al
subsequent calls will return an error

If the I P address part of addr is specified as a wildcard (I NADDR_ANY
for an | Pv4 address, or as I N6ADDR ANY INIT or in6addr_any for an

| Pv6 address), the operating systemw |l associate the endpoint with
an optinmal address set of the available interfaces. |If the |IPv4
sin_port or IPv6 sin6_port is set to O, the operating systemwill
choose an epheneral port for the endpoint.

If bind() is not called prior to a sendnsg() call that initiates a
new associ ation, the system pi cks an epheneral port and will choose
an address set equivalent to binding with a wildcard address. One of
those addresses will be the primary address for the association

This automatically enables the multi-homing capability of SCTP

The conpl etion of this bind() process does not allow the SCTP
endpoi nt to accept inbound SCTP association requests. Until a
listen() systemcall, described below, is performed on the socket,
the SCTP endpoint will pronptly reject an inbound SCTP INI T request
with an SCTP ABORT

3.1.3. listen()
By default, a one-to-nany style socket does not accept new
associ ation requests. An application uses listen() to mark a socket
as being able to accept new associ ati ons.

The function prototype is

int listen(int sd,
i nt backl og);

and the argunents are
sd: The socket descriptor of the endpoint.

backl og: |If backlog is non-zero, enable |listening, else disable
I'istening.

listen() returns 0 on success and -1 in case of an error

Note that one-to-nmany style socket consunmers do not need to cal
accept() to retrieve new associations. Calling accept() on a one-to-
many styl e socket should return EOPNOTSUPP. Rather, new associ ations
are accepted automatically, and notifications of the new associ ations
are delivered via recvnsg() with the SCTP_ASSOC CHANGE event (if

Stewart, et al. I nf or mat i onal [Page 11]

RFC 6458 SCTP Sockets API Decenber 2011

these notifications are enabled). Cients will typically not cal
listen(), so that they can be assured that only actively initiated
associ ati ons are possible on the socket. Server or peer-to-peer
sockets, on the other hand, will always accept new associ ations, so a
well-written application using server one-to-many style sockets nust
be prepared to handl e new associ ati ons from unwant ed peers.

Al so note that the SCTP_ASSOC CHANGE event provides the association
identifier for a new association, so if applications wish to use the
association identifier as a parameter to other socket calls, they
shoul d ensure that the SCTP_ASSOC CHANGE event is enabl ed.

3.1.4. sendnsg() and recvnsg()

An application uses the sendnsg() and recvnsg() calls to transnit
data to and receive data fromits peer.

The function prototypes are
ssize_t sendnsg(int sd,
const struct nsghdr *nessage,
int flags);
and
ssize_t recvnsg(int sd,
struct nmsghdr *nessage,
int flags);
using the followi ng argunents:
sd: The socket descriptor of the endpoint.
message: Pointer to the nsghdr structure that contains a single user
message and possibly sone ancillary data. See Section 5 for a
conpl ete description of the data structures.

flags: No new flags are defined for SCTP at this level. See
Section 5 for SCTP-specific flags used in the nsghdr structure.

sendnsg() returns the nunmber of bytes accepted by the kernel or -1 in

case of an error. recvnsg() returns the nunber of bytes received or
-1 in case of an error.

Stewart, et al. I nf or mat i onal [Page 12]

RFC 6458 SCTP Sockets API Decenber 2011

As described in Section 5, different types of ancillary data can be
sent and received along with user data. When sending, the ancillary
data is used to specify the sent behavior, such as the SCTP stream
nunber to use. Wien receiving, the ancillary data is used to
describe the received data, such as the SCTP stream sequence nunber
of the nmessage.

When sending user data with sendnsg(), the nmsg nanme field in the
msghdr structure will be filled with one of the transport addresses
of the intended receiver. |If there is no existing association

bet ween the sender and the intended receiver, the sender’s SCTP stack
will set up a new association and then send the user data (see
Section 7.5 for nore on inplicit association setup). |If sendnsg() is
called with no data and there is no existing association, a new one
will be established. The SCTP_INT type ancillary data can be used
to change some of the parameters used to set up a new associ ation

If sendnsg() is called with NULL data, and there is no existing
associ ation but the SCTP_ABORT or SCTP_EOF flags are set as described
in Section 5.3.4, then -1 is returned and errno is set to ElI NVAL.
Sendi ng a nmessage using sendnsg() is atomc unless explicit end of
record (EOR) marking is enabled on the socket specified by sd (see
Section 8.1.26).

If a peer sends a SHUTDOWN, an SCTP_SHUTDOAN EVENT notification wll
be delivered if that notification has been enabled, and no nore data
can be sent to that association. Any attenpt to send nore data will
cause sendnmsg() to return with an ESHUTDOMAN error. Note that the
socket is still open for reading at this point, so it is possible to
retrieve notifications.

When receiving a user nessage with recvimsg(), the nsg_nane field in
the msghdr structure will be populated with the source transport
address of the user data. The caller of recvmsg() can use this
address information to deternine to which association the received
user nmessage belongs. Note that if SCTP_ASSOC CHANGE events are

di sabl ed, applications nust use the peer transport address provided
in the nsg_nanme field by recvnsg() to performcorrelation to an
association, since they will not have the association identifier.

If all data in a single nmessage has been delivered, MSG EOR will be
set in the meg_flags field of the nsghdr structure (see Section 5.1).

If the application does not provide enough buffer space to conpletely
receive a data nessage, MSG EOR will not be set in nsg_flags.
Successive reads will consune nore of the same nessage until the
entire nmessage has been delivered, and MSG EOR will be set.

Stewart, et al. I nf or mat i onal [Page 13]

RFC 6458 SCTP Sockets API Decenber 2011

If the SCTP stack is running low on buffers, it nmay partially deliver
a nmessage. In this case, MSG EOR will not be set, and nore calls to
recvmsg() will be necessary to conpletely consune the nessage. Only
one nessage at a time can be partially delivered in any stream The
socket option SCTP_FRAGVENT_ | NTERLEAVE control s vari ous aspects of
what interlacing of messages occurs for both the one-to-one and the
one-to-nany style sockets. Please consult Section 8.1.20 for further
details on nessage delivery options.

3.1.5. close()
Applications use close() to performgraceful shutdown (as descri bed
in Section 10.1 of [RFC4960]) on all of the associations currently
represented by a one-to-nmany style socket.
The function prototype is
int close(int sd);
and the argument is
sd: The socket descriptor of the associations to be cl osed.
O is returned on success and -1 in case of an error
To gracefully shut down a specific association represented by the
one-to-nmany style socket, an application should use the sendnsg()
call and include the SCTP_ECF flag. A user may optionally terninate
an associ ation non-gracefully by using sendnsg() with the SCTP_ABORT
flag set and possibly passing a user-specified abort code in the data
field. Both flags SCTP_EOF and SCTP_ABCRT are passed with ancillary
data (see Section 5.3.4) in the sendnsg() call

If sd in the close() call is a branched-off socket representing only
one associ ation, the shutdown is perfornmed on that association only.

3.1.6. connect()

An application may use the connect() call in the one-to-nmany style to
initiate an association w thout sending data.

The function prototype is
i nt connect(int sd,

const struct sockaddr *nam
socklen_t len);

Stewart, et al. I nf or mat i onal [Page 14]

RFC 6458 SCTP Sockets API Decenber 2011

and the argunents are
sd: The socket descriptor to which a new association is added.

nam The address structure (struct sockaddr_in for an |Pv4 address
or struct sockaddr _in6 for an | Pv6 address; see [RFC3493]).

len: The size of the address.
O is returned on success and -1 in case of an error.

Mul tiple connect() calls can be nade on the sane socket to create
mul tiple associations. This is different fromthe semantics of
connect () on a UDP socket.

Note that SCTP allows data exchange, simlar to T/ TCP [RFC1644] (nade
H storic by [RFC6247]), during the association setup phase. |If an
application wants to do this, it cannot use the connect() call.
Instead, it should use sendto() or sendnsg() to initiate an
association. If it uses sendto() and it wants to change the
initialization behavior, it needs to use the SCTP_I Nl TM5G socket
option before calling sendto(). O it can use sendnsg() wth
SCTP_INIT type ancillary data to initiate an association w thout
calling setsockopt(). Note that the inplicit setup is supported for
t he one-to-nany style sockets.

SCTP does not support half close semantics. This nmeans that unlike
T/ TCP, MSG EOF should not be set in the flags paraneter when calling
sendto() or sendnsg() when the call is used to initiate a connection
MSG EOF is not an acceptable flag with an SCTP socket.

3.2. Non-Bl ocki ng Mde

Some SCTP applications may wi sh to avoid being bl ocked when calling a
socket interface function.

Once a bind() call and/or subsequent sctp_bindx() calls are conplete
on a one-to-nany style socket, an application nmay set the
non- bl ocking option via a fcntl () (such as O NONBLOCK). After
setting the socket to non-bl ocking node, the sendnmsg() function
returns i mediately. The success or failure of sending the data
message (with possible SCTP_INITMSG ancillary data) will be signal ed
by the SCTP_ASSOC CHANGE event with SCTP_COW UP or
SCTP_CANT_START_ASSOC. |f user data could not be sent (due to an
SCTP_CANT_START_ASSQOC), the sender will also receive an
SCTP_SEND _FAI LED EVENT event. Events can be received by the user
calling recvnsg(). A server (having called listen()) is also

Stewart, et al. I nf or mat i onal [Page 15]

RFC 6458 SCTP Sockets API Decenber 2011

notified of an association-up event via the reception of an
SCTP_ASSOC CHANGE with SCTP_COW UP via the calling of recvnsg() and
possi bly the reception of the first data nessage.

To shut down the association gracefully, the user nust call sendnmsg()
with no data and with the SCTP_EOF flag set as described in

Section 5.3.4. The function returns inmedi ately, and conpl etion of
the graceful shutdown is indicated by an SCTP_ASSOC CHANGE
notification of type SCTP_SHUTDOWN COVP (see Section 6.1.1). Note
that this can al so be done using the sctp_sendv() call described in
Section 9.12.

It is reconmmended that an application use caution when using select()
(or poll()) for witing on a one-to-many style socket, because the
interpretation of select() on wite is inplenentation specific.
Cenerally, a positive return on a select() on wite would only

i ndi cate that one of the associations represented by the one-to-nany
style socket is witable. An application that wites after the
select() returns may still block, since the association that was
witable is not the destination association of the wite call.

Li kewi se, select() (or poll()) for reading froma one-to-many style
socket will only return an indication that one of the associations
represented by the socket has data to be read.

An application that wi shes to know that a particular association is

ready for reading or witing should either use the one-to-one style

or use the sctp_peeloff() function (see Section 9.2) to separate the
associ ation of interest fromthe one-to-many style socket.

Note that sone inplenentations may have an extended select call, such
as epoll or kqueue, that nay escape this limtation and allow a

sel ect on a specific association of a one-to-nmany style socket, but
this is an inplenentation-specific detail that a portable application
cannot depend on.

3.3. Special Considerations

The fact that a one-to-many style socket can provide access to nany
SCTP associ ations through a single socket descriptor has inportant

i nplications for both application programers and system programrers
i npl ementing this API. A key issue is how buffer space inside the
sockets layer is nanaged. Because this inplenentation detai

directly affects how application programmers nust wite their code to
ensure correct operation and portability, this section provides sone
gui dance to both inplenenters and application progranmers.

Stewart, et al. I nf or mat i onal [Page 16]

RFC 6458 SCTP Sockets API Decenber 2011

An inmportant feature that SCTP shares with TCP is fl ow control
Specifically, a sender may not send data faster than the receiver can
consumne it.

For TCP, flow control is typically provided for in the sockets APl as

follows. |f the reader stops reading, the sender queues nessages in
the socket layer until the send socket buffer is conpletely filled.
This results in a "stalled connection". Further attenpts to wite to

the socket will block or return the error EAGAIN or EWOULDBLOCK for a
non- bl ocki ng socket. At sonme point, either the connection is closed,
or the receiver begins to read, again freeing space in the output
queue.

For one-to-one style SCTP sockets (this includes sockets descriptors
that were separated froma one-to-many style socket with

sctp_peeloff()), the behavior is identical. For one-to-nmany style
SCTP sockets, there are nmultiple associations for a single socket,
whi ch makes the situation nore conplicated. |If the inplenentation

uses a single buffer space allocation shared by all associations, a
single stalled association can prevent the further sending of data on
all associations active on a particular one-to-many style socket.

For a bl ocking socket, it should be clear that a single stalled
associ ation can block the entire socket. For this reason
application progranmmers may want to use non-bl ocki ng one-to- many
style sockets. The application should at |east be able to send
nmessages to the non-stalled associ ations.

But a non-bl ocki ng socket is not sufficient if the APl inplenenter
has chosen a single shared buffer allocation for the socket. A
single stalled association would eventual |y cause the shared
allocation to fill, and it would becone inpossible to send even to
non-stal |l ed associ ati ons.

The APl inplenmenter can solve this problem by providing each
association with its own allocation of outbound buffer space. Each
associ ation should conceptually have as nuch buffer space as it would
have if it had its own socket. As a bonus, this sinplifies the

i mpl erent ati on of sctp_peel off().

To ensure that a given stalled association will not prevent other
non-stal |l ed associ ations frombeing witable, application programers
shoul d either

o demand that the underlying inplenentation dedicates independent

buf fer space reservation to each association (as suggested
above), or

Stewart, et al. I nf or mat i onal [Page 17]

RFC 6458 SCTP Sockets API Decenber 2011

4.

4.

1

o verify that their application-layer protocol does not permt |arge
anmounts of unread data at the receiver (this is true of sone
request-response protocols, for exanple), or

0 use one-to-one style sockets for association, which may
potentially stall (either fromthe begi nning, or by using
sctp_peel off() before sending | arge amounts of data that may cause
a stalled condition).

One-to-One Style Interface

The goal of this style is to follow as closely as possible the

current practice of using the sockets interface for a connection-

oriented protocol such as TCP. This style enables existing
applications using connection-oriented protocols to be ported to SCTP
with very little effort.

One-to-one style sockets can be connected (explicitly or inplicitly)
at nost once, sinilar to TCP sockets.

Not e that some new SCTP features and sone new SCTP socket options can
only be utilized through the use of sendnmsg() and recvnsg() calls;
see Section 4.1.8.

Basi ¢ Operation

A typical one-to-one style server uses the follow ng system cal
sequence to prepare an SCTP endpoint for servicing requests:

0 socket()

o bind()

o listen()

o accept()

The accept() call blocks until a new association is set up. It
returns with a new socket descriptor. The server then uses the new
socket descriptor to communicate with the client, using recv() and
send() calls to get requests and send back responses.

Then it calls

o close()

to termnate the associ ation.

Stewart, et al. I nf or mat i onal [Page 18]

RFC 6458 SCTP Sockets API Decenber 2011
A typical client uses the follow ng systemcall sequence to set up an
association with a server to request services:

0 socket ()

0 connect ()

After returning fromthe connect() call, the client uses send()/
sendnsg() and recv()/recvnsg() calls to send out requests and receive
responses fromthe server.

The client calls

o close()

to terninate this associati on when done.

4.1.1. socket()

Applications call socket() to create a socket descriptor to represent
an SCTP endpoi nt.

The function prototype is

i nt socket(int domain,
int type,
i nt protocol);

and one uses PF_INET or PF_INET6 as the domain, SOCK STREAM as the
type, and | PPROTO SCTP as the protocol

Here, SOCK _STREAM i ndi cates the creation of a one-to-one style
socket .

Usi ng the PF_I NET domain indicates the creation of an endpoint that
can use only | Pv4 addresses, while PF_INET6 creates an endpoi nt that
can use both IPv6 and | Pv4 addresses.

4.1.2. bind()

Applications use bind() to specify with which |ocal address and port
the SCTP endpoi nt shoul d associate itself.

An SCTP endpoint can be associated with multiple addresses. To do
this, sctp_bindx() is introduced in Section 9.1 to help applications
do the job of associating multiple addresses. But note that an
endpoi nt can only be associated with one local port.

Stewart, et al. I nf or mat i onal [Page 19]

RFC 6458 SCTP Sockets API Decenber 2011

These addresses associated with a socket are the eligible transport
addresses for the endpoint to send and receive data. The endpoint
will also present these addresses to its peers during the association
initialization process; see [RFC4960].

The function prototype of bind() is

int bind(int sd,
struct sockaddr *addr,
sockl en_t addrlen);

and the argunents are
sd: The socket descriptor returned by socket().

addr: The address structure (struct sockaddr_in for an | Pv4 address
or struct sockaddr_in6 for an | Pv6 address; see [RFC3493]).

addrl en: The size of the address structure.

If sd is an | Pv4 socket, the address passed nust be an | Pv4 address.
If sd is an | Pv6 socket, the address passed can either be an | Pv4 or
an | Pv6 address.

Applications cannot call bind() nultiple tinmes to associate multiple
addresses to the endpoint. After the first call to bind(), al
subsequent calls will return an error

If the I P address part of addr is specified as a wildcard (I NADDR_ANY
for an | Pv4 address, or as I N6ADDR ANY INI T or in6addr_any for an

| Pv6 address), the operating systemw |l associate the endpoint with
an optinmal address set of the available interfaces. |If the |IPv4
sin_port or IPv6 sin6_port is set to O, the operating systemwill
choose an epheneral port for the endpoint.

If bind() is not called prior to the connect() call, the system picks
an epheneral port and will choose an address set equivalent to
binding with a wildcard address. One of these addresses will be the
primary address for the association. This automatically enables the
mul ti-hom ng capability of SCTP

The conpl etion of this bind() process does not allow the SCTP
endpoi nt to accept inbound SCTP association requests. Until a
listen() systemcall, described below, is performed on the socket,
the SCTP endpoint will pronptly reject an inbound SCTP IN T request
with an SCTP ABORT

Stewart, et al. I nf or mat i onal [Page 20]

RFC 6458 SCTP Sockets API Decenber 2011

4.1.3. listen()

Applications use listen() to allow the SCTP endpoint to accept
i nbound associ ati ons.

The function prototype is

int listen(int sd,
i nt backl og);

and the argunents are

sd: The socket descriptor of the SCTP endpoint.

backl og: Specifies the max nunmber of outstandi ng associ ations
allowed in the socket’s accept queue. These are the associations
that have finished the four-way initiation handshake (see
Section 5 of [RFC4960]) and are in the ESTABLI SHED state. Note
that a backlog of "0 indicates that the caller no | onger w shes
to receive new associ ati ons.

listen() returns 0 on success and -1 in case of an error.

4.1.4. accept()

Applications use the accept() call to renpve an established SCTP

association fromthe accept queue of the endpoint. A new socket

descriptor will be returned fromaccept() to represent the newy

forned associ ati on.

The function prototype is

i nt accept (int sd,

struct sockaddr *addr,
socklen_t *addrl en);

and the argunents are

sd: The listening socket descriptor

addr: On return, addr (struct sockaddr_in for an |IPv4 address or
struct sockaddr _in6 for an | Pv6 address; see [RFC3493]) will
contain the primary address of the peer endpoint.

addrlen: On return, addrlen will contain the size of addr.

The function returns the socket descriptor for the newy forned
associ ati on on success and -1 in case of an error

Stewart, et al. I nf or mat i onal [Page 21]

RFC 6458 SCTP Sockets API Decenber 2011

4.1.5. connect ()
Applications use connect() to initiate an association to a peer
The function prototype is

i nt connect (int sd,
const struct sockaddr *addr,
sockl en_t addrlen);

and the argunents are
sd: The socket descriptor of the endpoint.

addr: The peer’s (struct sockaddr_in for an |IPv4 address or struct
sockaddr _in6 for an |IPv6 address; see [RFC3493]) address.

addrlen: The size of the address.
connect () returns 0 on success and -1 on error

Thi s operation corresponds to the ASSOCI ATE primtive described in
Section 10.1 of [RFC4960].

The nunber of outbound streanms the new association has is stack
dependent. Before connecting, applications can use the SCTP_I Nl TM5G
option described in Section 8.1.3 to change the nunber of outbound
streans.

If bind() is not called prior to the connect() call, the system picks
an epheneral port and will choose an address set equivalent to

bi ndi ng with | NADDR_ANY and | N6ADDR_ANY_INT for |Pv4 and | Pv6
sockets, respectively. One of the addresses will be the primary
address for the association. This automatically enables the

mul ti-hom ng capability of SCTP.

Note that SCTP all ows data exchange, simlar to T/TCP [RFC1644] (nmde
H storic by [RFC6247]), during the association setup phase. |If an
application wants to do this, it cannot use the connect() call.
Instead, it should use sendto() or sendnsg() to initiate an
association. |If it uses sendto() and it wants to change the
initialization behavior, it needs to use the SCTP_I Nl TM5G socket
option before calling sendto(). O it can use sendnsg() wth
SCTP_INIT type ancillary data to initiate an association w thout
calling setsockopt(). Note that the inplicit setup is supported for
t he one-to-one style sockets.

Stewart, et al. I nf or mat i onal [Page 22]

RFC 6458 SCTP Sockets API Decenber 2011

SCTP does not support half close semantics. This neans that unlike
T/ TCP, MSG EOF should not be set in the flags paraneter when calling
sendto() or sendmsg() when the call is used to initiate a connection
M5G EOF is not an acceptable flag with an SCTP socket.

4.1.6. close()
Applications use close() to gracefully close down an associ ati on.
The function prototype is
int close(int sd);
and the argument is
sd: The socket descriptor of the association to be closed.

close() returns 0 on success and -1 in case of an error

After an application calls close() on a socket descriptor, no further
socket operations will succeed on that descriptor

4.1.7. shutdown()
SCTP differs fromTCP in that it does not have half close semantics.
Hence, the shutdown() call for SCTP is an approxi mati on of the TCP
shutdown() call, and solves sone different problenms. Full TCP
conmpatibility is not provided, so devel opers porting TCP applications
to SCTP may need to recode sections that use shutdown(). (Note that
it is possible to achieve the sane results as half close in SCTP
usi ng SCTP streans.)
The function prototype is

i nt shutdown(int sd,
i nt how);

and the argunents are
sd: The socket descriptor of the association to be closed.
how. Specifies the type of shutdown. The values are as foll ows:

SHUT_RD: Disables further receive operations. No SCTP protoco
action is taken.

SHUT_WR: Disables further send operations, and initiates the SCTP
shut down sequence

Stewart, et al. I nf or mat i onal [Page 23]

RFC 6458 SCTP Sockets API Decenber 2011

4.

4.

SHUT_RDWR: Disables further send and recei ve operations, and
initiates the SCTP shutdown sequence.

shutdown() returns 0 on success and -1 in case of an error.

The major difference between SCTP and TCP shutdown() is that SCTP
SHUT WR initiates i mediate and full protocol shutdown, whereas TCP
SHUT_WR causes TCP to go into the half close state. SHUT_RD behaves
the sane for SCTP as for TCP. The purpose of SCTP SHUT WR is to

cl ose the SCTP association while still |eaving the socket descriptor
open. This allows the caller to receive back any data that SCTP is
unabl e to deliver (see Section 6.1.4 for nore information) and
receive event notifications.

To performthe ABORT operation described in Section 10.1 of
[RFC4960], an application can use the socket option SO LI NGER
SO LINGER is described in Section 8.1.4.

1.8. sendnmsg() and recvnsg()

Wth a one-to-one style socket, the application can also use
sendnsg() and recvnsg() to transmt data to and receive data fromits
peer. The semantics is simlar to those used in the one-to-nmany
style (see Section 3.1.4), with the follow ng differences:

1. When sending, the nsg_nane field in the nsghdr is not used to
specify the intended receiver; rather, it is used to indicate a
preferred peer address if the sender w shes to di scourage the
stack from sending the nmessage to the primary address of the
receiver. |f the socket is connected and the transport address
given is not part of the current association, the data will not
be sent, and an SCTP_SEND FAI LED EVENT event will be delivered to
the application if send failure events are enabl ed.

2. Using sendnsg() on a non-connected one-to-one style socket for
inmplicit connection setup may or may not work, depending on the
SCTP i npl enent ati on.

1.9. getpeernane()

Applications use getpeernane() to retrieve the primary socket address
of the peer. This call is for TCP conpatibility and is not
multi-homed. It may not work with one-to-many style sockets,
dependi ng on the inplenentation. See Section 9.3 for a nulti-honed
style version of the call.

Stewart, et al. I nf or mat i onal [Page 24]

RFC 6458 SCTP Sockets API Decenber 2011

The function prototype is

i nt getpeernane(int sd,
struct sockaddr *address,
socklen_t *len);

and the argunents are

sd: The socket descriptor to be queried.

address: On return, the peer primary address is stored in this
buffer. |If the socket is an | Pv4 socket, the address will be
I Pv4. |If the socket is an | Pv6 socket, the address will be either
an | Pv6 or |Pv4 address.

len: The caller should set the length of address here. On return,
this is set to the length of the returned address.

get peernane() returns 0 on success and -1 in case of an error

If the actual length of the address is greater than the length of the
suppl i ed sockaddr structure, the stored address will be truncated.

5. Data Structures

This section discusses inportant data structures that are specific to
SCTP and are used with sendnsg() and recvnsg() calls to control SCTP
endpoi nt operations and to access ancillary information and
notifications.

5.1. The nsghdr and cnsghdr Structures
The msghdr structure used in the sendnsg() and recvnsg() calls, as
well as the ancillary data carried in the structure, is the key for

the application to set and get various control information fromthe
SCTP endpoi nt.

Stewart, et al. I nf or mat i onal [Page 25]

RFC 6458 SCTP Sockets API Decenber 2011

The nmsghdr and the related cnsghdr structures are defined and
di scussed in detail in [RFC3542]. They are defined as

struct nmsghdr {

voi d *nsg_nane; /* ptr to socket address structure */
sockl en_t nsg_nanel en; /* size of socket address structure */
struct iovec *nsg_iov; /* scatter/gather array */

int nmsg_iovlen; /* # elements in nsg_iov */

voi d *msg_control; /* ancillary data */

socklen_t msg _controllen; /* ancillary data buffer length */

int neg_fl ags; /* flags on received nessage */

};

struct cmsghdr {
socklen_t cnmsg_len; /* # bytes, including this header */
int cnmsg_l evel; /* originating protocol */
int cnsg_type; /* protocol -specific type */
/* foll owed by unsigned char cnsg _data[]; */
i

In the msghdr structure, the usage of nmsg_nane has been di scussed in
previ ous sections (see Sections 3.1.4 and 4.1.8).

The scatter/gather buffers, or I/O vectors (pointed to by the nmsg_iov
field) are treated by SCTP as a single user nessage for both
sendnmsg() and recvnsg().

The SCTP stack uses the ancillary data (nsg_control field) to
communi cate the attributes, such as SCTP_RCVI NFO, of the message
stored in neg iov to the socket endpoint. The different ancillary
data types are described in Section 5. 3.

The nmsg_flags are not used when sending a nessage with sendnsg().

If a notification has arrived, recvimsg() will return the notification
inthe nsg_iov field and set the MSG NOTI FI CATION flag in nsg_fl ags.
If the MG NOTIFICATION flag is not set, recvnsg() wll return data.
See Section 6 for nore information about notifications.

If all portions of a data frane or notification have been read,
recvnmsg() will return with MSG ECR set in nsg_fl ags

5.2. Ancillary Data Considerations and Semantics

Programming with ancillary socket data (msg_control) contains somne
subtleties and pitfalls, which are di scussed bel ow.

Stewart, et al. I nf or mat i onal [Page 26]

RFC 6458 SCTP Sockets API Decenber 2011

5.2.1. Miltiple Itens and Ordering

Multiple ancillary data items may be included in any call to
sendnsg() or recvnsg(); these may include multiple SCTP itens,
non- SCTP itens (such as IP-level itens), or both.

The ordering of ancillary data itenms (either by SCTP or another
protocol) is not significant and is inplenmentation dependent, so
applications nmust not depend on any ordering.

SCTP_SNDRCV/ SCTP_SNDI NFO' SCTP_RCVI NFO type ancillary data al ways
corresponds to the data in the nsghdr’s nsg_i ov nenber. There can be
only one such type of ancillary data for each sendnsg() or recvnsg()
call.

5.2.2. Accessing and Manipul ating Ancillary Data

Applications can infer the presence of data or ancillary data by
exam ning the nsg_i ovlen and nsg_control |l en nsghdr nenbers,
respectively.

| mpl enent ati ons may have different padding requirenents for ancillary
data, so portable applications should nmake use of the macros

CMSG_FI RSTHDR, CMSG_NXTHDR, CMSG _DATA, CMSG_SPACE, and CMSG LEN. See
[RFC3542] and the SCTP inpl enentation’s docunentation for nore
information. The following is an exanple, from|[RFC3542],
denonstrating the use of these macros to access ancillary data:

struct nmsghdr nsg;
struct cnsghdr *cnsgptr;

[* fill in msg */
/* call recvmsg() */

for (cnsgptr = CMSG_Fl RSTHDR(&nsg); cmsgptr != NULL;
cnegptr = CVBG NXTHDR(&nrsg, cnsgptr)) {
{

if (cmsgptr->cnsg_len == 0)
/* Error handling */
br eak;
if (cnsgptr->cneg level == ... && cnsgptr->cnsg type == ...) {

u_char “*ptr;

ptr = CMVMSG _DATA(cnsgptr);
/* process data pointed to by ptr */

}
}

Stewart, et al. I nf or mat i onal [Page 27]

RFC 6458 SCTP Sockets API Decenber 2011

5.2.3. Control Message Buffer Sizing

The i nformati on conveyed via SCTP_SNDRCV/ SCTP_SNDI NFQ' SCTP_RCVI NFO
ancillary data will often be fundanmental to the correct and sane
operation of the sockets application. This is particularly true for
one-to-nmany style sockets, but also for one-to-one style sockets.
For exanple, if an application needs to send and receive data on

di fferent SCTP streans, SCTP_SNDRCV/ SCTP_SNDI NFQ' SCTP_RCVI NFO
ancillary data is indispensable.

G ven that sonme ancillary data is critical, and that multiple
ancillary data itens nay appear in any order, applications should be
carefully witten to always provide a | arge enough buffer to contain
all possible ancillary data that can be presented by recvimsg(). |If
the buffer is too snmall, and crucial data is truncated, it may pose a
fatal error condition.

Thus, it is essential that applications be able to deterninistically
cal culate the maxi numrequired buffer size to pass to recvnsg(). One
constraint inposed on this specification that nakes this possible is
that all ancillary data definitions are of a fixed I ength. One way
to calculate the maxi numrequired buffer size mght be to take the
sum of the sizes of all enabled ancillary data itemstructures, as
cal cul ated by CMSG SPACE. For exanple, if we enabled
SCTP_SNDRCV_I NFO and | PV6_RECVPKTI NFO [RFC3542], we would cal cul ate
and allocate the buffer size as foll ows:

size t total;
voi d *buf;

total = CMSG_SPACE(si zeof (struct sctp_sndrcvinfo)) +
CMBG_SPACE(si zeof (struct in6_pktinfo));

buf = malloc(total);

We could then use this buffer (buf) for nsg _control on each call to
recvinsg() and be assured that we would not |lose any ancillary data to
truncati on.

5.3. SCTP nmsg_control Structures

A key el enment of all SCTP-specific socket extensions is the use of
ancillary data to specify and access SCTP-specific data via the
msghdr structure’s nsg_control nenber used in sendnsg() and
recvmseg(). Fine-grained control over initialization and sending
paraneters are handled with ancillary data.

Stewart, et al. I nf or mat i onal [Page 28]

RFC 6458 SCTP Sockets API Decenber 2011

Each ancillary data itemis preceded by a struct cnsghdr (see
Section 5.1), which defines the function and purpose of the data
contained in the cnsg_data[] nenber

By default, on either style of socket, SCTP will pass no ancillary
data. Specific ancillary data itens can be enabled with socket
options defined for SCTP; see Section 6. 2.

Note that all ancillary types are of fixed length; see Section 5.2
for further discussion on this. These data structures use struct
sockaddr _storage (defined in [RFC3493]) as a portable, fixed-length
address format.

O her protocols may al so provide ancillary data to the socket |ayer
consumer. These ancillary data itens from other protocols may
intermingle with SCTP data. For exanple, the |IPv6 sockets AP
definitions ([RFC3542] and [RFC3493]) define a nunber of ancillary
data itens. |If a sockets APl consuner enabl es delivery of both SCTP
and I Pv6 ancillary data, they both nmay appear in the sane nsg_contro
buffer in any order. An application may thus need to handl e ot her
types of ancillary data besides those passed by SCTP.

The sockets application nust provide a buffer |arge enough to

acconmodate all ancillary data provided via recvinsg(). |If the buffer
is not |arge enough, the ancillary data will be truncated and the
msghdr’s msg_flags will include MSG CTRUNC

5.3.1. SCTP Initiation Structure (SCTP_INT)

This cnsghdr structure provides information for initializing new SCTP
associations with sendnsg(). The SCTP_I Nl TMSG socket option uses
this same data structure. This structure is not used for recvmsg().

S TS i +
| cmsg_l evel | cnmsg_type | cnsg_data[]

[[S e +
| I'PPROTO SCTP | SCTP_INIT | struct sctp_initnsg |
oo R Fom e e e ek +

The sctp_initnmsg structure is defined bel ow

struct sctp_initnsg {

uintl6 t sinit_numostreans;
uintl6 t sinit_nmax_instreans;
uintl6_t sinit_nax_attenpts;
uintlé t sinit_nmax_init_tineo;

b

Stewart, et al. I nf or mat i onal [Page 29]

RFC 6458 SCTP Sockets API Decenber 2011

sinit_numostreans: This is an integer representing the nunber of

streans to which the application wishes to be able to send. This
nunber is confirmed in the SCTP_COVMM UP notification and nust be
verified, since it is a negotiated nunber with the renote
endpoint. The default value of O indicates the use of the

endpoi nt’s default val ue.

sinit_max_instreams: This value represents the maxi mrum nunber of

i nbound streans the application is prepared to support. This

val ue i s bounded by the actual inplenentation. |In other words,
the user may be able to support nore streans than the operating
system In such a case, the operating-systemlimt overrides the
val ue requested by the user. The default value of 0 indicates the
use of the endpoint’s default val ue.

sinit_max_attenpts: This integer specifies how nany attenpts the

SCTP endpoi nt shoul d nmake at resending the INNT. This val ue
overrides the system SCTP 'Max.lnit.Retransmts’ value. The
default value of 0 indicates the use of the endpoint’s default
value. This is nornally set to the systenis default

"Max. I nit.Retransmt’ val ue.

sinit_max_init_tineo: This value represents the largest tineout or

5.3. 2.

retransm ssion tineout (RTO value (in mlliseconds) to use in
attenpting an INNT. Normally, the 'RTO Max’ is used to limt the
doubling of the RTO upon tineout. For the INIT nessage, this

val ue nmay override 'RTO Max’'. This value nust not influence

" RTO Max’ during data transmission and is only used to bound the
initial setup time. A default value of 0 indicates the use of the
endpoint’s default value. This is nornally set to the systenis

" RTO. Max’ val ue (60 seconds).

SCTP Header Information Structure (SCTP_SNDRCV) - DEPRECATED

This cnsghdr structure specifies SCTP options for sendnsg() and
descri bes SCTP header information about a received nessage through
recvnsg(). This structure mxes the send and receive path.
SCTP_SNDI NFO (described in Section 5.3.4) and SCTP_RCVI NFO (descri bed

in

Section 5.3.5) split this information. These structures should be

used, when possible, since SCTP_SNDRCV is deprecated.

RS S o e e e e e e e e oo - o +
| cnsg_|evel | cnsg_type | cnsg_datal]
oo S o e e e e e e e e oo +
| I'PPROTO SCTP | SCTP_SNDRCV | struct sctp_sndrcvinfo
S Fom e e e e e o oo o e e e e e e e e m o +

Stewart, et al. I nf or mat i onal [Page 30]

RFC 6458 SCTP Sockets API Decenber 2011

The sctp_sndrcvinfo structure is defined bel ow

struct sctp_sndrcvinfo {
uint16_ t sinfo_stream
uint16_t sinfo_ssn
uintl6 t sinfo flags;
uint32_t sinfo_ppid;
ui nt32_t sinfo_context;
uint32_t sinfo_tinetolive;
uint32_t sinfo_tsn;
uint32_t sinfo_cuntsn
sctp_assoc_t sinfo_assoc_id;

sinfo_stream For recvnsg(), the SCTP stack places the nessage’'s
stream nunber in this value. For sendnsg(), this value holds the
stream nunber to which the application wishes to send this
message. |If a sender specifies an invalid stream nunber, an error

indication is returned and the call fails.

sinfo_ssn: For recvnsg(), this value contains the stream sequence
nunber that the renote endpoint placed in the DATA chunk. For
fragment ed nessages, this is the sane nunber for all deliveries of
the nmessage (if nore than one recvnsg() is needed to read the

message). The sendnsg() call will ignore this paraneter.

sinfo_flags: This field may contain any of the follow ng flags and

is conposed of a bitwi se OR of these val ues.
recvinsg() flags:

SCTP_UNORDERED: This flag is present when the nessage was sent
unor der ed.

sendnsg() fl ags:

SCTP_UNORDERED; This flag requests the unordered delivery of
the message. |If this flag is clear, the datagramis
consi dered an ordered send.

SCTP_ADDR OVER: This flag, for a one-to-many style socket,
requests that the SCTP stack override the prinary
destination address with the address found with the sendto/
sendnsg call .

Stewart, et al. I nf or mat i onal [Page 31]

RFC 6458 SCTP Sockets API Decenber 2011

SCTP_ABORT: Setting this flag causes the specified association
to abort by sending an ABORT nessage to the peer. The ABORT
chunk will contain an error cause of 'User Initiated Abort’
wi th cause code 12. The cause-specific information of this
error cause is provided in nsg_iov.

SCTP_EOF: Setting this flag invokes the SCTP graceful shutdown
procedure on the specified association. G aceful shutdown
assures that all data queued by both endpoints is
successfully transmtted before closing the association

SCTP_SENDALL: This flag, if set, will cause a one-to-nany
style socket to send the nessage to all associations that
are currently established on this socket. For the one-to-
one style socket, this flag has no effect.

sinfo_ppid: This value in sendnsg() is an unsigned integer that is
passed to the renpte end in each user nessage. |In recvnsg(), this
value is the sane information that was passed by the upper |ayer
in the peer application. Please note that the SCTP stack performns
no byte order nodification of this field. For exanple, if the
DATA chunk has to contain a given value in network byte order, the
SCTP user has to performthe htonl () conputation

sinfo _context: This value is an opaque 32-bit context datumthat is
used in the sendnsg() function. This value is passed back to the
upper layer if an error occurs on the send of a nessage and is
retrieved with each undelivered nessage

sinfo tinetolive: For the sending side, this field contains the
message’'s tine to live, in mlliseconds. The sending side will
expire the message within the specified tinme period if the nessage
has not been sent to the peer within this time period. This value
will override any default value set using any socket option. Also
note that the value of 0 is special in that it indicates no
ti meout shoul d occur on this nessage.

sinfo_tsn: For the receiving side, this field holds a Transni ssion
Sequence Number (TSN) that was assigned to one of the SCTP DATA
chunks. For the sending side, it is ignored.

sinfo cuntsn: This field will hold the current cunul ative TSN as

known by the underlying SCTP layer. Note that this field is
i gnored when sendi ng.

Stewart, et al. I nf or mat i onal [Page 32]

RFC 6458 SCTP Sockets API Decenber 2011

sinfo_assoc_id: The association handle field, sinfo_assoc_id, holds
the identifier for the association announced in the SCTP_COW UP
notification. Al notifications for a given association have the
same identifier. This field is ignored for one-to-one style
socket s.

An sctp_sndrcvinfo item al ways corresponds to the data in nsg_iov.

5.3.3. Extended SCTP Header Information Structure (SCTP_EXTRCV) -
DEPRECATED

This cnsghdr structure specifies SCTP options for SCTP header

i nformati on about a received nessage via recvnsg(). Note that this
structure is an extended version of SCTP_SNDRCV (see Section 5.3.2)
and will only be received if the user has set the socket option
SCTP_USE_EXT_RCVI NFO (see Section 8.1.22) to true in addition to any
event subscription needed to receive ancillary data. Note that data
in the next nessage is not valid unless the current nessage is

completely read, i.e., unless the MSG EOR is set; in other words, if
the application has nore data to read fromthe current message, then
no next-nessage information will be avail abl e.

SCTP_NXTI NFO (described in Section 5.3.6) should be used when
possi bl e, since SCTP_EXTRCV is consi dered deprecated.

oo S o e e e e e e e e oo +
| cnmsg_l evel | cnsg_type | crmsg_data[] |
S B TS o e e e e e e e ea oo +
| I'PPROTO SCTP | SCTP_EXTRCV | struct sctp_extrcvinfo

[S e +

Stewart, et al. I nf or mat i onal [Page 33]

RFC 6458 SCTP Sockets API Decenber 2011

The sctp_extrcvinfo structure is defined bel ow

struct sctp_extrcvinfo {
uint16_ t sinfo_stream
uint16_t sinfo_ssn
uintl6 t sinfo flags;
uint32_t sinfo_ppid;
ui nt32_t sinfo_context;
uint32_t sinfo_pr_val ue;
uint32_t sinfo_tsn;
uint32_t sinfo_cuntsn
uintl6 t serinfo_next flags;
uintl6 t serinfo_next stream
uint32_t serinfo_next aid;
ui nt 32_t serinfo_next_| ength;
uint 32_t serinfo_next_ppid;
sctp_assoc_t sinfo_assoc_id;

i
sinfo_*: Please see Section 5.3.2 for details for these fields.

serinfo_next _flags: This bitmask will hold one or nore of the
foll owi ng val ues:

SCTP_NEXT_MSG AVAIL: This bit, when set to 1, indicates that

next - message information is available; i.e., next_stream
next _aid, next_length, and next_ppid fields all have valid
values. |If this bit is set to O, then these fields are not

valid and shoul d be ignored.

SCTP_NEXT_MSG | SCOWLETE: This bit, when set, indicates that the
next nessage is conpletely in the receive buffer. The

next length field thus contains the entire nessage size. |If
this flag is set to 0, then the next_length field only contains
part of the nessage size, since the nessage is still being

received (it is being partially delivered).

SCTP_NEXT_MSG IS UNORDERED: This bit, when set, indicates that
the next nmessage to be received was sent by the peer as
unordered. If this bit is not set (i.e., the bit is 0) the
next nmessage to be read is an ordered nessage in the stream
speci fi ed.

SCTP_NEXT_MSG IS NOTI FI CATION: This bit, when set, indicates that

the next nessage to be received is not a nessage fromthe peer
but instead is a MSG NOTI FI CATION fromthe | ocal SCTP stack.

Stewart, et al. I nf or mat i onal [Page 34]

RFC 6458 SCTP Sockets API Decenber 2011

serinfo_next _stream This value, when valid (see
serinfo_next_flags), contains the next stream nunber that will be
recei ved on a subsequent call to one of the receive nessage
functions.

serinfo_next_aid: This value, when valid (see serinfo_next flags),
contains the next association identifier that will be received on
a subsequent call to one of the receive message functions.

serinfo_next _length: This value, when valid (see
serinfo_next_flags), contains the length of the next nmessage that
will be received on a subsequent call to one of the receive
message functions. Note that this length may be a partial |ength,
dependi ng on the settings of next_fl ags.

serinfo_next_ppid: This value, when valid (see serinfo_next flags),
contains the ppid of the next nessage that will be received on a
subsequent call to one of the receive nessage functions.
5.3.4. SCTP Send Information Structure (SCTP_SNDI NFO

This cnsghdr structure specifies SCTP options for sendnsg().

RS RS i +
| cnsg_|evel | cnsg_type | cnsg_datal] |
oo oo Fom e e e ek +
| I'PPROTO SCTP | SCTP_SNDI NFO | struct sctp_sndinfo

S S o e e e e e e e ea oo +

The sctp_sndinfo structure is defined bel ow

struct sctp_sndinfo {
uintl16_t snd_sid;
uint16_t snd_fl ags;
uint 32_t snd_ppi d;
uint32_ t snd_context;
sctp_assoc_t snd_assoc_id;

H
snd_sid: This value holds the stream nunber to which the application

wi shes to send this nessage. |If a sender specifies an invalid
stream nunber, an error indication is returned and the call fails.

Stewart, et al. I nf or mat i onal [Page 35]

RFC 6458 SCTP Sockets API Decenber 2011

snd _flags: This field may contain any of the following flags and is
conmposed of a bitwi se OR of these val ues

SCTP_UNORDERED: This flag requests the unordered delivery of the
message. |If this flag is clear, the datagramis considered an
ordered send.

SCTP_ADDR OVER: This flag, for a one-to-nany style socket,
requests that the SCTP stack override the primary destination
address with the address found with the sendto()/sendnsg call.

SCTP_ABORT: Setting this flag causes the specified association to
abort by sending an ABORT nessage to the peer. The ABORT chunk
will contain an error cause of '"User Initiated Abort’ wth
cause code 12. The cause-specific information of this error
cause is provided in nsg_iov.

SCTP_EOF: Setting this flag i nvokes the SCTP graceful shutdown
procedures on the specified association. Gaceful shutdown
assures that all data queued by both endpoints is successfully
transmitted before closing the association.

SCTP_SENDALL: This flag, if set, will cause a one-to-many style
socket to send the nessage to all associations that are
currently established on this socket. For the one-to-one style
socket, this flag has no effect.

snd_ppid: This value in sendnsg() is an unsigned integer that is
passed to the rempte end in each user nmessage. Please note that
the SCTP stack perforns no byte order nodification of this field.
For exanple, if the DATA chunk has to contain a given value in
network byte order, the SCTP user has to performthe htonl ()
conput ati on.

snd_context: This value is an opaque 32-bit context datumthat is
used in the sendnsg() function. This value is passed back to the
upper layer if an error occurs on the send of a nessage and is
retrieved with each undelivered nessage

snd_assoc_id: The association handle field, sinfo_assoc_id, holds
the identifier for the association announced in the SCTP_COW UP
notification. Al notifications for a given association have the
sanme identifier. This field is ignored for one-to-one style
socket s.

An sctp_sndinfo item al ways corresponds to the data in nsg_iov.

Stewart, et al. I nf or mat i onal [Page 36]

RFC 6458 SCTP Sockets API Decenber 2011

5.3.5. SCTP Receive Information Structure (SCTP_RCVI NFO

This cnmsghdr structure describes SCTP receive information about a
recei ved nmessage through recvnsg().

To enable the delivery of this information, an application nust use
t he SCTP_RECVRCVI NFO socket option (see Section 8.1.29).

. . e +
| cmsg_l evel | cnmsg_type | cnmsg_dataf]

B TS B TS e e e e e e e e o +
| 1'PPROTO_SCTP | SCTP_RCVINFO | struct sctp_rcvinfo
e e S +

The sctp_rcvinfo structure is defined bel ow

struct sctp_rcvinfo {
uintlé t rcv_sid;
uintl6 t rcv_ssn;
uintl6 t rcv_fl ags;
uint32_t rcv_ppid;
uint32_t rcv_tsn;
uint32_t rcv_cuntsn
uint32 t rcv_context;
sctp_assoc_t rcv_assoc_id;

s

rcv_sid: The SCTP stack places the nessage’s stream nunber in this
val ue.

rcv_ssn: This value contains the stream sequence nunber that the
renmot e endpoi nt placed in the DATA chunk. For fragnented
nmessages, this is the same nunber for all deliveries of the
message (if nore than one recvimsg() is needed to read the
message) .

rcv_flags: This field nay contain any of the following flags and is
conmposed of a bitwi se OR of these val ues

SCTP_UNORDERED: This flag is present when the nessage was sent
unor der ed.

rcv_ppid: This value is the sane informati on that was passed by the
upper layer in the peer application. Please note that the SCTP
stack perforns no byte order nodification of this field. For
exanpl e, if the DATA chunk has to contain a given value in network
byte order, the SCTP user has to performthe ntohl () conputation

Stewart, et al. I nf or mat i onal [Page 37]

RFC 6458 SCTP Sockets API Decenber 2011

rcv_tsn: This field holds a TSN that was assigned to one of the SCTP
DATA chunks.

rcv_cumtsn: This field will hold the current curulative TSN as known
by the underlying SCTP | ayer

rcv_context: This value is an opaque 32-bit context datumthat was
set by the user with the SCTP_CONTEXT socket option. This value
i s passed back to the upper layer if an error occurs on the send
of a nmessage and is retrieved with each undelivered nessage.

rcv_assoc_id: The association handle field, sinfo _assoc_id, holds
the identifier for the association announced in the SCTP_COW UP
notification. Al notifications for a given association have the
sane identifier. This field is ignored for one-to-one style
socket s.

An sctp_rcvinfo itemalways corresponds to the data in nsg_iov.
5.3.6. SCTP Next Receive Information Structure (SCTP_NXTI NFO

This cnsghdr structure describes SCTP receive information of the next

message that will be delivered through recvimsg() if this information

is already avail abl e when delivering the current nessage.

To enable the delivery of this information, an application nmust use
t he SCTP_RECVNXTI NFO socket option (see Section 8.1.30).

B TS B TS e e e e e e e e o +
| cmsg_l evel | crmsg_type | cmsg_data[] |
ook ook T +
| I'PPROTO SCTP | SCTP_NXTINFO | struct sctp_nxtinfo

o e e o e e Fmm e e e e +

The sctp_nxtinfo structure is defined bel ow

struct sctp_nxtinfo {
uintl6 t nxt_sid;
uint16_t nxt_fl ags;
ui nt 32_t nxt_ppi d;
uint32_t nxt_I engt h;
sctp_assoc_t nxt_assoc_id;

Stewart, et al. I nf or mat i onal [Page 38]

RFC 6458 SCTP Sockets API Decenber 2011

nxt _sid: The SCTP stack places the next nessage’s stream nunber in
this val ue.

nxt _flags: This field nmay contain any of the following flags and is
conmposed of a bitwi se OR of these val ues

SCTP_UNORDERED: This flag is present when the next nessage was
sent unordered.

SCTP_COWPLETE: This flag indicates that the entire nmessage has
been received and is in the socket buffer. Note that this has
special inplications with respect to the nxt _length field; see
the description for nxt_|ength bel ow

SCTP_NOTI FI CATION: This flag is present when the next nessage is
not a user nessage but instead is a notification

nxt_ppid: This value is the sane informati on that was passed by the
upper layer in the peer application for the next nessage. Please
note that the SCTP stack perforns no byte order nodification of
this field. For exanple, if the DATA chunk has to contain a given
val ue in network byte order, the SCTP user has to performthe
nt ohl () conputation

nxt _length: This value is the Iength of the nessage currently within
the socket buffer. This might NOT be the entire Iength of the
nmessage, since a partial delivery may be in progress. Only if the
flag SCTP_COWPLETE is set in the nxt_flags field does this field
represent the size of the entire next nessage.

nxt _assoc_id: The association handle field of the next nessage,
nxt _assoc_id, holds the identifier for the association announced
in the SCTP_COW UP notification. Al notifications for a given
associ ation have the sanme identifier. This field is ignored for
one-to-one style sockets.

5.3.7. SCTP PR-SCTP Infornmation Structure (SCTP_PRI NFO

This cnsghdr structure specifies SCTP options for sendnsg().

B TS B S e e e a - +
| cmsg_l evel | crmsg_type | cmsg_data[]
ook T e e e e e +
| I'PPROTO SCTP | SCTP_PRINFO | struct sctp_prinfo

o e e B Fmm e e e +

Stewart, et al. I nf or mat i onal [Page 39]

RFC 6458 SCTP Sockets API Decenber 2011

The sctp_prinfo structure is defined bel ow

struct sctp_prinfo {
uint16_t pr_policy;
ui nt 32_t pr_val ue;

};

pr_policy: This specifies which Partially Reliable SCTP (PR-SCTP)
policy is used. Using SCTP_PR_SCTP_NONE results in a reliable
transm ssion. Wen SCTP_PR SCTP_TTL is used, the PR SCTP policy
"timed reliability" defined in [RFC3758] is used. 1In this case,
the lifetinme is provided in pr_val ue.

pr_value: The neaning of this field depends on the PR SCTP policy
specified by the pr_policy field. It is ignored when
SCTP_PR _SCTP_NONE is specified. 1In the case of SCTP_PR SCTP_TTL,
the lifetime in mlliseconds is specified.
An sctp _prinfo itemalways corresponds to the data in nsg_iov.
5.3.8. SCTP AUTH I nformation Structure (SCTP_AUTH NFO)

This cnsghdr structure specifies SCTP options for sendnsg().

oo oo oo +
| cnsg_|evel | cnsg_type | cmsg_data[]
oo oo e e +
| I'PPROTO SCTP | SCTP_AUTHI NFO | struct sctp_authinfo

B TS S o e e e +

The sctp_authinfo structure is defined bel ow

struct sctp_authinfo {
uint16_t auth_keynumnber;

b

aut h_keynunber: This specifies the shared key identifier used for
sendi ng the user nessage.

An sctp_authinfo item always corresponds to the data in nsg_iov.
Pl ease note that the SCTP i npl enentati on nust not bundl e user
nmessages that need to be authenticated using different shared key
identifiers.

Stewart, et al. I nf or mat i onal [Page 40]

RFC 6458 SCTP Sockets API Decenber 2011

5.3.9. SCTP Destination |Pv4 Address Structure (SCTP_DSTADDRV4)

This cnsghdr structure specifies SCTP options for sendnsg().

B TS S S +
| cmsg_l evel | crmsg_type | cmsg_data[]
ook o e e o e e +
| | PPROTO SCTP | SCTP_DSTADDRV4 | struct in_addr

o e e oo oo oo oo +

This ancillary data can be used to provide nore than one destination
address to sendnsg(). It can be used to inplenent sctp_sendv() using
sendnsg() .

5.3.10. SCTP Destination | Pv6 Address Structure (SCTP_DSTADDRV6)

This cnsghdr structure specifies SCTP options for sendnmsg().

ook o e e oo +
| cnsg_ | evel | cnsg_type | cmsg_data[]

o e e oo oo o e e oo +
| 1 PPROTO SCTP | SCTP_DSTADDRV6 | struct in6_addr

B TS S S +

This ancillary data can be used to provide nore than one destination
address to sendnsg(). It can be used to inplenent sctp_sendv() using
sendnsg() .

6. SCTP Events and Notifications

An SCTP application may need to understand and process events and
errors that happen on the SCTP stack. These events include network
status changes, association startups, renote operational errors, and
undel i ver abl e messages. Al of these can be essential for the
appl i cation.

When an SCTP application | ayer does a recvnsg(), the nessage read is
normal |y a data nmessage froma peer endpoint. |If the application

wi shes to have the SCTP stack deliver notifications of non-data
events, it sets the appropriate socket option for the notifications
it wants. See Section 6.2 for these socket options. Wen a
notification arrives, recvnsg() returns the notification in the
application-supplied data buffer via nmsg_iov, and sets
MSG_NOTI FI CATION i n nsg_fI ags.

This section details the notification structures. Every notification

structure carries sonme conmon fields that provide genera
i nformation.

Stewart, et al. I nf or mat i onal [Page 41]

RFC 6458 SCTP Sockets API Decenber 2011

A recvnsg() call will return only one notification at a tine. Just
as when reading nornmal data, it may return part of a notification if
the msg_iov buffer is not |arge enough. |If a single read is not
sufficient, msg _flags will have MS5G ECOR clear. The user rnust finish
readi ng the notification before subsequent data can arrive.

6.1. SCTP Notification Structure

The notification structure is defined as the union of al
notification types.

union sctp_notification {
struct sctp_tlv {
uint16_t sn_type; /* Notification type. */
uint16_t sn_fl ags;
uint32_t sn_l ength;
} sn_header;
struct sctp_assoc_change sn_assoc_change;
struct sctp_paddr_change sn_paddr _change;
struct sctp_renote_error sn_renote_error
struct sctp_send_failed sn_send failed;
struct sctp_shutdown_event sn_shut down_event;
struct sctp_adaptation_event sn_adaptation_event;
struct sctp_pdapi _event sn_pdapi _event;
struct sctp_authkey_event sn_auth_event;
struct sctp_sender _dry event sn_sender _dry_event;
struct sctp_send_failed event sn_send _failed _event;

s

sn_type: The following list describes the SCTP notification and
event types for the field sn_type.

SCTP_ASSCC CHANGE: This tag indicates that an association has
ei ther been opened or closed. Refer to Section 6.1.1 for
details.

SCTP_PEER ADDR CHANGE: This tag indicates that an address that is
part of an existing association has experienced a change of
state (e.g., a failure or return to service of the reachability
of an endpoint via a specific transport address). Please see
Section 6.1.2 for data structure details.

SCTP_REMOTE_ERROR: The attached error nessage is an Operation
Error message received fromthe renote peer. It includes the
conplete TLV sent by the renote endpoint. See Section 6.1.3
for the detailed format.

Stewart, et al. I nf or mat i onal [Page 42]

RFC 6458 SCTP Sockets API Decenber 2011

6.

1

sn

sn

Co
as
as
in

st

1

SCTP_SEND FAI LED EVENT: The attached datagram coul d not be sent
to the renpte endpoint. This structure includes the origina
SCTP_SNDI NFO t hat was used in sending this nessage; i.e., this
structure uses the sctp_sndinfo per Section 6.1.11

SCTP_SHUTDOWN_EVENT: The peer has sent a SHUTDOM. No further
data should be sent on this socket.

SCTP_ADAPTATI ON_I NDI CATION: This notification holds the peer’s
i ndi cated adaptation | ayer. Please see Section 6.1.6.

SCTP_PARTI AL_DELI VERY_EVENT: This notification is used to tell a
receiver that the partial delivery has been aborted. This may
i ndi cate that the association is about to be aborted. Please
see Section 6.1.7.

SCTP_AUTHENTI CATI ON_EVENT: This notification is used to tell a
receiver that either an error occurred on authentication, or a
new key was nmade active. See Section 6.1.8.

SCTP_SENDER DRY_EVENT: This notification is used to informthe
application that the sender has no nore user data queued for
transm ssion or retransm ssion. See Section 6.1.9.

_flags: These are notification-specific flags.

_length: This is the length of the whole sctp_notification
structure, including the sn_type, sn_flags, and sn_length fields.

SCTP_ASSOC_CHANGE

mruni cati on notifications informthe application that an SCTP
soci ation has either begun or ended. The identifier for a new
sociation is provided by this notification. The notification
formation has the follow ng format:

ruct sctp_assoc_change {
uintl6 t sac_type;

uint16_t sac_fl ags;

uint32_t sac_I engt h;

uint16_t sac_state;

uintl6 t sac_error

uint16_t sac_out bound_streans;
uintl1l6_t sac_i nbound_streans;
sctp_assoc_t sac_assoc_id;
uint8 t sac_info[];

Stewart, et al. I nf or mat i onal [Page 43]

RFC 6458 SCTP Sockets API Decenber 2011

sac_type: This field should be set to SCTP_ASSOC CHANGE
sac_flags: This field is currently unused.

sac_length: This field is the total length of the notification data,
including the notification header

sac_state: This field holds one of a nunmber of val ues that

communi cate the event that happened to the association. These
val ues incl ude

SCTP_COW UP: A new association is now ready, and data nay be
exchanged with this peer. Wen an association has been
est abl i shed successfully, this notification should be the
first one.

SCTP_COW LOST: The association has failed. The association is
now in the closed state. |f SEND FAILED notifications are
turned on, an SCTP_COW LGCST is acconpanied by a series of
SCTP_SEND FAI LED EVENT events, one for each outstanding
nmessage

SCTP_RESTART: SCTP has detected that the peer has restarted.
SCTP_SHUTDOWN_COWP: The associ ation has gracefully cl osed

SCTP_CANT_STR ASSCC: The association setup failed. |If
non- bl ocki ng node is set and data was sent (on a one-to-nmany
styl e socket), an SCTP_CANT_STR ASSOC i s acconpani ed by a
series of SCTP_SEND FAI LED EVENT events, one for each
out st andi ng nessage.

sac_error: |f the state was reached due to an error condition (e.g.
SCTP_COWM LOST), any relevant error information is available in

this field. This corresponds to the protocol error codes defined
in [RFC4960] .

sac_out bound_streans and sac_i nbound_streanms: The naxi mum nunber of
streans allowed in each direction is available in
sac_out bound_streans and sac_i nbound streans.

sac_assoc_id: The sac_assoc_id field holds the identifier for the
association. Al notifications for a given association have the
sane association identifier. For a one-to-one style socket, this
field is ignored.

Stewart, et al. I nf or mat i onal [Page 44]

RFC 6458 SCTP Sockets API Decenber 2011

sac_info: |If sac_state is SCTP_COW LOST and an ABORT chunk was
received for this association, sac_info[] contains the conplete
ABORT chunk as defined in Section 3.3.7 of the SCTP specification
[RFC4960]. |If sac_state is SCTP_COW UP or SCTP_RESTART, sac_info
may contain an array of uint8_ t describing the features that the
current association supports. Features may include

SCTP_ASSCC _SUPPORTS PR: Both endpoints support the protoco
extension described in [RFC3758].

SCTP_ASSCC_SUPPORTS_AUTH: Bot h endpoi nts support the protocol
ext ensi on described in [RFC4895].

SCTP_ASSCOC_SUPPORTS ASCONF: Both endpoi nts support the protoco
extensi on described in [RFC5061].

SCTP_ASSCC_SUPPORTS_MULTI BUF: For a one-to-many style socket, the
| ocal endpoints use separate send and/or receive buffers for
each SCTP associ ation

6.1.2. SCTP_PEER ADDR CHANGE

When a destination address of a nulti-honed peer encounters a state
change, a peer address change event is sent. The notification has
the follow ng fornat:

struct sctp_paddr_change {
uint16_t spc_type
uint16_t spc_fl ags;
uint32_t spc_Il ength;
struct sockaddr storage spc_aaddr
uint32_ t spc_state;
uint32_t spc_error
sctp_assoc_t spc_assoc_id;

}
spc_type: This field should be set to SCTP_PEER ADDR CHANGE

spc_flags: This field is currently unused.

spc_length: This field is the total length of the notification data,
including the notification header

spc_aaddr: The affected address field holds the renpte peer’s
address that is encountering the change of state.

Stewart, et al. I nf or mat i onal [Page 45]

RFC 6458 SCTP Sockets API Decenber 2011

spc_state: This field holds one of a nunber of val ues that
comrmuni cate the event that happened to the address. They include

SCTP_ADDR _AVAI LABLE: This address is now reachable. This
notification is provided whenever an address becones reachabl e.

SCTP_ADDR_UNREACHABLE: The address specified can no | onger be
reached. Any data sent to this address is rerouted to an
alternate until this address becones reachable. This
notification is provided whenever an address becones
unr eachabl e.

SCTP_ADDR_REMOVED: The address is no longer part of the
associ ati on.

SCTP_ADDR_ADDED: The address is now part of the association

SCTP_ADDR MADE PRIM This address has now been nmade the prinary
destination address. This notification is provided whenever an
address is nmade primary.

spc_error: |If the state was reached due to any error condition
(e.g., SCTP_ADDR UNREACHABLE), any relevant error information is
available in this field.

spc_assoc_id: The spc_assoc_id field holds the identifier for the
association. Al notifications for a given association have the
same association identifier. For a one-to-one style socket, this
field is ignored.

6.1.3. SCTP_REMOTE_ERROR

A renmpote peer may send an Operation Error nessage to its peer. This
nmessage indicates a variety of error conditions on an association
The entire ERROR chunk as it appears on the wire is included in an
SCTP_REMOTE_ERROR event. Please refer to the SCTP specification

[RFC4960] and any extensions for a list of possible error formats.
An SCTP error notification has the followi ng fornat:

struct sctp_renote_error {
uint16_t sre_type;
uintlé t sre_flags;
uint32_t sre_l ength;
uintlé t sre_error
sctp_assoc_t sre_assoc_id;
uint8 t sre_data[];

Stewart, et al. I nf or mat i onal [Page 46]

RFC 6458 SCTP Sockets API Decenber 2011

sre_type: This field should be set to SCTP_REMOTE ERROR
sre_flags: This field is currently unused.

sre_length: This field is the total length of the notification data,
including the notification header and the contents of sre_data.

sre_error: This value represents one of the Operation Error causes
defined in the SCTP specification [RFC4960], in network byte
or der.

sre_assoc_id: The sre_assoc_id field holds the identifier for the
association. Al notifications for a given association have the
sane association identifier. For a one-to-one style socket, this
field is ignored.

sre_data: This contains the ERROR chunk as defined in Section 3.3.10
of the SCTP specification [RFC4960].

6.1.4. SCTP_SEND FAI LED - DEPRECATED

Pl ease note that this notification is deprecated. Use
SCTP_SEND_FAI LED_EVENT i nst ead.

I f SCTP cannot deliver a nessage, it can return back the nessage as a
notification if the SCTP_SEND FAI LED event is enabled. The
notification has the follow ng fornat:

struct sctp_send_failed {
uint16 t ssf_type;
uintl6 t ssf _flags;
uint32_ t ssf | ength;
uint32_t ssf_error
struct sctp_sndrcvinfo ssf_info;
sctp_assoc_t ssf_assoc_id;
uint8 t ssf _data[];

s
ssf_type: This field should be set to SCTP_SEND FAI LED

ssf_flags: The flag value will take one of the foll owi ng val ues:

SCTP_DATA UNSENT: This value indicates that the data was never
put on the wre.

SCTP_DATA _SENT: This value indicates that the data was put on the

wire. Note that this does not necessarily mean that the data
was (or was not) successfully delivered

Stewart, et al. I nf or mat i onal [Page 47]

RFC 6458 SCTP Sockets API Decenber 2011

ssf _length: This fieldis the total length of the notification data,
i ncluding the notification header and the payload in ssf_data.

ssf_error: This value represents the reason why the send fail ed, and
if set, will be an SCTP protocol error code as defined in
Section 3.3.10 of [RFC4960].

ssf_info: This field includes the ancillary data (struct
sctp_sndrcvinfo) used to send the undelivered nessage. Regardl ess
of whether ancillary data is used or not, the ssf_info.sinfo flags
field indicates whether the conmpl ete nessage or only part of the
message is returned in ssf_data. |If only part of the nessage is
returned, it nmeans that the part that is not present has been sent
successfully to the peer

If the conpl ete nessage cannot be sent, the SCTP_DATA NOT_FRAG
flag is set in ssf_info.sinfo_flags. |If the first part of the
nmessage i s sent successfully, SCTP_DATA LAST FRAGis set. This
means that the tail end of the nessage is returned in ssf_data.

ssf_assoc_id: The ssf_assoc_id field, ssf_assoc_id, holds the
identifier for the association. Al notifications for a given
associ ati on have the same association identifier. For a one-to-
one style socket, this field is ignored.

ssf_data: The undelivered nessage or part of the undelivered nessage
will be present in the ssf_data field. Note that the
ssf_info.sinfo_flags field as noted above should be used to
det erm ne whether a conpl ete nessage or just a piece of the
nmessage is present. Note that only user data is present in this
field; any chunk headers or SCTP conmon headers nust be renoved by
t he SCTP st ack.

6.1.5. SCTP_SHUTDOAN_EVENT

When a peer sends a SHUTDOWN, SCTP delivers this notification to
informthe application that it should cease sendi ng data.

struct sctp_shutdown_event {
uint16_t sse_type;
uint16_t sse_fl ags;
uint32_t sse_ |l ength;
sctp_assoc_t sse_assoc_id;

i
sse_type: This field should be set to SCTP_SHUTDOAN_ EVENT.

sse flags: This field is currently unused.

Stewart, et al. I nf or mat i onal [Page 48]

RFC 6458 SCTP Sockets API Decenber 2011

sse length: This field is the total length of the notification data,
including the notification header. It will generally be
si zeof (struct sctp_shutdown_event).

sse_assoc_id: The sse _assoc_id field holds the identifier for the
association. Al notifications for a given association have the
same association identifier. For a one-to-one style socket, this
field is ignored.

6.1.6. SCTP_ADAPTATI ON_I NDI CATI ON

When a peer sends an Adaptation Layer |ndication paraneter as
described in [RFC5061], SCTP delivers this notification to informthe
application about the peer’s adaptation |ayer indication

struct sctp_adaptation_event {
uint16_t sai_type
uintl6 t sai _flags
uint32_t sai | ength;
uint32 t sai _adaptation_ind;
sctp_assoc_t sai_assoc_id;

s
sai _type: This field should be set to SCTP_ADAPTATI ON_| NDI CATI ON
sai _flags: This field is currently unused.

sai _length: This field is the total length of the notification data,
including the notification header. It will generally be
si zeof (struct sctp_adaptati on_event).

sai _adaptation_ind: This field holds the bit array sent by the peer
in the Adaptation Layer |ndication paraneter

sai _assoc_id: The sai_assoc_id field holds the identifier for the
association. Al notifications for a given association have the
same association identifier. For a one-to-one style socket, this
field is ignored.

6.1.7. SCTP_PARTI AL_DELI VERY_EVENT

When a receiver is engaged in a partial delivery of a nessage, this
notification will be used to indicate various events.

struct sctp_pdapi _event {
uint16_t pdapi _type;
uint16_t pdapi _fl ags;
uint 32_t pdapi _| engt h;

Stewart, et al. I nf or mat i onal [Page 49]

RFC 6458 SCTP Sockets API Decenber 2011

ui nt 32_t pdapi _i ndi cati on;
uint 32_t pdapi _stream

ui nt 32_t pdapi _seq;
sctp_assoc_t pdapi _assoc_i d;

i
pdapi _type: This field should be set to SCTP_PARTI AL_DELI VERY_EVENT.
pdapi _flags: This field is currently unused.

pdapi _length: This field is the total Iength of the notification
data, including the notification header. It will generally be
si zeof (struct sctp_pdapi _event).

pdapi _indication: This field holds the indication being sent to the
application. Currently, there is only one defined val ue:

SCTP_PARTI AL_DELI VERY_ABORTED: This indicates that the partial
delivery of a user nessage has been aborted. This happens, for
exanple, if an association is aborted while a partial delivery
is going on or the user nessage gets abandoned usi ng PR-SCTP
while the partial delivery of this message is going on

pdapi _stream This field holds the stream on which the partia
delivery event happened.

pdapi _seq: This field holds the stream sequence nunber that was
being partially delivered.

pdapi _assoc_id: The pdapi _assoc id field holds the identifier for
the association. Al notifications for a given association have
the sane association identifier. For a one-to-one style socket,
this field is ignored.

6.1.8. SCTP_AUTHENTI CATI ON_EVENT

[RFC4895] defines an extension to authenticate SCTP nessages. The
following notification is used to report different events relating to
the use of this extension

struct sctp_authkey_event {
uintl6 t auth_type;
uintl6 t auth _fl ags;
uint32_t auth_l engt h;
uint16_t auth_keynunber
uint32_t auth_indication;
sctp_assoc_t auth_assoc_id;

Stewart, et al. I nf or mat i onal [Page 50]

RFC 6458 SCTP Sockets API Decenber 2011

auth_type: This field should be set to SCTP_AUTHENTI CATI ON_EVENT.
auth_flags: This field is currently unused.

auth_length: This field is the total length of the notification
data, including the notification header. It will generally be
si zeof (struct sctp_aut hkey event).

aut h_keynunber: This field holds the key nunmber for the affected key
indicated in the event (depends on auth_indication).

auth_indication: This field holds the error or indication being
reported. The followi ng values are currently defined:

SCTP_AUTH _NEW KEY: This report indicates that a new key has been
made active (used for the first time by the peer) and i s now
the active key. The auth_keynunber field holds the user-
speci fi ed key nunber.

SCTP_AUTH _NO AUTH. This report indicates that the peer does not
support SCTP aut hentication as defined in [RFC4895].

SCTP_AUTH_FREE_KEY: This report indicates that the SCTP
i mpl ementation will no |onger use the key identifier specified
i n aut h_keynunber.

auth_assoc_id: The auth_assoc_id field holds the identifier for the
association. Al notifications for a given association have the
same association identifier. For a one-to-one style socket, this
field is ignored.

6.1.9. SCTP_SENDER DRY_ EVENT

Wien the SCTP stack has no nbre user data to send or retransnmt, this
notification is given to the user. Also, at the tine when a user app
subscribes to this event, if there is no data to be sent or
retransmt, the stack will imrediately send up this notification

struct sctp_sender_dry_event {
uint16_t sender_dry_type;
uint16_t sender_dry_fl ags;
uint32_t sender _dry_ | ength;
sctp_assoc_t sender_dry_assoc_id;

} il
sender _dry type: This field should be set to SCTP_SENDER DRY_EVENT.

sender _dry flags: This field is currently unused.

Stewart, et al. I nf or mat i onal [Page 51]

RFC 6458 SCTP Sockets API Decenber 2011

sender _dry length: This field is the total Iength of the
notification data, including the notification header. It wll
general ly be sizeof(struct sctp_sender_dry_event).

sender _dry_assoc_id: The sender_dry assoc_id field holds the
identifier for the association. Al notifications for a given
associ ati on have the sanme association identifier. For a one-to-
one style socket, this field is ignored.

6.1.10. SCTP_NOTI FI CATI ONS_STOPPED_EVENT

SCTP notifications, when subscribed to, are reliable. They are

al ways delivered as long as there is space in the socket receive
buffer. However, if an inplenmentation experiences a notification
storm it may run out of socket buffer space. Wen this occurs, it
may wi sh to disable notifications. |If the inplenmentation chooses to
do this, it will append a final notification
SCTP_NOTI FI CATI ONS_STOPPED EVENT. This notification is a union
sctp_notification, where only the sctp_tlv structure (see the union

above) is used. It only contains this type in the sn_type field, the
sn_length field set to the size of an sctp_tlv structure, and the
sn_flags set to 0. |If an application receives this notification, it

will need to re-subscribe to any notifications of interest to it,
except for the sctp _data io_event (note that SCTP_EVENTS is
deprecat ed).

An endpoint is automatically subscribed to this event as soon as it
is subscribed to any event other than data io events.

6.1.11. SCTP_SEND FAI LED_EVENT

I f SCTP cannot deliver a nmessage, it can return back the nessage as a
notification if the SCTP_SEND FAI LED EVENT event is enabled. The
notification has the foll owi ng format:

struct sctp_send failed event {
uintl6 t ssfe_type;
uintl16 t ssfe flags;
uint32_t ssfe_l ength;
uint32 t ssfe_error;
struct sctp_sndinfo ssfe_info;
sctp_assoc_t ssfe_assoc_id;
uint8 t ssfe data[];

Stewart, et al. I nf or mat i onal [Page 52]

RFC 6458 SCTP Sockets API Decenber 2011

ssfe type: This field should be set to SCTP_SEND FAI LED EVENT.
ssfe flags: The flag value will take one of the foll owi ng val ues:

SCTP_DATA UNSENT: This value indicates that the data was never
put on the wre.

SCTP_DATA SENT: This value indicates that the data was put on the
wire. Note that this does not necessarily mean that the data
was (or was not) successfully delivered

ssfe length: This field is the total length of the notification
data, including the notification header and the payload in
ssf _dat a.

ssfe_error: This value represents the reason why the send fail ed,
and if set, will be an SCTP protocol error code as defined in
Section 3.3.10 of [RFC4960].

ssfe_info: This field includes the ancillary data (struct
sctp_sndinfo) used to send the undelivered nessage. Regardl ess of
whet her ancillary data is used or not, the ssfe_info.sinfo_flags
field indicates whether the conmpl ete nessage or only part of the
message is returned in ssf_data. |If only part of the nessage is
returned, it nmeans that the part that is not present has been sent
successfully to the peer

If the conpl ete nessage cannot be sent, the SCTP_DATA NOT_FRAG
flag is set in ssfe_info.sinfo_flags. |If the first part of the
message i s sent successfully, SCTP_DATA LAST FRAGis set. This
means that the tail end of the nessage is returned in ssf_data.

ssfe_assoc_id: The ssfe assoc_id field, ssf_assoc_id, holds the
identifier for the association. Al notifications for a given
associ ati on have the same association identifier. For a one-to-
one style socket, this field is ignored.

ssfe _data: The undelivered nessage or part of the undelivered
message will be present in the ssf_data field. Note that the
ssf_info.sinfo_flags field as noted above should be used to
det erm ne whether a conplete nessage or just a piece of the
message is present. Note that only user data is present in this
field; any chunk headers or SCTP conmon headers nust be renoved by
t he SCTP st ack.

Stewart, et al. I nf or mat i onal [Page 53]

RFC 6458 SCTP Sockets API Decenber 2011

6.2. Notification Interest Options
6.2.1. SCTP_EVENTS Option - DEPRECATED

Pl ease note that this option is deprecated. Use the SCTP_EVENT
option described in Section 6.2.2 instead.

To receive SCTP event notifications, an application registers its
interest by setting the SCTP_EVENTS socket option. The application
then uses recvnsg() to retrieve notifications. A notification is
stored in the data part (nmsg_iov) of the msghdr structure. The
socket option uses the follow ng structure:

struct sctp_event subscribe {
uint8 t sctp_data_io_event;
uint8 t sctp_association_event;
uint8_ t sctp_address_event;
uint8 t sctp_send failure_event;
uint8_t sctp_peer_error_event;
uint8 t sctp_shutdown_event;
uint8 t sctp_partial _delivery_event;
uint8 t sctp_adaptation_|layer_event;
uint8 t sctp_authentication_event;
uint8 t sctp_sender _dry event;

b

sctp_data_io_event: Setting this flag to 1 will cause the reception
of SCTP_SNDRCV informati on on a per-nessage basis. The
application will need to use the recvimsg() interface so that it
can receive the event information contained in the nsg_contro
field. Setting the flag to O will disable the reception of the
nmessage control information. Note that this flag is not really a
notification and is stored in the ancillary data (nmsg_control),
not in the data part (nsg_iov).

sctp_association_event: Setting this flag to 1 will enable the
reception of association event notifications. Setting the flag to
0 will disable association event notifications.

sctp_address_event: Setting this flag to 1 will enable the reception
of address event notifications. Setting the flag to O will
di sabl e address event notifications.

sctp_send failure_event: Setting this flag to 1 will enable the

reception of send failure event notifications. Setting the flag
to O will disable send failure event notifications.

Stewart, et al. I nf or mat i onal [Page 54]

RFC 6458 SCTP Sockets API Decenber 2011

sctp_peer_error_event: Setting this flag to 1 will enable the
reception of peer error event notifications. Setting the flag to
0 will disable peer error event notifications.

sct p_shutdown_event: Setting this flag to 1 will enable the
reception of shutdown event notifications. Setting the flag to O
wi Il disable shutdown event notifications.

sctp_partial _delivery event: Setting this flag to 1 will enable the
reception of partial delivery event notifications. Setting the
flag to O will disable partial delivery event notifications.

sctp_adaptation_layer_event: Setting this flag to 1 will enable the
reception of adaptation |ayer event notifications. Setting the
flag to O will disable adaptation |ayer event notifications.

sctp_authentication_event: Setting this flag to 1 will enable the
reception of authentication |ayer event notifications. Setting
the flag to 0 will disable authentication |ayer event
notifications.

sctp_sender_dry_event: Setting this flag to 1 will enable the
reception of sender dry event notifications. Setting the flag to
0O will disable sender dry event notifications.

An exanpl e where an application would like to receive data_io_events
and associ ation_events but no others would be as foll ows:

{

struct sctp_event subscri be events;
menset (&events, 0, sizeof(events));

events.sctp_data_io_event =1
events. sctp_associ ation_event =1

set sockopt (sd, | PPROTO SCTP, SCTP_EVENTS, &events, sizeof(events));
}

Note that for one-to-nmany style SCTP sockets, the caller of recvmsg()
receives ancillary data and notifications for all associations bound
to the file descriptor. For one-to-one style SCTP sockets, the
caller receives ancillary data and notifications only for the single
associ ation bound to the file descriptor.

By default, both the one-to-one style and the one-to-many style
socket do not subscribe to any notification

Stewart, et al. I nf or mat i onal [Page 55]

RFC 6458 SCTP Sockets API Decenber 2011

6.2.2. SCTP_EVENT Option

The SCTP_EVENTS socket option has one issue for future conpatibility.
As new features are added, the structure (sctp_event_subscribe) nust
be expanded. This can cause an application binary interface (ABI)

i ssue unl ess an inplenentati on has added paddi ng at the end of the
structure. To avoid this problem SCTP_EVENTS has been deprecated
and a new socket option SCTP_EVENT has taken its place. The option
is used with the follow ng structure:

struct sctp_event {
sctp_assoc_t se_assoc_id;
uintl6 t se_type;
uint8 t se_on;

b

se_assoc_id: The se_assoc_id field is ignored for one-to-one style
sockets. For one-to-many style sockets, this field can be a
particul ar association identifier or SCTP_{ FUTURE| CURRENT
ALL} ASSCC.

se_type: The se_type field can be filled with any value that woul d
show up in the respective sn_type field (in the sctp_tlv structure
of the notification).

se_ on: The se on fieldis set to 1 to turn on an event and set to O
to turn off an event.

To use this option, the user fills in this structure and then calls
setsockopt() to turn on or off an individual event. The following is
an exanple use of this option:

{

struct sctp_event event;
menset (&event, 0, sizeof(event));

event.se_assoc_id = SCTP_FUTURE ASSCC,

event.se_type = SCTP_SENDER_DRY_EVENT,;

event.se_on = 1;

set sockopt (sd, | PPROTO _SCTP, SCTP_EVENT, &event, sizeof(event));

}

By default, both the one-to-one style and the one-to-many style
socket do not subscribe to any notification

Stewart, et al. I nf or mat i onal [Page 56]

RFC 6458 SCTP Sockets API Decenber 2011

7. Comon COperations for Both Styles
7.1. send(), recv(), sendto(), and recvfrom()

Applications can use send() and sendto() to transnit data to the peer
of an SCTP endpoint. recv() and recvfron() can be used to receive
data fromthe peer.

The function prototypes are

ssize_t send(int sd,
const void *nsg,
size t len,
int flags);

ssize_t sendto(int sd,
const void *nsg,
size t len,
int flags,
const struct sockaddr *to,
socklen_t tolen);

ssize_t recv(int sd,
voi d *buf,
size t len,
int flags);
ssize_t recvfronm(int sd,
voi d *buf,
size t len,
int flags,
struct sockaddr *from
socklen_t *from en);
and the argunents are
sd: The socket descriptor of an SCTP endpoi nt.
nmsg: The nessage to be sent.
len: The size of the nmessage or the size of the buffer

to: One of the peer addresses of the association to be used to send
t he nmessage.

tolen: The size of the address.

buf: The buffer to store a received nessage.

Stewart, et al. I nf or mat i onal [Page 57]

RFC 6458 SCTP Sockets API Decenber 2011
from The buffer to store the peer address used to send the received
nessage
fromen: The size of the from address.

flags: (described bel ow).

These calls give access to only basic SCTP protocol features. |If
ei ther peer in the association uses nmultiple streans, or sends
unordered data, these calls will usually be inadequate and may

deliver the data in unpredictabl e ways.

SCTP has the concept of multiple streans in one association. The
above calls do not allow the caller to specify on which streama
nmessage should be sent. The systemuses stream 0 as the default
stream for send() and sendto(). recv() and recvfron() return data
fromany stream but the caller cannot distinguish the different
streans. This may result in data seeming to arrive out of order
Simlarly, if a DATA chunk is sent unordered, recv() and recvfron()
provi de no indication.

SCTP i s nessage based. The nmsg buffer above in send() and sendto()
is considered to be a single nmessage. This neans that if the caller
wants to send a nessage that is conposed by several buffers, the
caller needs to conbine them before calling send() or sendto().
Alternately, the caller can use sendnsg() to do that without

conbi ning them Sending a nessage using send() or sendto() is atomc
unl ess explicit EOR marking is enabled on the socket specified by sd.
Usi ng sendto() on a non-connected one-to-one style socket for
inmplicit connection setup may or may not work, depending on the SCTP
i mpl enentation. recv() and recvfrom() cannot distinguish nessage
boundaries (i.e., there is no way to observe the MSG EOR flag to
detect partial delivery).

When receiving, if the buffer supplied is not |arge enough to hold a
conpl ete nessage, the receive call acts |like a stream socket and
returns as nuch data as will fit in the buffer.

Note that the send() and recv() calls may not be used for a one-to-
many style socket.

Note that if an application calls a send() or sendto() function with
no user data, the SCTP inpl enentation should reject the request with
an appropriate error nmessage. An inplenmentation is not allowed to
send a DATA chunk with no user data [RFC4960].

Stewart, et al. I nf or mat i onal [Page 58]

RFC 6458 SCTP Sockets API Decenber 2011

7.

2.

set sockopt () and get sockopt ()

Appl i cations use setsockopt() and getsockopt() to set or retrieve
socket options. Socket options are used to change the default
behavi or of socket calls. They are described in Section 8.

The function prototypes are

i nt getsockopt (int sd,
int |evel,
i nt optnane,
voi d *optval
socklen_t *optlen);

and
i nt setsockopt (int sd,
int |evel,
i nt optnane,
const void *optval
socklen_t optlen);
and the argunents are
sd: The socket descriptor
level: Set to | PPROTO SCTP for all SCTP options.
opt name: The option nane.

optval: The buffer to store the value of the option

optlen: The size of the buffer (or the length of the option
returned).

These functions return O on success and -1 in case of an error

Al'l socket options set on a one-to-one style |istening socket al so
apply to all future accepted sockets. For one-to-many style sockets,
often a socket option will pass a structure that includes an assoc_id
field. This field can be filled with the association identifier of a
particul ar association and unl ess otherw se specified can be filled
with one of the follow ng constants:

SCTP_FUTURE_ASSOC: Specifies that only future associations created
after this socket option will be affected by this call.

Stewart, et al. I nf or mat i onal [Page 59]

RFC 6458 SCTP Sockets API Decenber 2011

SCTP_CURRENT_ASSCC. Specifies that only currently existing
associations will be affected by this call, and future
associations will still receive the previous default val ue.

SCTP_ALL_ASSOC: Specifies that all current and future associations
will be affected by this call.

7.3. read() and wite()

Applications can use read() and wite() to receive and send data from
and to a peer. They have the sanme semantics as recv() and send(),
except that the flags paraneter cannot be used.

7.4. getsocknane()
Applications use getsockname() to retrieve the locally bound socket
address of the specified socket. This is especially useful if the
caller let SCTP choose a local port. This call is for single-honed
endpoints. 1t does not work well with nulti-honmed endpoints. See
Section 9.5 for a nulti-honed version of the call
The function prototype is
i nt getsocknane(int sd,
struct sockaddr *address,
socklen_t *len);
and the argunents are
sd: The socket descriptor to be queried.
address: On return, one locally bound address (chosen by the SCTP
stack) is stored in this buffer. |If the socket is an |IPv4 socket,
the address will be IPv4. If the socket is an | Pv6 socket, the
address will be either an | Pv6 or |Pv4 address

len: The caller should set the length of the address here. On
return, this is set to the length of the returned address.

get socknane() returns O on success and -1 in case of an error.

If the actual length of the address is greater than the length of the
suppl i ed sockaddr structure, the stored address will be truncated.

If the socket has not been bound to a | ocal nanme, the value stored in
the object pointed to by address is unspecified.

Stewart, et al. I nf or mat i onal [Page 60]

RFC 6458 SCTP Sockets API Decenber 2011

7.5. Inplicit Association Setup

The application can begin sending and receiving data using the
sendnsg()/recvnsg() or sendto()/recvfrom() calls, without going
through any explicit association setup procedures (i.e., no connect()
calls required).

Wienever sendnsg() or sendto() is called and the SCTP stack at the
sender finds that no association exists between the sender and the
i ntended receiver (identified by the address passed either in the
msg_nane field of the msghdr structure in the sendnsg() call or the
dest _addr field in the sendto() call), the SCTP stack will
autonatically set up an association to the intended receiver.

Upon successful association setup, an SCTP_COWM UP notification wll
be di spatched to the socket at both the sender and receiver side.
This notification can be read by the recvimsg() systemcall (see
Section 3.1.4).

Note that if the SCTP stack at the sender side supports bundling, the
first user nessage nay be bundled with the COOKIE ECHO nessage
[RFC4960] .

When the SCTP stack sets up a new association inplicitly, the
SCTP_INIT type ancillary data nay al so be passed al ong (see
Section 5.3.1 for details of the data structures) to change sone
paraneters used in setting up a new associ ation

If this information is not present in the sendnsg() call, or if the
inplicit association setup is triggered by a sendto() call, the
default association initialization paraneters will be used. These
default association paraneters nmay be set with respective
setsockopt () calls or be left to the systemdefaults.

Implicit association setup cannot be initiated by send() calls.
8. Socket Options

The foll owi ng subsection describes various SCTP-|evel socket options
that are conmon to both styles. SCTP associations can be

mul ti-homed. Therefore, certain option paraneters include a

sockaddr _storage structure to select to which peer address the option
shoul d be appli ed.

For the one-to-many style sockets, an sctp_assoc_t (association

identifier) parameter is used to identify the association instance
that the operation affects. So it nust be set when using this style.

Stewart, et al. I nf or mat i onal [Page 61]

RFC 6458 SCTP Sockets API Decenber 2011

For the one-to-one style sockets and branched-off one-to-nmany style
sockets (see Section 9.2), this association |D parameter is ignored.

Note that socket- or IP-level options are set or retrieved per
socket. This neans that for one-to-many style sockets, the options
will be applied to all associations (simlar to using SCTP_ALL_ASSCC
as the association identifier) belonging to the socket. For the one-
to-one style, these options will be applied to all peer addresses of
the association controlled by the socket. Applications should be
careful in setting those options.

For some | P stacks, getsockopt() is read-only, so a new interface
will be needed when information nust be passed both into and out of
the SCTP stack. The syntax for sctp_opt_info() is

int sctp_opt_info(int sd,
sctp_assoc_t id,
int opt,
void *arg
sockl en_t *size);

The sctp_opt_info() call is a replacenent for getsockopt() only and
will not set any options associated with the specified socket. A
setsockopt () call nust be used to set any witable option

For one-to-nmany style sockets, id specifies the association to query.
For one-to-one style sockets, id is ignored. For one-to-nmany style
sockets, any association identifier in the structure provided as arg
is ignored, and id takes precedence.

Not e that SCTP_CURRENT_ASSOC and SCTP_ALL_ASSOC cannot be used with
sctp_opt _info() or in getsockopt() calls. Using themw |l result in
an error (returning -1 and errno set to EINVAL). SCTP_FUTURE_ASSCC
can be used to query information for future associations.

The field opt specifies which SCTP socket option to get. 1t can get
any socket option currently supported that requests information
(either read/wite options or read-only) such as

SCTP_RTO NFO

SCTP_ASSCOCI NFO

SCTP_PRI MARY_ADDR

SCTP_PEER_ADDR_PARANS

SCTP_DEFAULT_SEND_PARAM

Stewart, et al. I nf or mat i onal [Page 62]

RFC 6458 SCTP Sockets API Decenber 2011

SCTP_MAX_SEG

SCTP_AUTH_ACTI VE_KEY

SCTP_DELAYED SACK

SCTP_MAX_BURST

SCTP_CONTEXT

SCTP_EVENT

SCTP_DEFAULT_SNDI NFO

SCTP_DEFAULT_PRI NFO

SCTP_STATUS

SCTP_GET_PEER_ADDR_| NFO

SCTP_PEER_AUTH_CHUNKS

SCTP_LOCAL_AUTH_CHUNKS

The arg field is an option-specific structure buffer provided by the
caller. See the rest of this section for nore information on these

options and option-specific structures.

sctp_opt_info() returns 0 on success, or on failure returns -1 and
sets errno to the appropriate error code.

8.1. Read/Wite Options
8.1.1. Retransm ssion Tineout Paraneters (SCTP_RTO NFO

The protocol paraneters used to initialize and linmt the
retransm ssion tinmeout (RTO are tunable. See [RFC4960] for nore
i nformati on on how these paranmeters are used in RTO cal cul ation

The following structure is used to access and nodify these
paraneters

struct sctp_rtoinfo {
sctp_assoc_t srto_assoc_id;
uint32_t srto_initial;
uint32_t srto_max;
uint32_t srto_mn;

Stewart, et al. I nf or mat i onal [Page 63]

RFC 6458 SCTP Sockets API Decenber 2011

srto_assoc_id: This paraneter is ignored for one-to-one style
sockets. For one-to-many style sockets, the application may fill
in an association identifier or SCTP_FUTURE ASSOC. It is an error
to use SCTP_{ CURRENT| ALL} ASSOC in srto_assoc_id.

srto_initial: This paraneter contains the initial RTO val ue.

srto_max and srto_nmin: These paraneters contain the maxi mum and
m ni mum bounds for all RTGCs.

All tinmes are given in mlliseconds. A value of 0, when nodifying
the paraneters, indicates that the current value should not be
changed.

To access or nodify these paraneters, the application should cal
get sockopt () or setsockopt(), respectively, with the option name
SCTP_RTO NFO.

8.1.2. Association Paraneters (SCTP_ASSOCI NFO)

This option is used to both exani ne and set various association and
endpoi nt paraneters. See [RFC4960] for nore information on how t hese
paraneters are used

The following structure is used to access and nodify these
paraneters

struct sctp_assocparanms {
sctp_assoc_t sasoc_assoc_i d;
uintl16_t sasoc_asocmaxrxt;
uintl16_t sasoc_nunber peer _destinations;
uint32_t sasoc_peer_rwnd;
ui nt 32_t sasoc_l ocal _rwnd;
uint32_t sasoc_cookie life;

H

sasoc_assoc_id: This paraneter is ignored for one-to-one style
sockets. For one-to-many style sockets, the application may fill
in an association identifier or SCTP_FUTURE ASSOC. It is an error
to use SCTP_{ CURRENT| ALL} ASSOC i n sasoc_assoc_i d.

sasoc_asocnaxrxt: This parameter contains the nmaxi numretransm ssion
attenpts to nake for the association.

sasoc_nunber _peer_destinations: This paraneter is the nunber of
destination addresses that the peer has.

Stewart, et al. I nf or mat i onal [Page 64]

RFC 6458 SCTP Sockets API Decenber 2011

sasoc_peer_rwnd: This paraneter holds the current value of the
peer’'s rwnd (reported in the |last selective acknow edgnent (SACK))
m nus any outstanding data (i.e., data in flight).

sasoc_l ocal _rwnd: This parameter holds the last reported rwnd that
was sent to the peer.

sasoc_cookie life: This paraneter is the association’s cookie life
val ue used when issuing cooki es.

The val ue of sasoc_peer_rwnd i s neani ngl ess when exam ni ng endpoi nt
information (i.e., it is only valid when exanining information on a
speci fic associ ation).

Al time values are given in nmlliseconds. A value of 0, when
nmodi fying the paraneters, indicates that the current val ue shoul d not
be changed.

The val ues of sasoc_asocnaxrxt and sasoc_cookie |ife nay be set on
ei ther an endpoi nt or association basis. The rwnd and destination
counts (sasoc_numnber peer _destinations, sasoc_peer_rwnd,
sasoc_|l ocal _rwnd) are not settable, and any value placed in these is
i gnor ed.

To access or nodify these paraneters, the application should cal
get sockopt () or setsockopt(), respectively, with the option nane
SCTP_ASSOCI NFO

The maxi num nunber of retransm ssions before an address is considered
unreachable is also tunable, but is address-specific, so it is
covered in a separate option. |If an application attenpts to set the
val ue of the association’s naxi mumretransn ssion paraneter to nore
than the sumof all maxi numretransni ssion paraneters, setsockopt()
may return an error. The reason for this, from Section 8.2 of

[RFC4960], is as follows:

Not e: When configuring the SCTP endpoint, the user should avoid
havi ng the value of ’Association. Max. Retrans’ (sasoc_maxrxt in
this option) larger than the sumation of the ’'Path. Max. Retrans
(see spp_pathmaxrxt in Section 8.1.12) of all of the destination
addresses for the rempte endpoint. Oherwi se, all of the
destination addresses may becone inactive while the endpoint stil
consi ders the peer endpoint reachabl e.

Stewart, et al. I nf or mat i onal [Page 65]

RFC 6458 SCTP Sockets API Decenber 2011

8.1.3. Initialization Paraneters (SCTP_I Nl TM5G

Applications can specify protocol parameters for the default
association initialization. The structure used to access and nodify
these paraneters is defined in Section 5.3.1. The option nane
argunent to setsockopt() and getsockopt() is SCTP_I Nl TMSG

Setting initialization paraneters is effective only on an unconnect ed
socket (for one-to-many style sockets, only future associations are
af fected by the change).

8.1.4. SO _LINGER
An application can use this option to performthe SCTP ABORT
primitive. This option affects all associations related to the
socket .

The linger option structure is

struct linger {
int | _onoff; /* option on/off */

int | _linger; /* linger time */
b
To enable the option, set | _onoff to 1. |If the I _linger value is set
to 0, calling close() is the same as the ABORT primtive. |f the
value is set to a negative value, the setsockopt() call will return
an error. |If the value is set to a positive value linger_tinme, the

cl ose() can be blocked for at nost linger_time. Please note that the
time unit is in seconds, according to PCSI X, but nmight be different
on specific platforns. |f the graceful shutdown phase does not
finish during this period, close() will return, but the gracefu

shut down phase will continue in the system

Note that this is a socket-1evel option, not an SCTP-1evel option
When using this option, an application nust specify a |level of
SOL_SOCKET in the call

8.1.5. SCTP_NODELAY

This option turns on/off any Nagle-like algorithm This neans that
packets are generally sent as soon as possible, and no unnecessary
del ays are introduced, at the cost of nore packets in the network.
In particular, not using any Nagle-like algorithmmght reduce the
bundl i ng of small user nessages in cases where this would require an
addi ti onal del ay.

Turning this option on disables any Nagle-like al gorithm

Stewart, et al. I nf or mat i onal [Page 66]

RFC 6458 SCTP Sockets API Decenber 2011

This option expects an integer bool ean flag, where a non-zero val ue
turns on the option, and a zero value turns off the option

8.1.6. SO RCVBUF

This option sets the receive buffer size in octets. For SCITP one-to-
one style sockets, this option controls the receiver w ndow size

For one-to-many style sockets, the meaning is inplenmentation
dependent. It mght control the receive buffer for each association
bound to the socket descriptor, or it mght control the receive
buffer for the whole socket. This option expects an integer

Note that this is a socket-level option, not an SCTP-1evel option
When using this option, an application nust specify a |level of
SOL_SOCKET in the call.

8.1.7. SO _SNDBUF

This option sets the send buffer size. For SCIP one-to-one style
sockets, this option controls the anmobunt of data SCTP nay have
waiting in internal buffers to be sent. This option therefore bounds
t he maxi num si ze of data that can be sent in a single send call. For
one-to-many style sockets, the effect is the same, except that it
applies to one or all associations (see Section 3.3) bound to the
socket descriptor used in the setsockopt() or getsockopt() call. The
option applies to each association’s wi ndow size separately. This
option expects an integer

Note that this is a socket-1evel option, not an SCTP-1evel option
When using this option, an application nust specify a |level of
SOL_SOCKET in the call

8.1.8. Automatic O ose of Associations (SCTP_AUTOCLOSE)

This socket option is applicable to the one-to-many style socket

only. Wen set, it will cause associations that are idle for nore
than the specified nunber of seconds to autonmatically close using the
graceful shutdown procedure. An idle association is defined as an
associ ation that has not sent or received user data. The special
value of '0' indicates that no automatic cl ose of any association
shoul d be perfornmed; this is the default value. This option expects
an integer defining the nunber of seconds of idle tine before an
association is closed.

Stewart, et al. I nf or mat i onal [Page 67]

RFC 6458 SCTP Sockets API Decenber 2011

An application using this option should enable the ability to receive
t he association change notification. This is the only mechani sm by
whi ch an application is informed about the closing of an association.
After an association is closed, the association identifier assigned
to it can be reused. An application should be aware of this to avoid
t he possi bl e probl em of sending data to an incorrect peer endpoint.

8.1.9. Set Primary Address (SCTP_PRI MARY_ADDR)

This option requests that the | ocal SCTP stack uses the encl osed peer
address as the association’s primary. The encl osed address nust be
one of the association peer’s addresses.

The following structure is used to nake a set peer primary request:

struct sctp_setprim {
sctp_assoc_t ssp_assoc_id;
struct sockaddr storage ssp_addr

};

ssp_assoc_id: This paranmeter is ignored for one-to-one style
sockets. For one-to-many style sockets, it identifies the
association for this request. Note that the special sctp_assoc_t
SCTP_{ FUTURE| ALL| CURRENT} _ASSCC are not al | oned.

ssp_addr: This paraneter is the address to set as primary. No
wi | dcard address is all owed.

8.1.10. Set Adaptation Layer Indicator (SCTP_ADAPTATI ON_LAYER)
This option requests that the | ocal endpoint set the specified
Adapt ati on Layer Indication paraneter for all future INNT and
I NI T- ACK exchanges
The following structure is used to access and nodify this paraneter:
struct sctp_setadaptation {

uint32_t ssb_adaptati on_i nd;

};

ssb_adaptation_ind: The adaptation |layer indicator that will be
i ncluded in any outgoi ng Adaptation Layer Indication paraneter.

8.1.11. Enabl e/ Disable Message Fragnmentation (SCTP_DI SABLE FRAGVENTS)
This option is an on/off flag and is passed as an integer, where a

non-zero is on and a zero is off. |If enabled, no SCTP nmessage
fragmentation will be perforned. The effect of enabling this option

Stewart, et al. I nf or mat i onal [Page 68]

RFC 6458 SCTP Sockets API Decenber 2011

is that if a nmessage being sent exceeds the current Path MIU (PMIU)
size, the nessage will not be sent and instead an error will be
indicated to the user. |If this option is disabled (the default),
then a nmessage exceeding the size of the PMIU will be fragnented and
reassenbl ed by the peer.

8.1.12. Peer Address Paraneters (SCTP_PEER ADDR PARAMB)

Applications can enable or disable heartbeats for any peer address of
an association, nodify an address’s heartbeat interval, force a
heartbeat to be sent i mediately, and adjust the address’s naxi mum
nunmber of retransmi ssions sent before an address is considered

unr eachabl e.

The following structure is used to access and nodify an address’s
par anet er s

struct sctp_paddrparans {
sctp_assoc_t spp_assoc_id;
struct sockaddr _storage spp_address;
ui nt 32_t spp_hbinterval
uint16_t spp_pat hmaxrxt;
uint 32_t spp_pat hnt u;
uint32_t spp_flags;
uint32_t spp_ipv6e_fl ow abel
uint8 t spp_dscp;
i

spp_assoc_id: This paraneter is ignored for one-to-one style
sockets. For one-to-nmany style sockets, the application may fil
in an association identifier or SCTP_FUTURE ASSCC for this query.
It is an error to use SCTP_{ CURRENT| ALL} _ASSCC i n spp_assoc_i d.

spp_address: This specifies which address is of interest. If a
Wi | dcard address is provided, it applies to all current and future
pat hs.

spp_hbinterval: This contains the value of the heartbeat interval

in mlliseconds (HB.Interval in [RFC4960]). Note that unless the
spp_flags field is set to SPP_HB ENABLE, the value of this field
is ignored. Note also that a value of zero indicates that the
current setting should be left unchanged. To set an actual val ue
of zero, the SPP_ HB TIME | S ZERO fl ag should be used. Even when
it is set to 0, it does not mean that SCTP will continuously send
out heartbeats, since the actual interval also includes the
current RTO and jitter (see Section 8.3 of [RFC4960]).

Stewart, et al. I nf or mat i onal [Page 69]

RFC 6458 SCTP Sockets API Decenber 2011

spp_pat hmaxrxt: This contains the naxi num nunber of retransni ssions
before this address shall be considered unreachable. Note that a
val ue of zero indicates that the current setting should be left
unchanged.

spp_pathntu: This field contains the current Path MIU of the peer
address. It is the nunber of bytes available in an SCTP packet
for chunks. Providing a value of 0 does not change the current
setting. |If a positive value is provided and SPP_PMIUD DI SABLE i s
set in the spp_flags field, the given value is used as the Path
MIU. If SPP_PMIUD ENABLE is set in the spp_flags field, the
spp_pathntu field is ignored.

spp_flags: These flags are used to control various features on an
association. The flag field is a bitmask that may contain zero or
nmore of the follow ng options:

SPP_HB ENABLE: This field enables heartbeats on the specified
addr ess.

SPP_HB DI SABLE: This field disables heartbeats on the specified
address. Note that SPP_HB ENABLE and SPP_HB DI SABLE are
mut ual Iy excl usive; only one of these two should be specified.
Enabling both fields will yield undeterm ned results.

SPP_HB DEMAND: This field requests that a user-initiated
heartbeat be made i Mmediately. This nust not be used in
conjunction with a wildcard address.

SPP HB TIME IS ZERO This field specifies that the tinme for
heartbeat delay is to be set to O mlliseconds.

SPP_PMIUD ENABLE: This field will enable PMIU di scovery on the
speci fi ed address.

SPP_PMIUD DI SABLE: This field will disable PMIU di scovery on the
specified address. Note that if the address field is enpty,
then all addresses on the association are affected. Note al so
t hat SPP_PMIUD _ENABLE and SPP_PMIubD DI SABLE are nutual ly
exclusive. Enabling both fields will yield undeternined
results.

SPP_| PV6_ FLONLABEL: Setting this flag enables the setting of the

IPV6 flow | abel value. The value is contained in the
spp_i pv6_fl ow abel field.

Stewart, et al. I nf or mat i onal [Page 70]

RFC 6458 SCTP Sockets API Decenber 2011

Upon retrieval, this flag will be set to indicate that the
spp_i pv6_flow abel field has a valid value returned. |If a
specific destination address is set (in the spp_address field),
then the value returned is that of the address. |If just an
association is specified (and no address), then the
association’s default flow label is returned. |f neither an
association nor a destination is specified, then the socket’s
default flow label is returned. For non-1Pv6 sockets, this
flag will be left cleared.

SPP_DSCP: Setting this flag enables the setting of the
Differentiated Services Code Point (DSCP) val ue associated with
either the association or a specific address. The value is
obtained in the spp_dscp field.

Upon retrieval, this flag will be set to indicate that the
spp_dscp field has a valid value returned. |If a specific
destination address is set when called (in the spp_address
field), then that specific destination address’'s DSCP value is
returned. |If just an association is specified, then the
association’s default DSCP is returned. |If neither an
association nor a destination is specified, then the socket’s
default DSCP is returned.

spp_i pv6_flow abel: This field is used in conjunction with the
SPP_| PV6_ FLONLABEL flag and contains the IPv6 flow | abel. The 20
| east significant bits are used for the flow label. This setting

has precedence over any |Pv6-1ayer setting.

spp_dscp: This field is used in conjunction with the SPP_DSCP fl ag
and contains the DSCP. The 6 nobst significant bits are used for
the DSCP. This setting has precedence over any |Pv4- or |Pv6-
| ayer setting.

Pl ease note that changing the flow | abel or DSCP value wll affect
al |l packets sent by the SCTP stack after setting these paraneters
The flow | abel might also be set via the sin6 flowinfo field of the
sockaddr _in6 structure.

8.1.13. Set Default Send Paraneters (SCTP_DEFAULT_SEND PARAM -
DEPRECATED

Pl ease note that this option is deprecated. SCTP_DEFAULT_ SNDI NFO
(Section 8.1.31) should be used instead.

Applications that wish to use the sendto() systemcall may w sh to

specify a default set of paraneters that would normally be supplied
through the inclusion of ancillary data. This socket option allows

Stewart, et al. I nf or mat i onal [Page 71]

RFC 6458 SCTP Sockets API Decenber 2011

such an application to set the default sctp_sndrcvinfo structure.
The application that wi shes to use this socket option sinply passes
the sctp_sndrcvinfo structure (defined in Section 5.3.2) to this
call. The input paraneters accepted by this call include
sinfo_stream sinfo_flags, sinfo_ppid, sinfo_context, and

sinfo tinetolive. The sinfo flags field is conposed of a bitwi se OR
of SCTP_UNORDERED, SCTP_EOF, and SCTP_SENDALL. The sinfo_assoc id
field specifies the association to which to apply the paraneters.
For a one-to-many style socket, any of the predefined constants are
also allowed in this field. The field is ignored for one-to-one
styl e sockets.

8.1.14. Set Notification and Ancillary Events (SCTP_EVENTS) -
DEPRECATED

This socket option is used to specify various notifications and
ancillary data the user wishes to receive. Please see Section 6.2.1
for a full description of this option and its usage. Note that this
option is considered deprecated and is present for backward
conmpatibility. New applications should use the SCTP_EVENT option
See Section 6.2.2 for a full description of that option as well.

8.1.15. Set/d ear |Pv4 Mapped Addresses (SCTP_I _WANT_MAPPED V4 _ADDR)

This socket option is a boolean flag that turns on or off the mapping

of I Pv4 addresses. |If this option is turned on, then |IPv4 addresses
will be napped to | Pv6 representation. |If this option is turned off,
then no mapping will be done of |Pv4 addresses, and a user wl|l

recei ve both PF_INET6 and PF_I NET type addresses on the socket. See
[RFC3542] for nore details on mapped | Pv6 addresses.

If this socket option is used on a socket of type PF_INET, an error
i s returned.

By default, this option is turned off and expects an integer to be
passed where a non-zero value turns on the option and a zero val ue
turns off the option.

8.1.16. Get or Set the Maxi mum Fragnentation Size (SCTP_MAXSEG

This option will get or set the nmaxi mum size to put in any outgoing
SCTP DATA chunk. |If a nessage is larger than this nmaxi mumsize, it
will be fragnmented by SCTP into the specified size. Note that the
underlying SCTP i nplenmentation nmay fragnent into smaller sized chunks
when the PMIU of the underlying association is snaller than the value
set by the user. The default value for this optionis "0, which
indicates that the user is not limting fragnentation and only the
PMIU wi | | affect SCTP s choice of DATA chunk size. Note also that

Stewart, et al. I nf or mat i onal [Page 72]

RFC 6458 SCTP Sockets API Decenber 2011

val ues set |arger than the naxi mum size of an | P datagramwi ||
effectively et SCTP control fragnentation (i.e., the sane as setting
this option to 0).

The following structure is used to access and nodify this paraneter:

struct sctp_assoc_val ue {
sctp_assoc_t assoc_id;
ui nt 32_t assoc_val ue;

b

assoc_id: This paraneter is ignored for one-to-one style sockets.
For one-to-many style sockets, this paraneter indicates upon which
association the user is performing an action. It is an error to
use SCTP_{ CURRENT| ALL} ASSOC i n assoc_i d.

assoc_value: This paranmeter specifies the nmaxi mum size in bytes.

8.1.17. Get or Set the List of Supported HVAC ldentifiers
(SCTP_HMAC | DENT)

This option gets or sets the |list of Hashed Message Authentication
Code (HMAC) algorithms that the |ocal endpoint requires the peer
to use.

The following structure is used to get or set these identifiers:

struct sctp_hmacal go {
uint32_t shnmac_nunber of idents;
uintl6 t shmac_idents[];

};

shmac_nunber _of _idents: This field gives the nunber of elenents
present in the array shnmac_idents

shmac_idents: This paraneter contains an array of HVAC identifiers
that the | ocal endpoint is requesting the peer to use, in priority
order. The following identifiers are valid:
* SCTP_AUTH HMAC | D_SHA1
* SCTP_AUTH HVAC | D_SHA256

Note that the list supplied nust include SCTP_AUTH HVAC | D SHA1l and

may include any of the other values in its preferred order (I owest
list position has the highest preference in algorithm selection).

Stewart, et al. I nf or mat i onal [Page 73]

RFC 6458 SCTP Sockets API Decenber 2011

Note al so that the | ack of SCTP_AUTH HVAC I D SHA1, or the inclusion
of an unknown HVAC identifier (including optional identifiers unknown
to the inplementation), will cause the set option to fail and return
an error.

8.1.18. Get or Set the Active Shared Key (SCTP_AUTH ACTI VE_KEY)

This option will get or set the active shared key to be used to build
t he association shared key.

The following structure is used to access and nodify these
paraneters

struct sctp_authkeyid {
sctp_assoc_t scact_assoc_id;
uint16_t scact_keynunber;

b

scact _assoc_id: This paraneter sets the active key of the specified
associ ation. The special SCTP_{ FUTURE| CURRENT| ALL} ASSCC can be
used. For one-to-one style sockets, this paraneter is ignored.
Not e, however, that this option will set the active key on the
association if the socket is connected; otherw se, this option
will set the default active key for the endpoint.

scact _keynunmber: This paraneter is the shared key identifier that
the application is requesting to becone the active shared key to
be used for sending authenticated chunks. The key identifier nust
correspond to an existing shared key. Note that shared key
identifier "0 defaults to a null key.

When used with setsockopt (), the SCTP inplenmentati on nust use the
i ndi cated shared key identifier for all messages being given to an
SCTP inplenmentation via a send call after the setsockopt() call
until changed again. Therefore, the SCTP inpl enmentation nust not
bundl e user nessages that should be authenticated using different
shared key identifiers.

Initially, the key with key identifier O is the active key.
8.1.19. Get or Set Delayed SACK Ti mer (SCTP_DELAYED SACK)

This option will affect the way del ayed SACKs are perforned. This
option allows the application to get or set the delayed SACK tinme, in
mlliseconds. It also allows changing the delayed SACK frequency.
Changi ng the frequency to 1 disables the del ayed SACK al gorithm

Note that if sack _delay or sack freq is 0O when setting this option
the current values will remai n unchanged.

Stewart, et al. I nf or mat i onal [Page 74]

RFC 6458 SCTP Sockets API Decenber 2011

The following structure is used to access and nodify these
paraneters

struct sctp_sack_info {
sctp_assoc_t sack_assoc_i d;
uint32_t sack_del ay;
uint32_t sack freq;

};

sack_assoc_id: This paraneter is ignored for one-to-one style
sockets. For one-to-many style sockets, this paraneter indicates
upon whi ch association the user is perforning an action. The
speci al SCTP_{ FUTURE| CURRENT| ALL} ASSCC can al so be used.

sack_delay: This paraneter contains the nunber of milliseconds the
user is requesting that the del ayed SACK timer be set to. Note
that this value is defined in [RFC4960] to be between 200 and 500
mlliseconds.

sack _freq: This paraneter contains the nunmber of packets that nust
be received before a SACK is sent without waiting for the del ay
timer to expire. The default value is 2; setting this value to 1
wi |l disable the del ayed SACK al gorithm

8.1.20. Get or Set Fragnented Interl eave (SCTP_FRAGVENT | NTERLEAVE)

Fragnmented interleave controls how the presentati on of nessages
occurs for the nmessage receiver. There are three |levels of fragnent
interleave defined. Two of the levels affect one-to-one style
sockets, while one-to-many style sockets are affected by all three

| evel s.

This option takes an integer value. It can be set to a value of O,

1, or 2. Attenpting to set this level to other values will return an
error.

Setting the three levels provides the foll owi ng receiver
i nteractions:

level 0: Prevents the interleaving of any messages. This neans that
when a partial delivery begins, no other nmessages will be received
except the nessage being partially delivered. |f another nessage
arrives on a different stream (or association) that could be
delivered, it will be blocked waiting for the user to read all of
the partially delivered nessage.

Stewart, et al. I nf or mat i onal [Page 75]

RFC 6458 SCTP Sockets API Decenber 2011

level 1: Allows interleaving of nessages that are fromdifferent
associ ations. For one-to-one style sockets, level 0 and level 1
t hus have the sane neaning, since a one-to-one style socket always
recei ves nmessages fromthe same association. Note that setting a
one-to-many style socket to this level may cause nultiple partia
deliveries fromdifferent associations, but for any given
associ ation, only one nessage will be delivered until all parts of
a nmessage have been delivered. This neans that one | arge nessage,
being read with an association identifier of "X', will block other
messages from association "X' from being delivered

level 2: Allows conplete interleaving of nessages. This |eve
requires that the sender not only carefully observe the peer
association identifier (or address) but also pay careful attention
to the streamnunber. Wth this option enabled, a partially
del i vered nmessage may begin being delivered for association "X
stream "Y", and the next subsequent receive may return a nmessage
fromassociation "X" stream"Z". Note that no other nessages
woul d be delivered for association "X' stream"Y" until all of
stream"Y"'s partially delivered nessage was read. Note that this
option also affects one-to-one style sockets. Also note that for
one-to-many style sockets, not only another stream s message from
the sane association may be delivered upon the next receive, but
sonme ot her association’s nessage nay al so be delivered upon the
next receive.

An i nmpl enentation should default one-to-nany style sockets to |eve

1, because otherwise, it is possible that a peer could begin sending
a partial message and thus bl ock all other peers from sendi ng dat a.
However, a setting of level 2 requires that the application not only
be aware of the association (via the association identifier or peer’'s
address) but also the stream nunber. The stream nunber is not
present unless the user has subscribed to the sctp_data_io_event (see
Section 6.2), which is deprecated, or has enabled the
SCTP_RECVRCVI NFO socket option (see Section 8.1.29). This is also
why we reconmend that one-to-one style sockets be defaulted to | eve

0 (level 1 for one-to-one style sockets has no effect). Note that an
i mpl enmentation should return an error if an application attenpts to
set the level to 2 and has not subscribed to the sctp_data_i o_event
event, which is deprecated, or has enabl ed the SCTP_RECVRCVI NFO
socket option.

For applications that have subscribed to events, those events appear
in the nornal socket buffer data stream This nmeans that unless the
user has set the fragmentation interleave level to O, notifications

may al so be interleaved with partially delivered nessages.

Stewart, et al. I nf or mat i onal [Page 76]

RFC 6458 SCTP Sockets API Decenber 2011

8.1.21. Set or Cet the SCIP Partial Delivery Point
(SCTP_PARTI AL_DELI VERY_PQl NT)

This option will set or get the SCTP partial delivery point. This
point is the size of a nessage where the partial delivery APl will be
i nvoked to help free up rwnd space for the peer. Setting this to a

|l ower value will cause partial deliveries to happen nore often. This
option expects an integer that sets or gets the partial delivery

point in bytes. Note also that the call will fail if the user
attenpts to set this value larger than the socket receive buffer
si ze.

Note that any single nessage having a length smaller than or equal to
the SCTP partial delivery point will be delivered in a single read
call as long as the user-provided buffer is | arge enough to hold the
nessage

8.1.22. Set or Get the Use of Extended Receive Info
(SCTP_USE_EXT_RCVI NFO) - DEPRECATED

This option will enable or disable the use of the extended version of

the sctp_sndrcvinfo structure. |If this option is disabled, then the
normal sctp_sndrcvinfo structure is returned in all receive nmessage
calls. If this option is enabled, then the sctp_extrcvinfo structure

is returned in all receive nessage calls. The default is off.

Note that the sctp_extrcvinfo structure is never used in any send
call.

This option is present for conpatibility with older applications and
is deprecated. Future applications should use SCTP_NXTINFO to
retrieve this same information via ancillary data.

8.1.23. Set or Get the Auto ASCONF Fl ag (SCTP_AUTO_ASCONF)

This option will enable or disable the use of the automatic
generation of ASCONF chunks to add and del ete addresses to an

exi sting association. Note that this option has two caveats, nanely
a) it only affects sockets that are bound to all addresses avail able
to the SCTP stack, and b) the system adm ni strator may have an
overriding control that turns the ASCONF feature off no matter what
setting the socket option nay have.

Thi s option expects an integer boolean flag, where a non-zero val ue
turns on the option, and a zero value turns off the option

Stewart, et al. I nf or mat i onal [Page 77]

RFC 6458 SCTP Sockets API Decenber 2011

8.1.24. Set or Get the Maxi mum Burst (SCTP_MAX BURST)

This option will allow a user to change the maxi nrum burst of packets
that can be emitted by this association. Note that the default val ue
is 4, and sone inplenentations may restrict this setting so that it
can only be lowered to positive val ues.

To set or get this option, the user fills in the follow ng structure:

struct sctp_assoc_val ue {
sctp_assoc_t assoc_i d;
uint32_t assoc_val ue;

};

assoc_id: This paraneter is ignored for one-to-one style sockets.
For one-to-many style sockets, this parameter indicates upon which
association the user is perform ng an action. The speci al
SCTP_{ FUTURE| CURRENT| ALL} _ASSCC can al so be used.

assoc_value: This paranmeter contains the maxi rumburst. Setting the
value to O disables burst nitigation

8.1.25. Set or CGet the Default Context (SCTP_CONTEXT)

The context field in the sctp_sndrcvinfo structure is nornmally only
used when a failed nessage is retrieved holding the value that was
sent down on the actual send call. This option allows the setting,
on an association basis, of a default context that will be received
on readi ng nmessages fromthe peer. This is especially helpful for an
appl i cati on when using one-to-many style sockets to keep sone
reference to an internal state nachine that is processing nessages on
the association. Note that the setting of this value only affects
recei ved messages fromthe peer and does not affect the value that is
saved with outbound nessages.

To set or get this option, the user fills in the follow ng structure:

struct sctp_assoc_val ue {
sctp_assoc_t assoc_id;
uint32_t assoc_val ue;

b
assoc_id: This paraneter is ignored for one-to-one style sockets.
For one-to-many style sockets, this parameter indicates upon which
associ ation the user is perform ng an action. The speci al
SCTP_{ FUTURE| CURRENT| ALL} ASSCC can al so be used.

assoc_value: This paranmeter contains the context.

Stewart, et al. I nf or mat i onal [Page 78]

RFC 6458 SCTP Sockets API Decenber 2011

8.1.26. Enable or Disable Explicit EOR Marki ng (SCTP_EXPLICI T_EOR)

This boolean flag is used to enable or disable explicit end of record
(EOR) marking. Wen this option is enabled, a user may make multiple
send systemcalls to send a record and nust indicate that they are
finished sending a particular record by including the SCTP_ECR fl ag.
If this boolean flag is disabled, then each individual send system

call is considered to have an SCTP_EOR indicator set on it inmplicitly
wi t hout the user having to explicitly add this flag. The default
is off.

This option expects an integer boolean flag, where a non-zero val ue
turns on the option, and a zero value turns off the option

8.1.27. Enable SCTP Port Reusage (SCTP_REUSE PORT)

This option only supports one-to-one style SCTP sockets. [If used on
a one-to-nmany style SCTP socket, an error is indicated.

Thi s option expects an integer boolean flag, where a non-zero val ue
turns on the option, and a zero value turns off the option

Thi s socket option nust not be used after calling bind() or
sctp_bindx() for a one-to-one style SCTP socket. |f using bind() or
sctp_bindx() on a socket with the SCTP_REUSE PORT option, all other
SCTP sockets bound to the same port must have set the SCTP_REUSE PORT
option. Calling bind() or sctp_bindx() for a socket w thout having
set the SCTP_REUSE PORT option will fail if there are other sockets
bound to the sane port. At nbst one socket being bound to the same
port nmay be |istening.

It should be noted that the behavior of the socket-|evel socket
option to reuse ports and/or addresses for SCTP sockets is
unspeci fi ed.

8.1.28. Set Notification Event (SCTP_EVENT)
This socket option is used to set a specific notification option
Pl ease see Section 6.2.2 for a full description of this option and
its usage.

8.1.29. Enable or Disable the Delivery of SCTP_RCVINFO as Ancillary
Dat a (SCTP_RECVRCVI NFO

Setting this option specifies that SCTP_RCVI NFO (defined in
Section 5.3.5) is returned as ancillary data by recvisg().

Stewart, et al. I nf or mat i onal [Page 79]

RFC 6458 SCTP Sockets API Decenber 2011

This option expects an integer bool ean flag, where a non-zero val ue
turns on the option, and a zero value turns off the option

8.1.30. Enable or Disable the Delivery of SCTP_NXTINFO as Ancillary
Dat a (SCTP_RECVNXTI NFO)

Setting this option specifies that SCTP_NXTI NFO (defined in
Section 5.3.6) is returned as ancillary data by recvmsg().

This option expects an integer bool ean flag, where a non-zero val ue
turns on the option, and a zero value turns off the option

8.1.31. Set Default Send Paraneters (SCTP_DEFAULT_SNDI NFO

Applications that wish to use the sendto() systemcall may wi sh to
specify a default set of parameters that would normally be supplied
through the inclusion of ancillary data. This socket option allows
such an application to set the default sctp_sndinfo structure. The
application that wi shes to use this socket option sinply passes the
sctp_sndinfo structure (defined in Section 5.3.4) to this call. The
i nput paraneters accepted by this call include snd_sid, snd_flags,
snd_ppid, and snd_context. The snd_flags paraneter is conmposed of a
bitwi se OR of SCTP_UNORDERED, SCTP_EOF, and SCTP_SENDALL. The
snd_assoc_id field specifies the association to which to apply the
paraneters. For a one-to-many style socket, any of the predefined
constants are also allowed in this field. The field is ignored for
one-to-one style sockets.

8.1.32. Set Default PR-SCTP Paraneters (SCTP_DEFAULT_PRI NFO

This option sets and gets the default paraneters for PR SCTP. They
can be overwitten by specific information provided in send calls.

The following structure is used to access and nodify these
paraneters

struct sctp_default prinfo {
uintl6 t pr_policy;

uint 32_t pr_val ue;
sctp_assoc_t pr_assoc_id;

b

pr_policy: This field is the sane as that described in
Section 5.3.7.

pr_value: This field is the sane as that described in Section 5.3.7.

Stewart, et al. I nf or mat i onal [Page 80]

RFC 6458 SCTP Sockets API Decenber 2011

pr_assoc_id: This field is ignored for one-to-one style sockets.
For one-to-many style sockets, pr_assoc_id can be a particul ar
association identifier or SCTP_{ FUTURE| CURRENT| ALL} _ASSCC.

8.2. Read-Only Options

The options defined in this subsection are read-only. Using this
option in a setsockopt() call will result in an error indicating
EOPNOTSUPP.

8.2.1. Association Status (SCTP_STATUS)

Applications can retrieve current status information about an
associ ation, including association state, peer receiver w ndow size
nunber of unacknow edged DATA chunks, and nunber of DATA chunks
pendi ng receipt. This information is read-only.

The following structure is used to access this information

struct sctp_status {
sctp_assoc_t sstat_assoc_id;
int32 t sstat _state;
uint32_t sstat_rwnd,
uint16_t sstat_unackdat a;
uintl6_t sstat_ penddat a;
uint16_t sstat_instrns;
uint16_t sstat_outstrns;
uint32_t sstat_fragnmentation_point;
struct sctp_paddrinfo sstat_primary;

i

sstat _assoc_id: This paraneter is ignored for one-to-one style
sockets. For one-to-many style sockets, it holds the identifier
for the association. All notifications for a given association
have the sanme association identifier. The special SCTP_{FUTURE
CURRENT| ALL} _ASSOC cannot be used.

sstat _state: This contains the association’s current state, i.e.
one of the follow ng val ues:

* SCTP_CLOSED
* SCTP_BOUND
* SCTP_LI STEN

* SCTP_COOKI E_WAI T

Stewart, et al. I nf or mat i onal [Page 81]

RFC 6458 SCTP Sockets API Decenber 2011

* SCTP_COOKI E_ECHOED

* SCTP_ESTABLI SHED

* SCTP_SHUTDOAN_PENDI NG
* SCTP_SHUTDOAN_SENT

* SCTP_SHUTDOWN_RECEI VED
* SCTP_SHUTDOAN_ACK_SENT

sstat_rwnd: This contains the association peer’s current receiver
wi ndow si ze.

sstat _unackdata: This is the nunber of unacknow edged DATA chunks.
sstat _penddata: This is the nunber of DATA chunks pendi ng receipt.

sstat_instrnms: This is the nunber of streams that the peer will be
usi ng out bound.

sstat_outstrns: This is the nunber of outbound streans that the
endpoint is allowed to use.

sstat _fragmentation_point: This is the size at which SCTP
fragmentation will occur.

sstat_primary: This is information on the current primary peer
addr ess.

To access these status values, the application calls getsockopt()
with the option name SCTP_STATUS

8.2.2. Peer Address Information (SCTP_GET_PEER ADDR | NFO)

Applications can retrieve informati on about a specific peer address
of an association, including its reachability state, congestion

wi ndow, and retransmi ssion tinmer values. This information is

read- only.

The following structure is used to access this information

struct sctp_paddrinfo {
sctp_assoc_t spinfo_assoc_id;
struct sockaddr_storage spinfo_address;
int32_t spinfo_state;
uint32_t spinfo_cwnd;

Stewart, et al. I nf or mat i onal [Page 82]

RFC 6458 SCTP Sockets API Decenber 2011

s
sp

sp

Sp

Sp

Sp

Sp

sp

uint32 t spinfo_srtt;
uint32 t spinfo_rto;
uint32_t spinfo_ntu

info _assoc_id: This paraneter is ignored for one-to-one style
socket s.

For one-to-many style sockets, this field may be filled by the
application, and if so, this field will have priority in | ooking
up the association instead of using the address specified in
spinfo_address. Note that if the address does not belong to the

association specified, then this call will fail. |If the
application does not fill in the spinfo_assoc_id, then the address
will be used to I ook up the association, and on return, this field
will have the valid association identifier. |In other words, this

call can be used to translate an address into an associ ation
identifier. Note that the predefined constants are not all owed
for this option.

nfo_address: This is filled by the application and contains the
peer address of interest.

nfo state: This contains the peer address’s state:
SCTP_UNCONFI RVED: This is the initial state of a peer address.

SCTP_ACTIVE: This state is entered the first tine after path
verification. It can also be entered if the state is
SCTP_I NACTI VE and the path supervision detects that the peer
address is reachabl e again.

SCTP_I NACTIVE: This state is entered whenever a path failure is
det ect ed.

nfo _cwnd: This contains the peer address’s current congestion
wi ndow.

info_srtt: This contains the peer address’s current snoothed
round-trip time calculation in nmilliseconds.

info rto: This contains the peer address’s current retransm ssion
timeout value in milliseconds.

info_mu: This is the current Path MIU of the peer address. It is
t he nunber of bytes available in an SCTP packet for chunks.

Stewart, et al. I nf or mat i onal [Page 83]

RFC 6458 SCTP Sockets API Decenber 2011

8.2.3. Cet the List of Chunks the Peer Requires to Be Authenticated
(SCTP_PEER_AUTH_CHUNKS)

This option gets a list of chunk types (see [RFC4960]) for a
speci fied association that the peer requires to be received
aut henticated only.

The following structure is used to access these paraneters:

struct sctp_aut hchunks {
sctp_assoc_t gauth_assoc_id;

ui nt 32_t gaut h_nunber _of chunks
uint8 t gauth _chunks[];

};

gauth_assoc_id: This paraneter indicates for which association the
user is requesting the Iist of peer-authenticated chunks. For
one-to-one style sockets, this paraneter is ignored. Note that
the predefined constants are not allowed with this option

gaut h_nunber _of _chunks: This paraneter gives the nunber of elenents
in the array gauth_chunks.

gaut h_chunks: This paraneter contains an array of chunk types that
the peer is requesting to be authenticated. |If the passed-in
buffer size is not large enough to hold the list of chunk types,
ENOBUFS i s returned.

8.2.4. Cet the List of Chunks the Local Endpoint Requires to Be
Aut henti cated (SCTP_LOCAL_AUTH_CHUNKS)

This option gets a list of chunk types (see [RFC4960]) for a
specified association that the | ocal endpoint requires to be received
aut henti cated only.

The following structure is used to access these paraneters:

struct sctp_aut hchunks {
sctp_assoc_t gauth_assoc_id;

ui nt 32_t gaut h_nunber _of _chunks;
uint8 t gauth_chunks[];

s

gauth_assoc_id: This paraneter is ignored for one-to-one style
sockets. For one-to-many style sockets, the application may fil
in an association identifier or SCTP_FUTURE ASSCC. It is an error
to use SCTP_{ CURRENT| ALL} ASSQOC i n gaut h_assoc_i d.

Stewart, et al. I nf or mat i onal [Page 84]

RFC 6458 SCTP Sockets API Decenber 2011

gaut h_nunber _of chunks: This paraneter gives the nunber of elenents
in the array gauth_chunks.

gaut h_chunks: This paraneter contains an array of chunk types that
the | ocal endpoint is requesting to be authenticated. |If the
passed-in buffer is not |large enough to hold the list of chunk
types, ENOBUFS is returned.

8.2.5. Get the Current Nunber of Associations (SCTP_CET_ASSOC NUMBER)

This option gets the current nunber of associations that are attached
to a one-to-nmany style socket. The option value is an uint32_t.

Note that this nunber is only a snapshot. This neans that the nunber
of associations may have changed when the caller gets back the option
result.

For a one-to-one style socket, this socket option results in an
error.

8.2.6. Get the Current ldentifiers of Associations
(SCTP_CET_ASSCC | D LI ST)

This option gets the current |list of SCTP association identifiers of
the SCTP associ ati ons handl ed by a one-to-nmany style socket.

The option value has the structure

struct sctp_assoc_ids {
ui nt 32_t gai ds_nunber _of _i ds;
sctp_assoc_t gaids_assoc_id[];

};

The caller nust provide a |arge enough buffer to hold all association
identifiers. |If the buffer is too snall, an error nust be returned.
The user can use the SCTP_GET_ASSOC NUMBER socket option to get an

i dea of how large the buffer has to be. gaids_nunber_ of ids gives
the nunber of elenments in the array gaids_assoc_id. Note also that
sonme or all of sctp_assoc t returned in the array may becone invalid
by the time the caller gets back the result.

For a one-to-one style socket, this socket option results in an
error.

8.3. Wite-Only Options
The options defined in this subsection are wite-only. Using this

option in a getsockopt() or sctp_opt_info() call will result in an
error indicating EOPNOTSUPP

Stewart, et al. I nf or mat i onal [Page 85]

RFC 6458 SCTP Sockets API Decenber 2011

8.3.1. Set Peer Primary Address (SCTP_SET PEER PRI MARY_ ADDR)

This call requests that the peer nark the enclosed address as the
association primary (see [RFC5061]). The encl osed address nust be
one of the association’s locally bound addresses.

The following structure is used to nake a set peer prinmary request:

struct sctp_setpeerprim{
sctp_assoc_t sspp_assoc_i d;
struct sockaddr_storage sspp_addr

};

sspp_assoc_id: This paraneter is ignored for one-to-one style
sockets. For one-to-many style sockets, it identifies the
association for this request. Note that the predefined constants
are not allowed for this option.

sspp_addr: The address to set as prinmary.

8.3.2. Add a Chunk That Mist Be Authenticated (SCTP_AUTH_CHUNK)
This set option adds a chunk type that the user is requesting to be
received only in an authenticated way. Changes to the list of chunks
will only affect future associations on the socket.

The following structure is used to add a chunk

struct sctp_aut hchunk {
uint8 t sauth_chunk

};

saut h_chunk: This paraneter contains a chunk type that the user is
requesting to be authenti cated.

The chunk types for INIT, I N T-ACK, SHUTDOMN- COVPLETE, and AUTH
chunks nust not be used. |f they are used, an error nust be
returned. The usage of this option enables SCTP AUTH i n cases where
it is not required by other neans (for exanple, the use of dynanic
address reconfiguration).

8.3.3. Set a Shared Key (SCTP_AUTH KEY)

This option will set a shared secret key that is used to build an
associ ati on shared key.

The following structure is used to access and nodify these
paraneters

Stewart, et al. I nf or mat i onal [Page 86]

RFC 6458 SCTP Sockets API Decenber 2011

struct sctp_aut hkey {
sctp_assoc_t sca_assoc_id;
uint16_t sca_keynunber
uint16_t sca_keyl ength;
uint8 t sca_key[];

s

sca_assoc_id: This paraneter indicates on what association the
shared key is being set. The special SCTP_{FUTURE| CURRENT
ALL} ASSOC can be used. For one-to-one style sockets, this
paraneter is ignored. Note, however, that on one-to-one style
sockets, this option will set a key on the association if the
socket is connected; otherwi se, this option will set a key on the
endpoi nt .

sca_keynunber: This paraneter is the shared key identifier by which
the application will refer to this shared key. |If a key of the
specified index already exists, then this new key will replace the
old existing key. Note that shared key identifier 'O defaults to
a null key.

sca_keylength: This paraneter is the length of the array sca_key.

sca_key: This paraneter contains an array of bytes that is to be
used by the endpoint (or association) as the shared secret key.
Note that if the length of this field is zero, a null key is set.

8.3.4. Deactivate a Shared Key (SCTP_AUTH DEACTI VATE _KEY)

This set option indicates that the application will no | onger send
user nessages using the indicated key identifier.

struct sctp_authkeyid {
sctp_assoc_t scact_assoc_id;
uint16_t scact_keynunber

};

scact _assoc_id: This paraneter indicates from which association the
shared key identifier is being deleted. The special SCTP_{FUTURE
CURRENT| ALL} ASSCC can be used. For one-to-one style sockets,
this parameter is ignored. Note, however, that this option wll
deactivate the key fromthe association if the socket is
connected; otherwise, this option will deactivate the key fromthe
endpoi nt .

Stewart, et al. I nf or mat i onal [Page 87]

RFC 6458 SCTP Sockets API Decenber 2011

scact _keynunmber: This paraneter is the shared key identifier that
the application is requesting to be deactivated. The key
identifier nmust correspond to an existing shared key. Note that
if this paraneter is zero, use of the null key identifier "0 is
deactivated on the endpoint and/or association

The currently active key cannot be deacti vat ed.
8.3.5. Delete a Shared Key (SCTP_AUTH_DELETE KEY)

This set option will delete an SCTP association’s shared secret key
that has been deacti vat ed.

struct sctp_authkeyid {
sctp_assoc_t scact_assoc_id;
uint16_t scact_keynunber;

b

scact _assoc_id: This paraneter indicates from which association the
shared key identifier is being deleted. The special SCTP_{FUTURE
CURRENT| ALL} ASSOC can be used. For one-to-one style sockets,
this paranmeter is ignored. Note, however, that this option wll
delete the key fromthe association if the socket is connected;
otherwi se, this option will delete the key fromthe endpoint.

scact _keynunmber: This paraneter is the shared key identifier that
the application is requesting to be deleted. The key identifier
must correspond to an existing shared key and nust not be in use
for any packet being sent by the SCTP inplenentation. This nmeans,
in particular, that it nust be deactivated first. Note that if
this paranmeter is zero, use of the null key identifier "0 is
del eted fromthe endpoint and/ or association

Only deactivated keys that are no | onger used by an association can
be del et ed.

9. New Functions

Dependi ng on the system the followi ng interface can be inplenmented
as a systemcall or library function

9.1. sctp_bindx()
This function allows the user to bind a specific subset of addresses

or, if the SCTP extension described in [RFC5061] is supported, add or
del ete specific addresses.

Stewart, et al. I nf or mat i onal [Page 88]

RFC 6458 SCTP Sockets API Decenber 2011

The function prototype is

int sctp_bindx(int sd,
struct sockaddr *addrs,
i nt addrcnt,
int flags);

If sd is an | Pv4 socket, the addresses passed nust be | Pv4 addresses.
If the sd is an I Pv6 socket, the addresses passed can either be | Pv4
or I Pv6 addresses.

A single address nmay be specified as | NADDR _ANY for an | Pv4 address,
or as IN6ADDR ANY INI T or in6addr_any for an |IPv6 address; see
Section 3.1.2 for this usage.

addrs is a pointer to an array of one or nore socket addresses. Each
address is contained in its appropriate structure. For an |IPv6
socket, an array of sockaddr _in6 is used. For an |Pv4 socket, an
array of sockaddr_in is used. The caller specifies the nunber of
addresses in the array with addrcnt. Note that the wldcard
addresses cannot be used in conbination with non-wldcard addresses
on a socket with this function; doing so will result in an error.

On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
-1 and sets errno to the appropriate error code.

For SCTP, the port given in each socket address nust be the sane, or
sctp_bindx() will fail, setting errno to El NVAL.

The flags paraneter is fornmed fromthe bitwi se OR of zero or nore of
the following currently defined flags:

o SCTP_BI NDX_ADD_ADDR
o SCTP_BI NDX_REM ADDR

SCTP_BI NDX_ADD _ADDR directs SCTP to add the given addresses to the
socket (i.e., endpoint), and SCTP_BI NDX REM ADDR directs SCTP to
remove the given addresses fromthe socket. The two flags are
mutual |y exclusive; if both are given, sctp_bindx() will fail wth
EINVAL. A caller may not renove all addresses from a socket;
sctp_bindx() will reject such an attenpt with El NVAL.

An application can use sctp_bi ndx(SCTP_BI NDX ADD ADDR) to associate
addi ti onal addresses with an endpoint after calling bind(). O, an
application can use sctp_bi ndx(SCTP_BI NDX_REM ADDR) to renpbve sone
addresses with which a listening socket is associated, so that no new
associ ation accepted will be associated with these addresses. |[|f the

Stewart, et al. I nf or mat i onal [Page 89]

RFC 6458 SCTP Sockets API Decenber 2011

endpoi nt supports dynam ¢ address reconfiguration, an

SCTP_BI NDX_REM ADDR or SCTP_BI NDX_ADD_ADDR may cause an endpoint to
send the appropriate nessage to its peers to change the peers
address lists.

Addi ng and renovi ng addresses from established associations is an
optional functionality. |Inplenentations that do not support this
functionality should return -1 and set errno to EOPNOTSUPP.

sctp_bi ndx() can be called on an already bound socket or on an

unbound socket. If the socket is unbound and the first port nunber
in the addrs paraneter is zero, the kernel will choose a port nunber.
Al'l port nunbers after the first one being O nust also be zero. |If

the first port nunber is not zero, the follow ng port nunbers nust be
zero or have the sane value as the first one. For an already bound
socket, all port nunbers provided nust be the bound one or O.

sctp_bindx() is an atomi c operation. Therefore, the binding wll

ei ther succeed on all addresses or fail on all addresses. |If
nmul ti pl e addresses are provided and the sctp_bindx() call fails,
there is no indication of which address is responsible for the
failure. The only way to identify the specific error indication is
to call sctp_bindx() sequentially with only one address per call

9.2. sctp_peeloff()

After an association is established on a one-to-nany style socket,
the application may wish to branch off the association into a
separate socket/file descriptor.

This is particularly desirable when, for instance, the application
wi shes to have a nunber of sporadi c nessage senders/receivers renain
under the original one-to-many style socket but branch off these
associ ations carrying high-volunme data traffic into their own
separate socket descriptors.

The application uses the sctp_peeloff() call to branch off an
association into a separate socket. (Note that the semantics are
somewhat changed fromthe traditional one-to-one style accept()
call.) Note also that the new socket is a one-to-one style socket.
Thus, it will be confined to operations allowed for a one-to-one
styl e socket.

The function prototype is

int sctp_peeloff(int sd,
sctp_assoc_t assoc_id);

Stewart, et al. I nf or mat i onal [Page 90]

RFC 6458 SCTP Sockets API Decenber 2011

and the argunents are

sd: The original one-to-nmany style socket descriptor returned from
the socket() systemcall (see Section 3.1.1).

assoc_id: The specified identifier of the association that is to be
branched off to a separate file descriptor. (Note that in a
tradi tional one-to-one style accept() call, this would be an out
paraneter, but for the one-to-many style call, this is an in
par aneter.)

The function returns a non-negative file descriptor representing the
branched-of f association, or -1 if an error occurred. The variable
errno is then set appropriately.

9.3. sctp_getpaddrs()
sctp_getpaddrs() returns all peer addresses in an association
The function prototype is

int sctp_getpaddrs(int sd,
sctp_assoc_t id,
struct sockaddr **addrs);

On return, addrs will point to a dynamically allocated array of
sockaddr structures of the appropriate type for the socket type. The
call er should use sctp_freepaddrs() to free the nenory. Note that
the in/out paraneter addrs nust not be NULL.

If sd is an I Pv4 socket, the addresses returned will be all |Pv4
addresses. |f sd is an | Pv6 socket, the addresses returned can be a
m x of IPv4 or | Pv6 addresses, with | Pv4 addresses returned according
to the SCTP_I _WANT_MAPPED V4 ADDR option setting.

For one-to-nmany style sockets, id specifies the association to query.
For one-to-one style sockets, id is ignored.

On success, sctp_getpaddrs() returns the nunber of peer addresses in
the association. |If there is no association on this socket,

sctp_get paddrs() returns 0, and the value of *addrs is undefined. If
an error occurs, sctp_getpaddrs() returns -1, and the value of *addrs
i s undefi ned.

Stewart, et al. I nf or mat i onal [Page 91]

RFC 6458 SCTP Sockets API Decenber 2011

9.4. sctp_freepaddrs()
sctp_freepaddrs() frees all resources allocated by sctp_getpaddrs().
The function prototype is
voi d sctp_freepaddrs(struct sockaddr *addrs);

and addrs is the array of peer addresses returned by
sct p_get paddrs().

9.5. sctp_getladdrs()
sctp_getladdrs() returns all locally bound addresses on a socket.
The function prototype is

int sctp_getladdrs(int sd,
sctp_assoc_t id,
struct sockaddr **addrs);

On return, addrs will point to a dynamically allocated array of
sockaddr structures of the appropriate type for the socket type. The
caller should use sctp freeladdrs() to free the nenory. Note that
the in/out paraneter addrs nust not be NULL.

If sd is an I Pv4 socket, the addresses returned will be all |Pv4
addresses. |If sd is an | Pv6 socket, the addresses returned can be a
m x of IPv4 or | Pv6 addresses, with | Pv4 addresses returned according
to the SCTP_I WANT_MAPPED V4 ADDR option setting.

For one-to-nmany style sockets, id specifies the association to query.
For one-to-one style sockets, id is ignored.

If the id field is set to the value "0, then the locally bound
addresses are returned without regard to any particul ar association

On success, sctp_getladdrs() returns the nunber of |ocal addresses
bound to the socket. |If the socket is unbound, sctp_getladdrs()
returns 0, and the value of *addrs is undefined. |If an error occurs,
sctp_getladdrs() returns -1, and the value of *addrs is undefined.

Stewart, et al. I nf or mat i onal [Page 92]

RFC 6458 SCTP Sockets API Decenber 2011

9.6. sctp_freeladdrs()
sctp_freeladdrs() frees all resources allocated by sctp_getladdrs().
The function prototype is
void sctp_freel addrs(struct sockaddr *addrs);

and addrs is the array of |ocal addresses returned by
sctp_getladdrs().

9.7. sctp_sendnsg() - DEPRECATED

This function is deprecated; sctp_sendv() (see Section 9.12) should
be used i nstead.

An inmplenentation may provide a library function (or possibly system
call) to assist the user with the advanced features of SCTP

The function prototype is
ssize_t sctp_sendnsg(int sd,
const void *nsg,
size t len,
const struct sockaddr *to,
socklen_t tolen,
uint32_t ppid,
uint32_t flags,
uint16_t stream no,
uint32 t tinetolive,
uint32 t context);
and the argunents are
sd: The socket descriptor
nsg: The nessage to be sent.
len: The length of the nmessage.
to: The destination address of the nessage.
tolen: The length of the destination address.
ppid: The sanme as sinfo_ppid (see Section 5.3.2).

flags: The sane as sinfo_flags (see Section 5.3.2).

Stewart, et al. I nf or mat i onal [Page 93]

RFC 6458 SCTP Sockets API Decenber 2011

stream no: The sane as sinfo_stream (see Section 5.3.2).
timetolive: The same as sinfo_tinetolive (see Section 5.3.2).
context: The sanme as sinfo_context (see Section 5.3.2).

The call returns the nunber of characters sent, or -1 if an error
occurred. The variable errno is then set appropriately.

Sendi ng a nmessage using sctp_sendnsg() is atomc (unless explicit EOR
mar ki ng i s enabl ed on the socket specified by sd).

Usi ng sct p_sendnsg() on a non-connected one-to-one style socket for
inmplicit connection setup may or may not work, depending on the SCTP
i mpl enent ati on.

9.8. sctp_recvnsg() - DEPRECATED

This function is deprecated; sctp _recvv() (see Section 9.13) should
be used i nstead.

An inplenentation may provide a library function (or possibly system
call) to assist the user with the advanced features of SCTP. Note
that in order for the sctp_sndrcvinfo structure to be filled in by
sctp_recvnsg(), the caller nust enable the sctp _data io_event with
the SCTP_EVENTS option. Note that the setting of the

SCTP_USE EXT_RCVINFO wi Il affect this function as well, causing the
sctp_sndrcvinfo information to be extended.

The function prototype is

ssize_ t sctp_recvnsg(int sd,
void *nsg,
size t len,
struct sockaddr *from
socklen_t *fronlen
struct sctp_sndrcvinfo *sinfo
int *nmsg _flags);

and the argunents are

sd: The socket descriptor

nmsg: The nessage buffer to be filled.

len: The length of the nmessage buffer.

Stewart, et al. I nf or mat i onal [Page 94]

RFC 6458 SCTP Sockets API Decenber 2011

from A pointer to an address to be filled with the address of the
sender of this nessage.

fromen: An in/out paraneter describing the fromlength.

sinfo: A pointer to an sctp_sndrcvinfo structure to be filled upon
recei pt of the nessage.

msg flags: A pointer to an integer to be filled with any nmessage
flags (e.g., MSG NOTIFICATION). Note that this field is an in-out
field. Options for the receive may al so be passed into the val ue
(e.g., MBG PEEK). On return fromthe call, the nmsg_flags val ue
will be different than what was sent in to the call. |If
i mpl enented via a recvisg() call, the nmsg_flags paraneter should
only contain the value of the flags fromthe recvinsg() call

The call returns the nunber of bytes received, or -1 if an error
occurred. The variable errno is then set appropriately.

9.9. sctp_connectx()

An inplenentation may provide a library function (or possibly system
call) to assist the user with associating to an endpoint that is

mul ti-homed. Mich like sctp_bindx(), this call allows a caller to
specify multiple addresses at which a peer can be reached. The way
the SCTP stack uses the |list of addresses to set up the association
is inplenmentati on dependent. This function only specifies that the
stack will try to make use of all of the addresses in the |list when
needed.

Note that the list of addresses passed in is only used for setting up
the association. |t does not necessarily equal the set of addresses
the peer uses for the resulting association. |If the caller wants to
find out the set of peer addresses, it nmust use sctp_getpaddrs() to
retrieve themafter the association has been set up
The function prototype is
int sctp_connectx(int sd,

struct sockaddr *addrs,

i nt addrcnt,

sctp_assoc_t *id);
and the argunents are
sd: The socket descriptor.

addrs: An array of addresses.

Stewart, et al. I nf or mat i onal [Page 95]

RFC 6458 SCTP Sockets API Decenber 2011

addrcnt: The nunber of addresses in the array.

id: An output paraneter that, if passed in as non-NULL, will return
the association identifier for the newy created association (if
successful).

The call returns O on success or -1 if an error occurred. The
variable errno is then set appropriately.

9.10. sctp_send() - DEPRECATED
This function is deprecated; sctp_sendv() should be used instead.
An inplementation may provide another alternative function or system
call to assist an application with the sending of data w thout the
use of the cnsghdr structures.
The function prototype is
ssize_t sctp_send(int sd,
const void *nsg,
size t len,
const struct sctp_sndrcvinfo *sinfo,
int flags);
and the argunents are
sd: The socket descriptor.
nsg: The nessage to be sent.

len: The length of the nessage.

sinfo: A pointer to an sctp_sndrcvinfo structure used as descri bed
in Section 5.3.2 for a sendnsg() call

flags: The sane flags as used by the sendnsg() call flags (e.g.
MBG_DONTROUTE)

The call returns the nunber of bytes sent, or -1 if an error
occurred. The variable errno is then set appropriately.

This function call nay also be used to term nate an associ ati on using
an association identifier by setting the sinfo.sinfo flags to
SCTP_EOF and the sinfo.sinfo_assoc_id to the association that needs
to be termnated. In such a case, |len can be zero

Stewart, et al. I nf or mat i onal [Page 96]

RFC 6458 SCTP Sockets API Decenber 2011

Usi ng sctp_send() on a non-connected one-to-one style socket for
inmplicit connection setup may or may not work, depending on the SCTP
i mpl enent ati on.

Sendi ng a nmessage using sctp_send() is atomic unless explicit EOR
mar ki ng i s enabl ed on the socket specified by sd.

9.11. sctp_sendx() - DEPRECATED

This function is deprecated; sctp_sendv() should be used instead.
An i npl enentation may provide another alternative function or system
call to assist an application with the sending of data w thout the
use of the cnsghdr structure, and to provide a |list of addresses.
The list of addresses is provided for inplicit association setup. In
such a case, the list of addresses serves the sane purpose as the
addresses given in sctp_connectx() (see Section 9.9).
The function prototype is
ssize_t sctp_sendx(int sd,

const void *nsg,

size_t len,

struct sockaddr *addrs,

int addrcnt,

struct sctp_sndrcvinfo *sinfo,

int flags);
and the argunents are
sd: The socket descriptor
msg: The nessage to be sent.
len: The length of the nessage.
addrs: An array of addresses.
addrcnt: The nunber of addresses in the array.

sinfo: A pointer to an sctp_sndrcvinfo structure used as descri bed
in Section 5.3.2 for a sendnsg() call

flags: The sane flags as used by the sendnsg() call flags (e.g.
MSG_DONTROUTE)

The call returns the nunber of bytes sent, or -1 if an error
occurred. The variable errno is then set appropriately.

Stewart, et al. I nf or mat i onal [Page 97]

RFC 6458 SCTP Sockets API Decenber 2011

Note that in the case of inplicit connection setup, on return from
this call, the sinfo assoc_id field of the sinfo structure wll
contain the new association identifier

This function call may also be used to term nate an associ ati on using
an association identifier by setting the sinfo.sinfo flags to
SCTP_EOF and the sinfo.sinfo_assoc_id to the association that needs
to be terminated. |In such a case, len would be zero

Sendi ng a nmessage using sctp_sendx() is atomi c unless explicit EOR
mar ki ng i s enabl ed on the socket specified by sd.

Usi ng sct p_sendx() on a non-connected one-to-one style socket for
inmplicit connection setup may or may not work, depending on the SCTP
i mpl enent ati on.

9.12. sctp_sendv()
The function prototype is

ssize_t sctp_sendv(int sd,
const struct iovec *iov,
int iovent,
struct sockaddr *addrs,
i nt addrcnt,
voi d *i nfo,
sockl en_t infol en
unsi gned int infotype,
int flags);

The function sctp_sendv() provides an extensible way for an
application to conmunicate different send attributes to the SCTP
stack when sending a nessage. An inplenmentation nmay provide
sctp_sendv() as a library function or a systemcall

This docunent defines three types of attributes that can be used to
descri be a nessage to be sent. They are struct sctp_sndinfo

(Section 5.3.4), struct sctp_prinfo (Section 5.3.7), and struct
sctp_authinfo (Section 5.3.8). The follow ng structure,
sctp_sendv_spa, is defined to be used when nore than one of the above
attributes are needed to describe a nmessage to be sent.

struct sctp_sendv_spa {
uint32_ t sendv_fl ags;
struct sctp_sndi nfo sendv_sndi nfo;
struct sctp_prinfo sendv_prinfo;
struct sctp_authinfo sendv_aut hi nfo;

Stewart, et al. I nf or mat i onal [Page 98]

RFC 6458 SCTP Sockets API Decenber 2011

The sendv_flags field holds a bitwi se OR of SCTP_SEND SNDI NFO VALI D
SCTP_SEND PRI NFO VALI D, and SCTP_SEND AUTHI NFO VALID indicating if

t he sendv_sndi nf o/ sendv_prinfo/sendv_authinfo fields contain valid

i nformation.

In future, when new send attributes are needed, new structures can be
defined. But those new structures do not need to be based on any of
t he above defined structures.

The function takes the follow ng argunents:

sd: The socket descriptor

iov: The gather buffer. The data in the buffer is treated as a
singl e user nessage.

iovcent: The nunber of elements in iov.

addrs: An array of addresses to be used to set up an association or
a single address to be used to send the nessage. NULL is passed
inif the caller neither wants to set up an associati on nor wants
to send the nmessage to a specific address.

addrcnt: The nunber of addresses in the addrs array.

info. A pointer to the buffer containing the attribute associated
with the nessage to be sent. The type is indicated by the
i nfo_type paraneter.

infolen: The length of info, in bytes.

infotype: Identifies the type of the information provided in info.
The current defined values are as fol |l ows:

SCTP_SENDV_NO NFO No information is provided. The paraneter
info is a NULL pointer, and infolen is O.

SCTP_SENDV_SNDI NFG: The paraneter info is pointing to a struct
sct p_sndi nf o.

SCTP_SENDV_PRINFO. The paranmeter info is pointing to a struct
sctp_prinfo.

SCTP_SENDV_AUTHI NFO The paraneter info is pointing to a struct
sct p_aut hi nf o.

SCTP_SENDV_SPA: The paraneter info is pointing to a struct
sct p_sendv_spa.

Stewart, et al. I nf or mat i onal [Page 99]

RFC 6458 SCTP Sockets API Decenber 2011

flags: The sane flags as used by the sendnsg() call flags (e.g.
MBG_DONTROUTE)

The call returns the nunber of bytes sent, or -1 if an error
occurred. The variable errno is then set appropriately.

A note on the one-to-many style socket: The struct sctp_sndinfo
attribute nmust always be used in order to specify the association on
whi ch the nessage is to be sent. The only case where it is not
needed is when this call is used to set up a new associ ation

The caller provides a list of addresses in the addrs paraneter to set
up an association. This function will behave like calling
sctp_connectx() (see Section 9.9), first using the |ist of addresses
and then calling sendnmsg() with the given nessage and attri butes.

For a one-to-nany style socket, if the struct sctp_sndinfo attribute
is provided, the snd_assoc_id field nust be 0. When this function
returns, the snd assoc_id field will contain the association
identifier of the newy established association. Note that the
struct sctp_sndinfo attribute is not required to set up an
association for a one-to-nmany style socket. |If this attribute is not
provi ded, the caller can enable the SCTP_ASSOC CHANGE notification
and use the SCTP_COW UP nessage to find out the association
identifier.

If the caller wants to send the nmessage to a specific peer address
(hence overriding the primary address), it can provide the specific
address in the addrs paraneter and provide a struct sctp_sndinfo
attribute with the field snd_flags set to SCTP_ADDR _OVER.

This function call nay also be used to term nate an association. The
caller provides an sctp_sndinfo attribute with the snd_flags set to
SCTP_EOF. In this case, len would be zero.

Sendi ng a nmessage using sctp_sendv() is atom c unless explicit EOR
mar ki ng i s enabl ed on the socket specified by sd.

Stewart, et al. I nf or mat i onal [Page 100]

RFC 6458 SCTP Sockets API Decenber 2011

9.13. sctp_recvv()
The function prototype is

Sssize_t sctp_recvv(int sd,
const struct iovec *iov,
int iovlen,
struct sockaddr *from
socklen_t *fron en,
void *info,
sockl en_t *infolen,
unsi gned int *infotype,
int *flags);

The function sctp_recvv() provides an extensible way for the SCTP
stack to pass up different SCTP attributes associated with a received
message to an application. An inplenentation may provide
sctp_recvv() as a library function or as a systemcall.

Thi s docunent defines two types of attributes that can be returned by
this call: the attribute of the received nessage and the attribute of
the next nmessage in the receive buffer. The caller enables the
SCTP_RECVRCVI NFO and SCTP_RECVNXTI NFO socket options, respectively,
to receive these attributes. Attributes of the received nessage are
returned in struct sctp_rcvinfo (Section 5.3.5), and attributes of
the next nmessage are returned in struct sctp nxtinfo (Section 5.3.6).
If both options are enabled, both attributes are returned using the
foll owi ng structure.

struct sctp_recvv_rn {

struct sctp_rcvinfo recvv_rcvinfo;
struct sctp_nxtinfo recvv_nxtinfo;

s

In future, new structures can be defined to hold new types of
attributes. The new structures do not need to be based on struct
sctp_recvv_rn or struct sctp_rcvinfo.

This function takes the followi ng argunents:

sd: The socket descriptor

iov: The scatter buffer. Only one user nessage is returned in this
buf f er.

iovlen: The nunber of elenents in iov.

Stewart, et al. I nf or mat i onal [Page 101]

RFC 6458 SCTP Sockets API Decenber 2011

from A pointer to an address to be filled with the sender of the
recei ved nessage’ s address.

fromen: An in/out paraneter describing the fromlength.

info: A pointer to the buffer to hold the attributes of the received
message. The structure type of info is deternined by the
i nfo_type paraneter.

infolen: An in/out paraneter describing the size of the info buffer.

infotype: On return, *info type is set to the type of the info
buffer. The current defined values are as foll ows:

SCTP_RECW_NO NFQ If both SCTP_RECVRCVI NFO and SCTP_RECVNXTI NFO

options are not enabled, no attribute will be returned. |If
only the SCTP_RECVNXTI NFO option is enabled but there is no
next nessage in the buffer, no attribute will be returned. In

these cases, *info type will be set to SCTP_RECVV_NJO NFO

SCTP_RECW_RCVINFG The type of info is struct sctp_rcvinfo, and
the attribute relates to the recei ved nessage.

SCTP_RECW_NXTINFG The type of info is struct sctp_nxtinfo, and
the attribute relates to the next nmessage in the receive
buffer. This is the case when only the SCTP_RECVNXTI NFO opti on
is enabled and there is a next nessage in the buffer

SCTP_RECW_RN: The type of info is struct sctp_recvv_rn. The
recvv_rcvinfo field is the attribute of the received nessage,
and the recvv_nxtinfo field is the attribute of the next
message in the buffer. This is the case when both
SCTP_RECVRCVI NFO and SCTP_RECVNXTI NFO opti ons are enabl ed and
there is a next nessage in the receive buffer.

flags: A pointer to an integer to be filled with any nessage fl ags
(e.g., MBG NOTIFICATION). Note that this field is an in/out
paraneter. Options for the receive may al so be passed into the
value (e.g., MSG PEEK). On return fromthe call, the flags val ue
will be different than what was sent in to the call. |If
i npl emented via a recvinsg() call, the flags should only contain
the value of the flags fromthe recvnsg() call when calling
sctp_recvv(), and on return it has the value fromnsg_fl ags.

The call returns the nunber of bytes received, or -1 if an error
occurred. The variable errno is then set appropriately.

Stewart, et al. I nf or mat i onal [Page 102]

RFC 6458 SCTP Sockets API Decenber 2011

10.

11.

Security Considerations

Many TCP and UDP inpl ementations reserve port nunbers bel ow 1024 for
privileged users. |If the target platform supports privileged users,
the SCTP inpl enentati on should restrict the ability to call bind() or
sctp_bindx() on these port nunbers to privileged users.

Similarly, unprivileged users should not be able to set protoco
paraneters that could result in the congestion control algorithm
bei ng nore aggressive than permitted on the public Internet. These
paraneters are as foll ows:

0 struct sctp_rtoinfo

If an unprivileged user inherits a one-to-nany style socket with open
associations on a privileged port, accepting new associ ati ons mi ght
be permtted, but opening new associ ati ons should not be permtted.
This could be relevant for the r* famly (rsh, rlogin, rwho, ...) of
pr ot ocol s.

Applications using the one-to-many style sockets and using the
interleave level (if 0) are subject to denial-of-service attacks, as
described in Section 8.1.20.

Appl i cations needing transport |ayer security can use Datagram
Transport Layer Security/SCTP (DTLS/ SCTP) as specified in [RFC6083].
This can be inplenented using the sockets APl described in this
docunent .

Acknowl edgnent s

Speci al acknow edgnent is given to Ken Fujita, Jonathan Wods,
Q aobing Xie, and La Monte Yarroll, who hel ped extensively in the
early formation of this docunent.

The aut hors al so wish to thank Kavitha Baratakke, Mke Bartlett,
Martin Becke, Jon Berger, Mark Butler, Thonas Dreibhol z, Andreas

Fi nk, Scott Kinble, Jonathan Leighton, Renee Revis, Irene Ruengel er
Dan Wng, and many others on the TSV mailing list for contributing
val uabl e conment s

A special thanks to Phillip Conrad, for his suggested text, quick and
constructive insights, and nost of all his persistent fighting to
keep the interface to SCTP usable for the application progranmer.

Stewart, et al. I nf or mat i onal [Page 103]

RFC 6458 SCTP Sockets API Decenber 2011

12. References
12.1. Normative References

[1 EEE- 1003. 1- 2008]
Institute of Electrical and El ectronics Engineers,
"Informati on Technol ogy - Portable Operating System
Interface (PCSI X)", | EEE Standard 1003.1, 2008.

[RFC3493] Glligan, R, Thonson, S., Bound, J., MCann, J., and W
St evens, "Basic Socket |Interface Extensions for |Pv6",
RFC 3493, February 2003.

[RFC3542] Stevens, W, Thormas, M, Nordmark, E., and T. Jinnei,
"Advanced Sockets Application ProgramInterface (APl) for
| Pv6", RFC 3542, May 2003.

[RFC3758] Stewart, R, Ramalho, M, Xie, Q, Tuexen, M, and P.
Conrad, "Stream Control Transm ssion Protocol (SCTP)
Partial Reliability Extension", RFC 3758, May 2004.

[RFC4895] Tuexen, M, Stewart, R, Lei, P., and E. Rescorla,
"Aut henti cated Chunks for the Stream Control Transmi ssion
Protocol (SCTP)", RFC 4895, August 2007.

[RFC4960] Stewart, R, Ed., "Stream Control Transni ssion Protocol",
RFC 4960, Septenber 2007.

[RFC5061] Stewart, R, Xie, Q, Tuexen, M, Maruyama, S., and M
Kozuka, "Stream Control Transni ssion Protocol (SCTP)
Dynani ¢ Address Reconfiguration", RFC 5061,
Sept enber 2007.
12.2. Informative References

[RFCO768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
August 1980.

[RFCO793] Postel, J., "Transm ssion Control Protocol", STD 7,
RFC 793, Septenber 1981.

[RFC1644] Braden, R, "T/TCP -- TCP Extensions for Transactions
Functional Specification", RFC 1644, July 1994,

Stewart, et al. I nf or mat i onal [Page 104]

RFC 6458

[RFC6083]

[RFC6247]

Stewart,

et al.

SCTP Sockets API Decenber 2011

Tuexen, M, Seggel mann, R, and E. Rescorla, "Datagram
Transport Layer Security (DTLS) for Stream Control
Transm ssion Protocol (SCTP)", RFC 6083, January 2011.

Eggert, L., "Mving the Undepl oyed TCP Extensions RFC
1072, RFC 1106, RFC 1110, RFC 1145, RFC 1146, RFC 1379,
RFC 1644, and RFC 1693 to Historic Status", RFC 6247,
May 2011.

I nf or mat i onal [Page 105]

RFC 6458 SCTP Sockets API Decenber 2011

Appendi x A. Exanple Using One-to-One Style Sockets

The following code is an inplenentation of a sinple client that sends
a nunber of nessages marked for unordered delivery to an echo server
maki ng use of all outgoing streans. The exanple shows how to use
sonme features of one-to-one style | Pv4 SCTP sockets, including

0 Creating and connecting an SCTP socket.

o Making a request to negotiate a nunmber of outgoing streans.
0 Determning the negotiated nunber of outgoing streans.

0 Setting an adaptation layer indication

0 Sending nmessages with a given payl oad protocol identifier on a
particul ar stream using sctp_sendv().

<CODE BEG NS>
/*

Copyright (c) 2011 I ETF Trust and the persons identified
as authors of the code. All rights reserved.

Redi stribution and use in source and binary forns, with

or without nodification, is pernitted pursuant to, and subject

to the license ternms contained in, the Sinplified BSD License

set forth in Section 4.c of the IETF Trust’s Legal Provisions

Rel ating to | ETF Docunents (http://trustee.ietf.org/license-info).

*/

#i ncl ude <sys/types. h>

#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <netinet/sctp. h>
#i ncl ude <arpal/inet.h>

#i ncl ude <string. h>

#i ncl ude <stdio. h>

#i ncl ude <uni std. h>

#i nclude <stdlib. h>

#defi ne PORT 9

#defi ne ADDR "127.0.0. 1"
#defi ne SI ZE_OF _MESSAGE 1000
#def i ne NUMBER _OF MESSAGES 10
#define PPID 1234

Stewart, et al. I nf or mat i onal [Page 106]

RFC 6458 SCTP Sockets API Decenber 2011

i nt

mai n(voi d) {
unsi gned int i
i nt sd;
struct sockaddr _in addr;
char buffer[Sl ZE O MESSAGE]
struct iovec iov;
struct sctp_status status;
struct sctp_initnmsg init;
struct sctp_sndinfo info;
struct sctp_setadaptation ind;
socklen_t opt _len

/* Create a one-to-one style SCTP socket. */

if ((sd = socket (AF_I NET, SOCK_STREAM | PPROTO SCTP)) < 0) {
perror("socket");
exit(1);

/* Prepare for requesting 2048 outgoing streans. */
menset (& nit, 0, sizeof(init));
init.sinit_numostreans = 2048;
i f (setsockopt(sd, |PPROTO SCTP, SCTP_I NI TM5G
& nit, (socklen_ t)sizeof(init)) < 0) {

perror("setsockopt");

exit(1);
}

i nd. ssb_adaptation_ind = 0x01020304;
i f (setsockopt(sd, | PPROTO SCTP, SCTP_ADAPTATI ON_LAYER,
& nd, (socklen_t)sizeof(ind)) < 0) {
perror ("setsockopt");
exit(1);

/* Connect to the discard server. */
menset (&addr, 0, sizeof(addr));

#i fdef HAVE SIN _LEN
addr.sin_len

#endi f
addr.sin_famly
addr . sin_port
addr. sin_addr.s_addr

si zeof (struct sockaddr _in);

AF_| NET;
ht ons(PORT) ;
i net _addr (ADDR) ;

Stewart, et al. I nf or mat i onal [Page 107]

RFC 6458 SCTP Sockets API Decenber 2011

i f (connect (sd,
(const struct sockaddr *)&addr
si zeof (struct sockaddr_in)) < 0) {
perror("connect");
exit(1);

/* Get the actual number of outgoing streams. */
menset (&status, 0, sizeof(status));
opt _len = (socklen_t)sizeof (status);
i f (getsockopt(sd, |PPROTO SCTP, SCTP_STATUS
&status, &opt _len) < 0) {
perror("getsockopt");
exit(1);
}

menset (& nfo, 0, sizeof(info));
i nfo.snd _ppid = htonl (PPID);
i nfo.snd _flags = SCTP_UNORDERED
menset (buffer, A, SIZE OF MESSAGE)
i ov.iov_base = buffer
iov.iov_len = SIZE OF MESSAGE
for (i = 0; i < NUMBER OF MESSACES; i++) {
info.snd sid =i % status. sstat_outstrns;
if (sctp_sendv(sd,
(const struct iovec *)& ov, 1,
NULL, O,
& nfo, sizeof (info), SCTP_SENDV_SNDI NFQ,
0) <0) {
perror("sctp_sendv");
exit(1);
}
}

if (close(sd) < 0) {
perror("close");
exit(1);
return(0);

}
<CODE ENDS>

Stewart, et al. I nf or mat i onal [Page 108]

RFC 6458 SCTP Sockets API Decenber 2011

Appendi x B. Exanple Using One-to-Many Style Sockets

The following code is a sinple inplenmentation of a discard server
over SCTP. The exanple shows how to use sone features of one-to-many
style I Pv6 SCTP sockets, including

0 Opening and binding of a socket.

o Enabling notifications.

0o Handling notifications.

o0 Configuring the auto-close tiner.

o0 Using sctp_recvv() to receive nessages.

Pl ease note that this server can be used in conbination with the
client described in Appendi x A

<CODE BEG NS>
/*

Copyright (c) 2011 I ETF Trust and the persons identified
as authors of the code. All rights reserved.

Redi stribution and use in source and binary forms, with

or without nodification, is pernmitted pursuant to, and subject

to the license ternms contained in, the Sinplified BSD License

set forth in Section 4.c of the IETF Trust’s Legal Provisions
Relating to | ETF Docunents (http://trustee.ietf.org/license-info).

*/

#i ncl ude <sys/types. h>

#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <netinet/sctp. h>
#i ncl ude <arpa/inet. h>

#i ncl ude <string. h>

#i ncl ude <stdio. h>

#i nclude <stdlib. h>

#i ncl ude <unistd. h>

#defi ne BUFFER_SI ZE (1<<16)
#define PORT 9

#defi ne ADDR "0.0.0.0"
#define TI MEQUT 5

Stewart, et al. I nf or mat i onal [Page 109]

RFC 6458 SCTP Sockets API

static void
print_notification(void *buf)

{

Stewart, et al. I nf or mat i onal [Page 110]

struct sctp_assoc_change *sac;
struct sctp_paddr_change *spc;
struct sctp_adaptation_event *sad;
union sctp_notification *snp;

char addrbuf[| NET6_ADDRSTRLEN] ;
const char *ap;

struct sockaddr _in *sin;

struct sockaddr i n6 *sin6;

snp = buf;

swi tch (snp->sn_header.sn_type) {
case SCTP_ASSOC CHANGE:
sac = &snp->sn_assoc_change;
printf("~"" Association change: ");
switch (sac->sac_state) {
case SCTP_COWM UP:

Decenber 2011

printf("Conmunication up (streans (in/out)=(%/%)).\n",
sac->sac_i nbound_streans, sac->sac_outbound_streans);

br eak;
case SCTP_COW LOST:

printf("Conmunication lost (error=%l).\n",

br eak;
case SCTP_RESTART:

sac->sac_error);

printf("Conmunication restarted (streans (in/out)=(%/%).\n",
sac->sac_i nbound_streans, sac->sac_outbound_streans);

br eak;
case SCTP_SHUTDOAN_ COWP:

printf("Conmuni cation conpleted.\n");

br eak;
case SCTP_CANT_STR _ASSCC.

printf("Conmunication couldn’t be started.\n");

br eak;
def aul t:

printf("Unknown state: %l.\n", sac->sac_state);

br eak;
}
br eak;
case SCTP_PEER_ADDR_CHANGE:
spc = &snp->sn_paddr _change;

if (spc->spc_aaddr.ss fanmily == AF _INET) {
sin = (struct sockaddr_in *)&spc->spc_aaddr;
ap = inet_ntop(AF_I NET, &sin->sin_addr,
addr buf, | NET6_ADDRSTRLEN) ;
} else {

RFC 6458 SCTP Sockets API Decenber 2011

sin6é = (struct sockaddr _in6 *)&spc->spc_aaddr;
ap = i

net _nt op(AF_I NET6, &si n6->si n6_addr,
addr buf, | NET6_ADDRSTRLEN) ;
printf (""" Peer Address change: % ", ap);

switch (spc->spc_state) {
case SCTP_ADDR_AVAI LABLE:
printf("is available.\n");
br eak;
case SCTP_ADDR_UNREACHABLE:
printf("is not available (error=%).\n", spc->spc_error);
br eak;
case SCTP_ADDR_REMOVED:
printf("was renmoved.\n");
br eak;
case SCTP_ADDR_ADDED:
printf("was added.\n");
br eak;
case SCTP_ADDR_MADE PRI M
printf("is primary.\n");
br eak;
defaul t:
printf("unknown state (%l).\n", spc->spc_state);
br eak;
}
br eak;
case SCTP_SHUTDOAN_EVENT:
printf ("~ Shutdown received.\n");
br eak;
case SCTP_ADAPTATI ON_I NDI CATI ON:
sad = &snp->sn_adaptati on_event;
printf("~"" Adaptation indication Ox%08x received.\n",
sad- >sai _adaptati on_i nd);
br eak;
defaul t:
printf("~"" Unknown event of type: %u.\n",
snp->sn_header. sn_type);
br eak;

};

Stewart, et al. I nf or mat i onal [Page 111]

RFC 6458 SCTP Sockets API Decenber 2011

i nt
mai n(voi d) {
int sd, flags, tineout, on
ssize t n;
unsigned int i
uni on {
struct sockaddr sa;
struct sockaddr_in sin;
struct sockaddr i n6 sin6;
} addr;
socklen_t from en, infolen
struct sctp_rcvinfo info;
unsi gned int infotype;
struct iovec iov;
char buff er[BUFFER_SI ZE] ;
struct sctp_event event;
uint16_t event _types[] = {SCTP_ASSOC CHANGE
SCTP_PEER_ADDR_CHANGE
SCTP_SHUTDOAN_EVENT,
SCTP_ADAPTATI ON_| NDI CATI ON} ;

/* Create a one-to-nmany style SCTP socket. */

if ((sd = socket (AF_I NET6, SOCK_SEQPACKET, |PPROTO SCTP)) < 0) {
perror("socket");
exit(1);

/* Enable the events of interest. */
menset (&event, 0, sizeof(event));
event.se_assoc_id = SCTP_FUTURE ASSCC,
event.se_on = 1,
for (i =0; i < sizeof(event _types)/sizeof (uintl6 t); i++) {
event.se_type = event _types[i];
i f (setsockopt(sd, |PPROTO SCTP, SCTP_EVENT,
&event, sizeof(event)) < 0) {
perror("setsockopt");
exit(1);
}
}

/* Configure auto-close tiner. */
timeout = TI MEOQUT
i f (setsockopt(sd, |PPROTO SCTP, SCTP_AUTOCLCSE,
& i meout, sizeof(tinmeout)) < 0) {
perror("setsockopt SCTP_AUTOCLOSE");
exit(1);
}

Stewart, et al. I nf or mat i onal [Page 112]

RFC 6458 SCTP Sockets API Decenber 2011

/* Enabl e delivery of SCTP_RCVI NFO. */
on = 1;
i f (setsockopt(sd, |PPROTO SCTP, SCTP_RECVRCVI NFQ
&on, sizeof(on)) < 0) {
perror ("setsockopt SCTP_RECVRCVI NFO');
exit(1);
}

/* Bind the socket to all |ocal addresses. */
menset (&ddr, 0, sizeof(addr));
#i f def HAVE _SI N6_LEN
addr.sin6.sin6 _|len
#endi f

si zeof (addr. si n6) ;

addr.sin6.sin6_famly = AF_| NET6;
addr . si n6. si n6_port = ht ons(PORT) ;
addr . si n6. si n6_addr = i n6addr _any;

if (bind(sd, &addr.sa, sizeof(addr.sin6)) < 0) {
perror("bind");
exit(1);

/* Enabl e accepting associations. */
if (listen(sd, 1) < 0) {
perror("listen");
exit(1);
}

for (5;) {
flags = 0;
menset (&ddr, 0, sizeof(addr));
fromen = (socklen_t)sizeof (addr);
menset (& nfo, 0, sizeof(info));
i nfolen = (socklen_t)sizeof (info);
i nfotype = 0;
iov.iov_base = buffer;
iov.iov_len = BUFFER Sl ZE;

n = sctp_recvv(sd, & ov, 1,
&addr.sa, &fronl en,
& nfo, & nfolen, & nfotype,
&f | ags) ;

if (flags & MSG_NOTI FI CATI ON) {
print_notification(iov.iov_base);
} else {
char addrbuf[| NET6_ADDRSTRLEN] ;
const char *ap;
in_port_t port;

Stewart, et al. I nf or mat i onal [Page 113]

RFC 6458 SCTP Sockets API Decenber 2011

if (addr.sa.sa famly == AF_INET) {
ap = inet_ntop(AF_I NET, &addr.sin.sin_addr,
addr buf, | NET6_ADDRSTRLEN) ;
port = ntohs(addr.sin.sin_port);
} else {
ap = inet_ntop(AF_I NET6, &addr.sin6.sin6_addr,
addr buf, | NET6_ADDRSTRLEN) ;
port = ntohs(addr.sin6.sin6 _port);

printf("Message received from%: %u: |en=%",
ap, port, (int)n);
switch (infotype) {
case SCTP_RECVV_RCVI NFO
printf(", sid=%", info.rcv_sid);
if (info.rcv_flags & SCTP_UNORDERED) {
printf(", unordered");

} else {
printf(", ssn=%", info.rcv_ssn);
printf(", tsn=%", info.rcv_tsn);
printf(", ppid=%u.\n", ntohl (info.rcv_ppid));
br eak;

case SCTP_RECVV_NO NFO

case SCTP_RECVV_NXTI NFC

case SCTP_RECWVW_RN:
printf(".\n");
br eak;

defaul t:
printf(" unknown infotype.\n");

}
}

if (close(sd) < 0) {
perror("cl ose");
exit(1);

}

return (0);

<CODE ENDS>

Stewart, et al. I nf or mat i onal [Page 114]

RFC 6458 SCTP Sockets API Decenber 2011

Aut hors’ Addr esses

Randall R Stewart
Adar a Net wor ks
Chapin, SC 29036
USA

EMai | : randal | @ aker est. net

M chael Tuexen

Muenster University of Applied Sciences
St egerwal dstr. 39

48565 Steinfurt

Cer many

EMai | : tuexen@ h- nuenster. de

Kacheong Poon
O acl e Corporation

EMai | : ka- cheong. poon@r acl e. com

Peter Lei

Cisco Systems, Inc.
9501 Technol ogy Bl vd.
West OFfice Center
Rosenont, IL 60018
USA

EMai | . peterlei @isco.com
VI adi sl av Yasevi ch

HP

110 Spitrook Rd.

Nashua, NH 03062

USA

EMai | : vl adi sl av. yasevi ch@p. com

Stewart, et al. I nf or mat i onal [Page 115]

