
Internet Engineering Task Force (IETF) P. Gutmann
Request for Comments: 6476 University of Auckland
Category: Standards Track January 2012
ISSN: 2070-1721

 Using Message Authentication Code (MAC) Encryption
 in the Cryptographic Message Syntax (CMS)

Abstract

 This document specifies the conventions for using Message
 Authentication Code (MAC) encryption with the Cryptographic Message
 Syntax (CMS) authenticated-enveloped-data content type. This mirrors
 the use of a MAC combined with an encryption algorithm that’s already
 employed in IPsec, Secure Socket Layer / Transport Layer Security
 (SSL/TLS) and Secure SHell (SSH), which is widely supported in
 existing crypto libraries and hardware and has been extensively
 analysed by the crypto community.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6476.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Gutmann Standards Track [Page 1]

RFC 6476 MAC Encryption in CMS January 2012

Table of Contents

 1. Introduction ..2
 1.1. Conventions Used in This Document2
 2. Background ..2
 3. CMS Encrypt-and-Authenticate Overview3
 3.1. Rationale ..3
 4. CMS Encrypt-and-Authenticate4
 4.1. Encrypt-and-Authenticate Message Processing5
 4.2. Rationale ..6
 4.3. Test Vectors ...8
 5. SMIMECapabilities Attribute12
 6. Security Considerations ..12
 7. IANA Considerations ..13
 8. Acknowledgements ...14
 9. References ...14
 9.1. Normative References14
 9.2. Informative References14

1. Introduction

 This document specifies the conventions for using MAC-authenticated
 encryption with the Cryptographic Message Syntax (CMS) authenticated-
 enveloped-data content type. This mirrors the use of a MAC combined
 with an encryption algorithm that’s already employed in IPsec, SSL/
 TLS and SSH, which is widely supported in existing crypto libraries
 and hardware and has been extensively analysed by the crypto
 community.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Background

 Integrity-protected encryption is a standard feature of session-
 oriented security protocols like [IPsec], [SSH], and [TLS]. Until
 recently, however, integrity-protected encryption wasn’t available
 for message-based security protocols like CMS, although [OpenPGP]
 added a form of integrity protection by encrypting a SHA-1 hash of
 the message alongside the message contents to provide authenticate-
 and-encrypt protection. Usability studies have shown that users
 expect encryption to provide integrity protection [Garfinkel],
 creating cognitive dissonance problems when the security mechanisms
 don’t in fact provide this assurance.

Gutmann Standards Track [Page 2]

RFC 6476 MAC Encryption in CMS January 2012

 This document applies the same encrypt-and-authenticate mechanism
 already employed in IPsec, SSH, and SSL/TLS to CMS (technically some
 of these actually use authenticate-and-encrypt rather than encrypt-
 and-authenticate, since what’s authenticated is the plaintext and not
 the ciphertext). This mechanism is widely supported in existing
 crypto libraries and hardware and has been extensively analysed by
 the crypto community [EncryptThenAuth].

3. CMS Encrypt-and-Authenticate Overview

 Conventional CMS encryption uses a content-encryption key (CEK) to
 encrypt a message payload, with the CEK typically being in turn
 encrypted by a key-encryption key (KEK). Authenticated encryption
 requires two keys: one for encryption and a second one for
 authentication. Like other mechanisms that use authenticated
 encryption, this document employs a pseudorandom function (PRF) to
 convert a single block of keying material into the two keys required
 for encryption and authentication. This converts the standard CMS
 encryption operation:

 KEK(CEK) || CEK(data)

 into:

 KEK(master_secret) || MAC(CEK(data))

 where the MAC key MAC-K and encryption key CEK-K are derived from the
 master_secret via:

 MAC-K := PRF(master_secret, "authentication");
 CEK-K := PRF(master_secret, "encryption");

3.1. Rationale

 There are several possible means of deriving the two keys required
 for the encrypt-and-authenticate process from the single key normally
 provided by the key exchange or key transport mechanisms. Several of
 these, however, have security or practical issues. For example, any
 mechanism that uses the single exchanged key in its entirety for
 encryption (using, perhaps, PRF(key) as the MAC key) can be
 converted back to unauthenticated data by removing the outer MAC
 layer and rewriting the CMS envelope back to plain EnvelopedData or
 EncryptedData. By applying the PRF intermediate step, any attempt at
 a rollback attack will result in a decryption failure.

Gutmann Standards Track [Page 3]

RFC 6476 MAC Encryption in CMS January 2012

 The option chosen here -- the use of a PRF to derive the necessary
 sets of keying material from a master secret -- is well-established
 through its use in IPsec, SSH, and SSL/TLS and is widely supported in
 both crypto libraries and in encryption hardware.

 The PRF used is Password-Based Key Derivation Function 2 (PBKDF2)
 because its existing use in CMS makes it the most obvious candidate
 for such a function. In the future, if a universal PRF -- for
 example, [HKDF] -- is adopted, then this can be substituted for
 PBKDF2 by specifying it in the prfAlgorithm field covered in
 Section 4.

 The resulting processing operations consist of a combination of the
 operations used for the existing CMS content types EncryptedData and
 AuthenticatedData, allowing them to be implemented relatively simply
 using existing code.

4. CMS Encrypt-and-Authenticate

 The encrypt-and-authenticate mechanism is implemented within the
 existing CMS RecipientInfo framework by defining a new pseudo-
 algorithm type, authEnc, which is used in place of a monolithic
 encrypt and hash algorithm. The RecipientInfo is used as a key
 container for the master secret used by the pseudo-algorithm from
 which the encryption and authentication keys for existing single-
 purpose encrypt-only and MAC-only algorithms are derived. Thus,
 instead of using the RecipientInfo to communicate (for example) an
 AES or HMAC-SHA1 key, it communicates a master secret from which the
 required AES encryption and HMAC-SHA1 authentication keys are
 derived.

 The authEnc pseudo-algorithm comes in two forms: one conveying
 128 bits of keying material and one conveying 256 bits:

 id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 16 }

 id-alg OBJECT IDENTIFIER ::= { id-smime 3 }

 id-alg-authEnc-128 OBJECT IDENTIFIER ::= { id-alg 15 }
 id-alg-authEnc-256 OBJECT IDENTIFIER ::= { id-alg 16 }

Gutmann Standards Track [Page 4]

RFC 6476 MAC Encryption in CMS January 2012

 The algorithm parameters are as follows:

 AuthEncParams ::= SEQUENCE {
 prfAlgorithm [0] AlgorithmIdentifier DEFAULT PBKDF2,
 encAlgorithm AlgorithmIdentifier,
 macAlgorithm AlgorithmIdentifier
 }

 prfAlgorithm is the PRF algorithm used to convert the master
 secret into the encryption and MAC keys. The default PRF is
 [PBKDF2], which in turn has a default PRF algorithm of HMAC-SHA1.
 When this default setting is used, the PBKDF2-params ’salt’
 parameter is an empty string, and the ’iterationCount’ parameter
 is one, turning the KDF into a pure PRF.

 encAlgorithm is the encryption algorithm and associated parameters
 to be used to encrypt the content.

 macAlgorithm is the MAC algorithm and associated parameters to be
 used to authenticate/integrity-protect the content.

 When the prfAlgorithm AlgorithmIdentifier is used in conjunction with
 PBKDF2 to specify a PRF other than the default PBKDF2-with-HMAC-SHA1
 one, the PBKDF2-params require that two additional algorithm
 parameters be specified. The ’salt’ parameter MUST be an empty
 (zero-length) string, and the ’iterationCount’ parameter MUST be one,
 since these values aren’t used in the PRF process. In their encoded
 form as used for the PBKDF2-params, these two parameters have the
 value 08 00 02 01 01.

 As a guideline for authors specifying the use of PRFs other than
 PBKDF2, any additional parameters such as salts, tags, and
 identification strings SHOULD be set to empty strings, and any
 iteration count SHOULD be set to one.

4.1. Encrypt-and-Authenticate Message Processing

 The randomly generated master secret to be communicated via the
 RecipientInfo(s) is converted to separate encryption and
 authentication keys and applied to the encrypt-and-authenticate
 process as follows. The notation "PRF(key, salt, iterations)" is
 used to denote an application of the PRF to the given keying value
 and salt, for the given number of iterations:

Gutmann Standards Track [Page 5]

RFC 6476 MAC Encryption in CMS January 2012

 1. The MAC algorithm key is derived from the master secret via:

 MAC-K ::= PRF(master_secret, "authentication", 1);

 2. The encryption algorithm key is derived from the master
 secret via:

 Enc-K ::= PRF(master_secret, "encryption", 1);

 3. The data is processed as described in [AuthEnv], and specifically
 since the mechanisms used are a union of EncryptedData
 and AuthenticatedData, as per [CMS]. The one exception to
 this is that the
 EncryptedContentInfo.ContentEncryptionAlgorithmIdentifier data is
 MACed before the encrypted content is MACed. The EncryptedData
 processing is applied to the data first, and then the
 AuthenticatedData processing is applied to the result, so that
 the nesting is as follows:

 MAC(contentEncrAlgoID || encrypt(content));

 4. If authenticated attributes are present, then they are encoded as
 described in [AuthEnv] and MACed after the encrypted content, so
 that the processing is as follows:

 MAC(contentEncrAlgoID || encrypt(content) || authAttr);

4.2. Rationale

 When choosing between encrypt-and-authenticate and authenticate-and-
 encrypt, the more secure option is encrypt-and-authenticate. There
 has been extensive analysis of this in the literature; the best
 coverage is probably [EncryptThenAuth].

 The EncryptedContentInfo.ContentEncryptionAlgorithmIdentifier is the
 SEQUENCE containing the id-alg-authEnc-128/id-alg-authEnc-256 OBJECT
 IDENTIFIER and its associated AuthEncParams. This data is MACed
 exactly as encoded, without any attempt to re-code it into a
 canonical form like DER.

 The EncryptedContentInfo.ContentEncryptionAlgorithmIdentifier must be
 protected alongside the encrypted content; otherwise, an attacker
 could manipulate the encrypted data indirectly by manipulating the
 encryption algorithm parameters, which wouldn’t be detected through
 MACing the encrypted content alone. For example, by changing the
 encryption IV, it’s possible to modify the results of the decryption
 after the encrypted data has been verified via a MAC check.

Gutmann Standards Track [Page 6]

RFC 6476 MAC Encryption in CMS January 2012

 The authEnc pseudo-algorithm has two "key sizes" rather than the one-
 size-fits-all that the PRF impedance-matching would provide. This is
 done to address real-world experience in the use of AES keys, where
 users demanded AES-256 alongside AES-128 because of some perception
 that the former was "twice as good" as the latter. Providing an
 option for keys that go to 11 avoids potential user acceptance
 problems when someone notices that the authEnc pseudo-key has "only"
 128 bits when they expect their AES keys to be 256 bits long.

 Using a fixed-length key rather than making it a user-selectable
 parameter is done for the same reason as AES’s quantised key lengths:
 there’s no benefit to allowing, say, 137-bit keys over basic 128- and
 256-bit lengths; it adds unnecessary complexity; if the lengths are
 user-defined, then there’ll always be someone who wants keys that go
 up to 12. Providing a choice of two commonly used lengths gives
 users the option of choosing a "better" key size should they feel the
 need, while not overloading the system with unneeded flexibility.

 The use of the PRF AlgorithmIdentifier presents some problems,
 because it’s usually not specified in a manner that allows it to be
 easily used as a straight KDF. For example, PBKDF2 has the following
 parameters:

 PBKDF2-params ::= SEQUENCE {
 salt OCTET STRING,
 iterationCount INTEGER (1..MAX),
 prf AlgorithmIdentifier {{PBKDF2-PRFs}}
 DEFAULT algid-hmacWithSHA1
 }

 of which only the prf AlgorithmIdentifier is used here. In order to
 avoid having to define new AlgorithmIdentifiers for each possible
 PRF, this specification sets any parameters not required for KDF
 functionality to no-op values. In the case of PBKDF2, this means
 that the salt has length zero and the iteration count is set to one,
 with only the prf AlgorithmIdentifier playing a part in the
 processing. Although it’s not possible to know what form other
 PRFs-as-KDFs will take, a general note for their application within
 this specification is that any non-PRF parameters should similarly be
 set to no-op values.

 Specifying a MAC key size gets a bit tricky; most MAC algorithms have
 some de facto standard key size, and for HMAC algorithms, this is
 usually the same as the hash output size. For example, for HMAC-MD5,
 it’s 128 bits; for HMAC-SHA1, it’s 160 bits; and for HMAC-SHA256,
 it’s 256 bits. Other MAC algorithms also have de facto standard key
 sizes. For example, for AES-based MACs, it’s the AES key size --
 128 bits for AES-128 and 256 bits for AES-256. This situation makes

Gutmann Standards Track [Page 7]

RFC 6476 MAC Encryption in CMS January 2012

 it difficult to specify the key size in a normative fashion, since
 it’s dependent on the algorithm type that’s being used. If there is
 any ambiguity over which key size should be used, then it’s
 RECOMMENDED that either the size be specified explicitly in the
 macAlgorithm AlgorithmIdentifier or that an RFC or similar standards
 document be created that makes the key sizes explicit.

 As with other uses of PRFs for crypto impedance-matching in
 protocols, like IPsec, SSL/TLS, and SSH, the amount of input to the
 PRF generally doesn’t match the amount of output. The general
 philosophical implications of this are covered in various analyses of
 the properties and uses of PRFs. If you’re worried about this, then
 you can try and approximately match the authEnc "key size" to the key
 size of the encryption algorithm being used, although even there, a
 perfect match for algorithms like Blowfish (448 bits) or RC5
 (832 bits) is going to be difficult.

 The term "master secret" comes from its use in SSL/TLS, which uses a
 similar PRF-based mechanism to convert its master_secret value into
 encryption and MAC keys (as do SSH and IPsec). The master_secret
 value isn’t a key in the conventional sense, but merely a secret
 value that’s then used to derive two (or, in the cases of SSL/TLS,
 SSH, and IPsec, several) keys and related cryptovariables.

 Apart from the extra step added to key management, all of the
 processing is already specified as part of the definition of the
 standard CMS content-types Encrypted/EnvelopedData and
 AuthenticatedData. This significantly simplifies both the
 specification and the implementation task, as no new content-
 processing mechanisms are introduced.

4.3. Test Vectors

 The following test vectors may be used to verify an implementation of
 MAC-authenticated encryption. This represents a text string
 encrypted and authenticated using the ever-popular password
 "password" via CMS PasswordRecipientInfo. The encryption algorithm
 used for the first value is triple DES, whose short block size
 (compared to AES) makes it easier to corrupt arbitrary bytes for
 testing purposes within the self-healing Cipher Block Chaining (CBC)
 mode, which will result in correct decryption but a failed MAC check.
 The encryption algorithm used for the second value is AES.

 For the triple DES-encrypted data, corrupting a byte at positions
 192-208 can be used to check that payload-data corruption is
 detected, and corrupting a byte at positions 168-174 can be used to

Gutmann Standards Track [Page 8]

RFC 6476 MAC Encryption in CMS January 2012

 check that metadata corruption is detected. The corruption in these
 byte ranges doesn’t affect normal processing and so wouldn’t normally
 be detected.

 The test data has the following characteristics:

 version is set to 0.

 originatorInfo isn’t needed and is omitted.

 recipientInfo uses passwordRecipientInfo to allow easy testing
 with a fixed text string.

 authEncryptedContentInfo uses the authEnc128 pseudo-algorithm
 with a key of 128 bits used to derive triple DES/AES and
 HMAC-SHA1 keys.

 authAttrs aren’t used and are omitted.

 mac is the 20-byte HMAC-SHA1 MAC value.

 unauthAttrs aren’t used and are omitted.

 0 227: SEQUENCE {
 3 11: OBJECT IDENTIFIER id-ct-authEnvelopedData
 (1 2 840 113549 1 9 16 1 23)
 16 211: [0] {
 19 208: SEQUENCE {
 22 1: INTEGER 0
 25 97: SET {
 27 95: [3] {
 29 1: INTEGER 0
 32 27: [0] {
 34 9: OBJECT IDENTIFIER pkcs5PBKDF2
 (1 2 840 113549 1 5 12)
 45 14: SEQUENCE {
 47 8: OCTET STRING B7 EB 23 A7 6B D2 05 16
 57 2: INTEGER 5000
 : }
 : }
 61 35: SEQUENCE {
 63 11: OBJECT IDENTIFIER pwriKEK
 (1 2 840 113549 1 9 16 3 9)

Gutmann Standards Track [Page 9]

RFC 6476 MAC Encryption in CMS January 2012

 76 20: SEQUENCE {
 78 8: OBJECT IDENTIFIER des-EDE3-CBC
 (1 2 840 113549 3 7)
 88 8: OCTET STRING 66 91 02 45 6B 73 BB 99
 : }
 : }
 98 24: OCTET STRING
 : 30 A3 7A B5 D8 F2 87 50 EC 41 04 AE 89 99 26 F0
 : 2E AE 4F E3 F3 52 2B A3
 : }
 : }
 124 82: SEQUENCE {
 126 9: OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)
 137 51: SEQUENCE {
 139 11: OBJECT IDENTIFIER authEnc128
 (1 2 840 113549 1 9 16 3 15)
 152 36: SEQUENCE {
 154 20: SEQUENCE {
 156 8: OBJECT IDENTIFIER des-EDE3-CBC
 (1 2 840 113549 3 7)
 166 8: OCTET STRING D2 D0 81 71 4D 3D 9F 11
 : }
 176 12: SEQUENCE {
 178 8: OBJECT IDENTIFIER hmacSHA (1 3 6 1 5 5 8 1 2)
 188 0: NULL
 : }
 : }
 : }
 190 16: [0] 3A C6 06 61 41 5D 00 7D 11 35 CD 69 E1 56 CA 10
 : }
 208 20: OCTET STRING
 : 33 65 E8 F0 F3 07 06 86 1D A8 47 2C 6D 3A 1D 94
 : 21 40 64 7E
 : }
 : }
 : }

 -----BEGIN PKCS7-----
 MIHjBgsqhkiG9w0BCRABF6CB0zCB0AIBADFho18CAQCgGwYJKoZIhvcNAQUMMA4E
 CLfrI6dr0gUWAgITiDAjBgsqhkiG9w0BCRADCTAUBggqhkiG9w0DBwQIZpECRWtz
 u5kEGDCjerXY8odQ7EEEromZJvAurk/j81IrozBSBgkqhkiG9w0BBwEwMwYLKoZI
 hvcNAQkQAw8wJDAUBggqhkiG9w0DBwQI0tCBcU09nxEwDAYIKwYBBQUIAQIFAIAQ
 OsYGYUFdAH0RNc1p4VbKEAQUM2Xo8PMHBoYdqEcsbTodlCFAZH4=
 -----END PKCS7-----

Gutmann Standards Track [Page 10]

RFC 6476 MAC Encryption in CMS January 2012

 0 253: SEQUENCE {
 3 11: OBJECT IDENTIFIER id-ct-authEnvelopedData
 (1 2 840 113549 1 9 16 1 23)
 16 237: [0] {
 19 234: SEQUENCE {
 22 1: INTEGER 0
 25 114: SET {
 27 112: [3] {
 29 1: INTEGER 0
 32 27: [0] {
 34 9: OBJECT IDENTIFIER pkcs5PBKDF2
 (1 2 840 113549 1 5 12)
 45 14: SEQUENCE {
 47 8: OCTET STRING E7 B7 87 DF 82 1D 12 CC
 57 2: INTEGER 5000
 : }
 : }
 61 44: SEQUENCE {
 63 11: OBJECT IDENTIFIER pwriKEK
 (1 2 840 113549 1 9 16 3 9)
 76 29: SEQUENCE {
 78 9: OBJECT IDENTIFIER aes128-CBC
 (2 16 840 1 101 3 4 1 2)
 89 16: OCTET STRING
 : 11 D9 5C 52 0A 3A BF 22 B2 30 70 EF F4 7D 6E F6
 : }
 : }
 107 32: OCTET STRING
 : 18 39 22 27 C3 C2 2C 2A A6 9F 2A B0 77 24 75 AA
 : D8 58 9C CD BB 4C AE D3 0D C2 CB 1D 83 94 6C 37
 : }
 : }
 141 91: SEQUENCE {
 143 9: OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)
 154 60: SEQUENCE {
 156 11: OBJECT IDENTIFIER authEnc128
 (1 2 840 113549 1 9 16 3 15)
 169 45: SEQUENCE {
 171 29: SEQUENCE {
 173 9: OBJECT IDENTIFIER aes128-CBC
 (2 16 840 1 101 3 4 1 2)
 184 16: OCTET STRING
 : B7 25 02 76 84 3C 58 1B A5 30 E2 40 27 EE C3 06
 : }

Gutmann Standards Track [Page 11]

RFC 6476 MAC Encryption in CMS January 2012

 202 12: SEQUENCE {
 204 8: OBJECT IDENTIFIER hmacSHA (1 3 6 1 5 5 8 1 2)
 214 0: NULL
 : }
 : }
 : }
 216 16: [0] 98 36 0F 0C 79 62 36 B5 2D 2D 9E 1C 62 85 1E 10
 : }
 234 20: OCTET STRING
 : 88 A4 C1 B2 BA 78 1B CA F9 14 B0 E5 FC D1 8D F8
 : 02 E2 B2 9E
 : }
 : }
 : }

 -----BEGIN PKCS7-----
 MIH9BgsqhkiG9w0BCRABF6CB7TCB6gIBADFyo3ACAQCgGwYJKoZIhvcNAQUMMA4E
 COe3h9+CHRLMAgITiDAsBgsqhkiG9w0BCRADCTAdBglghkgBZQMEAQIEEBHZXFIK
 Or8isjBw7/R9bvYEIBg5IifDwiwqpp8qsHckdarYWJzNu0yu0w3Cyx2DlGw3MFsG
 CSqGSIb3DQEHATA8BgsqhkiG9w0BCRADDzAtMB0GCWCGSAFlAwQBAgQQtyUCdoQ8
 WBulMOJAJ+7DBjAMBggrBgEFBQgBAgUAgBCYNg8MeWI2tS0tnhxihR4QBBSIpMGy
 ungbyvkUsOX80Y34AuKyng==
 -----END PKCS7-----

5. SMIMECapabilities Attribute

 An S/MIME client SHOULD announce the set of cryptographic functions
 that it supports by using the SMIMECapabilities attribute [SMIME].
 If the client wishes to indicate support for MAC-authenticated
 encryption, the capabilities attribute MUST contain the authEnc128
 and/or authEnc256 OID specified above with algorithm parameters
 ABSENT. The other algorithms used in the authEnc algorithm, such as
 the MAC and encryption algorithm, are selected based on the presence
 of these algorithms in the SMIMECapabilities attribute or by mutual
 agreement.

6. Security Considerations

 Unlike other CMS authenticated-data mechanisms, such as SignedData
 and AuthenticatedData, AuthEnv’s primary transformation isn’t
 authentication but encryption; so AuthEnvData may decrypt
 successfully (in other words, the primary data transformation present
 in the mechanism will succeed), but the secondary function of
 authentication using the MAC value that follows the encrypted data
 could still fail. This can lead to a situation in which an
 implementation might output decrypted data before it reaches and
 verifies the MAC value. In other words, decryption is performed
 inline and the result is available immediately, while the

Gutmann Standards Track [Page 12]

RFC 6476 MAC Encryption in CMS January 2012

 authentication result isn’t available until all of the content has
 been processed. If the implementation prematurely provides data to
 the user and later comes back to inform them that the earlier data
 was, in retrospect, tainted, this may cause users to act prematurely
 on the tainted data.

 This situation could occur in a streaming implementation where data
 has to be made available as soon as possible (so that the initial
 plaintext is emitted before the final ciphertext and MAC value are
 read), or one where the quantity of data involved rules out buffering
 the recovered plaintext until the MAC value can be read and verified.
 In addition, an implementation that tries to be overly helpful may
 treat missing non-payload trailing data as non-fatal, allowing an
 attacker to truncate the data somewhere before the MAC value and
 thereby defeat the data authentication. This is complicated even
 further by the fact that an implementation may not be able to
 determine, when it encounters truncated data, whether the remainder
 (including the MAC value) will arrive presently (a non-failure) or
 whether it’s been truncated by an attacker and should therefore be
 treated as a MAC failure. (Note that this same issue affects other
 types of data authentication like signed and MACed data as well,
 since an over-optimistic implementation may return data to the user
 before checking for a verification failure is possible.)

 The exact solution to these issues is somewhat implementation-
 specific, with some suggested mitigations being as follows:
 implementations should buffer the entire message if possible and
 verify the MAC before performing any decryption. If this isn’t
 possible due to streaming or message-size constraints, then
 implementations should consider breaking long messages into a
 sequence of smaller ones, each of which can be processed atomically
 as above. If even this isn’t possible, then implementations should
 make obvious to the caller or user that an authentication failure has
 occurred and that the previously returned or output data shouldn’t be
 used. Finally, any data-formatting problem, such as obviously
 truncated data or missing trailing data, should be treated as a MAC
 verification failure even if the rest of the data was processed
 correctly.

7. IANA Considerations

 This document contains two algorithm identifiers defined by the
 S/MIME Working Group Registrar in an arc delegated by RSA to the
 S/MIME Working Group: iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0).

Gutmann Standards Track [Page 13]

RFC 6476 MAC Encryption in CMS January 2012

8. Acknowledgements

 The author would like to thank Jim Schaad and the members of the
 S/MIME mailing list for their feedback on this document, and David
 Ireland for help with the test vectors.

9. References

9.1. Normative References

 [AuthEnv] Housley, R., "Cryptographic Message Syntax (CMS)
 Authenticated-Enveloped-Data Content Type", RFC 5083,
 November 2007.

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)",
 STD 70, RFC 5652, September 2009.

 [PBKDF2] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification Version 2", RFC 2898, September 2000.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [SMIME] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

9.2. Informative References

 [EncryptThenAuth]
 Krawczyk, H., "The Order of Encryption and Authentication
 for Protecting Communications (or: How Secure Is SSL?)",
 Springer-Verlag LNCS 2139, August 2001.

 [Garfinkel] Garfinkel, S., "Design Principles and Patterns for
 Computer Systems That Are Simultaneously Secure and
 Usable", May 2005.

 [HKDF] Krawczyk, H. and P. Eronen, "HMAC-based
 Extract-and-Expand Key Derivation Function (HKDF)",
 RFC 5869, May 2010.

 [IPsec] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [OpenPGP] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
 Thayer, "OpenPGP Message Format", RFC 4880,
 November 2007.

Gutmann Standards Track [Page 14]

RFC 6476 MAC Encryption in CMS January 2012

 [SSH] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, January 2006.

 [TLS] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

Author’s Address

 Peter Gutmann
 University of Auckland
 Department of Computer Science
 New Zealand

 EMail: pgut001@cs.auckland.ac.nz

Gutmann Standards Track [Page 15]

