
Independent Submission X. Zhang
Request for Comments: 6479 T. Tsou
Category: Informational Futurewei Technologies
ISSN: 2070-1721 January 2012

 IPsec Anti-Replay Algorithm without Bit Shifting

Abstract

 This document presents an alternate method to do the anti-replay
 checks and updates for IP Authentication Header (AH) and
 Encapsulating Security Protocol (ESP). The method defined in this
 document obviates the need for bit shifting and it reduces the number
 of times an anti-replay window is adjusted.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any other
 RFC stream. The RFC Editor has chosen to publish this document at
 its discretion and makes no statement about its value for
 implementation or deployment. Documents approved for publication by
 the RFC Editor are not a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6479.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Zhang & Tsou Informational [Page 1]

RFC 6479 IPsec Anti-Replay Algorithm January 2012

Table of Contents

 1. Introduction ..2
 2. Description of New Anti-Replay Algorithm3
 3. Example of New Anti-Replay Algorithm5
 4. Security Considerations ...9
 5. Normative References ..9
 6. Acknowledgements ..9

1. Introduction

 "IP Authentication Header" [RFC4302] and "IP Encapsulating Security
 Payload (ESP)" [RFC4303] define an anti-replay service that employs a
 sliding window mechanism. The mechanism, when enabled by a receiver,
 uses an anti-replay window of size W. This window limits how far out
 of order a packet can be, relative to the packet with the highest
 sequence number that has been authenticated so far. The window can
 be represented by a range [WB, WT], where WB=WT-W+1. The whole
 anti-replay window can be thought of as a string of bits. The value
 of each bit indicates whether or not a packet with that sequence
 number has been received and authenticated, so that the replay packet
 can be detected and rejected. If the packet is received, the
 receiver gets the sequence number S in the packet. If S is inside
 window (S<=WT and S>=WB), then the receiver checks the corresponding
 bit (location is S-WB) in the window to see if this S has already
 been seen. If S<WB, the packet is dropped. If S>WT and is
 validated, the window is advanced by (S-WT) bits. The new window
 becomes [WB+S-WT, S]. The new bits in this new window are set to
 indicate that no packets with those sequence numbers have been
 received. The typical implementation (for example, the integrity
 algorithm [RFC4302]) is done by shifting (S-WT) bits. In normal
 cases, the packets arrive in order, which results in continuous
 updates and bit-shifting operations.

 [RFC4302] and [RFC4303] define minimum window sizes of 32 and 64.
 But no requirement is established for minimum or recommended window
 sizes beyond 64 packets. The window size needs to be based on
 reasonable expectations for packet re-ordering. For a high-end,
 multi-core network processor with multiple crypto cores, a window
 size bigger than 64 or 128 is needed due to the varied IPsec
 processing latency caused by different cores. In such a case, the
 window sliding is tremendously costly even with hardware acceleration
 to do the bit shifting. This document describes an alternate method
 to avoid bit shifting. It only discusses the anti-replay processing
 at the receiving side. The processing is always safe and has no
 interoperability effects. Even with a window size bigger than the
 usual 32- or 64-bit window, no interoperability issues are caused.

Zhang & Tsou Informational [Page 2]

RFC 6479 IPsec Anti-Replay Algorithm January 2012

 Any node employing practices that potentially cause reordering beyond
 the usual 32- or 64-bit window may lead to interoperability or
 performance problems, however. For instance, if either the sending
 node or routers along the path cause significant re-ordering, this
 can lead to inability of the receiving IPsec endpoint to process the
 packets, as many current implementations do not support the
 extensions defined in this memo. Similarly, such reordering can
 cause significant problems for transport and upper-layer protocols,
 and is generally best avoided.

2. Description of the New Anti-Replay Algorithm

 Here we present an easy way to update the window index only, while
 also reducing the number window updates. The basic idea is
 illustrated in the following figures. Suppose that we configure the
 window size W, which consists of M-1 blocks, where M is a power of
 two (2). Each block contains N bits, where N is also a power of two
 (2). It can be a byte (8 bit) or word (32 bit), or multiple words.
 The supported sliding window size is (M-1)*N. However, it covers up
 M blocks (four blocks as shown in Figure 1). All these M blocks are
 circulated and become a ring of blocks, each with N bits. In this
 way, the supported sliding window (M-1 blocks) is always a subset
 window of the actual window when the window slides.

 Initially, the actual window is defined by a low- and high-end index
 [WB, WT], as illustrated in Figure 1.

 +--------+--------+--------+--------+
 |xxxxxxcc|cccccccc|cccccccc|ccccc100|
 +--------+--------+--------+--------+
 ^ ^
 | |
 WB WT

 Figure 1: The sliding window [WB, WT] in which WT is the last
 validated sequence number, and the supported window size W is
 WT-WB+1. (x=don’t care bit, c=check bit)

Zhang & Tsou Informational [Page 3]

RFC 6479 IPsec Anti-Replay Algorithm January 2012

 If we receive a packet with the sequence number (S) greater than WT,
 we slide the window. But we only change the window index by adding
 the difference (S-WT) to both WT and WB (WB is automatically changed
 as the window size is fixed). So, S becomes the largest sequence
 number of the received packets. Figure 2 shows the case that the
 packet with sequence number S=WT+1 is received.

 +--------+--------+--------+--------+
 |xxxxxxcc|cccccccc|cccccccc|ccccc110|
 +--------+--------+--------+--------+
 ^ ^
 | |
 WB WT

 Figure 2: The sliding window [WB, WT] after S=WT+1

 If S is in a different block from where WT is, we have to initialize
 all bit values in the blocks to 0 without bit shifting. If S passes
 several blocks, we have to initialize several blocks instead of only
 one block. Figure 3 shows that the sequence number already passed
 the block boundary. Immediately after the update, all the check bits
 should be 0 in the block where WT resides.

 +--------+--------+--------+--------+
 |ccc10000|xxxxcccc|cccccccc|cccccccc|
 +--------+--------+--------+--------+
 ^ ^
 | |
 WT WB

 Figure 3: The sliding window [WB, WT] after S passes the boundary

 After the update, the new window still covers the configured window.
 This means the configured sub-window also slides, conforming to the
 sliding window protocol. The actual effect is somewhat like
 shifting the block. In this way, the bit shifting is deemed
 unnecessary.

 It is also easier and much faster to check the window with the
 sequence number because the sequence number check does not
 depend on the lowest index WB. Instead, it only depends on the
 sequence number of the received packet. If we receive a sequence
 number S, the bit location is the lowest several bits of the
 sequence number, which only depends on the block size (N). The
 block index is several bits before the location bits, which only
 depends on the window size (M).

Zhang & Tsou Informational [Page 4]

RFC 6479 IPsec Anti-Replay Algorithm January 2012

 We do not specify how many redundancy bits are needed, except that
 it should be a power of two (2) for computation efficiency. If the
 microprocessor is 32 bits, 32 might be a better choice while 64
 might be better for 64-bit microprocessor. For a microprocessor
 with cache support, one cache line is also a good choice. It also
 depends on the size of the sliding window. If we have N
 redundancy bits (for example, 32 bits in the above description),
 we only need 1/N times update of blocks, comparing to the
 bit-shifting algorithm in [RFC4302].

 The cost of this method is extra byte(s) being used as a redundant
 window. The cost will be minimal if the window size is big enough.
 Actually, the extra redundant bits are not completely wasted. We
 could reuse the unused bits in the block where index WB resides,
 i.e., the supported window size could be (M-1)*N, plus the unused
 bits in the last block.

3. Example of the New Anti-Replay Algorithm

 Here is the example code to implement the algorithm of anti-replay
 checks and updates, which is described in the previous sections.

<CODE BEGINS>

/**
 * Copyright (c) 2012 IETF Trust and the persons identified as
 * authors of the code. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, is permitted pursuant to, and subject to the license
 * terms contained in, the Simplified BSD License set forth in Section
 * 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
 * (http://trustee.ietf.org/license-info).
 *
 */

/**
 * In this algorithm, the hidden window size must be a power of two,
 * for example, 1024 bits. The redundant bits must also be a power of
 * two, for example 32 bits. Thus, the supported anti-replay window
 * size is the hidden window size minus the redundant bits. It is 992
 * in this example. The size of the integer depends on microprocessor
 * architecture. In this example, we assume that the software runs on
 * a 32-bit microprocessor. So the size of the integer is 32. In order
 * to convert the bitmap into an array of integers, the total number of
 * integers is the hidden window size divided by the size of the
 * integer.
 *

Zhang & Tsou Informational [Page 5]

RFC 6479 IPsec Anti-Replay Algorithm January 2012

 * struct ipsec_sa contains the window and window related parameters,
 * such as the window size and the last acknowledged sequence number.
 *
 * all the value of macro can be changed, but must follow the rule
 * defined in the algorithm.
 */

#define SIZE_OF_INTEGER 32 /** 32-bit microprocessor */
#define BITMAP_LEN (1024/ SIZE_OF_INTEGER)
 /** in terms of the 32-bit integer */
#define BITMAP_INDEX_MASK (IPSEC_BITMAP_LEN-1)
#define REDUNDANT_BIT_SHIFTS 5
#define REDUNDANT_BITS (1<<REDUNDANT_BIT_SHIFTS)
#define BITMAP_LOC_MASK (IPSEC_REDUNDANT_BITS-1)

int
ipsec_check_replay_window (struct ipsec_sa *ipsa,
 uint32_t sequence_number)
{
 int bit_location;
 int index;

 /**
 * replay shut off
 */
 if (ipsa->replaywin_size == 0) {
 return 1;
 }

 /**
 * first == 0 or wrapped
 */
 if (sequence_number == 0) {
 return 0;
 }

 /**
 * first check if the sequence number is in the range
 */
 if (sequence_number>ipsa->replaywin_lastseq) {
 return 1; /** larger is always good */
 }

Zhang & Tsou Informational [Page 6]

RFC 6479 IPsec Anti-Replay Algorithm January 2012

 /**
 * The packet is too old and out of the window
 */
 if ((sequence_number + ipsa->replaywin_size) <
 ipsa->replaywin_lastseq) {
 return 0;
 }

 /**
 * The sequence is inside the sliding window
 * now check the bit in the bitmap
 * bit location only depends on the sequence number
 */
 bit_location = sequence_number&BITMAP_LOC_MASK;
 index = (sequence_number>>REDUNDANT_BIT_SHIFTS)&BITMAP_INDEX_MASK;

 /*
 * this packet has already been received
 */
 if (ipsa->replaywin_bitmap[index]&(1<<bit_location)) {
 return 0;
 }

 return 1;
}

int
ipsec_update_replay_window (struct ipsec_sa *ipsa,
 uint32_t sequence_number)
{
 int bit_location;
 int index, index_cur, id;
 int diff;

 if (ipsa->replaywin_size == 0) { /** replay shut off */
 return 1;
 }

 if (sequence_number == 0) {
 return 0; /** first == 0 or wrapped */
 }

Zhang & Tsou Informational [Page 7]

RFC 6479 IPsec Anti-Replay Algorithm January 2012

 /**
 * the packet is too old, no need to update
 */
 if ((ipsa->replaywin_size + sequence_number) <
 ipsa->replaywin_lastseq) {
 return 0;
 }

 /**
 * now update the bit
 */
 index = (sequence_number>>REDUNDANT_BIT_SHIFTS);

/**
 * first check if the sequence number is in the range
 */
if (sequence_number>ipsa->replaywin_lastseq) {
 index_cur = ipsa->replaywin_lastseq>>REDUNDANT_BIT_SHIFTS;
 diff = index - index_cur;
 if (diff > BITMAP_LEN) { /* something unusual in this case */
 diff = BITMAP_LEN;
 }

 for (id = 0; id < diff; ++id) {
 ipsa->replaywin_bitmap[(id+index_cur+1)&BITMAP_INDEX_MASK]
 = 0;
 }

 ipsa->replaywin_lastseq = sequence_number;
}

 index &= BITMAP_INDEX_MASK;
 bit_location = sequence_number&BITMAP_LOC_MASK;

 /* this packet has already been received */
 if (ipsa->replaywin_bitmap[index]&(1<<bit_location)) {
 return 0;
}

 ipsa->replaywin_bitmap[index] |= (1<<bit_location);

 return 1;
}

<CODE ENDS>

Zhang & Tsou Informational [Page 8]

RFC 6479 IPsec Anti-Replay Algorithm January 2012

4. Security Considerations

 This document does not change [RFC4302] or [RFC4303]. It provides
 an alternate method for anti-replay.

5. Acknowledgements

 The idea in this document came from the software design on one
 high-performance multi-core network processor. The new network
 processor core integrates a dozen of crypto core in a distributed
 way, which makes hardware anti-replay service impossible.

6. Normative References

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302, December
 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC
 4303, December 2005.

Authors’ Addresses

 Xiangyang Zhang
 Futurewei Technologies
 2330 Central Expressway
 Santa Clara, California 95051
 USA

 Phone: +1-408-330-4545
 EMail: xiangyang.zhang@huawei.com

 Tina Tsou (Ting Zou)
 Futurewei Technologies
 2330 Central Expressway
 Santa Clara, California 95051
 USA

 Phone: +1-408-859-4996
 EMail: tena@huawei.com

Zhang & Tsou Informational [Page 9]

