
Internet Engineering Task Force (IETF) R. Austein
Request for Comments: 6486 ISC
Category: Standards Track G. Huston
ISSN: 2070-1721 APNIC
 S. Kent
 M. Lepinski
 BBN
 February 2012

 Manifests for the Resource Public Key Infrastructure (RPKI)

Abstract

 This document defines a "manifest" for use in the Resource Public Key
 Infrastructure (RPKI). A manifest is a signed object (file) that
 contains a listing of all the signed objects (files) in the
 repository publication point (directory) associated with an authority
 responsible for publishing in the repository. For each certificate,
 Certificate Revocation List (CRL), or other type of signed objects
 issued by the authority that are published at this repository
 publication point, the manifest contains both the name of the file
 containing the object and a hash of the file content. Manifests are
 intended to enable a relying party (RP) to detect certain forms of
 attacks against a repository. Specifically, if an RP checks a
 manifest’s contents against the signed objects retrieved from a
 repository publication point, then the RP can detect "stale" (valid)
 data and deletion of signed objects.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6486.

Austein, et al. Standards Track [Page 1]

RFC 6486 RPKI Manifests February 2012

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 1.1. Terminology ..3
 2. Manifest Scope ..4
 3. Manifest Signing ..4
 4. Manifest Definition ...5
 4.1. eContentType ...5
 4.2. eContent ...5
 4.2.1. Manifest ..5
 4.3. Content-Type Attribute7
 4.4. Manifest Validation ..7
 5. Manifest Generation ...7
 5.1. Manifest Generation Procedure7
 5.2. Considerations for Manifest Generation9
 6. Relying Party Use of Manifests9
 6.1. Tests for Determining Manifest State10
 6.2. Missing Manifests ...11
 6.3. Invalid Manifests ...12
 6.4. Stale Manifests ...12
 6.5. Mismatch between Manifest and Publication Point13
 6.6. Hash Values Not Matching Manifests14
 7. Publication Repositories15
 8. Security Considerations ..15
 9. IANA Considerations ..16
 10. Acknowledgements ..16
 11. References ..16
 11.1. Normative References16
 11.2. Informative References17
 Appendix A. ASN.1 Module ..18

Austein, et al. Standards Track [Page 2]

RFC 6486 RPKI Manifests February 2012

1. Introduction

 The Resource Public Key Infrastructure (RPKI) [RFC6480] makes use of
 a distributed repository system [RFC6481] to make available a variety
 of objects needed by relying parties (RPs). Because all of the
 objects stored in the repository system are digitally signed by the
 entities that created them, attacks that modify these published
 objects are detectable by RPs. However, digital signatures provide
 no protection against attacks that substitute "stale" versions of
 signed objects (i.e., objects that were valid and have not expired,
 but have since been superseded) or attacks that remove an object that
 should be present in the repository. To assist in the detection of
 such attacks, the RPKI repository system can make use of a signed
 object called a "manifest".

 A manifest is a signed object that enumerates all the signed objects
 (files) in the repository publication point (directory) that are
 associated with an authority responsible for publishing at that
 publication point. Each manifest contains both the name of the file
 containing the object and a hash of the file content, for every
 signed object issued by an authority that is published at the
 authority’s repository publication point. A manifest is intended to
 allow an RP to detect unauthorized object removal or the substitution
 of stale versions of objects at a publication point. A manifest also
 is intended to allow an RP to detect similar outcomes that may result
 from a man-in-the-middle attack on the retrieval of objects from the
 repository. Manifests are intended to be used in Certification
 Authority (CA) publication points in repositories (directories
 containing files that are subordinate certificates and Certificate
 Revocation Lists (CRLs) issued by this CA and other signed objects
 that are verified by end-entity (EE) certificates issued by this CA).

 Manifests are modeled on CRLs, as the issues involved in detecting
 stale manifests and potential attacks using manifest replays, etc.,
 are similar to those for CRLs. The syntax of the manifest payload
 differs from CRLs, since RPKI repositories contain objects not
 covered by CRLs, e.g., digitally signed objects, such as Route
 Origination Authorizations (ROAs).

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Austein, et al. Standards Track [Page 3]

RFC 6486 RPKI Manifests February 2012

2. Manifest Scope

 A manifest associated with a CA’s repository publication point
 contains a list of:

 * the set of (non-expired, non-revoked) certificates issued and
 published by this CA,

 * the most recent CRL issued by this CA, and

 * all published signed objects that are verifiable using EE
 certificates [RFC6487] issued by this CA.

 Every RPKI signed object includes, in the Cryptographic Message
 Syntax (CMS) [RFC3370] wrapper of the object, the EE certificate used
 to verify it [RFC6488]. Thus, there is no requirement to separately
 publish that EE certificate at the CA’s repository publication point.

 Where multiple CA instances share a common publication point, as can
 occur when an entity performs a key-rollover operation [RFC6489], the
 repository publication point will contain multiple manifests. In
 this case, each manifest describes only the collection of published
 products of its associated CA instance.

3. Manifest Signing

 A CA’s manifest is verified using an EE certificate. The
 SubjectInfoAccess (SIA) field of this EE certificate contains the
 access method OID of id-ad-signedObject.

 The CA MAY choose to sign only one manifest with each generated
 private key, and generate a new key pair for each new version of the
 manifest. This form of use of the associated EE certificate is
 termed a "one-time-use" EE certificate.

 Alternatively, the CA MAY elect to use the same private key to sign a
 sequence of manifests. Because only a single manifest (issued under
 a single CA instance) is current at any point in time, the associated
 EE certificate is used to verify only a single object at a time. As
 long as the sequence of objects verified by this EE certificate are
 published using the same file name, then this sequential, multiple
 use of the EE certificate is also valid. This form of use of an EE
 certificate is termed a "sequential-use" EE certificate.

Austein, et al. Standards Track [Page 4]

RFC 6486 RPKI Manifests February 2012

4. Manifest Definition

 A manifest is an RPKI signed object, as specified in [RFC6488]. The
 RPKI signed object template requires specification of the following
 data elements in the context of the manifest structure.

4.1. eContentType

 The eContentType for a manifest is defined as id-ct-rpkiManifest and
 has the numerical value of 1.2.840.113549.1.9.16.1.26.

 id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs9(9) 16 }

 id-ct OBJECT IDENTIFIER ::= { id-smime 1 }

 id-ct-rpkiManifest OBJECT IDENTIFIER ::= { id-ct 26 }

4.2. eContent

 The content of a manifest is ASN.1 encoded using the Distinguished
 Encoding Rules (DER) [X.690]. The content of a manifest is defined
 as follows:

 Manifest ::= SEQUENCE {
 version [0] INTEGER DEFAULT 0,
 manifestNumber INTEGER (0..MAX),
 thisUpdate GeneralizedTime,
 nextUpdate GeneralizedTime,
 fileHashAlg OBJECT IDENTIFIER,
 fileList SEQUENCE SIZE (0..MAX) OF FileAndHash
 }

 FileAndHash ::= SEQUENCE {
 file IA5String,
 hash BIT STRING
 }

4.2.1. Manifest

 The manifestNumber, thisUpdate, and nextUpdate fields are modeled
 after the corresponding fields in X.509 CRLs (see [RFC5280]).
 Analogous to CRLs, a manifest is nominally current until the time
 specified in nextUpdate or until a manifest is issued with a greater
 manifest number, whichever comes first.

 If a "one-time-use" EE certificate is employed to verify a manifest,
 the EE certificate MUST have a validity period that coincides with

Austein, et al. Standards Track [Page 5]

RFC 6486 RPKI Manifests February 2012

 the interval from thisUpdate to nextUpdate, to prevent needless
 growth of the CA’s CRL.

 If a "sequential-use" EE certificate is employed to verify a
 manifest, the EE certificate’s validity period needs to be no shorter
 than the nextUpdate time of the current manifest. The extended
 validity time raises the possibility of a substitution attack using a
 stale manifest, as described in Section 6.4.

 The data elements of the manifest structure are defined as follows:

 version:
 The version number of this version of the manifest specification
 MUST be 0.

 manifestNumber:
 This field is an integer that is incremented each time a new
 manifest is issued for a given publication point. This field
 allows an RP to detect gaps in a sequence of published manifests.

 As the manifest is modeled on the CRL specification, the
 ManifestNumber is analogous to the CRLNumber, and the guidance in
 [RFC5280] for CRLNumber values is appropriate as to the range of
 number values that can be used for the manifestNumber. Manifest
 numbers can be expected to contain long integers. Manifest
 verifiers MUST be able to handle number values up to 20 octets.
 Conforming manifest issuers MUST NOT use number values longer than
 20 octets.

 thisUpdate:
 This field contains the time when the manifest was created. This
 field has the same format constraints as specified in [RFC5280]
 for the CRL field of the same name.

 nextUpdate:
 This field contains the time at which the next scheduled manifest
 will be issued. The value of nextUpdate MUST be later than the
 value of thisUpdate. The specification of the GeneralizedTime
 value is the same as required for the thisUpdate field.

 If the authority alters any of the items that it has published in
 the repository publication point, then the authority MUST issue a
 new manifest before the nextUpdate time. If a manifest
 encompasses a CRL, the nextUpdate field of the manifest MUST match
 that of the CRL’s nextUpdate field, as the manifest will be
 re-issued when a new CRL is published. If a "one-time-use" EE
 certificate is used to verify the manifest, then when a new
 manifest is issued before the time specified in nextUpdate of the

Austein, et al. Standards Track [Page 6]

RFC 6486 RPKI Manifests February 2012

 current manifest, the CA MUST also issue a new CRL that includes
 the EE certificate corresponding to the old manifest.

 fileHashAlg:
 This field contains the OID of the hash algorithm used to hash the
 files that the authority has placed into the repository. The hash
 algorithm used MUST conform to the RPKI Algorithms and Key Size
 Profile specification [RFC6485].

 fileList:
 This field is a sequence of FileAndHash objects. There is one
 FileAndHash entry for each currently valid signed object that has
 been published by the authority (at this publication point). Each
 FileAndHash is an ordered pair consisting of the name of the file
 in the repository publication point (directory) that contains the
 object in question and a hash of the file’s contents.

4.3. Content-Type Attribute

 The mandatory content-type attribute MUST have its attrValues field
 set to the same OID as eContentType. This OID is id-ct-rpkiManifest
 and has the numerical value of 1.2.840.113549.1.9.16.1.26.

4.4. Manifest Validation

 To determine whether a manifest is valid, the RP MUST perform the
 following checks in addition to those specified in [RFC6488]:

 1. The eContentType in the EncapsulatedContentInfo is
 id-ad-rpkiManifest (OID 1.2.840.113549.1.9.16.1.26).

 2. The version of the rpkiManifest is 0.

 3. In the rpkiManifest, thisUpdate precedes nextUpdate.

 If the above procedure indicates that the manifest is invalid, then
 the manifest MUST be discarded and treated as though no manifest were
 present.

5. Manifest Generation

5.1. Manifest Generation Procedure

 For a CA publication point in the RPKI repository system, a CA MUST
 perform the following steps to generate a manifest:

 1. If no key pair exists, or if using a "one-time-use" EE certificate
 with a new key pair, generate a key pair.

Austein, et al. Standards Track [Page 7]

RFC 6486 RPKI Manifests February 2012

 2. If using a "one-time-use" EE certificate, or if a key pair was
 generated in step 1, or if using a "sequential-use" EE certificate
 that will expire before the intended nextUpdate time of this
 manifest, issue an EE certificate for this key pair.

 This EE certificate MUST have an SIA extension access
 description field with an accessMethod OID value of
 id-ad-signedobject, where the associated accessLocation
 references the publication point of the manifest as an object
 URL.

 This EE certificate MUST describe its Internet Number Resources
 (INRs) using the "inherit" attribute, rather than explicit
 description of a resource set (see [RFC3779]).

 In the case of a "one-time-use" EE certificate, the validity
 times of the EE certificate MUST exactly match the thisUpdate
 and nextUpdate times of the manifest.

 In the case of a "sequential-use" EE certificate, the validity
 times of the EE certificate MUST encompass the time interval
 from thisUpdate to nextUpdate.

 3. The EE certificate MUST NOT be published in the authority’s
 repository publication point.

 4. Construct the manifest content.

 The manifest content is described in Section 4.2.1. The
 manifest’s fileList includes the file name and hash pair for each
 object issued by this CA that has been published at this
 repository publication point (directory). The collection of
 objects to be included in the manifest includes all certificates
 issued by this CA that are published at the CA’s repository
 publication point, the most recent CRL issued by the CA, and all
 objects verified by EE certificates that were issued by this CA
 that are published at this repository publication point.

 Note that the manifest does not include a self reference (i.e.,
 its own file name and hash), since it would be impossible to
 compute the hash of the manifest itself prior to it being signed.

 5. Encapsulate the manifest content using the CMS SignedData content
 type (as specified Section 4), sign the manifest using the private
 key corresponding to the subject key contained in the EE
 certificate, and publish the manifest in the repository system
 publication point that is described by the manifest.

Austein, et al. Standards Track [Page 8]

RFC 6486 RPKI Manifests February 2012

 6. In the case of a key pair that is to be used only once, in
 conjunction with a "one-time-use" EE certificate, the private key
 associated with this key pair MUST now be destroyed.

5.2. Considerations for Manifest Generation

 A new manifest MUST be issued and published on or before the
 nextUpdate time.

 An authority MUST issue a new manifest in conjunction with the
 finalization of changes made to objects in the publication point. An
 authority MAY perform a number of object operations on a publication
 repository within the scope of a repository change before issuing a
 single manifest that covers all the operations within the scope of
 this change. Repository operators SHOULD implement some form of
 repository update procedure that mitigates, to the extent possible,
 the risk that RPs that are performing retrieval operations on the
 repository are exposed to inconsistent, transient, intermediate
 states during updates to the repository publication point (directory)
 and the associated manifest.

 Since the manifest object URL is included in the SIA of issued
 certificates, a new manifest MUST NOT invalidate the manifest object
 URL of previously issued certificates. This implies that the
 manifest’s publication name in the repository, in the form of an
 object URL, is unchanged across manifest generation cycles.

 When a CA entity is performing a key rollover, the entity MAY choose
 to have two CA instances simultaneously publishing into the same
 repository publication point. In this case, there will be one
 manifest associated with each active CA instance that is publishing
 into the common repository publication point (directory).

6. Relying Party Use of Manifests

 The goal of an RP is to determine which signed objects to use for
 validating assertions about INRs and their use (e.g., which ROAs to
 use in the construction of route filters). Ultimately, this
 selection is a matter of local policy. However, in the following
 sections, we describe a sequence of tests that the RP SHOULD perform
 to determine the manifest state of the given publication point. We
 then discuss the risks associated with using signed objects in the
 publication point, given the manifest state; we also provide suitable
 warning text that SHOULD be placed in a user-accessible log file. It
 is the responsibility of the RP to weigh these risks against the risk
 of routing failure that could occur if valid data is rejected, and to
 implement a suitable local policy. Note that if a certificate is
 deemed unfit for use due to local policy, then any signed object that

Austein, et al. Standards Track [Page 9]

RFC 6486 RPKI Manifests February 2012

 is validated using this certificate also SHOULD be deemed unfit for
 use (regardless of the status of the manifest at its own publication
 point).

6.1. Tests for Determining Manifest State

 For a given publication point, the RP SHOULD perform the following
 tests to determine the manifest state of the publication point:

 1. For each CA using this publication point, select the CA’s current
 manifest (the "current" manifest is the manifest issued by this CA
 having the highest manifestNumber among all valid manifests, and
 where manifest validity is defined in Section 4.4).

 If the publication point does not contain a valid manifest, see
 Section 6.2. Lacking a valid manifest, the following tests cannot
 be performed.

 2. To verify completeness, an RP MAY check that every file at each
 publication point appears in one and only one current manifest,
 and that every file listed in a current manifest is published at
 the same publication point as the manifest.

 If there exist files at the publication point that do not appear
 on any manifest, or files listed in a manifest that do not appear
 at the publication point, then see Section 6.5, but still continue
 with the following test.

 3. Check that the current time (translated to UTC) is between
 thisUpdate and nextUpdate.

 If the current time does not lie within this interval, then see
 Section 6.4, but still continue with the following tests.

 4. Verify that the listed hash value of every file listed in each
 manifest matches the value obtained by hashing the file at the
 publication point.

 If the computed hash value of a file listed on the manifest does
 not match the hash value contained in the manifest, then see
 Section 6.6.

 5. An RP MAY check that the contents of each current manifest
 conforms to the manifest’s scope constraints, as specified in
 Section 2.

 6. If a current manifest contains entries for objects that are not
 within the scope of the manifest, then the out-of-scope entries

Austein, et al. Standards Track [Page 10]

RFC 6486 RPKI Manifests February 2012

 SHOULD be disregarded in the context of this manifest. If there
 is no other current manifest that describes these objects within
 that other manifest’s scope, then see Section 6.2.

 For each signed object, if all of the following conditions hold:

 * the manifest for its publication and the associated publication
 point pass all of the above checks;

 * the signed object is valid; and

 * the manifests for every certificate on the certification path
 used to validate the signed object and the associated
 publication points pass all of the above checks;

 then the RP can conclude that no attack against the repository system
 has compromised the given signed object, and the signed object MUST
 be treated as valid (relative to manifest checking).

6.2. Missing Manifests

 The absence of a current manifest at a publication point could occur
 due to an error by the publisher or due to (malicious or accidental)
 deletion or corruption of all valid manifests.

 When no valid manifest is available, there is no protection against
 attacks that delete signed objects or replay old versions of signed
 objects. All signed objects at the publication point, and all
 descendant objects that are validated using a certificate at this
 publication point, SHOULD be viewed as suspect, but MAY be used by
 the RP, as per local policy.

 The primary risk in using signed objects at this publication point is
 that a superseded (but not stale) CRL would cause an RP to improperly
 accept a revoked certificate as valid (and thus rely upon signed
 objects that are validated using that certificate). This risk is
 somewhat mitigated if the CRL for this publication point has a short
 time between thisUpdate and nextUpdate (and the current time is
 within this interval). The risk in discarding signed objects at this
 publication point is that an RP may incorrectly discard a large
 number of valid objects. This gives significant power to an
 adversary that is able to delete a manifest at the publication point.

 Regardless of whether signed objects from this publication are deemed
 fit for use by an RP, this situation SHOULD result in a warning to
 the effect that: "No manifest is available for <pub point name>, and
 thus there may have been undetected deletions or replay substitutions
 from the publication point."

Austein, et al. Standards Track [Page 11]

RFC 6486 RPKI Manifests February 2012

 In the case where an RP has access to a local cache of previously
 issued manifests that are valid, the RP MAY use the most recently
 previously issued valid manifests for this RPKI repository
 publication collection for each entity that publishes at this
 publication point.

6.3. Invalid Manifests

 The presence of an invalid manifest at a publication point could
 occur due to an error by the publisher or due to (malicious or
 accidental) corruption of a valid manifest. An invalid manifest MUST
 never be used, even if the manifestNumber of the invalid manifest is
 greater than that of other (valid) manifests.

 There are no risks associated with using signed objects at a
 publication point containing an invalid manifest, provided that valid
 manifests that collectively cover all the signed objects are also
 present.

 If an invalid manifest is present at a publication point that also
 contains one or more valid manifests, this situation SHOULD result in
 a warning to the effect that: "An invalid manifest was found at <pub
 point name>, this indicates an attack against the publication point
 or an error by the publisher. Processing for this publication point
 will continue using the most recent valid manifest(s)."

 In the case where the RP has access to a local cache of previously
 issued (valid) manifests, an RP MAY make use of that locally cached
 data. Specifically, the RP MAY use the locally cached, most recent,
 previously issued, valid manifest issued by the entity that (appears
 to have) issued the invalid manifest.

6.4. Stale Manifests

 A manifest is considered stale if the current time is after the
 nextUpdate time for the manifest. This could be due to publisher
 failure to promptly publish a new manifest, or due to (malicious or
 accidental) corruption or suppression of a more recent manifest.

 All signed objects at the publication point issued by the entity that
 has published the stale manifest, and all descendant signed objects
 that are validated using a certificate issued by the entity that has
 published the stale manifest at this publication point, SHOULD be
 viewed as somewhat suspect, but MAY be used by the RP as per local
 policy.

 The primary risk in using such signed objects is that a newer
 manifest exists that, if present, would indicate that certain objects

Austein, et al. Standards Track [Page 12]

RFC 6486 RPKI Manifests February 2012

 have been removed or replaced. (For example, the new manifest might
 show the existence of a newer CRL and the removal of one or more
 revoked certificates). Thus, the use of objects from a stale
 manifest may cause an RP to incorrectly treat invalid objects as
 valid. The risk is that the CRL covered by the stale manifest has
 been superseded, and thus an RP will improperly treat a revoked
 certificate as valid. This risk is somewhat mitigated if the time
 between the nextUpdate field of the manifest and the current time is
 short. The risk in discarding signed objects at this publication
 point is that the RP may incorrectly discard a large number of valid
 objects. This gives significant power to an adversary that is able
 to prevent the publication of a new manifest at a given publication
 point.

 Regardless of whether signed objects from this publication are deemed
 fit for use by an RP, this situation SHOULD result in a warning to
 the effect that: "A manifest found at <pub point name> is no longer
 current. It is possible that undetected deletions have occurred at
 this publication point."

 Note that there is also the potential for the current time to be
 before the thisUpdate time for the manifest. This case could be due
 to publisher error or a local clock error; in such a case, this
 situation SHOULD result in a warning to the effect that: "A manifest
 found at <pub point name> has an incorrect thisUpdate field. This
 could be due to publisher error, or a local clock error, and
 processing for this publication point will continue using this
 otherwise valid manifest."

6.5. Mismatch between Manifest and Publication Point

 If there exist valid signed objects that do not appear in any
 manifest, then, provided the manifest is not stale (see Section 6.4),
 it is likely that their omission is an error by the publisher. It is
 also possible that this state could be the result of a (malicious or
 accidental) replacement of a current manifest with an older, but
 still valid, manifest. However, regarding the appropriate
 interpretation of such objects, it remains the case that if the
 objects were intended to be invalid, then they should have been
 revoked using whatever revocation mechanism is appropriate for the
 signed object in question. Therefore, there is little risk in using
 such signed objects. If the publication point contains a stale
 manifest, then there is a greater risk that the objects in question
 were revoked, along with a missing Certificate Revocation List (CRL),
 the absence of which is undetectable since the manifest is stale. In
 any case, the use of signed objects not present on a manifest, or
 descendant objects that are validated using such signed objects, is a
 matter of local policy.

Austein, et al. Standards Track [Page 13]

RFC 6486 RPKI Manifests February 2012

 Regardless of whether objects not appearing on a manifest are deemed
 fit for use by the RP, this situation SHOULD result in a warning to
 the effect that: "The following files are present in the repository
 at <pub point name>, but are not listed on any manifest <file list>
 for <pub point name>."

 If there exists files listed on the manifest that do not appear in
 the repository, then these objects are likely to have been improperly
 (via malice or accident) deleted from the repository. A primary
 purpose of manifests is to detect such deletions. Therefore, in such
 a case, this situation SHOULD result in a warning to the effect that:
 "The following files that should have been present in the repository
 at <pub point name> are missing <file list>. This indicates an
 attack against this publication point, or the repository, or an error
 by the publisher."

6.6. Hash Values Not Matching Manifests

 A file appearing on a manifest with an incorrect hash value could
 occur because of publisher error, but it also may indicate that an
 attack has occurred.

 If an object appeared on a previous valid manifest with a correct
 hash value, and it now appears with an invalid hash value, then it is
 likely that the object has been superseded by a new (unavailable)
 version of the object. If the object is used, there is a risk that
 the RP will be treating a stale object as valid. This risk is more
 significant if the object in question is a CRL. If the object can be
 validated using the RPKI, the use of these objects is a matter of
 local policy.

 If an object appears on a manifest with an invalid hash and has never
 previously appeared on a manifest, then it is unclear whether the
 available version of the object is more or less recent than the
 version indicated by the manifest. If the manifest is stale (see
 Section 6.4), then it becomes more likely that the available version
 is more recent than the version indicated on the manifest, but this
 is never certain. Whether to use such objects is a matter of local
 policy. However, in general, it is better to use a possibly outdated
 version of the object than to discard the object completely.

 While it is a matter of local policy, in the case of CRLs, an RP
 SHOULD endeavor to use the most recently issued valid CRL, even where
 the hash value in the manifest matches an older CRL or does not match
 any available CRL for a CA instance. The thisUpdate field of the CRL
 can be used to establish the most recent CRL in the case where an RP
 has more than one valid CRL for a CA instance.

Austein, et al. Standards Track [Page 14]

RFC 6486 RPKI Manifests February 2012

 Regardless of whether objects with incorrect hashes are deemed fit
 for use by the RP, this situation SHOULD result in a warning to the
 effect that: "The following files at the repository <pub point name>
 appear on a manifest with incorrect hash values <file list>. It is
 possible that these objects have been superseded by a more recent
 version. It is very likely that this problem is due to an attack on
 the publication point, although it also could be due to a publisher
 error."

7. Publication Repositories

 The RPKI publication system model requires that every publication
 point be associated with one or more CAs, and be non-empty. Upon
 creation of the publication point associated with a CA, the CA MUST
 create and publish a manifest as well as a CRL. A CA’s manifest will
 always contain at least one entry, namely, the CRL issued by the CA
 upon repository creation [RFC6481].

 Every published signed object in the RPKI [RFC6488] is published in
 the repository publication point of the CA that issued the EE
 certificate, and is listed in the manifest associated with that CA
 certificate.

8. Security Considerations

 Manifests provide an additional level of protection for RPKI RPs.
 Manifests can assist an RP to determine if a repository object has
 been deleted, occluded, or otherwise removed from view, or if a
 publication of a newer version of an object has been suppressed (and
 an older version of the object has been substituted).

 Manifests cannot repair the effects of such forms of corruption of
 repository retrieval operations. However, a manifest enables an RP
 to determine if a locally maintained copy of a repository is a
 complete and up-to-date copy, even when the repository retrieval
 operation is conducted over an insecure channel. In cases where the
 manifest and the retrieved repository contents differ, the manifest
 can assist in determining which repository objects form the
 difference set in terms of missing, extraneous, or superseded
 objects.

 The signing structure of a manifest and the use of the nextUpdate
 value allows an RP to determine if the manifest itself is the subject
 of attempted alteration. The requirement for every repository
 publication point to contain at least one manifest allows an RP to
 determine if the manifest itself has been occluded from view. Such
 attacks against the manifest are detectable within the time frame of
 the regular schedule of manifest updates. Forms of replay attack

Austein, et al. Standards Track [Page 15]

RFC 6486 RPKI Manifests February 2012

 within finer-grained time frames are not necessarily detectable by
 the manifest structure.

9. IANA Considerations

 This document registers the following in the "RPKI Signed Object"
 registry created by [RFC6488]:

 Name: Manifest
 OID: 1.2.840.113549.1.9.16.1.26
 Reference: [RFC6486] (this document)

 This document registers the following three-letter filename extension
 for "RPKI Repository Name Schemes" registry created by [RFC6481]:

 Filename extension: mft
 RPKI Object: Manifest
 Reference: [RFC6481]

10. Acknowledgements

 The authors would like to acknowledge the contributions from George
 Michelson and Randy Bush in the preparation of the manifest
 specification. Additionally, the authors would like to thank Mark
 Reynolds and Christopher Small for assistance in clarifying manifest
 validation and RP behavior. The authors also wish to thank Sean
 Turner for his helpful review of this document.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC6481] Huston, G., Loomans, R., and G. Michaelson, "A Profile for
 Resource Certificate Repository Structure", RFC 6481,
 February 2012.

 [RFC6485] Huston, G., "A Profile for Algorithms and Key Sizes for Use
 in the Resource Public Key Infrastructure (RPKI)", RFC
 6485, February 2012.

Austein, et al. Standards Track [Page 16]

RFC 6486 RPKI Manifests February 2012

 [RFC6487] Huston, G., Michaelson, G., and R. Loomans, "A Profile for
 X.509 PKIX Resource Certificates", RFC 6487, February 2012.

 [RFC6488] Lepinski, M., Chi, A., and S. Kent, "Signed Object Template
 for the Resource Public Key Infrastructure (RPKI)", RFC
 6488, February 2012.

 [X.690] ITU-T Recommendation X.690 (2002) | ISO/IEC 8825-1:2002,
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER).

11.2. Informative References

 [RFC3370] Housley, R., "Cryptographic Message Syntax (CMS)
 Algorithms", RFC 3370, August 2002.

 [RFC3779] Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP
 Addresses and AS Identifiers", RFC 3779, June 2004.

 [RFC6480] Lepinski, M. and S. Kent, "An Infrastructure to Support
 Secure Internet Routing", RFC 6480, February 2012.

 [RFC6489] Huston, G., Michaelson, G., and S. Kent, "Certification
 Authority (CA) Key Rollover in the Resource Public Key
 Infrastructure (RPKI)", BCP 174, RFC 6489, February 2012.

Austein, et al. Standards Track [Page 17]

RFC 6486 RPKI Manifests February 2012

Appendix A. ASN.1 Module

 RPKIManifest { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs9(9) smime(16) mod(0) 60 }

 DEFINITIONS EXPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL --

 -- IMPORTS NOTHING --

 -- Manifest Content Type: OID

 id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 16 }

 id-ct OBJECT IDENTIFIER ::= { id-smime 1 }

 id-ct-rpkiManifest OBJECT IDENTIFIER ::= { id-ct 26 }

 -- Manifest Content Type: eContent

 Manifest ::= SEQUENCE {
 version [0] INTEGER DEFAULT 0,
 manifestNumber INTEGER (0..MAX),
 thisUpdate GeneralizedTime,
 nextUpdate GeneralizedTime,
 fileHashAlg OBJECT IDENTIFIER,
 fileList SEQUENCE SIZE (0..MAX) OF FileAndHash
 }

 FileAndHash ::= SEQUENCE {
 file IA5String,
 hash BIT STRING
 }

 END

Austein, et al. Standards Track [Page 18]

RFC 6486 RPKI Manifests February 2012

Authors’ Addresses

 Rob Austein
 Internet Systems Consortium

 EMail: sra@hactrn.net

 Geoff Huston
 APNIC
 6 Cordelia St
 South Brisbane, QLD 4101
 Australia

 EMail: gih@apnic.net
 URI: http://www.apnic.net

 Stephen Kent
 BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138
 USA

 EMail: kent@bbn.com

 Matt Lepinski
 BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138
 USA

 EMail: mlepinski@bbn.com

Austein, et al. Standards Track [Page 19]

