
Internet Engineering Task Force (IETF) G. Huston
Request for Comments: 6492 R. Loomans
Category: Standards Track B. Ellacott
ISSN: 2070-1721 APNIC
 R. Austein
 ISC
 February 2012

 A Protocol for Provisioning Resource Certificates

Abstract

 This document defines a framework for certificate management
 interactions between an Internet Number Resource issuer ("issuer")
 and an Internet Number Resource recipient ("subject") through the
 specification of a protocol for interaction between the two parties.
 The protocol supports the transmission of requests from the subject,
 and corresponding responses from the issuer encompassing the actions
 of certificate issuance, certificate revocation, and certificate
 status information reports. This protocol is intended to be limited
 to the application of Internet Number Resource Certificate management
 and is not intended to be used as part of a more general certificate
 management framework.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6492.

Huston, et al. Standards Track [Page 1]

RFC 6492 ResCert Provisioning February 2012

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 1.1. Terminology ..3
 2. Scope ...4
 3. Protocol Specification ..4
 3.1. CMS Profile ..5
 3.1.1. SignedData Content Type5
 3.1.2. CMS Object Validation10
 3.1.3. ASN.1 Specification of the CMS Signed Object12
 3.2. Common Message Format14
 3.3. Control - Resource Class Query16
 3.3.1. Resource Class List Query16
 3.3.2. Resource Class List Response17
 3.4. CA - Certificate Issuance21
 3.4.1. Certificate Issuance Request21
 3.4.2. Certificate Issuance Response24
 3.5. Certificate Revocation24
 3.5.1. Certificate Revocation Request25
 3.5.2. Certificate Revocation Response26
 3.6. Request-Not-Performed Response26
 3.7. XML Schema ..27
 4. Security Considerations ..29
 5. IANA Considerations ..30
 5.1. application/rpki-updown30
 6. Acknowledgements ...30
 7. References ...31
 7.1. Normative References31
 7.2. Informative References32

Huston, et al. Standards Track [Page 2]

RFC 6492 ResCert Provisioning February 2012

1. Introduction

 This document defines a framework for certificate management
 interactions between an Internet Number Resource issuer ("issuer")
 and an Internet Number Resource recipient ("subject") through the
 specification of a protocol for interaction between the two parties.
 The protocol supports the transmission of requests from the subject,
 and corresponding responses from the issuer encompassing the actions
 of certificate issuance, certificate revocation, and certificate
 status information reports. This protocol is intended to be limited
 to the application of Internet Number Resource certificate management
 and is not intended to be used as part of a more general certificate
 management framework.

1.1. Terminology

 Terms used in this document are:

 "Internet Number Resource" (or "resource") used in the context of
 this document to refer to Autonomous System (AS) numbers, IP
 version 4 addresses, and IP version 6 addresses.

 "issuer" used in the context of this document as an entity
 undertaking the role of resource issuer. An "issuer" is a
 Certification Authority (CA), and can issue resource certificates.

 "subject" used in the context of this document as an entity
 undertaking the role of resource recipient who is the subject of a
 resource certificate. A "subject" may be issued with a CA-enabled
 certificate, allowing the entity to also assume the role of an
 "issuer".

 "resource class" a resource class refers to a collection of
 resources that can be certified in a single resource certificate
 by an issuer.

 "server" in the context of this client/server protocol
 specification, the issuer assumes the role of the "server".

 "client" in the context of this client/server protocol
 specification, the subject assumes the role of the "client".

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Huston, et al. Standards Track [Page 3]

RFC 6492 ResCert Provisioning February 2012

2. Scope

 This Resource Public Key Infrastructure (RPKI) certificate
 provisioning protocol defines a basic set of interactions that allow
 a subject to request certificate issuance, revocation, and status
 information from the issuer, and for an issuer to maintain an issued
 certificate set that is aligned to the allocation records relating to
 each subject. The issuer’s resource allocation database is the
 authoritative source of what resource allocations the issuer may
 certify for a subject.

 A resource recipient (subject) may also undertake the role of a
 resource issuer (issuer).

 This protocol specification does not encompass:

 o signing of objects with keys that are certified by resource
 certificates, nor the issuance of end-entity certificates.

 o the specification of interaction with the issuer’s resource
 allocation database, nor the specification of a protocol to manage
 the publication repository.

 o the interactions between client and server that establish
 identities, or the exchange of the certificates and validation
 Public Key Infrastructure (PKI) contexts used in the Cryptographic
 Message Syntax (CMS) [RFC5652] message exchange.

 o the interactions between client and server that allow respective
 local CMS signing time values to be reset to mutually recognized
 values.

3. Protocol Specification

 This RPKI certificate provisioning protocol is expressed as a simple
 request/response interaction, where the client passes a request to
 the server, and the server generates a corresponding response.

 The protocol is implemented as an exchange of messages.

 Messages are passed over an HTTP [RFC2616] end-to-end connection. A
 message exchange commences with the client initiating an HTTP POST
 with content type of "application/rpki-updown" and the message object
 as the body. The server’s response is similarly an HTTP response,
 with the message object carried as the body of the response and with
 a response content type of "application/rpki-updown". The content of
 the POST and the server’s response are "well-formed" CMS [RFC5652]
 objects, encoded using the Distinguished Encoding Rules (DER) for

Huston, et al. Standards Track [Page 4]

RFC 6492 ResCert Provisioning February 2012

 ASN.1 [X.509-88], formatted in accordance with the CMS profile
 specified in the following section. CMS is used as the signing
 format to sign the message object. The CMS message includes an end-
 entity (EE) certificate that is to be used to validate the CMS
 digital signature (see Section 3.1.1.4); the certificate chain that
 is used to validate the EE certificate MAY be included in the CMS
 message, and if it is not present it is assumed to have been
 communicated between the two entities, through mechanisms not defined
 in this specification.

 The protocol’s request/response interaction is assumed to be
 reliable, in that all requests MUST generate a matching response.
 The protocol requires sequential operation for each distinct client,
 where the server MUST NOT accept a client’s request unless it has
 generated and sent a response to the client’s previous request.
 Attempts by the client to initiate multiple requests in parallel
 (i.e., multiple concurrent requests with a common sender attribute
 (see Section 3.2) in the request) MUST be detected by the server and
 rejected with an error response (i.e., an error code 1101 response).

3.1. CMS Profile

 The format of the CMS object is:

 ContentInfo ::= SEQUENCE {
 contentType ContentType,
 content [0] EXPLICIT ANY DEFINED BY contentType }

 ContentType ::= OBJECT IDENTIFIER

 The content-type is the signed-data type of id-data, namely
 id-signedData, OID = 1.2.840.113549.1.7.2. [RFC5652]

3.1.1. SignedData Content Type

 According to the CMS standard [RFC5652], signed-data content types
 are the ASN.1 type SignedData:

 SignedData ::= SEQUENCE {
 version CMSVersion,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapContentInfo EncapsulatedContentInfo,
 certificates [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,
 signerInfos SignerInfos }

 DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier
 SignerInfos ::= SET OF SignerInfo

Huston, et al. Standards Track [Page 5]

RFC 6492 ResCert Provisioning February 2012

 Additionally, the SignerInfos set MUST contain only a single
 SignerInfo object.

3.1.1.1. version

 The version is the syntax version number. It MUST be 3,
 corresponding to the signerInfo structure having version number 3.

3.1.1.2. digestAlgorithms

 The digestAlgorithms set contains the Object Identifiers (OID)s of
 the digest algorithm(s) used in signing the encapsulated content.
 This set MUST contain exactly one digest algorithm OID, and the OID
 MUST be selected from those specified in [RFC6485].

3.1.1.3. encapContentInfo

 encapContentInfo is the signed content, consisting of a content type
 identifier and the content itself. The encapContentInfo represents
 the payload of the RPKI certificate provisioning protocol.

 EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType,
 eContent [0] EXPLICIT OCTET STRING OPTIONAL }

 ContentType ::= OBJECT IDENTIFIER

3.1.1.3.1. eContentType

 The eContentType for the RPKI Protocol Message object is defined as
 id-ct-xml, and has the numerical value of 1.2.840.113549.1.9.16.1.28.

 id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs9(9) 16 }

 id-ct OBJECT IDENTIFIER ::= { id-smime 1 }

 id-ct-xml OBJECT IDENTIFIER ::= { id-ct 28 }

3.1.1.3.2. eContent

 The content of an RPKI XML Protocol Object consists of a single
 protocol message, structured according to a defined XML schema, as
 defined in subsequent sections of this document. The eContent field
 of the CMS object is formally defined using ASN.1 as:

 RPKIXMLProtocolObject ::= OCTET STRING -- XML encoded message

Huston, et al. Standards Track [Page 6]

RFC 6492 ResCert Provisioning February 2012

3.1.1.4. certificates

 This field MUST be present and MUST contain the single EE certificate
 of the key pair whose private key value was used to sign the CMS.
 This MUST NOT be an RPKI certificate, and SHOULD be a certificate
 that is recognized to attest to the identity of the party that
 created the CMS object.

 This field MAY contain CA certificates that a relying party MAY use
 to validate the EE certificate.

3.1.1.5. crls

 This field MUST be present. The contents of the field are specified
 in [RFC5652]. The current Certificate Revocation List (CRL) issued
 by the same CA that issued the EE certificate of the key pair whose
 private key value was used to sign the CMS MUST be present in this
 field. This field MAY contain CRLs issued by other CAs covering CA
 certificates included in the certificates field of the CMS object
 (see Section 3.1.1.4). This field MUST NOT contain any other CRLs.

3.1.1.6. SignerInfo

 SignerInfo is defined in CMS as:

 SignerInfo ::= SEQUENCE {
 version CMSVersion,
 sid SignerIdentifier,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }

3.1.1.6.1. version

 The version number MUST be 3, corresponding with the choice of
 SubjectKeyIdentifier for the sid.

3.1.1.6.2. sid

 The sid is defined as:

 SignerIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier [0] SubjectKeyIdentifier }

Huston, et al. Standards Track [Page 7]

RFC 6492 ResCert Provisioning February 2012

 In this profile, the sid MUST be the SubjectKeyIdentifier that
 appears in the EE certificate carried in the CMS certificates field.

3.1.1.6.3. digestAlgorithm

 The digestAlgorithm MUST consist of the OID of a digest algorithm
 that conforms to the RPKI Algorithms and Key Size Profile
 specification [RFC6485].

3.1.1.6.4. signedAttrs

 The signedAttrs field is defined as:

 SignedAttributes ::= SET SIZE (1..MAX) OF Attribute

 UnsignedAttributes ::= SET SIZE (1..MAX) OF Attribute

 Attribute ::= SEQUENCE {
 attrType OBJECT IDENTIFIER,
 attrValues SET OF AttributeValue }

 AttributeValue ::= ANY

 The signedAttr element MUST be present and MUST include the content-
 type and message-digest attributes [RFC5652]. If either the signing-
 time [RFC5652] attribute or the binary-signing-time attribute
 [RFC6019], or both attributes, are present, they MUST also be
 included as the SignedAttributes. Other signed attributes MUST NOT
 be included.

 The signedAttr MUST include only a single instance of any particular
 attribute. Additionally, even though the syntax allows for a SET OF
 AttributeValue, in this profile, the attrValues MUST consist of only
 a single AttributeValue.

3.1.1.6.4.1. Content-Type Attribute

 The content-type attribute MUST be present. The attrType OID for the
 content-type attribute is 1.2.840.113549.1.9.3.

 id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 3 }

 ContentType ::= OBJECT IDENTIFIER

Huston, et al. Standards Track [Page 8]

RFC 6492 ResCert Provisioning February 2012

 The attrValues for the content-type attribute MUST match the
 eContentType in the EncapsulatedContentInfo. This OID value is
 defined as id-ct-xml and has the numerical value of
 1.2.840.113549.1.9.16.1.28.

3.1.1.6.4.2. Message-Digest Attribute

 The message-digest attribute MUST be present. The attrType OID for
 the message-digest attribute is 1.2.840.113549.1.9.4.

 id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 4 }

 MessageDigest ::= OCTET STRING

 The attrValues for the message-digest attribute contains the output
 of the digest algorithm applied to the content being signed, as
 specified in Section 5.4 of [RFC5652].

3.1.1.6.4.3. Signing-Time Attribute

 The signing-time attribute MAY be present. The attrType OID for the
 signing-time attribute is 1.2.840.113549.1.9.5.

 id-signingTime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 5 }

 SigningTime ::= Time

 Time ::= CHOICE {
 utcTime UTCTime,
 generalizedTime GeneralizedTime }

 The signing-time attribute specifies the time, based on the local
 system clock, when the digital signature was applied to the content.

 Guidelines regarding the use of UTCTime and GeneralizedTime in the
 signing-time attribute can be found in Section 11.3 of [RFC5652].

 Either one of the signing-time attribute or the binary-signing-time
 attribute, or both attributes, MUST be present. If both the signing-
 time and binary-signing-time attributes are present, they MUST both
 represent the same underlying time value.

Huston, et al. Standards Track [Page 9]

RFC 6492 ResCert Provisioning February 2012

3.1.1.6.4.4. Binary-Signing-Time Attribute

 The binary-signing-time attribute MAY be present. The attrType OID
 for the binary-signing-time attribute is 1.2.840.113549.1.9.16.2.46.

 id-aa-binarySigningTime OBJECT IDENTIFIER ::= { iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 46 }

 BinarySigningTime ::= BinaryTime

 BinaryTime ::= INTEGER (0..MAX)

 The binary-signing-time attribute specifies the time, based on the
 local system clock, when the digital signature was applied to the
 content. The precise definition of the binary-signing-time attribute
 can be found at [RFC6019].

 Either one of the signing-time or the binary-signing-time attributes,
 or both attributes, MUST be present. If both the signing-time and
 binary-signing-time attributes are present, they MUST both represent
 the same underlying time value.

3.1.1.6.5. signatureAlgorithm Attribute

 The signatureAlgorithm MUST conform to the RPKI Algorithms and Key
 Size Profile specification [RFC6485].

3.1.1.6.6. signature Attribute

 The signature value is defined as:

 SignatureValue ::= OCTET STRING

 The signature characteristics are defined by the digest and signature
 algorithms.

3.1.1.6.7. UnsignedAttributes Attribute

 unsignedAttrs MUST be omitted.

3.1.2. CMS Object Validation

 Before a recipient of a CMS signed object can use the content of the
 object, the recipient MUST validate the signed object by verifying
 that all of the following conditions hold. A recipient may perform
 these checks in any order.

Huston, et al. Standards Track [Page 10]

RFC 6492 ResCert Provisioning February 2012

 1. The CMS object is well formed, such that the signed object syntax
 complies with this specification. In particular, that each of
 the following is true:

 a. The content-type of the CMS object is SignedData (OID
 1.2.840.113549.1.7.2)

 b. The version of the SignedData object is 3.

 c. The certificates field in the SignedData object is present
 and contains one EE certificate, the SubjectKeyIdentifier
 field of which matches the sid field of the SignerInfo
 object.

 d. The crls field in the SignedData object is present.

 e. The version of the SignerInfo is 3.

 f. The signedAttrs field in the SignerInfo object is present and
 contains one each of the content-type attribute (OID
 1.2.840.113549.1.9.3), the message-digest attribute (OID
 1.2.840.113549.1.9.4), and either or both of a single
 instance of the signing-time attribute (OID
 1.2.840.113549.1.9.5) and the binary-signing-time attribute
 (OID 1.2.840.113549.1.9.16.2.46), and no other attributes.

 g. The eContentType in the EncapsulatedContentInfo is an OID
 that matches the attrValue in the content-type attribute and
 has the attrValue of id-ct-xml.

 h. The unsignedAttrs field in the SignerInfo object is omitted.

 i. If both the signing-time attribute and the binary-signing-
 time attribute are present, then their values represent the
 same time.

 j. The digestAlgorithm in the SignedData and SignerInfo objects
 conforms to the RPKI Algorithms and Key Size Profile
 specification [RFC6485].

 k. The signatureAlgorithm in the SignerInfo object conforms to
 the RPKI Algorithms and Key Size Profile specification
 [RFC6485].

 l. The signed object is DER encoded.

Huston, et al. Standards Track [Page 11]

RFC 6492 ResCert Provisioning February 2012

 2. The public key of the EE certificate (contained within the CMS
 signed-data object) can be used to successfully verify the
 signature on the signed object.

 3. The EE certificate (contained within the CMS signed-data object)
 is a valid EE certificate. In particular, there exists a valid
 certification path from a trust anchor selected by the recipient
 to this EE certificate.

 4. At the current time, the EE certificate is not revoked. This can
 be determined by confirming that the CRL contained in the crls
 field of the CMS signed data object is a current valid CRL,
 issued by the same CA that issued the EE certificate, and the CRL
 does not list the serial number of the EE certificate.

 5. The time represented by the signing-time attribute or the binary-
 signing-time attribute is greater than or equal to the time value
 passed in previously valid CMS objects that were passed from the
 same originator to this recipient. This signing time value MAY
 lie within the Validity Time of the EE certificate, but the EE
 certificate SHOULD NOT be considered invalid if this is not the
 case when all other checks listed here are passed.

3.1.3. ASN.1 Specification of the CMS Signed Object

 The following is the ASN.1 specification of the CMS signed object
 used by the RPKI provisioning protocol.

 ContentInfo ::= SEQUENCE {
 contentType ContentType,
 content [0] EXPLICIT ANY DEFINED BY contentType }

 ContentType ::= OBJECT IDENTIFIER

 id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs9(9) 16 }
 id-ct OBJECT IDENTIFIER ::= { id-smime 1 }

 id-ct-xml OBJECT IDENTIFIER ::= { id-ct 28 }

 RPKIXMLProtocolObject ::= OCTET STRING -- XML encoded message

 id-signedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2 }

Huston, et al. Standards Track [Page 12]

RFC 6492 ResCert Provisioning February 2012

 SignedData ::= SEQUENCE {
 version CMSVersion,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapContentInfo EncapsulatedContentInfo,
 certificates [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,
 signerInfos SignerInfos }

 DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

 SignerInfos ::= SET OF SignerInfo

 SignerInfo ::= SEQUENCE {
 version CMSVersion,
 sid SignerIdentifier,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }

 SignerIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier [0] SubjectKeyIdentifier }

 SignedAttributes ::= SET SIZE (1..MAX) OF Attribute

 Attribute ::= SEQUENCE {
 attrType OBJECT IDENTIFIER,
 attrValues SET OF AttributeValue }

 AttributeValue ::= ANY

 SignatureValue ::= OCTET STRING

 id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 3 }

 ContentType ::= OBJECT IDENTIFIER

 id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 4 }

 MessageDigest ::= OCTET STRING

 id-signingTime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 5 }

Huston, et al. Standards Track [Page 13]

RFC 6492 ResCert Provisioning February 2012

 SigningTime ::= Time

 Time ::= CHOICE {
 utcTime UTCTime,
 generalizedTime GeneralizedTime }

 id-aa-binarySigningTime OBJECT IDENTIFIER ::= { iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 46 }

 BinarySigningTime ::= BinaryTime

 BinaryTime ::= INTEGER (0..MAX)

3.2. Common Message Format

 The XML template for all messages is informally described as follows
 (the RELAX NG compact form schema that formally describes the
 protocol message objects is contained in Section 3.7):

 <?xml version="1.0" encoding="UTF-8"?>
 <message xmlns="http://www.apnic.net/specs/rescerts/up-down/"

 version="1"
 sender="sender name"
 recipient="recipient name"
 type="message type">

 [payload]

 </message>

 version:
 the value of this attribute is the version of this protocol. This
 document describes version 1.

 sender:
 the value of this attribute is the agreed name of the message
 sender, as determined between the client and the server by prior
 arrangement.

Huston, et al. Standards Track [Page 14]

RFC 6492 ResCert Provisioning February 2012

 recipient:
 the value of this attribute is the agreed name of the message
 recipient, as determined between the client and the server by
 prior arrangement.

 type:
 the possible values of this attribute are "list", "list_response",
 "issue", "issue_response", "revoke", "revoke_response", and
 "error_response".

 Conforming parsers MUST reject any document with a version number
 they do not understand or with any elements or attributes they do not
 understand. Servers must generate an error response when receiving
 such a request. Clients should generate an error when receiving such
 a response.

 The encapsulated content of the CMS wrapping is an XML document. The
 remainder of this protocol specification omits this CMS wrapper and
 only discusses the XML document.

 Messages are checked using the following tests:

 1. Check that the CMS is well-formed (see test 1 of Section 3.1.2).

 2. Check that the XML is well-formed.

 3. Check that the XML sender and recipient attributes reference a
 known client and this server’s system respectively for a query,
 and the previously addressed server and this client for a
 response.

 4. Verify the digital signature using the public key provided in the
 certificate carried in the CMS wrapper (see test 2 of Section
 3.1.2).

 5. Validate the CMS-provided certificate using the PKI that has been
 determined by prior arrangement between the client and server
 (see test 3 of Section 3.1.2).

 6. Check that the signing time of the CMS is equal to or greater
 than the signing time provided in the most recent previous
 message that this recipient has received from this sender (see
 test 4 of Section 3.1.2).

 7. Check that the value of the version number of the message is 1.

 These checks SHOULD be applied in the order specified here.

Huston, et al. Standards Track [Page 15]

RFC 6492 ResCert Provisioning February 2012

 Any errors encountered while checking items 1 through 7 MUST cause a
 server to generate an "HTTP 400 Bad Request" response to the HTTP
 POST operation. An error in step 7 MUST cause the server to generate
 a "Request-Not-Performed" error response. Any errors encountered in
 these tests by a client SHOULD cause the client to generate an error.

 A server MAY perform flow control on the rate of processed requests.
 Requests not processed due to such a flow control constraint MAY
 cause the server to generate an "HTTP 503 Service Unavailable"
 response. An HTTP 503 response MAY include an HTTP Retry-After:
 header as a hint to the client.

3.3. Control - Resource Class Query

 This query is used for a client to query a server for a list of all
 resources that have been allocated or assigned by the server to the
 client. In addition, the server’s response will contain a copy of
 the current certificates issued by the server’s CA where this client
 is the certificate’s subject.

3.3.1. Resource Class List Query

 The value of the message "type" message attribute for this query is:

 type="list"

 Payload:

 [No message payload is defined for this query]

Huston, et al. Standards Track [Page 16]

RFC 6492 ResCert Provisioning February 2012

3.3.2. Resource Class List Response

 The value of the message "type" element for this response is:

 type="list_response"

 Payload:

 <class class_name="class name"
 cert_url="url"
 resource_set_as="as resource set"
 resource_set_ipv4="ipv4 resource set"
 resource_set_ipv6="ipv6 resource set"
 resource_set_notafter="datetime"
 suggested_sia_head="[directory uri]" >
 <certificate cert_url="url"
 req_resource_set_as="as resource set"
 req_resource_set_ipv4="ipv4 resource set"
 req_resource_set_ipv6="ipv6 resource set" >
 [certificate]
 </certificate>

 ...

 (repeated for each current certificate where the client
 is the certificate’s subject)

 <issuer>[issuer’s certificate]</issuer>
 </class>

 ...

 (repeated for each of the issuer’s resource class where the
 client has been allocated resources)

 Where the client has been allocated resources from multiple resource
 classes, the response MUST contain multiple class elements that
 correspond to the complete set of the issuer’s resource classes where
 the client holds allocated resources. Those issuer’s resource
 classes where the client holds no allocated resources MUST NOT be
 included in the response.

 Where the issuer has issued multiple certificates in a resource class
 signed with different keys (as may occur during a staged issuer-key

Huston, et al. Standards Track [Page 17]

RFC 6492 ResCert Provisioning February 2012

 rollover), only the most recent certificate issued with the currently
 "active" issuer’s key is to be listed in the response.

 Each "class" element describes a set of resources that are certified
 within the scope of a single certificate, referring to a single
 resource class with a common validation path.

 class_name:
 the value of this attribute is the issuer-assigned name of the
 issuer’s resource class.

 cert_url:
 in the context of a class element, the value of this attribute is
 a pointer to the issuer’s CA certificate (i.e., a reference to the
 immediate superior certificate, being the CA-enabled certificate
 where the issuer is the certificate’s subject). Its value is a
 comma-separated list of URIs, of which at least one MUST be an
 rsync URI [RFC5781]. Any comma values within a URI MUST be
 escaped ("%2C"). The ordering of the list may be interpreted by
 the client as a relative preference for access methods as
 expressed by the publisher of this certificate.

 resource_set_as:
 in the context of a class element, the value of this attribute is
 the set of AS numbers and AS number ranges that the issuer has
 allocated to the client within the scope of this resource class,
 presented in ASCII as a comma-separated list. The list elements
 are decimal integer values and ranges of decimal integers
 specified by the lowest and highest values of the range with a
 hyphen delimiter, using the canonical order as described in
 [RFC3779], without leading zeros, and with no white space or
 punctuation other than the comma and the hyphen range designator
 (e.g., resource_set_as="123,456-789,123456"). If there are no AS
 numbers in this resource class, then the empty AS set is
 represented by a null string value ("") for this attribute.

 resource_set_ipv4:
 in the context of a class element, the value of this attribute is
 the set of IPv4 addresses that the issuer has allocated to the
 client within the scope of this resource class. The value is
 presented in ASCII as a comma-separated list of elements. Each
 element is either an address prefix using the notation of <dotted
 quad>/mask length, or a range specified as the lowest and highest
 values of the range in dotted quad notation with a hyphen
 delimiter. The list is presented in canonical order, as described
 in [RFC3779]. The dotted quad notation is without leading zeros,
 and the list contains no white space or punctuation other than the
 period, forward slash, hyphen, and comma (e.g.,

Huston, et al. Standards Track [Page 18]

RFC 6492 ResCert Provisioning February 2012

 resource_set_ipv4="192.0.2.0/26,192.0.2.66-192.0.2.76"). If there
 are no IPv4 addresses in this resource class, the empty IPv4
 address set is represented by a null string value ("") for this
 attribute.

 resource_set_ipv6:
 in the context of a class element, the value of this attribute is
 the set of IPv6 addresses that the issuer has allocated to the
 client within the scope of this resource class. The value is
 presented in ASCII as a comma-separated list of elements. Each
 element is either an address prefix using the notation of <hex
 nibble sequence>/mask length, or a range specified as lowest and
 highest values of the range in hex nibble notation with a hyphen
 delimiter. Trailing zero nibbles are truncated and represented by
 ’::’. The list is presented in canonical order, as described in
 [RFC3779]. The hex nibble sequence notation is without leading
 zeros, and the list contains no white space or punctuation other
 than the colon, forward slash, hyphen, and comma, and conforms to
 the canonical format of [RFC5952] (e.g.,
 resource_set_ipv6="2001:db8::/48,2001:db8:2::-2001:db8:5::"). The
 XML Schema data type is
 "http://www.w3.org/TR/xmlschema-2/#hexBinary" and the value is
 case insensitive, with the canonical form being lower case. If
 there are no IPv6 addresses in this resource class, the empty IPv6
 address set is represented by a null string value ("") for this
 attribute.

 resource_set_notafter:
 The value of this attribute specifies the date/time that would be
 set in the Validity notAfter field in any new certificate issued
 for this particular client within the scope of this resource
 class, should the client request a new certificate. The time
 format used for the value of this attribute is specified as
 defined in ISO 8601 [ISO.8601:2004], and MUST use UTC time
 represented as YYYY-MM-DDThh:mm:ssZ (e.g., 2007-11-29T04:40:00Z).
 If the client’s certificate has a validity notAfter time that is
 different from this time, then the client SHOULD request a new
 certificate to be issued for this resource class.

 suggested_sia_head: (OPTIONAL)
 If this field is present, then its value is a directory URI that
 indicates a repository publication point that the server has made
 available to the client to use for the client’s collection of
 published products. This specification does not encompass the
 protocols that the client may use with the operator of the
 repository publication point in order to publish objects at this
 publication point.

Huston, et al. Standards Track [Page 19]

RFC 6492 ResCert Provisioning February 2012

 [issuer’s certificate]
 value is the Base64 encoding of the DER-encoded issuer’s CA
 certificate (the CA-enabled certificate where the issuer is the
 certificate’s subject).

 Each certificate element describes the most recently issued
 current certificate where the certificate’s subject refers to the
 client for each active client key pair. A "current" certificate
 is a non-expired, non-revoked certificate. If no current
 certificate has been issued, then no certificate element is to be
 included in the response.

 cert_url:
 in the context of a certificate element, this is a pointer to the
 location where the certificate issuer has published this
 certificate. This field is the issuer’s suggestion for the
 Authority Information Access (AIA) field for the subject to use in
 subordinate certificates that are issued by the subject.
 According to the Resource Certificate Profile [RFC6487], the AIA
 field is a non-empty (contains a minimum of 1 element) list of
 URI’s, one of which MUST be an rsync URI [RFC5781]. The order of
 URI’s in the AIA field may be interpreted as the publisher’s
 relative preference for access methods for this certificate. The
 cert_url conforms to this AIA specification. Its value is a
 comma-separated list of URIs, one of which MUST be an rsync URI.
 Any comma values within a URI MUST be escaped ("%2C").

 req_resource_set_as:
 the set of AS numbers that were specified in the corresponding
 original certificate request that defined the maximal requested
 span of the certified AS number set, following the syntax
 described above. If this attribute was present in the certificate
 request, then the attribute MUST be present in this response;
 otherwise, it MUST NOT be present.

 req_resource_set_ipv4:
 the set of IPv4 addresses that were specified in the corresponding
 original certificate request that defined the maximal requested
 span of the certified IPv4 address set, following the syntax
 described above. If this attribute was present in the certificate
 request, then the attribute MUST be present in this response;
 otherwise, it MUST NOT be present.

 req_resource_set_ipv6:
 the set of IPv6 addresses that were specified in the corresponding
 original certificate request that defined the maximal requested
 span of the certified IPv6 address set, following the syntax
 described above. If this attribute was present in the certificate

Huston, et al. Standards Track [Page 20]

RFC 6492 ResCert Provisioning February 2012

 request, then the attribute MUST be present in this response;
 otherwise, it MUST NOT be present.

 [certificate]
 value is the Base64 encoding of the DER-encoded certificate.

3.4. CA - Certificate Issuance

 This query is used by the client to request the server’s CA to issue
 a resource certificate for the resources that have been allocated or
 assigned to the client. If the request can be successfully
 processed, then the server’s response includes the issued
 certificate.

3.4.1. Certificate Issuance Request

 The value of the message "type" element for this request is:

 type="issue"

 Payload:

 <request
 class_name="class name"
 req_resource_set_as="as resource set"
 req_resource_set_ipv4="ipv4 resource set"
 req_resource_set_ipv6="ipv6 resource set">
 [Certificate request]
 </request>

 The client MUST use different key pairs for each distinct resource
 class.

 The req_resource_set attributes are optional in the request.

 If none of the req_resource_set attributes are specified, then the
 request signifies that the complete set of all resources that match
 the client’s current resource allocation is to be included in the
 issued certificate.

 If any of the req_resource_set attributes are specified in the
 request, then any missing req_resource_set attributes are to be
 interpreted as specifying the complete set of the corresponding

Huston, et al. Standards Track [Page 21]

RFC 6492 ResCert Provisioning February 2012

 resource type that match the client’s current resource allocation are
 to be included in the issued certificate.

 If the value of any included req_resource_set attributes is the null
 value (""), then this indicates that no resources of that resource
 type are to be included in the issued certificate.

 The requested resource set values are held as a local record by the
 issuer against the resource class and the client’s public key. Any
 subsequent Certificate Issuance Requests that specify the same
 resource class and the same client’s public key will (re)set the
 issuer’s local record of the requested resource sets to the most
 recently specified values.

 class_name:
 value is the server’s identifier of a resource class.

 req_resource_set_as: (OPTIONAL)
 the set of AS numbers that define the maximal requested span of
 the certified AS number set, formatted as per the resource_set_as
 attribute of the resource class list response.

 req_resource_set_ipv4: (OPTIONAL)
 the set of IPv4 addresses that define the maximal requested span
 of the certified IPv4 address set, formatted as per the
 resource_set_ipv4 attribute of the resource class list response.

 req_resource_set_ipv6: (OPTIONAL)
 the set of IPv6 addresses that define the maximal requested span
 of the certified IPv6 address set, formatted as per the
 resource_set_ipv6 attribute of the resource class list response.

 [Certificate request]
 value is the certificate request. This is a Base64 encoded DER
 version of a request formatted using PKCS#10 [RFC2986]. The
 certificate request is signed using the private key part of the
 key pair whose public part is the subject key value in the
 certification request. The signing algorithm is specified in
 [RFC6485]. (This signature component is intended to demonstrate
 proof of possession of the private key.)

 The response to this request is a Certificate Issuance Response if
 the request can be processed online. If the request cannot be
 undertaken immediately, then the server MUST respond with a "Request-
 Not-Performed" message, using the appropriate error code:

 o If the resource class is not defined by the server, then the
 server MUST return error code 1201.

Huston, et al. Standards Track [Page 22]

RFC 6492 ResCert Provisioning February 2012

 o If the client holds no resources in a defined resource class, then
 the server MUST return error code 1202 and not proceed with the
 request.

 o If the certificate request payload is badly formed, then the
 server MUST return error code 1203.

 o If the public key used in the certificate request implies that the
 client is attempting to use identical key pairs for multiple
 resource classes, then the server MUST respond with a 1204 error
 code.

 o If the certificate issuer uses an off-line process to undertake
 certificate issuance, and the server cannot directly respond to
 the certificate issuance request with an issued certificate, then
 the certificate issuer MUST respond to the first instance of this
 request with an error code 1104 to indicate that the request is
 being processed asynchronously. Subsequent repetitions of this
 request while the off-line actions are being undertaken SHOULD
 cause a response with error code 1101. In this context, where
 off-line processes are invoked for certificate issuance, if the
 certificate issuer determines in processing the request that the
 issued certificate would be identical in all respects to the most
 recently issued certificate for this client, other than the
 certificate’s serial number, were the certificate to be issued,
 the issuer may choose to respond with the most recently issued
 certificate and not initiate an off-line certificate issuance
 request.

 Note that a client, when receiving a 1104 response to a certificate
 issuance request, MAY periodically resubmit the request, in which
 case the client MUST receive an error code 1101 response while the
 request is being processed, and a Certificate Issuance Response when
 the certificate issuance process has completed. In such
 circumstances, a client SHOULD limit the frequency of such repeated
 requests to no more than 1 request in each 24-hour interval.

Huston, et al. Standards Track [Page 23]

RFC 6492 ResCert Provisioning February 2012

3.4.2. Certificate Issuance Response

 The value of the message "type" element for this response is:

 type="issue_response"

 Payload:

 <class class_name="class name"
 cert_url="url"
 resource_set_as="as resource set"
 resource_set_ipv4="ipv4 resource set"
 resource_set_ipv6="ipv6 resource set" >
 <certificate cert_url="url"
 req_resource_set_as="as resource set"
 req_resource_set_ipv4="ipv4 resource set"
 req_resource_set_ipv6="ipv6 resource set" >
 [certificate]
 </certificate>
 <issuer>[issuer’s certificate]</issuer>
 </class>

 If the certificate issuer determines that the issued certificate
 would be identical in all respects to the most recently issued
 certificate for this client, other than the certificate’s serial
 number, were the certificate to be issued, the issuer may choose to
 respond with the most recently issued certificate and not issue a new
 certificate for this request.

 The definition of the attributes and syntax of the values is the same
 as the resource class list response, but the response only references
 the (single) named resource class, and the (single) certificate
 issued against the client’s public key as provided in the
 corresponding certificate request.

3.5. Certificate Revocation

 This request ’retires’ a client’s key pair by requesting that the
 server’s CA revoke all certificates for this client (i.e., where this
 client is the subject) that contain the matching public key, within
 the scope of a named resource class. Individual certificates cannot
 be revoked within the scope of this protocol.

Huston, et al. Standards Track [Page 24]

RFC 6492 ResCert Provisioning February 2012

3.5.1. Certificate Revocation Request

 The value of the message "type" element for this request is:

 type="revoke"

 Payload:

 <key class_name="class name"
 ski="[encoded hash of the subject public key]" />

 This command directs the server’s CA to immediately mark all issued
 valid certificates issued by this issuer within the named resource
 class with this client’s subject name and the provided SKI value to
 be marked as revoked, causing the issued certificates to be withdrawn
 from the publication repository and to be listed in the server’s
 subsequent CRLs within this resource class. The issuer MUST ensure
 that all certificates to be revoked were issued with the requesting
 client as the certificate’s subject.

 class_name:
 value is the issuer-assigned name of the issuer’s resource class.

 ski:
 value is the encoded hash of the client’s public key that is to be
 revoked. The algorithm for the encoding is to generate the
 160-bit SHA-1 hash of the client’s public key, as defined in
 method (1) of Section 4.2.1.2 of [RFC5280], and encode this value
 using the Base 64 encoding with URL and Filename Safe Alphabet, as
 defined in Section 5 of [RFC4648].

Huston, et al. Standards Track [Page 25]

RFC 6492 ResCert Provisioning February 2012

3.5.2. Certificate Revocation Response

 The value of the message "type" element for this response is:

 type="revoke_response"

 Payload:

 <key class_name="class name"
 ski="[encoded hash of the subject public key]" />

 class_name:
 value is the issuer-assigned name of the server’s resource class.

 ski:
 value is the encoded hash of the client’s public key that is to be
 revoked. The algorithm for the encoding is to generate the
 160-bit SHA-1 hash of the client’s public key, as defined in
 method (1) of Section 4.2.1.2 of [RFC5280], and encode this value
 using the Base 64 encoding with URL and Filename Safe Alphabet, as
 defined in Section 5 of [RFC4648].

3.6. Request-Not-Performed Response

 The value of the message "type" element for this response is:

 type="error_response"

 Payload:

 <status>[Code]</status>
 <description xml:lang="en-US">[Readable text]</description>

 All states where an error response if to be generated, either due to
 detected errors or inconsistencies in the content of the request or
 server-side states that prevent the request being performed, generate
 a Request-Not-Performed response.

Huston, et al. Standards Track [Page 26]

RFC 6492 ResCert Provisioning February 2012

 description:
 value is a text field. This element MAY be present. It’s value
 has no defined meaning within the scope of this protocol, and
 implementations may assume that some form of human-readable text
 may be used here. If the HTTP request that triggered this error
 response includes an Accept-Language header as defined in Section
 14.4 of the HTTP/1.1 specification [RFC2616], then the server MAY
 include a second description element using the highest ranked
 preferred language of the client. The en-US description MUST
 always be included if the element is present.

 The error code set is:

 Code Value Description
 1101 already processing request
 1102 version number error
 1103 unrecognized request type
 1104 request scheduled for processing
 1201 request - no such resource class
 1202 request - no resources allocated in resource class
 1203 request - badly formed certificate request
 1204 request - already used key in request
 1301 revoke - no such resource class
 1302 revoke - no such key
 2001 Internal Server Error - Request not performed

3.7. XML Schema

 The following is a RELAX NG compact form schema describing version 1
 of this protocol.

 Note: As discussed in [XML], "the namespace name, to serve its
 intended purpose, SHOULD have the characteristics of uniqueness
 and persistence. It is not a goal that it be directly usable for
 retrieval of a schema (if any exists)".

 default namespace = "http://www.apnic.net/specs/rescerts/up-down/"

 grammar {
 resource_set_as = xsd:string { maxLength="512000"
 pattern="[\-,0-9]*" }
 resource_set_ip4 = xsd:string { maxLength="512000"
 pattern="[\-,/.0-9]*" }
 resource_set_ip6 = xsd:string { maxLength="512000"
 pattern="[\-,/:0-9a-fA-F]*" }

 class_name = xsd:token { minLength="1" maxLength="1024" }
 ski = xsd:token { minLength="27" maxLength="1024" }

Huston, et al. Standards Track [Page 27]

RFC 6492 ResCert Provisioning February 2012

 label = xsd:token { minLength="1" maxLength="1024" }
 cert_url = xsd:string { minLength="10" maxLength="4096" }
 base64_binary = xsd:base64Binary { minLength="4"
 maxLength="512000" }

 start = element message {
 attribute version { xsd:positiveInteger {
 maxInclusive="1" } },
 attribute sender { label },
 attribute recipient { label },
 payload
 }

 payload |= attribute type { "list" }, list_request
 payload |= attribute type { "list_response"}, list_response
 payload |= attribute type { "issue" }, issue_request
 payload |= attribute type { "issue_response"}, issue_response
 payload |= attribute type { "revoke" }, revoke_request
 payload |= attribute type { "revoke_response"}, revoke_response
 payload |= attribute type { "error_response"}, error_response

 list_request = empty
 list_response = class*

 class = element class {
 attribute class_name { class_name },
 attribute cert_url { cert_url },
 attribute resource_set_as { resource_set_as },
 attribute resource_set_ipv4 { resource_set_ip4 },
 attribute resource_set_ipv6 { resource_set_ip6 },
 attribute resource_set_notafter { xsd:dateTime },
 attribute suggested_sia_head { xsd:anyURI { maxLength="1024"
 pattern="rsync://.+"} }?,
 element certificate {
 attribute cert_url { cert_url },
 attribute req_resource_set_as { resource_set_as }?,
 attribute req_resource_set_ipv4 { resource_set_ip4 }?,
 attribute req_resource_set_ipv6 { resource_set_ip6 }?,
 base64_binary
 }*,
 element issuer { base64_binary }
 }

 issue_request = element request {
 attribute class_name { class_name },
 attribute req_resource_set_as { resource_set_as }?,
 attribute req_resource_set_ipv4 { resource_set_ip4 }?,
 attribute req_resource_set_ipv6 { resource_set_ip6 }?,

Huston, et al. Standards Track [Page 28]

RFC 6492 ResCert Provisioning February 2012

 base64_binary
 }
 issue_response = class

 revoke_request = revocation
 revoke_response = revocation

 revocation = element key {
 attribute class_name { class_name },
 attribute ski { ski }
 }

 error_response =
 element status { xsd:positiveInteger { maxInclusive="9999" } },
 element description { attribute xml:lang { xsd:language },
 xsd:string { maxLength="1024" } }*
 }

4. Security Considerations

 This protocol supports the maintenance of resource certificates that
 the issuer issues for a subject in certifying resources that have
 been allocated or assigned by the issuer to the subject [RFC6480].
 This protocol assumes that the issuer and subject are known to each
 other and have exchanged credentials so as to support the mutual
 recognition of the digital signatures used to sign the CMS messages.
 The mechanisms used to perform the associated credential exchange are
 not described in this specification.

 The protocol is a minimal query/response protocol that imposes strict
 serialization on each query/response transaction, reducing the
 potential for the subject and the issuer to lose synchronization over
 the issued certificate state.

 Validation of protocol objects (Section 3.1.2) requires that the CMS
 signing-time value be greater than or equal to the time value passed
 in the previously valid protocol objects that were passed from the
 same originator to the same recipient. If a party inadvertently
 sends a valid message (protocol object) with a signing time in the
 future, then subsequent messages from the party in the same
 client/server context can use signing-time value consistent with this
 validation constraint, such that the signing times contained in
 subsequent messages are greater than or equal to the signing-time
 value of the previous valid message. (Note that it is not a
 normative requirement that the signing time be precisely aligned to a
 time of day clock, thus permitting arbitrarily large clock skew
 values in the context of this protocol message exchange.) If the
 client and server wish to reset the signing time to a mutually agreed

Huston, et al. Standards Track [Page 29]

RFC 6492 ResCert Provisioning February 2012

 value, then, (as noted in Section 2) the interactions between the
 client and the server to achieve this outcome are not encompassed in
 this protocol.

5. IANA Considerations

 IANA has registered the following media type:

 application/rpki-updown

5.1. application/rpki-updown

 Type name: application
 Subtype name: rpki-updown
 Required parameters: None
 Optional parameters: None
 Encoding considerations: binary
 Security considerations: Carries an RPKI Provisioning Protocol
 Message, as defined in this document.
 Interoperability considerations: None
 Published specification: This document
 Applications that use this media type: HTTP [RFC5652]
 Additional information:
 Magic number(s): None
 File extension(s):
 Macintosh File Type Code(s):
 Person & email address to contact for further information:
 Geoff Huston <gih@apnic.net>
 Intended usage: COMMON
 Restrictions on usage: Only to be used as an RPKI Provisioning
 Protocol message object type, as defined in this document.
 Author: Geoff Huston <gih@apnic.net>
 Change controller: Geoff Huston <gih@apnic.net>

6. Acknowledgements

 The authors would like to acknowledge the valued contributions from
 Russ Housley, Steve Kent, Randy Bush, George Michaelson, Robert
 Kisteleki, Tim Bruijnzeels, and Carsten Bormann in the preparation of
 the protocol described in this document.

Huston, et al. Standards Track [Page 30]

RFC 6492 ResCert Provisioning February 2012

7. References

7.1. Normative References

 [ISO.8601:2004]
 ISO, "ISO 8601:2004 Representation of dates and Times",
 2004.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 November 2000.

 [RFC3779] Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP
 Addresses and AS Identifiers", RFC 3779, June 2004.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, September 2009.

 [RFC5781] Weiler, S., Ward, D., and R. Housley, "The rsync URI
 Scheme", RFC 5781, February 2010.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952, August 2010.

 [RFC6019] Housley, R., "BinaryTime: An Alternate Format for
 Representing Date and Time in ASN.1", RFC 6019, September
 2010.

 [RFC6485] Huston, G., "The Profile for Algorithms and Key Sizes for
 Use in the Resource Public Key Infrastructure (RPKI)", RFC
 6485, February 2012.

Huston, et al. Standards Track [Page 31]

RFC 6492 ResCert Provisioning February 2012

 [X.509-88] CCITT, "Recommendation X.509: The Directory-
 Authentication Framework", 1988.

7.2. Informative References

 [RFC6480] Lepinski, M. and S. Kent, "An Infrastructure to Support
 Secure Internet Routing", RFC 6480, February 2012.

 [RFC6487] Huston, G., Michaelson, G., and R. Loomans, "A Profile for
 X.509 PKIX Resource Certificates", RFC 6487, February
 2012.

 [XML] Bray, T., Hollander, D., Layman, A., Tobin, R., and H.
 Thompson, "Namespaces in XML 1.0 (Third Edition)", World
 Wide Web Consortium Recommendation REC-xml-names-20091208,
 December 2009, <http://www.w3.org/TR/2009/REC-xml-
 names-20091208/>.

Authors’ Addresses

 Geoff Huston
 APNIC

 EMail: gih@apnic.net
 URI: http://www.apnic.net

 Robert Loomans
 APNIC

 EMail: robertl@apnic.net
 URI: http://www.apnic.net

 Byron Ellacott
 APNIC

 EMail: bje@apnic.net
 URI: http://www.apnic.net

 Rob Austein
 Internet Systems Consortium

 EMail: sra@hactrn.net

Huston, et al. Standards Track [Page 32]

